Diff for /imach/src/imach.c between versions 1.48 and 1.175

version 1.48, 2002/06/10 13:12:49 version 1.175, 2015/01/03 16:33:42
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.175  2015/01/03 16:33:42  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.174  2015/01/03 16:15:49  brouard
   first survey ("cross") where individuals from different ages are    Summary: Still in cross-compilation
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.173  2015/01/03 12:06:26  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: trying to detect cross-compilation
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.172  2014/12/27 12:07:47  brouard
   model. More health states you consider, more time is necessary to reach the    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.171  2014/12/23 13:26:59  brouard
   probability to be observed in state j at the second wave    Summary: Back from Visual C
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Still problem with utsname.h on Windows
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.170  2014/12/23 11:17:12  brouard
   where the markup *Covariates have to be included here again* invites    Summary: Cleaning some \%% back to %%
   you to do it.  More covariates you add, slower the  
   convergence.    The escape was mandatory for a specific compiler (which one?), but too many warnings.
   
   The advantage of this computer programme, compared to a simple    Revision 1.169  2014/12/22 23:08:31  brouard
   multinomial logistic model, is clear when the delay between waves is not    Summary: 0.98p
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Outputs some informations on compiler used, OS etc. Testing on different platforms.
   account using an interpolation or extrapolation.    
     Revision 1.168  2014/12/22 15:17:42  brouard
   hPijx is the probability to be observed in state i at age x+h    Summary: update
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.167  2014/12/22 13:50:56  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: Testing uname and compiler version and if compiled 32 or 64
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Testing on Linux 64
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.166  2014/12/22 11:40:47  brouard
     *** empty log message ***
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.165  2014/12/16 11:20:36  brouard
      Summary: After compiling on Visual C
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    * imach.c (Module): Merging 1.61 to 1.162
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.164  2014/12/16 10:52:11  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    * imach.c (Module): Merging 1.61 to 1.162
   **********************************************************************/  
      Revision 1.163  2014/12/16 10:30:11  brouard
 #include <math.h>    * imach.c (Module): Merging 1.61 to 1.162
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.162  2014/09/25 11:43:39  brouard
 #include <unistd.h>    Summary: temporary backup 0.99!
   
 #define MAXLINE 256    Revision 1.1  2014/09/16 11:06:58  brouard
 #define GNUPLOTPROGRAM "gnuplot"    Summary: With some code (wrong) for nlopt
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Author:
 /*#define DEBUG*/  
 #define windows    Revision 1.161  2014/09/15 20:41:41  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Summary: Problem with macro SQR on Intel compiler
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.160  2014/09/02 09:24:05  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    *** empty log message ***
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.159  2014/09/01 10:34:10  brouard
 #define NINTERVMAX 8    Summary: WIN32
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Author: Brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.158  2014/08/27 17:11:51  brouard
 #define MAXN 20000    *** empty log message ***
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.157  2014/08/27 16:26:55  brouard
 #define AGEBASE 40    Summary: Preparing windows Visual studio version
 #ifdef windows    Author: Brouard
 #define DIRSEPARATOR '\\'  
 #else    In order to compile on Visual studio, time.h is now correct and time_t
 #define DIRSEPARATOR '/'    and tm struct should be used. difftime should be used but sometimes I
 #endif    just make the differences in raw time format (time(&now).
     Trying to suppress #ifdef LINUX
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    Add xdg-open for __linux in order to open default browser.
 int erreur; /* Error number */  
 int nvar;    Revision 1.156  2014/08/25 20:10:10  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    *** empty log message ***
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.155  2014/08/25 18:32:34  brouard
 int ndeath=1; /* Number of dead states */    Summary: New compile, minor changes
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Author: Brouard
 int popbased=0;  
     Revision 1.154  2014/06/20 17:32:08  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Summary: Outputs now all graphs of convergence to period prevalence
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.153  2014/06/20 16:45:46  brouard
 int mle, weightopt;    Summary: If 3 live state, convergence to period prevalence on same graph
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Author: Brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.152  2014/06/18 17:54:09  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.151  2014/06/18 16:43:30  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    *** empty log message ***
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.150  2014/06/18 16:42:35  brouard
 char filerese[FILENAMELENGTH];    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 FILE  *ficresvij;    Author: brouard
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.149  2014/06/18 15:51:14  brouard
 char fileresvpl[FILENAMELENGTH];    Summary: Some fixes in parameter files errors
 char title[MAXLINE];    Author: Nicolas Brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Author: Brouard
   
 char filerest[FILENAMELENGTH];    Just a new packaging for OS/X version 0.98nS
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.146  2014/06/16 10:20:28  brouard
 #define NR_END 1    Summary: Merge
 #define FREE_ARG char*    Author: Brouard
 #define FTOL 1.0e-10  
     Merge, before building revised version.
 #define NRANSI  
 #define ITMAX 200    Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
 #define TOL 2.0e-4    Author: Nicolas Brouard
   
 #define CGOLD 0.3819660    Lot of changes in order to output the results with some covariates
 #define ZEPS 1.0e-10    After the Edimburgh REVES conference 2014, it seems mandatory to
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    improve the code.
     No more memory valgrind error but a lot has to be done in order to
 #define GOLD 1.618034    continue the work of splitting the code into subroutines.
 #define GLIMIT 100.0    Also, decodemodel has been improved. Tricode is still not
 #define TINY 1.0e-20    optimal. nbcode should be improved. Documentation has been added in
     the source code.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.143  2014/01/26 09:45:38  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define rint(a) floor(a+0.5)    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
 static double sqrarg;    Revision 1.142  2014/01/26 03:57:36  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int imx;  
 int stepm;    Revision 1.141  2014/01/26 02:42:01  brouard
 /* Stepm, step in month: minimum step interpolation*/    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
 int estepm;    Revision 1.140  2011/09/02 10:37:54  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Summary: times.h is ok with mingw32 now.
   
 int m,nb;    Revision 1.139  2010/06/14 07:50:17  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
 double *weight;  
 int **s; /* Status */    Revision 1.137  2010/04/29 18:11:38  brouard
 double *agedc, **covar, idx;    (Module): Checking covariates for more complex models
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    than V1+V2. A lot of change to be done. Unstable.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.136  2010/04/26 20:30:53  brouard
 double ftolhess; /* Tolerance for computing hessian */    (Module): merging some libgsl code. Fixing computation
     of likelione (using inter/intrapolation if mle = 0) in order to
 /**************** split *************************/    get same likelihood as if mle=1.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Some cleaning of code and comments added.
 {  
    char *s;                             /* pointer */    Revision 1.135  2009/10/29 15:33:14  brouard
    int  l1, l2;                         /* length counters */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.134  2009/10/29 13:18:53  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.133  2009/07/06 10:21:25  brouard
 #if     defined(__bsd__)                /* get current working directory */    just nforces
       extern char       *getwd( );  
     Revision 1.132  2009/07/06 08:22:05  brouard
       if ( getwd( dirc ) == NULL ) {    Many tings
 #else  
       extern char       *getcwd( );    Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.130  2009/05/26 06:44:34  brouard
          return( GLOCK_ERROR_GETCWD );    (Module): Max Covariate is now set to 20 instead of 8. A
       }    lot of cleaning with variables initialized to 0. Trying to make
       strcpy( name, path );             /* we've got it */    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.129  2007/08/31 13:49:27  lievre
       l2 = strlen( s );                 /* length of filename */    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.128  2006/06/30 13:02:05  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Module): Clarifications on computing e.j
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.127  2006/04/28 18:11:50  brouard
    l1 = strlen( dirc );                 /* length of directory */    (Module): Yes the sum of survivors was wrong since
 #ifdef windows    imach-114 because nhstepm was no more computed in the age
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    loop. Now we define nhstepma in the age loop.
 #else    (Module): In order to speed up (in case of numerous covariates) we
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    compute health expectancies (without variances) in a first step
 #endif    and then all the health expectancies with variances or standard
    s = strrchr( name, '.' );            /* find last / */    deviation (needs data from the Hessian matrices) which slows the
    s++;    computation.
    strcpy(ext,s);                       /* save extension */    In the future we should be able to stop the program is only health
    l1= strlen( name);    expectancies and graph are needed without standard deviations.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.126  2006/04/28 17:23:28  brouard
    finame[l1-l2]= 0;    (Module): Yes the sum of survivors was wrong since
    return( 0 );                         /* we're done */    imach-114 because nhstepm was no more computed in the age
 }    loop. Now we define nhstepma in the age loop.
     Version 0.98h
   
 /******************************************/    Revision 1.125  2006/04/04 15:20:31  lievre
     Errors in calculation of health expectancies. Age was not initialized.
 void replace(char *s, char*t)    Forecasting file added.
 {  
   int i;    Revision 1.124  2006/03/22 17:13:53  lievre
   int lg=20;    Parameters are printed with %lf instead of %f (more numbers after the comma).
   i=0;    The log-likelihood is printed in the log file
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.123  2006/03/20 10:52:43  brouard
     (s[i] = t[i]);    * imach.c (Module): <title> changed, corresponds to .htm file
     if (t[i]== '\\') s[i]='/';    name. <head> headers where missing.
   }  
 }    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 int nbocc(char *s, char occ)    otherwise the weight is truncated).
 {    Modification of warning when the covariates values are not 0 or
   int i,j=0;    1.
   int lg=20;    Version 0.98g
   i=0;  
   lg=strlen(s);    Revision 1.122  2006/03/20 09:45:41  brouard
   for(i=0; i<= lg; i++) {    (Module): Weights can have a decimal point as for
   if  (s[i] == occ ) j++;    English (a comma might work with a correct LC_NUMERIC environment,
   }    otherwise the weight is truncated).
   return j;    Modification of warning when the covariates values are not 0 or
 }    1.
     Version 0.98g
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.121  2006/03/16 17:45:01  lievre
   int i,lg,j,p=0;    * imach.c (Module): Comments concerning covariates added
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    * imach.c (Module): refinements in the computation of lli if
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    status=-2 in order to have more reliable computation if stepm is
   }    not 1 month. Version 0.98f
   
   lg=strlen(t);    Revision 1.120  2006/03/16 15:10:38  lievre
   for(j=0; j<p; j++) {    (Module): refinements in the computation of lli if
     (u[j] = t[j]);    status=-2 in order to have more reliable computation if stepm is
   }    not 1 month. Version 0.98f
      u[p]='\0';  
     Revision 1.119  2006/03/15 17:42:26  brouard
    for(j=0; j<= lg; j++) {    (Module): Bug if status = -2, the loglikelihood was
     if (j>=(p+1))(v[j-p-1] = t[j]);    computed as likelihood omitting the logarithm. Version O.98e
   }  
 }    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 /********************** nrerror ********************/    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 void nrerror(char error_text[])    (Module): Function pstamp added
 {    (Module): Version 0.98d
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.117  2006/03/14 17:16:22  brouard
   exit(1);    (Module): varevsij Comments added explaining the second
 }    table of variances if popbased=1 .
 /*********************** vector *******************/    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 double *vector(int nl, int nh)    (Module): Function pstamp added
 {    (Module): Version 0.98d
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Revision 1.116  2006/03/06 10:29:27  brouard
   if (!v) nrerror("allocation failure in vector");    (Module): Variance-covariance wrong links and
   return v-nl+NR_END;    varian-covariance of ej. is needed (Saito).
 }  
     Revision 1.115  2006/02/27 12:17:45  brouard
 /************************ free vector ******************/    (Module): One freematrix added in mlikeli! 0.98c
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.114  2006/02/26 12:57:58  brouard
   free((FREE_ARG)(v+nl-NR_END));    (Module): Some improvements in processing parameter
 }    filename with strsep.
   
 /************************ivector *******************************/    Revision 1.113  2006/02/24 14:20:24  brouard
 int *ivector(long nl,long nh)    (Module): Memory leaks checks with valgrind and:
 {    datafile was not closed, some imatrix were not freed and on matrix
   int *v;    allocation too.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Revision 1.112  2006/01/30 09:55:26  brouard
   return v-nl+NR_END;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 }  
     Revision 1.111  2006/01/25 20:38:18  brouard
 /******************free ivector **************************/    (Module): Lots of cleaning and bugs added (Gompertz)
 void free_ivector(int *v, long nl, long nh)    (Module): Comments can be added in data file. Missing date values
 {    can be a simple dot '.'.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.109  2006/01/24 19:37:15  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    (Module): Comments (lines starting with a #) are allowed in data.
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Revision 1.108  2006/01/19 18:05:42  lievre
   int **m;    Gnuplot problem appeared...
      To be fixed
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.107  2006/01/19 16:20:37  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    Test existence of gnuplot in imach path
   m += NR_END;  
   m -= nrl;    Revision 1.106  2006/01/19 13:24:36  brouard
      Some cleaning and links added in html output
    
   /* allocate rows and set pointers to them */    Revision 1.105  2006/01/05 20:23:19  lievre
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    *** empty log message ***
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.104  2005/09/30 16:11:43  lievre
   m[nrl] -= ncl;    (Module): sump fixed, loop imx fixed, and simplifications.
      (Module): If the status is missing at the last wave but we know
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    that the person is alive, then we can code his/her status as -2
      (instead of missing=-1 in earlier versions) and his/her
   /* return pointer to array of pointers to rows */    contributions to the likelihood is 1 - Prob of dying from last
   return m;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 }    the healthy state at last known wave). Version is 0.98
   
 /****************** free_imatrix *************************/    Revision 1.103  2005/09/30 15:54:49  lievre
 void free_imatrix(m,nrl,nrh,ncl,nch)    (Module): sump fixed, loop imx fixed, and simplifications.
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.102  2004/09/15 17:31:30  brouard
      /* free an int matrix allocated by imatrix() */    Add the possibility to read data file including tab characters.
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Revision 1.101  2004/09/15 10:38:38  brouard
   free((FREE_ARG) (m+nrl-NR_END));    Fix on curr_time
 }  
     Revision 1.100  2004/07/12 18:29:06  brouard
 /******************* matrix *******************************/    Add version for Mac OS X. Just define UNIX in Makefile
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.99  2004/06/05 08:57:40  brouard
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    *** empty log message ***
   double **m;  
     Revision 1.98  2004/05/16 15:05:56  brouard
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    New version 0.97 . First attempt to estimate force of mortality
   if (!m) nrerror("allocation failure 1 in matrix()");    directly from the data i.e. without the need of knowing the health
   m += NR_END;    state at each age, but using a Gompertz model: log u =a + b*age .
   m -= nrl;    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    cross-longitudinal survey is different from the mortality estimated
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    from other sources like vital statistic data.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    The same imach parameter file can be used but the option for mle should be -3.
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Agnès, who wrote this part of the code, tried to keep most of the
   return m;    former routines in order to include the new code within the former code.
 }  
     The output is very simple: only an estimate of the intercept and of
 /*************************free matrix ************************/    the slope with 95% confident intervals.
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {    Current limitations:
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    A) Even if you enter covariates, i.e. with the
   free((FREE_ARG)(m+nrl-NR_END));    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 }    B) There is no computation of Life Expectancy nor Life Table.
   
 /******************* ma3x *******************************/    Revision 1.97  2004/02/20 13:25:42  lievre
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Version 0.96d. Population forecasting command line is (temporarily)
 {    suppressed.
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    rewritten within the same printf. Workaround: many printfs.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.95  2003/07/08 07:54:34  brouard
   m -= nrl;    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    matrix (cov(a12,c31) instead of numbers.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.94  2003/06/27 13:00:02  brouard
   m[nrl] -= ncl;    Just cleaning
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    exist so I changed back to asctime which exists.
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    (Module): Version 0.96b
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    Revision 1.92  2003/06/25 16:30:45  brouard
   for (j=ncl+1; j<=nch; j++)    (Module): On windows (cygwin) function asctime_r doesn't
     m[nrl][j]=m[nrl][j-1]+nlay;    exist so I changed back to asctime which exists.
    
   for (i=nrl+1; i<=nrh; i++) {    Revision 1.91  2003/06/25 15:30:29  brouard
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    * imach.c (Repository): Duplicated warning errors corrected.
     for (j=ncl+1; j<=nch; j++)    (Repository): Elapsed time after each iteration is now output. It
       m[i][j]=m[i][j-1]+nlay;    helps to forecast when convergence will be reached. Elapsed time
   }    is stamped in powell.  We created a new html file for the graphs
   return m;    concerning matrix of covariance. It has extension -cov.htm.
 }  
     Revision 1.90  2003/06/24 12:34:15  brouard
 /*************************free ma3x ************************/    (Module): Some bugs corrected for windows. Also, when
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    mle=-1 a template is output in file "or"mypar.txt with the design
 {    of the covariance matrix to be input.
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.89  2003/06/24 12:30:52  brouard
   free((FREE_ARG)(m+nrl-NR_END));    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 /***************** f1dim *************************/  
 extern int ncom;    Revision 1.88  2003/06/23 17:54:56  brouard
 extern double *pcom,*xicom;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 extern double (*nrfunc)(double []);  
      Revision 1.87  2003/06/18 12:26:01  brouard
 double f1dim(double x)    Version 0.96
 {  
   int j;    Revision 1.86  2003/06/17 20:04:08  brouard
   double f;    (Module): Change position of html and gnuplot routines and added
   double *xt;    routine fileappend.
    
   xt=vector(1,ncom);    Revision 1.85  2003/06/17 13:12:43  brouard
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    * imach.c (Repository): Check when date of death was earlier that
   f=(*nrfunc)(xt);    current date of interview. It may happen when the death was just
   free_vector(xt,1,ncom);    prior to the death. In this case, dh was negative and likelihood
   return f;    was wrong (infinity). We still send an "Error" but patch by
 }    assuming that the date of death was just one stepm after the
     interview.
 /*****************brent *************************/    (Repository): Because some people have very long ID (first column)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    we changed int to long in num[] and we added a new lvector for
 {    memory allocation. But we also truncated to 8 characters (left
   int iter;    truncation)
   double a,b,d,etemp;    (Repository): No more line truncation errors.
   double fu,fv,fw,fx;  
   double ftemp;    Revision 1.84  2003/06/13 21:44:43  brouard
   double p,q,r,tol1,tol2,u,v,w,x,xm;    * imach.c (Repository): Replace "freqsummary" at a correct
   double e=0.0;    place. It differs from routine "prevalence" which may be called
      many times. Probs is memory consuming and must be used with
   a=(ax < cx ? ax : cx);    parcimony.
   b=(ax > cx ? ax : cx);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);    Revision 1.83  2003/06/10 13:39:11  lievre
   for (iter=1;iter<=ITMAX;iter++) {    *** empty log message ***
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    Revision 1.82  2003/06/05 15:57:20  brouard
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    Add log in  imach.c and  fullversion number is now printed.
     printf(".");fflush(stdout);  
 #ifdef DEBUG  */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /*
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */     Interpolated Markov Chain
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    Short summary of the programme:
       *xmin=x;    
       return fx;    This program computes Healthy Life Expectancies from
     }    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     ftemp=fu;    first survey ("cross") where individuals from different ages are
     if (fabs(e) > tol1) {    interviewed on their health status or degree of disability (in the
       r=(x-w)*(fx-fv);    case of a health survey which is our main interest) -2- at least a
       q=(x-v)*(fx-fw);    second wave of interviews ("longitudinal") which measure each change
       p=(x-v)*q-(x-w)*r;    (if any) in individual health status.  Health expectancies are
       q=2.0*(q-r);    computed from the time spent in each health state according to a
       if (q > 0.0) p = -p;    model. More health states you consider, more time is necessary to reach the
       q=fabs(q);    Maximum Likelihood of the parameters involved in the model.  The
       etemp=e;    simplest model is the multinomial logistic model where pij is the
       e=d;    probability to be observed in state j at the second wave
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    conditional to be observed in state i at the first wave. Therefore
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       else {    'age' is age and 'sex' is a covariate. If you want to have a more
         d=p/q;    complex model than "constant and age", you should modify the program
         u=x+d;    where the markup *Covariates have to be included here again* invites
         if (u-a < tol2 || b-u < tol2)    you to do it.  More covariates you add, slower the
           d=SIGN(tol1,xm-x);    convergence.
       }  
     } else {    The advantage of this computer programme, compared to a simple
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    multinomial logistic model, is clear when the delay between waves is not
     }    identical for each individual. Also, if a individual missed an
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    intermediate interview, the information is lost, but taken into
     fu=(*f)(u);    account using an interpolation or extrapolation.  
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;    hPijx is the probability to be observed in state i at age x+h
       SHFT(v,w,x,u)    conditional to the observed state i at age x. The delay 'h' can be
         SHFT(fv,fw,fx,fu)    split into an exact number (nh*stepm) of unobserved intermediate
         } else {    states. This elementary transition (by month, quarter,
           if (u < x) a=u; else b=u;    semester or year) is modelled as a multinomial logistic.  The hPx
           if (fu <= fw || w == x) {    matrix is simply the matrix product of nh*stepm elementary matrices
             v=w;    and the contribution of each individual to the likelihood is simply
             w=u;    hPijx.
             fv=fw;  
             fw=fu;    Also this programme outputs the covariance matrix of the parameters but also
           } else if (fu <= fv || v == x || v == w) {    of the life expectancies. It also computes the period (stable) prevalence. 
             v=u;    
             fv=fu;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
           }             Institut national d'études démographiques, Paris.
         }    This software have been partly granted by Euro-REVES, a concerted action
   }    from the European Union.
   nrerror("Too many iterations in brent");    It is copyrighted identically to a GNU software product, ie programme and
   *xmin=x;    software can be distributed freely for non commercial use. Latest version
   return fx;    can be accessed at http://euroreves.ined.fr/imach .
 }  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 /****************** mnbrak ***********************/    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    **********************************************************************/
             double (*func)(double))  /*
 {    main
   double ulim,u,r,q, dum;    read parameterfile
   double fu;    read datafile
      concatwav
   *fa=(*func)(*ax);    freqsummary
   *fb=(*func)(*bx);    if (mle >= 1)
   if (*fb > *fa) {      mlikeli
     SHFT(dum,*ax,*bx,dum)    print results files
       SHFT(dum,*fb,*fa,dum)    if mle==1 
       }       computes hessian
   *cx=(*bx)+GOLD*(*bx-*ax);    read end of parameter file: agemin, agemax, bage, fage, estepm
   *fc=(*func)(*cx);        begin-prev-date,...
   while (*fb > *fc) {    open gnuplot file
     r=(*bx-*ax)*(*fb-*fc);    open html file
     q=(*bx-*cx)*(*fb-*fa);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
     ulim=(*bx)+GLIMIT*(*cx-*bx);      freexexit2 possible for memory heap.
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);    h Pij x                         | pij_nom  ficrestpij
     } else if ((*cx-u)*(u-ulim) > 0.0) {     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
       fu=(*func)(u);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
       if (fu < *fc) {         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
           }         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       u=ulim;     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       fu=(*func)(u);     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);    forecasting if prevfcast==1 prevforecast call prevalence()
       fu=(*func)(u);    health expectancies
     }    Variance-covariance of DFLE
     SHFT(*ax,*bx,*cx,u)    prevalence()
       SHFT(*fa,*fb,*fc,fu)     movingaverage()
       }    varevsij() 
 }    if popbased==1 varevsij(,popbased)
     total life expectancies
 /*************** linmin ************************/    Variance of period (stable) prevalence
    end
 int ncom;  */
 double *pcom,*xicom;  
 double (*nrfunc)(double []);  #define POWELL /* Instead of NLOPT */
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #include <math.h>
 {  #include <stdio.h>
   double brent(double ax, double bx, double cx,  #include <stdlib.h>
                double (*f)(double), double tol, double *xmin);  #include <string.h>
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #ifdef _WIN32
               double *fc, double (*func)(double));  #include <io.h>
   int j;  #include <windows.h>
   double xx,xmin,bx,ax;  #include <tchar.h>
   double fx,fb,fa;  #else
    #include <unistd.h>
   ncom=n;  #endif
   pcom=vector(1,n);  
   xicom=vector(1,n);  #include <limits.h>
   nrfunc=func;  #include <sys/types.h>
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  #if defined(__GNUC__)
     xicom[j]=xi[j];  #include <sys/utsname.h> /* Doesn't work on Windows */
   }  #endif
   ax=0.0;  
   xx=1.0;  #include <sys/stat.h>
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #include <errno.h>
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /* extern int errno; */
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /* #ifdef LINUX */
 #endif  /* #include <time.h> */
   for (j=1;j<=n;j++) {  /* #include "timeval.h" */
     xi[j] *= xmin;  /* #else */
     p[j] += xi[j];  /* #include <sys/time.h> */
   }  /* #endif */
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  #include <time.h>
 }  
   #ifdef GSL
 /*************** powell ************************/  #include <gsl/gsl_errno.h>
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #include <gsl/gsl_multimin.h>
             double (*func)(double []))  #endif
 {  
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  #ifdef NLOPT
   int i,ibig,j;  #include <nlopt.h>
   double del,t,*pt,*ptt,*xit;  typedef struct {
   double fp,fptt;    double (* function)(double [] );
   double *xits;  } myfunc_data ;
   pt=vector(1,n);  #endif
   ptt=vector(1,n);  
   xit=vector(1,n);  /* #include <libintl.h> */
   xits=vector(1,n);  /* #define _(String) gettext (String) */
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  #define GNUPLOTPROGRAM "gnuplot"
     ibig=0;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     del=0.0;  #define FILENAMELENGTH 132
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       printf(" %d %.12f",i, p[i]);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     printf("\n");  
     for (i=1;i<=n;i++) {  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       fptt=(*fret);  
 #ifdef DEBUG  #define NINTERVMAX 8
       printf("fret=%lf \n",*fret);  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 #endif  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
       printf("%d",i);fflush(stdout);  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       linmin(p,xit,n,fret,func);  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       if (fabs(fptt-(*fret)) > del) {  #define MAXN 20000
         del=fabs(fptt-(*fret));  #define YEARM 12. /**< Number of months per year */
         ibig=i;  #define AGESUP 130
       }  #define AGEBASE 40
 #ifdef DEBUG  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
       printf("%d %.12e",i,(*fret));  #ifdef _WIN32
       for (j=1;j<=n;j++) {  #define DIRSEPARATOR '\\'
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #define CHARSEPARATOR "\\"
         printf(" x(%d)=%.12e",j,xit[j]);  #define ODIRSEPARATOR '/'
       }  #else
       for(j=1;j<=n;j++)  #define DIRSEPARATOR '/'
         printf(" p=%.12e",p[j]);  #define CHARSEPARATOR "/"
       printf("\n");  #define ODIRSEPARATOR '\\'
 #endif  #endif
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  /* $Id$ */
 #ifdef DEBUG  /* $State$ */
       int k[2],l;  
       k[0]=1;  char version[]="Imach version 0.98p, December 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
       k[1]=-1;  char fullversion[]="$Revision$ $Date$"; 
       printf("Max: %.12e",(*func)(p));  char strstart[80];
       for (j=1;j<=n;j++)  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
         printf(" %.12e",p[j]);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       printf("\n");  int nvar=0, nforce=0; /* Number of variables, number of forces */
       for(l=0;l<=1;l++) {  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
         for (j=1;j<=n;j++) {  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
         }  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  int cptcovprodnoage=0; /**< Number of covariate products without age */   
       }  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 #endif  int cptcov=0; /* Working variable */
   int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
       free_vector(xit,1,n);  int ndeath=1; /* Number of dead states */
       free_vector(xits,1,n);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       free_vector(ptt,1,n);  int popbased=0;
       free_vector(pt,1,n);  
       return;  int *wav; /* Number of waves for this individuual 0 is possible */
     }  int maxwav=0; /* Maxim number of waves */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     for (j=1;j<=n;j++) {  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       ptt[j]=2.0*p[j]-pt[j];  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       xit[j]=p[j]-pt[j];                     to the likelihood and the sum of weights (done by funcone)*/
       pt[j]=p[j];  int mle=1, weightopt=0;
     }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     fptt=(*func)(ptt);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     if (fptt < fp) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       if (t < 0.0) {  int countcallfunc=0;  /* Count the number of calls to func */
         linmin(p,xit,n,fret,func);  double jmean=1; /* Mean space between 2 waves */
         for (j=1;j<=n;j++) {  double **matprod2(); /* test */
           xi[j][ibig]=xi[j][n];  double **oldm, **newm, **savm; /* Working pointers to matrices */
           xi[j][n]=xit[j];  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
         }  /*FILE *fic ; */ /* Used in readdata only */
 #ifdef DEBUG  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  FILE *ficlog, *ficrespow;
         for(j=1;j<=n;j++)  int globpr=0; /* Global variable for printing or not */
           printf(" %.12e",xit[j]);  double fretone; /* Only one call to likelihood */
         printf("\n");  long ipmx=0; /* Number of contributions */
 #endif  double sw; /* Sum of weights */
       }  char filerespow[FILENAMELENGTH];
     }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   }  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /**** Prevalence limit ****************/  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  char filerese[FILENAMELENGTH];
 {  FILE *ficresstdeij;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  char fileresstde[FILENAMELENGTH];
      matrix by transitions matrix until convergence is reached */  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
   int i, ii,j,k;  FILE  *ficresvij;
   double min, max, maxmin, maxmax,sumnew=0.;  char fileresv[FILENAMELENGTH];
   double **matprod2();  FILE  *ficresvpl;
   double **out, cov[NCOVMAX], **pmij();  char fileresvpl[FILENAMELENGTH];
   double **newm;  char title[MAXLINE];
   double agefin, delaymax=50 ; /* Max number of years to converge */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   for (ii=1;ii<=nlstate+ndeath;ii++)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     for (j=1;j<=nlstate+ndeath;j++){  char command[FILENAMELENGTH];
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  int  outcmd=0;
     }  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    cov[1]=1.;  
    char filelog[FILENAMELENGTH]; /* Log file */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  char filerest[FILENAMELENGTH];
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  char fileregp[FILENAMELENGTH];
     newm=savm;  char popfile[FILENAMELENGTH];
     /* Covariates have to be included here again */  
      cov[2]=agefin;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
    
       for (k=1; k<=cptcovn;k++) {  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /* struct timezone tzp; */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  /* extern int gettimeofday(); */
       }  struct tm tml, *gmtime(), *localtime();
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  extern time_t time();
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   struct tm start_time, end_time, curr_time, last_time, forecast_time;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  struct tm tm;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  char strcurr[80], strfor[80];
   
     savm=oldm;  char *endptr;
     oldm=newm;  long lval;
     maxmax=0.;  double dval;
     for(j=1;j<=nlstate;j++){  
       min=1.;  #define NR_END 1
       max=0.;  #define FREE_ARG char*
       for(i=1; i<=nlstate; i++) {  #define FTOL 1.0e-10
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #define NRANSI 
         prlim[i][j]= newm[i][j]/(1-sumnew);  #define ITMAX 200 
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  #define TOL 2.0e-4 
       }  
       maxmin=max-min;  #define CGOLD 0.3819660 
       maxmax=FMAX(maxmax,maxmin);  #define ZEPS 1.0e-10 
     }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     if(maxmax < ftolpl){  
       return prlim;  #define GOLD 1.618034 
     }  #define GLIMIT 100.0 
   }  #define TINY 1.0e-20 
 }  
   static double maxarg1,maxarg2;
 /*************** transition probabilities ***************/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double s1, s2;  #define rint(a) floor(a+0.5)
   /*double t34;*/  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   int i,j,j1, nc, ii, jj;  /* #define mytinydouble 1.0e-16 */
   /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
     for(i=1; i<= nlstate; i++){  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
     for(j=1; j<i;j++){  /* static double dsqrarg; */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
         /*s2 += param[i][j][nc]*cov[nc];*/  static double sqrarg;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       }  int agegomp= AGEGOMP;
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  int imx; 
     }  int stepm=1;
     for(j=i+1; j<=nlstate+ndeath;j++){  /* Stepm, step in month: minimum step interpolation*/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  int estepm;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       }  
       ps[i][j]=s2;  int m,nb;
     }  long *num;
   }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     /*ps[3][2]=1;*/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
   for(i=1; i<= nlstate; i++){  double *ageexmed,*agecens;
      s1=0;  double dateintmean=0;
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  double *weight;
     for(j=i+1; j<=nlstate+ndeath; j++)  int **s; /* Status */
       s1+=exp(ps[i][j]);  double *agedc;
     ps[i][i]=1./(s1+1.);  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
     for(j=1; j<i; j++)                    * covar=matrix(0,NCOVMAX,1,n); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
     for(j=i+1; j<=nlstate+ndeath; j++)  double  idx; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  int *Ndum; /** Freq of modality (tricode */
   } /* end i */  int **codtab; /**< codtab=imatrix(1,100,1,10); */
   int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  double *lsurv, *lpop, *tpop;
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
       ps[ii][ii]=1;  double ftolhess; /**< Tolerance for computing hessian */
     }  
   }  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     for(jj=1; jj<= nlstate+ndeath; jj++){       the name of the file (name), its extension only (ext) and its first part of the name (finame)
      printf("%lf ",ps[ii][jj]);    */ 
    }    char  *ss;                            /* pointer */
     printf("\n ");    int   l1, l2;                         /* length counters */
     }  
     printf("\n ");printf("%lf ",cov[2]);*/    l1 = strlen(path );                   /* length of path */
 /*    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   goto end;*/    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     return ps;      strcpy( name, path );               /* we got the fullname name because no directory */
 }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 /**************** Product of 2 matrices ******************/      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 {        return( GLOCK_ERROR_GETCWD );
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      /* got dirc from getcwd*/
   /* in, b, out are matrice of pointers which should have been initialized      printf(" DIRC = %s \n",dirc);
      before: only the contents of out is modified. The function returns    } else {                              /* strip direcotry from path */
      a pointer to pointers identical to out */      ss++;                               /* after this, the filename */
   long i, j, k;      l2 = strlen( ss );                  /* length of filename */
   for(i=nrl; i<= nrh; i++)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     for(k=ncolol; k<=ncoloh; k++)      strcpy( name, ss );         /* save file name */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
         out[i][k] +=in[i][j]*b[j][k];      dirc[l1-l2] = 0;                    /* add zero */
       printf(" DIRC2 = %s \n",dirc);
   return out;    }
 }    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
 /************* Higher Matrix Product ***************/      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      printf(" DIRC3 = %s \n",dirc);
 {    }
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    ss = strrchr( name, '.' );            /* find last / */
      duration (i.e. until    if (ss >0){
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      ss++;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      strcpy(ext,ss);                     /* save extension */
      (typically every 2 years instead of every month which is too big).      l1= strlen( name);
      Model is determined by parameters x and covariates have to be      l2= strlen(ss)+1;
      included manually here.      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
      */    }
   
   int i, j, d, h, k;    return( 0 );                          /* we're done */
   double **out, cov[NCOVMAX];  }
   double **newm;  
   
   /* Hstepm could be zero and should return the unit matrix */  /******************************************/
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  void replace_back_to_slash(char *s, char*t)
       oldm[i][j]=(i==j ? 1.0 : 0.0);  {
       po[i][j][0]=(i==j ? 1.0 : 0.0);    int i;
     }    int lg=0;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    i=0;
   for(h=1; h <=nhstepm; h++){    lg=strlen(t);
     for(d=1; d <=hstepm; d++){    for(i=0; i<= lg; i++) {
       newm=savm;      (s[i] = t[i]);
       /* Covariates have to be included here again */      if (t[i]== '\\') s[i]='/';
       cov[1]=1.;    }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  char *trimbb(char *out, char *in)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
       for (k=1; k<=cptcovprod;k++)    char *s;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    s=out;
     while (*in != '\0'){
       while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        in++;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      *out++ = *in++;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    }
       savm=oldm;    *out='\0';
       oldm=newm;    return s;
     }  }
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  char *cutl(char *blocc, char *alocc, char *in, char occ)
         po[i][j][h]=newm[i][j];  {
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
          */       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       }       gives blocc="abcdef2ghi" and alocc="j".
   } /* end h */       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   return po;    */
 }    char *s, *t;
     t=in;s=in;
     while ((*in != occ) && (*in != '\0')){
 /*************** log-likelihood *************/      *alocc++ = *in++;
 double func( double *x)    }
 {    if( *in == occ){
   int i, ii, j, k, mi, d, kk;      *(alocc)='\0';
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      s=++in;
   double **out;    }
   double sw; /* Sum of weights */   
   double lli; /* Individual log likelihood */    if (s == t) {/* occ not found */
   long ipmx;      *(alocc-(in-s))='\0';
   /*extern weight */      in=s;
   /* We are differentiating ll according to initial status */    }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    while ( *in != '\0'){
   /*for(i=1;i<imx;i++)      *blocc++ = *in++;
     printf(" %d\n",s[4][i]);    }
   */  
   cov[1]=1.;    *blocc='\0';
     return t;
   for(k=1; k<=nlstate; k++) ll[k]=0.;  }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  char *cutv(char *blocc, char *alocc, char *in, char occ)
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  {
     for(mi=1; mi<= wav[i]-1; mi++){    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
       for (ii=1;ii<=nlstate+ndeath;ii++)       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);       gives blocc="abcdef2ghi" and alocc="j".
       for(d=0; d<dh[mi][i]; d++){       If occ is not found blocc is null and alocc is equal to in. Returns alocc
         newm=savm;    */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    char *s, *t;
         for (kk=1; kk<=cptcovage;kk++) {    t=in;s=in;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    while (*in != '\0'){
         }      while( *in == occ){
                *blocc++ = *in++;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        s=in;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      }
         savm=oldm;      *blocc++ = *in++;
         oldm=newm;    }
            if (s == t) /* occ not found */
              *(blocc-(in-s))='\0';
       } /* end mult */    else
            *(blocc-(in-s)-1)='\0';
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    in=s;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    while ( *in != '\0'){
       ipmx +=1;      *alocc++ = *in++;
       sw += weight[i];    }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */    *alocc='\0';
   } /* end of individual */    return s;
   }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  int nbocc(char *s, char occ)
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  {
   return -l;    int i,j=0;
 }    int lg=20;
     i=0;
     lg=strlen(s);
 /*********** Maximum Likelihood Estimation ***************/    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    }
 {    return j;
   int i,j, iter;  }
   double **xi,*delti;  
   double fret;  /* void cutv(char *u,char *v, char*t, char occ) */
   xi=matrix(1,npar,1,npar);  /* { */
   for (i=1;i<=npar;i++)  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     for (j=1;j<=npar;j++)  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       xi[i][j]=(i==j ? 1.0 : 0.0);  /*      gives u="abcdef2ghi" and v="j" *\/ */
   printf("Powell\n");  /*   int i,lg,j,p=0; */
   powell(p,xi,npar,ftol,&iter,&fret,func);  /*   i=0; */
   /*   lg=strlen(t); */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  /*   for(j=0; j<=lg-1; j++) { */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /*   } */
 }  
   /*   for(j=0; j<p; j++) { */
 /**** Computes Hessian and covariance matrix ***/  /*     (u[j] = t[j]); */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /*   } */
 {  /*      u[p]='\0'; */
   double  **a,**y,*x,pd;  
   double **hess;  /*    for(j=0; j<= lg; j++) { */
   int i, j,jk;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   int *indx;  /*   } */
   /* } */
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);  #ifdef _WIN32
   void lubksb(double **a, int npar, int *indx, double b[]) ;  char * strsep(char **pp, const char *delim)
   void ludcmp(double **a, int npar, int *indx, double *d) ;  {
     char *p, *q;
   hess=matrix(1,npar,1,npar);           
     if ((p = *pp) == NULL)
   printf("\nCalculation of the hessian matrix. Wait...\n");      return 0;
   for (i=1;i<=npar;i++){    if ((q = strpbrk (p, delim)) != NULL)
     printf("%d",i);fflush(stdout);    {
     hess[i][i]=hessii(p,ftolhess,i,delti);      *pp = q + 1;
     /*printf(" %f ",p[i]);*/      *q = '\0';
     /*printf(" %lf ",hess[i][i]);*/    }
   }    else
        *pp = 0;
   for (i=1;i<=npar;i++) {    return p;
     for (j=1;j<=npar;j++)  {  }
       if (j>i) {  #endif
         printf(".%d%d",i,j);fflush(stdout);  
         hess[i][j]=hessij(p,delti,i,j);  /********************** nrerror ********************/
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/  void nrerror(char error_text[])
       }  {
     }    fprintf(stderr,"ERREUR ...\n");
   }    fprintf(stderr,"%s\n",error_text);
   printf("\n");    exit(EXIT_FAILURE);
   }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /*********************** vector *******************/
    double *vector(int nl, int nh)
   a=matrix(1,npar,1,npar);  {
   y=matrix(1,npar,1,npar);    double *v;
   x=vector(1,npar);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   indx=ivector(1,npar);    if (!v) nrerror("allocation failure in vector");
   for (i=1;i<=npar;i++)    return v-nl+NR_END;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  }
   ludcmp(a,npar,indx,&pd);  
   /************************ free vector ******************/
   for (j=1;j<=npar;j++) {  void free_vector(double*v, int nl, int nh)
     for (i=1;i<=npar;i++) x[i]=0;  {
     x[j]=1;    free((FREE_ARG)(v+nl-NR_END));
     lubksb(a,npar,indx,x);  }
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  /************************ivector *******************************/
     }  int *ivector(long nl,long nh)
   }  {
     int *v;
   printf("\n#Hessian matrix#\n");    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for (i=1;i<=npar;i++) {    if (!v) nrerror("allocation failure in ivector");
     for (j=1;j<=npar;j++) {    return v-nl+NR_END;
       printf("%.3e ",hess[i][j]);  }
     }  
     printf("\n");  /******************free ivector **************************/
   }  void free_ivector(int *v, long nl, long nh)
   {
   /* Recompute Inverse */    free((FREE_ARG)(v+nl-NR_END));
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);  /************************lvector *******************************/
   long *lvector(long nl,long nh)
   /*  printf("\n#Hessian matrix recomputed#\n");  {
     long *v;
   for (j=1;j<=npar;j++) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     for (i=1;i<=npar;i++) x[i]=0;    if (!v) nrerror("allocation failure in ivector");
     x[j]=1;    return v-nl+NR_END;
     lubksb(a,npar,indx,x);  }
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];  /******************free lvector **************************/
       printf("%.3e ",y[i][j]);  void free_lvector(long *v, long nl, long nh)
     }  {
     printf("\n");    free((FREE_ARG)(v+nl-NR_END));
   }  }
   */  
   /******************* imatrix *******************************/
   free_matrix(a,1,npar,1,npar);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   free_matrix(y,1,npar,1,npar);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   free_vector(x,1,npar);  { 
   free_ivector(indx,1,npar);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   free_matrix(hess,1,npar,1,npar);    int **m; 
     
     /* allocate pointers to rows */ 
 }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
 /*************** hessian matrix ****************/    m += NR_END; 
 double hessii( double x[], double delta, int theta, double delti[])    m -= nrl; 
 {    
   int i;    
   int l=1, lmax=20;    /* allocate rows and set pointers to them */ 
   double k1,k2;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double p2[NPARMAX+1];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double res;    m[nrl] += NR_END; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    m[nrl] -= ncl; 
   double fx;    
   int k=0,kmax=10;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   double l1;    
     /* return pointer to array of pointers to rows */ 
   fx=func(x);    return m; 
   for (i=1;i<=npar;i++) p2[i]=x[i];  } 
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  /****************** free_imatrix *************************/
     delts=delt;  void free_imatrix(m,nrl,nrh,ncl,nch)
     for(k=1 ; k <kmax; k=k+1){        int **m;
       delt = delta*(l1*k);        long nch,ncl,nrh,nrl; 
       p2[theta]=x[theta] +delt;       /* free an int matrix allocated by imatrix() */ 
       k1=func(p2)-fx;  { 
       p2[theta]=x[theta]-delt;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       k2=func(p2)-fx;    free((FREE_ARG) (m+nrl-NR_END)); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */  } 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
        /******************* matrix *******************************/
 #ifdef DEBUG  double **matrix(long nrl, long nrh, long ncl, long nch)
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  {
 #endif    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    double **m;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    m += NR_END;
         k=kmax; l=lmax*10.;    m -= nrl;
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         delts=delt;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
   }  
   delti[theta]=delts;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   return res;    return m;
      /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 }  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 double hessij( double x[], double delti[], int thetai,int thetaj)     */
 {  }
   int i;  
   int l=1, l1, lmax=20;  /*************************free matrix ************************/
   double k1,k2,k3,k4,res,fx;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double p2[NPARMAX+1];  {
   int k;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   fx=func(x);  }
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  /******************* ma3x *******************************/
     p2[thetai]=x[thetai]+delti[thetai]/k;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  {
     k1=func(p2)-fx;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
      double ***m;
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     k2=func(p2)-fx;    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
     p2[thetai]=x[thetai]-delti[thetai]/k;    m -= nrl;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     p2[thetai]=x[thetai]-delti[thetai]/k;    m[nrl] += NR_END;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    m[nrl] -= ncl;
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 #endif    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   }    m[nrl][ncl] += NR_END;
   return res;    m[nrl][ncl] -= nll;
 }    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
 /************** Inverse of matrix **************/    
 void ludcmp(double **a, int n, int *indx, double *d)    for (i=nrl+1; i<=nrh; i++) {
 {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   int i,imax,j,k;      for (j=ncl+1; j<=nch; j++) 
   double big,dum,sum,temp;        m[i][j]=m[i][j-1]+nlay;
   double *vv;    }
      return m; 
   vv=vector(1,n);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   *d=1.0;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   for (i=1;i<=n;i++) {    */
     big=0.0;  }
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;  /*************************free ma3x ************************/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     vv[i]=1.0/big;  {
   }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for (i=1;i<j;i++) {    free((FREE_ARG)(m+nrl-NR_END));
       sum=a[i][j];  }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  /*************** function subdirf ***********/
     }  char *subdirf(char fileres[])
     big=0.0;  {
     for (i=j;i<=n;i++) {    /* Caution optionfilefiname is hidden */
       sum=a[i][j];    strcpy(tmpout,optionfilefiname);
       for (k=1;k<j;k++)    strcat(tmpout,"/"); /* Add to the right */
         sum -= a[i][k]*a[k][j];    strcat(tmpout,fileres);
       a[i][j]=sum;    return tmpout;
       if ( (dum=vv[i]*fabs(sum)) >= big) {  }
         big=dum;  
         imax=i;  /*************** function subdirf2 ***********/
       }  char *subdirf2(char fileres[], char *preop)
     }  {
     if (j != imax) {    
       for (k=1;k<=n;k++) {    /* Caution optionfilefiname is hidden */
         dum=a[imax][k];    strcpy(tmpout,optionfilefiname);
         a[imax][k]=a[j][k];    strcat(tmpout,"/");
         a[j][k]=dum;    strcat(tmpout,preop);
       }    strcat(tmpout,fileres);
       *d = -(*d);    return tmpout;
       vv[imax]=vv[j];  }
     }  
     indx[j]=imax;  /*************** function subdirf3 ***********/
     if (a[j][j] == 0.0) a[j][j]=TINY;  char *subdirf3(char fileres[], char *preop, char *preop2)
     if (j != n) {  {
       dum=1.0/(a[j][j]);    
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/");
   free_vector(vv,1,n);  /* Doesn't work */    strcat(tmpout,preop);
 ;    strcat(tmpout,preop2);
 }    strcat(tmpout,fileres);
     return tmpout;
 void lubksb(double **a, int n, int *indx, double b[])  }
 {  
   int i,ii=0,ip,j;  char *asc_diff_time(long time_sec, char ascdiff[])
   double sum;  {
      long sec_left, days, hours, minutes;
   for (i=1;i<=n;i++) {    days = (time_sec) / (60*60*24);
     ip=indx[i];    sec_left = (time_sec) % (60*60*24);
     sum=b[ip];    hours = (sec_left) / (60*60) ;
     b[ip]=b[i];    sec_left = (sec_left) %(60*60);
     if (ii)    minutes = (sec_left) /60;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    sec_left = (sec_left) % (60);
     else if (sum) ii=i;    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
     b[i]=sum;    return ascdiff;
   }  }
   for (i=n;i>=1;i--) {  
     sum=b[i];  /***************** f1dim *************************/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  extern int ncom; 
     b[i]=sum/a[i][i];  extern double *pcom,*xicom;
   }  extern double (*nrfunc)(double []); 
 }   
   double f1dim(double x) 
 /************ Frequencies ********************/  { 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    int j; 
 {  /* Some frequencies */    double f;
      double *xt; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;   
   double ***freq; /* Frequencies */    xt=vector(1,ncom); 
   double *pp;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double pos, k2, dateintsum=0,k2cpt=0;    f=(*nrfunc)(xt); 
   FILE *ficresp;    free_vector(xt,1,ncom); 
   char fileresp[FILENAMELENGTH];    return f; 
    } 
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*****************brent *************************/
   strcpy(fileresp,"p");  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   strcat(fileresp,fileres);  { 
   if((ficresp=fopen(fileresp,"w"))==NULL) {    int iter; 
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double a,b,d,etemp;
     exit(0);    double fu=0,fv,fw,fx;
   }    double ftemp=0.;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   j1=0;    double e=0.0; 
     
   j=cptcoveff;    a=(ax < cx ? ax : cx); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    b=(ax > cx ? ax : cx); 
      x=w=v=bx; 
   for(k1=1; k1<=j;k1++){    fw=fv=fx=(*f)(x); 
     for(i1=1; i1<=ncodemax[k1];i1++){    for (iter=1;iter<=ITMAX;iter++) { 
       j1++;      xm=0.5*(a+b); 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         scanf("%d", i);*/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       for (i=-1; i<=nlstate+ndeath; i++)        printf(".");fflush(stdout);
         for (jk=-1; jk<=nlstate+ndeath; jk++)        fprintf(ficlog,".");fflush(ficlog);
           for(m=agemin; m <= agemax+3; m++)  #ifdef DEBUGBRENT
             freq[i][jk][m]=0;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
            fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       dateintsum=0;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       k2cpt=0;  #endif
       for (i=1; i<=imx; i++) {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         bool=1;        *xmin=x; 
         if  (cptcovn>0) {        return fx; 
           for (z1=1; z1<=cptcoveff; z1++)      } 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      ftemp=fu;
               bool=0;      if (fabs(e) > tol1) { 
         }        r=(x-w)*(fx-fv); 
         if (bool==1) {        q=(x-v)*(fx-fw); 
           for(m=firstpass; m<=lastpass; m++){        p=(x-v)*q-(x-w)*r; 
             k2=anint[m][i]+(mint[m][i]/12.);        q=2.0*(q-r); 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        if (q > 0.0) p = -p; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        q=fabs(q); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;        etemp=e; 
               if (m<lastpass) {        e=d; 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
               }        else { 
                        d=p/q; 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          u=x+d; 
                 dateintsum=dateintsum+k2;          if (u-a < tol2 || b-u < tol2) 
                 k2cpt++;            d=SIGN(tol1,xm-x); 
               }        } 
             }      } else { 
           }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         }      } 
       }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
              fu=(*f)(u); 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
       if  (cptcovn>0) {        SHFT(v,w,x,u) 
         fprintf(ficresp, "\n#********** Variable ");          SHFT(fv,fw,fx,fu) 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          } else { 
         fprintf(ficresp, "**********\n#");            if (u < x) a=u; else b=u; 
       }            if (fu <= fw || w == x) { 
       for(i=1; i<=nlstate;i++)              v=w; 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);              w=u; 
       fprintf(ficresp, "\n");              fv=fw; 
                    fw=fu; 
       for(i=(int)agemin; i <= (int)agemax+3; i++){            } else if (fu <= fv || v == x || v == w) { 
         if(i==(int)agemax+3)              v=u; 
           printf("Total");              fv=fu; 
         else            } 
           printf("Age %d", i);          } 
         for(jk=1; jk <=nlstate ; jk++){    } 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    nrerror("Too many iterations in brent"); 
             pp[jk] += freq[jk][m][i];    *xmin=x; 
         }    return fx; 
         for(jk=1; jk <=nlstate ; jk++){  } 
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  /****************** mnbrak ***********************/
           if(pp[jk]>=1.e-10)  
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
           else              double (*func)(double)) 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  { 
         }    double ulim,u,r,q, dum;
     double fu; 
         for(jk=1; jk <=nlstate ; jk++){   
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    *fa=(*func)(*ax); 
             pp[jk] += freq[jk][m][i];    *fb=(*func)(*bx); 
         }    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
         for(jk=1,pos=0; jk <=nlstate ; jk++)        SHFT(dum,*fb,*fa,dum) 
           pos += pp[jk];        } 
         for(jk=1; jk <=nlstate ; jk++){    *cx=(*bx)+GOLD*(*bx-*ax); 
           if(pos>=1.e-5)    *fc=(*func)(*cx); 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    while (*fb > *fc) { /* Declining fa, fb, fc */
           else      r=(*bx-*ax)*(*fb-*fc); 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      q=(*bx-*cx)*(*fb-*fa); 
           if( i <= (int) agemax){      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
             if(pos>=1.e-5){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
               probs[i][jk][j1]= pp[jk]/pos;      if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        fu=(*func)(u); 
             }  #ifdef DEBUG
             else        /* f(x)=A(x-u)**2+f(u) */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        double A, fparabu; 
           }        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
         }        fparabu= *fa - A*(*ax-u)*(*ax-u);
                printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         for(jk=-1; jk <=nlstate+ndeath; jk++)        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
           for(m=-1; m <=nlstate+ndeath; m++)  #endif 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
         if(i <= (int) agemax)        fu=(*func)(u); 
           fprintf(ficresp,"\n");        if (fu < *fc) { 
         printf("\n");          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       }            SHFT(*fb,*fc,fu,(*func)(u)) 
     }            } 
   }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
   dateintmean=dateintsum/k2cpt;        u=ulim; 
          fu=(*func)(u); 
   fclose(ficresp);      } else { 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        u=(*cx)+GOLD*(*cx-*bx); 
   free_vector(pp,1,nlstate);        fu=(*func)(u); 
        } 
   /* End of Freq */      SHFT(*ax,*bx,*cx,u) 
 }        SHFT(*fa,*fb,*fc,fu) 
         } 
 /************ Prevalence ********************/  } 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  
 {  /* Some frequencies */  /*************** linmin ************************/
    /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
   double ***freq; /* Frequencies */  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
   double *pp;  the value of func at the returned location p . This is actually all accomplished by calling the
   double pos, k2;  routines mnbrak and brent .*/
   int ncom; 
   pp=vector(1,nlstate);  double *pcom,*xicom;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  double (*nrfunc)(double []); 
     
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   j1=0;  { 
      double brent(double ax, double bx, double cx, 
   j=cptcoveff;                 double (*f)(double), double tol, double *xmin); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double f1dim(double x); 
      void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for(k1=1; k1<=j;k1++){                double *fc, double (*func)(double)); 
     for(i1=1; i1<=ncodemax[k1];i1++){    int j; 
       j1++;    double xx,xmin,bx,ax; 
          double fx,fb,fa;
       for (i=-1; i<=nlstate+ndeath; i++)     
         for (jk=-1; jk<=nlstate+ndeath; jk++)      ncom=n; 
           for(m=agemin; m <= agemax+3; m++)    pcom=vector(1,n); 
             freq[i][jk][m]=0;    xicom=vector(1,n); 
          nrfunc=func; 
       for (i=1; i<=imx; i++) {    for (j=1;j<=n;j++) { 
         bool=1;      pcom[j]=p[j]; 
         if  (cptcovn>0) {      xicom[j]=xi[j]; 
           for (z1=1; z1<=cptcoveff; z1++)    } 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    ax=0.0; 
               bool=0;    xx=1.0; 
         }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
         if (bool==1) {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
           for(m=firstpass; m<=lastpass; m++){  #ifdef DEBUG
             k2=anint[m][i]+(mint[m][i]/12.);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
               if(agev[m][i]==0) agev[m][i]=agemax+1;  #endif
               if(agev[m][i]==1) agev[m][i]=agemax+2;    for (j=1;j<=n;j++) { 
               if (m<lastpass) {      xi[j] *= xmin; 
                 if (calagedate>0)      p[j] += xi[j]; 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    } 
                 else    free_vector(xicom,1,n); 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    free_vector(pcom,1,n); 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  } 
               }  
             }  
           }  /*************** powell ************************/
         }  /*
       }  Minimization of a function func of n variables. Input consists of an initial starting point
       for(i=(int)agemin; i <= (int)agemax+3; i++){  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
         for(jk=1; jk <=nlstate ; jk++){  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  such that failure to decrease by more than this amount on one iteration signals doneness. On
             pp[jk] += freq[jk][m][i];  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
         }  function value at p , and iter is the number of iterations taken. The routine linmin is used.
         for(jk=1; jk <=nlstate ; jk++){   */
           for(m=-1, pos=0; m <=0 ; m++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
             pos += freq[jk][m][i];              double (*func)(double [])) 
         }  { 
            void linmin(double p[], double xi[], int n, double *fret, 
         for(jk=1; jk <=nlstate ; jk++){                double (*func)(double [])); 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    int i,ibig,j; 
             pp[jk] += freq[jk][m][i];    double del,t,*pt,*ptt,*xit;
         }    double fp,fptt;
            double *xits;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    int niterf, itmp;
          
         for(jk=1; jk <=nlstate ; jk++){        pt=vector(1,n); 
           if( i <= (int) agemax){    ptt=vector(1,n); 
             if(pos>=1.e-5){    xit=vector(1,n); 
               probs[i][jk][j1]= pp[jk]/pos;    xits=vector(1,n); 
             }    *fret=(*func)(p); 
           }    for (j=1;j<=n;j++) pt[j]=p[j]; 
         }      rcurr_time = time(NULL);  
            for (*iter=1;;++(*iter)) { 
       }      fp=(*fret); 
     }      ibig=0; 
   }      del=0.0; 
       rlast_time=rcurr_time;
        /* (void) gettimeofday(&curr_time,&tzp); */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      rcurr_time = time(NULL);  
   free_vector(pp,1,nlstate);      curr_time = *localtime(&rcurr_time);
        printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
 }  /* End of Freq */      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
 /************* Waves Concatenation ***************/     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        fprintf(ficlog," %d %.12lf",i, p[i]);
 {        fprintf(ficrespow," %.12lf", p[i]);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      }
      Death is a valid wave (if date is known).      printf("\n");
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      fprintf(ficlog,"\n");
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      fprintf(ficrespow,"\n");fflush(ficrespow);
      and mw[mi+1][i]. dh depends on stepm.      if(*iter <=3){
      */        tml = *localtime(&rcurr_time);
         strcpy(strcurr,asctime(&tml));
   int i, mi, m;        rforecast_time=rcurr_time; 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        itmp = strlen(strcurr);
      double sum=0., jmean=0.;*/        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
   int j, k=0,jk, ju, jl;        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   double sum=0.;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   jmin=1e+5;        for(niterf=10;niterf<=30;niterf+=10){
   jmax=-1;          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
   jmean=0.;          forecast_time = *localtime(&rforecast_time);
   for(i=1; i<=imx; i++){          strcpy(strfor,asctime(&forecast_time));
     mi=0;          itmp = strlen(strfor);
     m=firstpass;          if(strfor[itmp-1]=='\n')
     while(s[m][i] <= nlstate){          strfor[itmp-1]='\0';
       if(s[m][i]>=1)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         mw[++mi][i]=m;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       if(m >=lastpass)        }
         break;      }
       else      for (i=1;i<=n;i++) { 
         m++;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     }/* end while */        fptt=(*fret); 
     if (s[m][i] > nlstate){  #ifdef DEBUG
       mi++;     /* Death is another wave */            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
       /* if(mi==0)  never been interviewed correctly before death */            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
          /* Only death is a correct wave */  #endif
       mw[mi][i]=m;        printf("%d",i);fflush(stdout);
     }        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
     wav[i]=mi;        if (fabs(fptt-(*fret)) > del) { 
     if(mi==0)          del=fabs(fptt-(*fret)); 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          ibig=i; 
   }        } 
   #ifdef DEBUG
   for(i=1; i<=imx; i++){        printf("%d %.12e",i,(*fret));
     for(mi=1; mi<wav[i];mi++){        fprintf(ficlog,"%d %.12e",i,(*fret));
       if (stepm <=0)        for (j=1;j<=n;j++) {
         dh[mi][i]=1;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       else{          printf(" x(%d)=%.12e",j,xit[j]);
         if (s[mw[mi+1][i]][i] > nlstate) {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
           if (agedc[i] < 2*AGESUP) {        }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for(j=1;j<=n;j++) {
           if(j==0) j=1;  /* Survives at least one month after exam */          printf(" p(%d)=%.12e",j,p[j]);
           k=k+1;          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
           if (j >= jmax) jmax=j;        }
           if (j <= jmin) jmin=j;        printf("\n");
           sum=sum+j;        fprintf(ficlog,"\n");
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  #endif
           }      } /* end i */
         }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         else{  #ifdef DEBUG
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        int k[2],l;
           k=k+1;        k[0]=1;
           if (j >= jmax) jmax=j;        k[1]=-1;
           else if (j <= jmin)jmin=j;        printf("Max: %.12e",(*func)(p));
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        fprintf(ficlog,"Max: %.12e",(*func)(p));
           sum=sum+j;        for (j=1;j<=n;j++) {
         }          printf(" %.12e",p[j]);
         jk= j/stepm;          fprintf(ficlog," %.12e",p[j]);
         jl= j -jk*stepm;        }
         ju= j -(jk+1)*stepm;        printf("\n");
         if(jl <= -ju)        fprintf(ficlog,"\n");
           dh[mi][i]=jk;        for(l=0;l<=1;l++) {
         else          for (j=1;j<=n;j++) {
           dh[mi][i]=jk+1;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         if(dh[mi][i]==0)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           dh[mi][i]=1; /* At least one step */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       }          }
     }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   jmean=sum/k;        }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  #endif
  }  
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)        free_vector(xit,1,n); 
 {        free_vector(xits,1,n); 
   int Ndum[20],ij=1, k, j, i;        free_vector(ptt,1,n); 
   int cptcode=0;        free_vector(pt,1,n); 
   cptcoveff=0;        return; 
        } 
   for (k=0; k<19; k++) Ndum[k]=0;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   for (k=1; k<=7; k++) ncodemax[k]=0;      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
         ptt[j]=2.0*p[j]-pt[j]; 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        xit[j]=p[j]-pt[j]; 
     for (i=1; i<=imx; i++) {        pt[j]=p[j]; 
       ij=(int)(covar[Tvar[j]][i]);      } 
       Ndum[ij]++;      fptt=(*func)(ptt); 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
       if (ij > cptcode) cptcode=ij;        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
     }        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
         /* Let f"(x2) be the 2nd derivative equal everywhere.  */
     for (i=0; i<=cptcode; i++) {        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
       if(Ndum[i]!=0) ncodemax[j]++;        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
     }        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
     ij=1;        /* Thus we compare delta(2h) with observed f1-f3 */
         /* or best gain on one ancient line 'del' with total  */
         /* gain f1-f2 = f1 - f2 - 'del' with del  */
     for (i=1; i<=ncodemax[j]; i++) {        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
       for (k=0; k<=19; k++) {  
         if (Ndum[k] != 0) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
           nbcode[Tvar[j]][ij]=k;        t= t- del*SQR(fp-fptt);
                  printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
           ij++;        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
         }  #ifdef DEBUG
         if (ij > ncodemax[j]) break;        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
       }                 (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
     }        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   }                 (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
         printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
  for (k=0; k<19; k++) Ndum[k]=0;        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   #endif
  for (i=1; i<=ncovmodel-2; i++) {        if (t < 0.0) { /* Then we use it for last direction */
       ij=Tvar[i];          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
       Ndum[ij]++;          for (j=1;j<=n;j++) { 
     }            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
             xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
  ij=1;          }
  for (i=1; i<=10; i++) {          printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
    if((Ndum[i]!=0) && (i<=ncovcol)){          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
      Tvaraff[ij]=i;  
      ij++;  #ifdef DEBUG
    }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            for(j=1;j<=n;j++){
     cptcoveff=ij-1;            printf(" %.12e",xit[j]);
 }            fprintf(ficlog," %.12e",xit[j]);
           }
 /*********** Health Expectancies ****************/          printf("\n");
           fprintf(ficlog,"\n");
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  #endif
         } /* end of t negative */
 {      } /* end if (fptt < fp)  */
   /* Health expectancies */    } 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  } 
   double age, agelim, hf;  
   double ***p3mat,***varhe;  /**** Prevalence limit (stable or period prevalence)  ****************/
   double **dnewm,**doldm;  
   double *xp;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double **gp, **gm;  {
   double ***gradg, ***trgradg;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   int theta;       matrix by transitions matrix until convergence is reached */
     
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    int i, ii,j,k;
   xp=vector(1,npar);    double min, max, maxmin, maxmax,sumnew=0.;
   dnewm=matrix(1,nlstate*2,1,npar);    /* double **matprod2(); */ /* test */
   doldm=matrix(1,nlstate*2,1,nlstate*2);    double **out, cov[NCOVMAX+1], **pmij();
      double **newm;
   fprintf(ficreseij,"# Health expectancies\n");    double agefin, delaymax=50 ; /* Max number of years to converge */
   fprintf(ficreseij,"# Age");    
   for(i=1; i<=nlstate;i++)    for (ii=1;ii<=nlstate+ndeath;ii++)
     for(j=1; j<=nlstate;j++)      for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"\n");      }
     
   if(estepm < stepm){    cov[1]=1.;
     printf ("Problem %d lower than %d\n",estepm, stepm);    
   }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   else  hstepm=estepm;      for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   /* We compute the life expectancy from trapezoids spaced every estepm months      newm=savm;
    * This is mainly to measure the difference between two models: for example      /* Covariates have to be included here again */
    * if stepm=24 months pijx are given only every 2 years and by summing them      cov[2]=agefin;
    * we are calculating an estimate of the Life Expectancy assuming a linear      
    * progression inbetween and thus overestimating or underestimating according      for (k=1; k<=cptcovn;k++) {
    * to the curvature of the survival function. If, for the same date, we        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
    * to compare the new estimate of Life expectancy with the same linear      }
    * hypothesis. A more precise result, taking into account a more precise      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
    * curvature will be obtained if estepm is as small as stepm. */      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
       /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
   /* For example we decided to compute the life expectancy with the smallest unit */      
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
      nhstepm is the number of hstepm from age to agelim      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
      nstepm is the number of stepm from age to agelin.      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
      Look at hpijx to understand the reason of that which relies in memory size      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
      and note for a fixed period like estepm months */      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
      survival function given by stepm (the optimization length). Unfortunately it      
      means that if the survival funtion is printed only each two years of age and if      savm=oldm;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      oldm=newm;
      results. So we changed our mind and took the option of the best precision.      maxmax=0.;
   */      for(j=1;j<=nlstate;j++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        min=1.;
         max=0.;
   agelim=AGESUP;        for(i=1; i<=nlstate; i++) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          sumnew=0;
     /* nhstepm age range expressed in number of stepm */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          prlim[i][j]= newm[i][j]/(1-sumnew);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
     /* if (stepm >= YEARM) hstepm=1;*/          max=FMAX(max,prlim[i][j]);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          min=FMIN(min,prlim[i][j]);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        maxmin=max-min;
     gp=matrix(0,nhstepm,1,nlstate*2);        maxmax=FMAX(maxmax,maxmin);
     gm=matrix(0,nhstepm,1,nlstate*2);      } /* j loop */
       if(maxmax < ftolpl){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        return prlim;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      } /* age loop */
      return prlim; /* should not reach here */
   }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
   /*************** transition probabilities ***************/ 
     /* Computing Variances of health expectancies */  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
      for(theta=1; theta <=npar; theta++){  {
       for(i=1; i<=npar; i++){    /* According to parameters values stored in x and the covariate's values stored in cov,
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       computes the probability to be observed in state j being in state i by appying the
       }       model to the ncovmodel covariates (including constant and age).
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
         and, according on how parameters are entered, the position of the coefficient xij(nc) of the
       cptj=0;       ncth covariate in the global vector x is given by the formula:
       for(j=1; j<= nlstate; j++){       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         for(i=1; i<=nlstate; i++){       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
           cptj=cptj+1;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;       Outputs ps[i][j] the probability to be observed in j being in j according to
           }       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         }    */
       }    double s1, lnpijopii;
          /*double t34;*/
          int i,j, nc, ii, jj;
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for(i=1; i<= nlstate; i++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(j=1; j<i;j++){
                for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       cptj=0;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
       for(j=1; j<= nlstate; j++){            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         for(i=1;i<=nlstate;i++){  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           cptj=cptj+1;          }
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           }        }
         }        for(j=i+1; j<=nlstate+ndeath;j++){
       }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       for(j=1; j<= nlstate*2; j++)            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
         for(h=0; h<=nhstepm-1; h++){            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         }          }
      }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
            }
 /* End theta */      }
       
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      for(i=1; i<= nlstate; i++){
         s1=0;
      for(h=0; h<=nhstepm-1; h++)        for(j=1; j<i; j++){
       for(j=1; j<=nlstate*2;j++)          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         for(theta=1; theta <=npar; theta++)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           trgradg[h][j][theta]=gradg[h][theta][j];        }
              for(j=i+1; j<=nlstate+ndeath; j++){
           s1+=exp(ps[i][j]); /* In fact sums pij/pii */
      for(i=1;i<=nlstate*2;i++)          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       for(j=1;j<=nlstate*2;j++)        }
         varhe[i][j][(int)age] =0.;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         ps[i][i]=1./(s1+1.);
      printf("%d|",(int)age);fflush(stdout);        /* Computing other pijs */
      for(h=0;h<=nhstepm-1;h++){        for(j=1; j<i; j++)
       for(k=0;k<=nhstepm-1;k++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        for(j=i+1; j<=nlstate+ndeath; j++)
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(i=1;i<=nlstate*2;i++)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           for(j=1;j<=nlstate*2;j++)      } /* end i */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      
       }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     }        for(jj=1; jj<= nlstate+ndeath; jj++){
     /* Computing expectancies */          ps[ii][jj]=0;
     for(i=1; i<=nlstate;i++)          ps[ii][ii]=1;
       for(j=1; j<=nlstate;j++)        }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      
                
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
       /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
         }      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
       /*   } */
     fprintf(ficreseij,"%3.0f",age );      /*   printf("\n "); */
     cptj=0;      /* } */
     for(i=1; i<=nlstate;i++)      /* printf("\n ");printf("%lf ",cov[2]);*/
       for(j=1; j<=nlstate;j++){      /*
         cptj++;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        goto end;*/
       }      return ps;
     fprintf(ficreseij,"\n");  }
      
     free_matrix(gm,0,nhstepm,1,nlstate*2);  /**************** Product of 2 matrices ******************/
     free_matrix(gp,0,nhstepm,1,nlstate*2);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   printf("\n");    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
   free_vector(xp,1,npar);       a pointer to pointers identical to out */
   free_matrix(dnewm,1,nlstate*2,1,npar);    int i, j, k;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    for(i=nrl; i<= nrh; i++)
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      for(k=ncolol; k<=ncoloh; k++){
 }        out[i][k]=0.;
         for(j=ncl; j<=nch; j++)
 /************ Variance ******************/          out[i][k] +=in[i][j]*b[j][k];
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      }
 {    return out;
   /* Variance of health expectancies */  }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;  
   double **dnewm,**doldm;  /************* Higher Matrix Product ***************/
   int i, j, nhstepm, hstepm, h, nstepm ;  
   int k, cptcode;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double *xp;  {
   double **gp, **gm;    /* Computes the transition matrix starting at age 'age' over 
   double ***gradg, ***trgradg;       'nhstepm*hstepm*stepm' months (i.e. until
   double ***p3mat;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   double age,agelim, hf;       nhstepm*hstepm matrices. 
   int theta;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");       for the memory).
   fprintf(ficresvij,"# Age");       Model is determined by parameters x and covariates have to be 
   for(i=1; i<=nlstate;i++)       included manually here. 
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);       */
   fprintf(ficresvij,"\n");  
     int i, j, d, h, k;
   xp=vector(1,npar);    double **out, cov[NCOVMAX+1];
   dnewm=matrix(1,nlstate,1,npar);    double **newm;
   doldm=matrix(1,nlstate,1,nlstate);  
      /* Hstepm could be zero and should return the unit matrix */
   if(estepm < stepm){    for (i=1;i<=nlstate+ndeath;i++)
     printf ("Problem %d lower than %d\n",estepm, stepm);      for (j=1;j<=nlstate+ndeath;j++){
   }        oldm[i][j]=(i==j ? 1.0 : 0.0);
   else  hstepm=estepm;          po[i][j][0]=(i==j ? 1.0 : 0.0);
   /* For example we decided to compute the life expectancy with the smallest unit */      }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      nhstepm is the number of hstepm from age to agelim    for(h=1; h <=nhstepm; h++){
      nstepm is the number of stepm from age to agelin.      for(d=1; d <=hstepm; d++){
      Look at hpijx to understand the reason of that which relies in memory size        newm=savm;
      and note for a fixed period like k years */        /* Covariates have to be included here again */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        cov[1]=1.;
      survival function given by stepm (the optimization length). Unfortunately it        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
      means that if the survival funtion is printed only each two years of age and if        for (k=1; k<=cptcovn;k++) 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
      results. So we changed our mind and took the option of the best precision.        for (k=1; k<=cptcovage;k++)
   */          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   agelim = AGESUP;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     gp=matrix(0,nhstepm,1,nlstate);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     gm=matrix(0,nhstepm,1,nlstate);        savm=oldm;
         oldm=newm;
     for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++){ /* Computes gradient */      for(i=1; i<=nlstate+ndeath; i++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(j=1;j<=nlstate+ndeath;j++) {
       }          po[i][j][h]=newm[i][j];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
       /*printf("h=%d ",h);*/
       if (popbased==1) {    } /* end h */
         for(i=1; i<=nlstate;i++)  /*     printf("\n H=%d \n",h); */
           prlim[i][i]=probs[(int)age][i][ij];    return po;
       }  }
    
       for(j=1; j<= nlstate; j++){  #ifdef NLOPT
         for(h=0; h<=nhstepm; h++){    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double fret;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double *xt;
         }    int j;
       }    myfunc_data *d2 = (myfunc_data *) pd;
      /* xt = (p1-1); */
       for(i=1; i<=npar; i++) /* Computes gradient */    xt=vector(1,n); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
      /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
       if (popbased==1) {    printf("Function = %.12lf ",fret);
         for(i=1; i<=nlstate;i++)    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
           prlim[i][i]=probs[(int)age][i][ij];    printf("\n");
       }   free_vector(xt,1,n);
     return fret;
       for(j=1; j<= nlstate; j++){  }
         for(h=0; h<=nhstepm; h++){  #endif
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  /*************** log-likelihood *************/
         }  double func( double *x)
       }  {
     int i, ii, j, k, mi, d, kk;
       for(j=1; j<= nlstate; j++)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         for(h=0; h<=nhstepm; h++){    double **out;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double sw; /* Sum of weights */
         }    double lli; /* Individual log likelihood */
     } /* End theta */    int s1, s2;
     double bbh, survp;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    long ipmx;
     /*extern weight */
     for(h=0; h<=nhstepm; h++)    /* We are differentiating ll according to initial status */
       for(j=1; j<=nlstate;j++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         for(theta=1; theta <=npar; theta++)    /*for(i=1;i<imx;i++) 
           trgradg[h][j][theta]=gradg[h][theta][j];      printf(" %d\n",s[4][i]);
     */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)    ++countcallfunc;
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;    cov[1]=1.;
   
     for(h=0;h<=nhstepm;h++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    if(mle==1){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(i=1;i<=nlstate;i++)        /* Computes the values of the ncovmodel covariates of the model
           for(j=1;j<=nlstate;j++)           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
       }           to be observed in j being in i according to the model.
     }         */
         for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
     fprintf(ficresvij,"%.0f ",age );          cov[2+k]=covar[Tvar[k]][i];
     for(i=1; i<=nlstate;i++)        }
       for(j=1; j<=nlstate;j++){        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
       }           has been calculated etc */
     fprintf(ficresvij,"\n");        for(mi=1; mi<= wav[i]-1; mi++){
     free_matrix(gp,0,nhstepm,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
     free_matrix(gm,0,nhstepm,1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   } /* End age */          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   free_vector(xp,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_matrix(doldm,1,nlstate,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
   free_matrix(dnewm,1,nlstate,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
             }
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /************ Variance of prevlim ******************/            savm=oldm;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            oldm=newm;
 {          } /* end mult */
   /* Variance of prevalence limit */        
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double **newm;          /* But now since version 0.9 we anticipate for bias at large stepm.
   double **dnewm,**doldm;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   int i, j, nhstepm, hstepm;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   int k, cptcode;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double *xp;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double *gp, *gm;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   double **gradg, **trgradg;           * probability in order to take into account the bias as a fraction of the way
   double age,agelim;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   int theta;           * -stepm/2 to stepm/2 .
               * For stepm=1 the results are the same as for previous versions of Imach.
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");           * For stepm > 1 the results are less biased than in previous versions. 
   fprintf(ficresvpl,"# Age");           */
   for(i=1; i<=nlstate;i++)          s1=s[mw[mi][i]][i];
       fprintf(ficresvpl," %1d-%1d",i,i);          s2=s[mw[mi+1][i]][i];
   fprintf(ficresvpl,"\n");          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias bh is positive if real duration
   xp=vector(1,npar);           * is higher than the multiple of stepm and negative otherwise.
   dnewm=matrix(1,nlstate,1,npar);           */
   doldm=matrix(1,nlstate,1,nlstate);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
            if( s2 > nlstate){ 
   hstepm=1*YEARM; /* Every year of age */            /* i.e. if s2 is a death state and if the date of death is known 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */               then the contribution to the likelihood is the probability to 
   agelim = AGESUP;               die between last step unit time and current  step unit time, 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */               which is also equal to probability to die before dh 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */               minus probability to die before dh-stepm . 
     if (stepm >= YEARM) hstepm=1;               In version up to 0.92 likelihood was computed
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          as if date of death was unknown. Death was treated as any other
     gradg=matrix(1,npar,1,nlstate);          health state: the date of the interview describes the actual state
     gp=vector(1,nlstate);          and not the date of a change in health state. The former idea was
     gm=vector(1,nlstate);          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
     for(theta=1; theta <=npar; theta++){          introduced the exact date of death then we should have modified
       for(i=1; i<=npar; i++){ /* Computes gradient */          the contribution of an exact death to the likelihood. This new
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          contribution is smaller and very dependent of the step unit
       }          stepm. It is no more the probability to die between last interview
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          and month of death but the probability to survive from last
       for(i=1;i<=nlstate;i++)          interview up to one month before death multiplied by the
         gp[i] = prlim[i][i];          probability to die within a month. Thanks to Chris
              Jackson for correcting this bug.  Former versions increased
       for(i=1; i<=npar; i++) /* Computes gradient */          mortality artificially. The bad side is that we add another loop
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          which slows down the processing. The difference can be up to 10%
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          lower mortality.
       for(i=1;i<=nlstate;i++)            */
         gm[i] = prlim[i][i];            lli=log(out[s1][s2] - savm[s1][s2]);
   
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          } else if  (s2==-2) {
     } /* End theta */            for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     trgradg =matrix(1,nlstate,1,npar);            /*survp += out[s1][j]; */
             lli= log(survp);
     for(j=1; j<=nlstate;j++)          }
       for(theta=1; theta <=npar; theta++)          
         trgradg[j][theta]=gradg[theta][j];          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
     for(i=1;i<=nlstate;i++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       varpl[i][(int)age] =0.;            lli= log(survp); 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          } 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)          else if  (s2==-5) { 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     fprintf(ficresvpl,"%.0f ",age );            lli= log(survp); 
     for(i=1; i<=nlstate;i++)          } 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          
     fprintf(ficresvpl,"\n");          else{
     free_vector(gp,1,nlstate);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     free_vector(gm,1,nlstate);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     free_matrix(gradg,1,npar,1,nlstate);          } 
     free_matrix(trgradg,1,nlstate,1,npar);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   } /* End age */          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   free_vector(xp,1,npar);          ipmx +=1;
   free_matrix(doldm,1,nlstate,1,npar);          sw += weight[i];
   free_matrix(dnewm,1,nlstate,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 }      } /* end of individual */
     }  else if(mle==2){
 /************ Variance of one-step probabilities  ******************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   int i, j,  i1, k1, l1;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int k2, l2, j1,  z1;            for (j=1;j<=nlstate+ndeath;j++){
   int k=0,l, cptcode;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int first=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;            }
   double **dnewm,**doldm;          for(d=0; d<=dh[mi][i]; d++){
   double *xp;            newm=savm;
   double *gp, *gm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **gradg, **trgradg;            for (kk=1; kk<=cptcovage;kk++) {
   double **mu;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double age,agelim, cov[NCOVMAX];            }
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int theta;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   char fileresprob[FILENAMELENGTH];            savm=oldm;
   char fileresprobcov[FILENAMELENGTH];            oldm=newm;
   char fileresprobcor[FILENAMELENGTH];          } /* end mult */
         
   double ***varpij;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   strcpy(fileresprob,"prob");          bbh=(double)bh[mi][i]/(double)stepm; 
   strcat(fileresprob,fileres);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          ipmx +=1;
     printf("Problem with resultfile: %s\n", fileresprob);          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   strcpy(fileresprobcov,"probcov");        } /* end of wave */
   strcat(fileresprobcov,fileres);      } /* end of individual */
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    }  else if(mle==3){  /* exponential inter-extrapolation */
     printf("Problem with resultfile: %s\n", fileresprobcov);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   strcpy(fileresprobcor,"probcor");        for(mi=1; mi<= wav[i]-1; mi++){
   strcat(fileresprobcor,fileres);          for (ii=1;ii<=nlstate+ndeath;ii++)
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {            for (j=1;j<=nlstate+ndeath;j++){
     printf("Problem with resultfile: %s\n", fileresprobcor);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            }
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          for(d=0; d<dh[mi][i]; d++){
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");            for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficresprob,"# Age");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");            }
   fprintf(ficresprobcov,"# Age");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficresprobcov,"# Age");            savm=oldm;
             oldm=newm;
           } /* end mult */
   for(i=1; i<=nlstate;i++)        
     for(j=1; j<=(nlstate+ndeath);j++){          s1=s[mw[mi][i]][i];
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          s2=s[mw[mi+1][i]][i];
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     }            ipmx +=1;
   fprintf(ficresprob,"\n");          sw += weight[i];
   fprintf(ficresprobcov,"\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficresprobcor,"\n");        } /* end of wave */
   xp=vector(1,npar);      } /* end of individual */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        for(mi=1; mi<= wav[i]-1; mi++){
   first=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            for (j=1;j<=nlstate+ndeath;j++){
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     exit(0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   else{          for(d=0; d<dh[mi][i]; d++){
     fprintf(ficgp,"\n# Routine varprob");            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {            for (kk=1; kk<=cptcovage;kk++) {
     printf("Problem with html file: %s\n", optionfilehtm);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     exit(0);            }
   }          
   else{            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");            savm=oldm;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");            oldm=newm;
           } /* end mult */
   }        
   cov[1]=1;          s1=s[mw[mi][i]][i];
   j=cptcoveff;          s2=s[mw[mi+1][i]][i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          if( s2 > nlstate){ 
   j1=0;            lli=log(out[s1][s2] - savm[s1][s2]);
   for(k1=1; k1<=1;k1++){          }else{
     for(i1=1; i1<=ncodemax[k1];i1++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     j1++;          }
           ipmx +=1;
     if  (cptcovn>0) {          sw += weight[i];
       fprintf(ficresprob, "\n#********** Variable ");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficresprobcov, "\n#********** Variable ");  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       fprintf(ficgp, "\n#********** Variable ");        } /* end of wave */
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");      } /* end of individual */
       fprintf(ficresprobcor, "\n#********** Variable ");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficresprob, "**********\n#");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficresprobcov, "**********\n#");          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficgp, "**********\n#");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficgp, "**********\n#");            }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(d=0; d<dh[mi][i]; d++){
       fprintf(fichtm, "**********\n#");            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                for (kk=1; kk<=cptcovage;kk++) {
       for (age=bage; age<=fage; age ++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         cov[2]=age;            }
         for (k=1; k<=cptcovn;k++) {          
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            savm=oldm;
         for (k=1; k<=cptcovprod;k++)            oldm=newm;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          } /* end mult */
                
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          s1=s[mw[mi][i]][i];
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          s2=s[mw[mi+1][i]][i];
         gp=vector(1,(nlstate)*(nlstate+ndeath));          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         gm=vector(1,(nlstate)*(nlstate+ndeath));          ipmx +=1;
              sw += weight[i];
         for(theta=1; theta <=npar; theta++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(i=1; i<=npar; i++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        } /* end of wave */
                } /* end of individual */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    } /* End of if */
              for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           k=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           for(i=1; i<= (nlstate); i++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             for(j=1; j<=(nlstate+ndeath);j++){    return -l;
               k=k+1;  }
               gp[k]=pmmij[i][j];  
             }  /*************** log-likelihood *************/
           }  double funcone( double *x)
            {
           for(i=1; i<=npar; i++)    /* Same as likeli but slower because of a lot of printf and if */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    int i, ii, j, k, mi, d, kk;
        double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double **out;
           k=0;    double lli; /* Individual log likelihood */
           for(i=1; i<=(nlstate); i++){    double llt;
             for(j=1; j<=(nlstate+ndeath);j++){    int s1, s2;
               k=k+1;    double bbh, survp;
               gm[k]=pmmij[i][j];    /*extern weight */
             }    /* We are differentiating ll according to initial status */
           }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
          /*for(i=1;i<imx;i++) 
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      printf(" %d\n",s[4][i]);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      */
         }    cov[1]=1.;
   
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for(theta=1; theta <=npar; theta++)  
             trgradg[j][theta]=gradg[theta][j];    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);      for(mi=1; mi<= wav[i]-1; mi++){
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        for (ii=1;ii<=nlstate+ndeath;ii++)
                  for (j=1;j<=nlstate+ndeath;j++){
         pmij(pmmij,cov,ncovmodel,x,nlstate);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                    savm[ii][j]=(ii==j ? 1.0 : 0.0);
         k=0;          }
         for(i=1; i<=(nlstate); i++){        for(d=0; d<dh[mi][i]; d++){
           for(j=1; j<=(nlstate+ndeath);j++){          newm=savm;
             k=k+1;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             mu[k][(int) age]=pmmij[i][j];          for (kk=1; kk<=cptcovage;kk++) {
           }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }          }
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             varpij[i][j][(int)age] = doldm[i][j];                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
         /*printf("\n%d ",(int)age);          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          savm=oldm;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          oldm=newm;
      }*/        } /* end mult */
         
         fprintf(ficresprob,"\n%d ",(int)age);        s1=s[mw[mi][i]][i];
         fprintf(ficresprobcov,"\n%d ",(int)age);        s2=s[mw[mi+1][i]][i];
         fprintf(ficresprobcor,"\n%d ",(int)age);        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)         * is higher than the multiple of stepm and negative otherwise.
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));         */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          lli=log(out[s1][s2] - savm[s1][s2]);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        } else if  (s2==-2) {
         }          for (j=1,survp=0. ; j<=nlstate; j++) 
         i=0;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for (k=1; k<=(nlstate);k++){          lli= log(survp);
           for (l=1; l<=(nlstate+ndeath);l++){        }else if (mle==1){
             i=i++;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        } else if(mle==2){
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             for (j=1; j<=i;j++){        } else if(mle==3){  /* exponential inter-extrapolation */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        } else if (mle==4){  /* mle=4 no inter-extrapolation */
             }          lli=log(out[s1][s2]); /* Original formula */
           }        } else{  /* mle=0 back to 1 */
         }/* end of loop for state */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       } /* end of loop for age */          /*lli=log(out[s1][s2]); */ /* Original formula */
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/        } /* End of if */
       for (k1=1; k1<=(nlstate);k1++){        ipmx +=1;
         for (l1=1; l1<=(nlstate+ndeath);l1++){        sw += weight[i];
           if(l1==k1) continue;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           i=(k1-1)*(nlstate+ndeath)+l1;        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           for (k2=1; k2<=(nlstate);k2++){        if(globpr){
             for (l2=1; l2<=(nlstate+ndeath);l2++){          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
               if(l2==k2) continue;   %11.6f %11.6f %11.6f ", \
               j=(k2-1)*(nlstate+ndeath)+l2;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
               if(j<=i) continue;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
               for (age=bage; age<=fage; age ++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                 if ((int)age %5==0){            llt +=ll[k]*gipmx/gsw;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          fprintf(ficresilk," %10.6f\n", -llt);
                   mu1=mu[i][(int) age]/stepm*YEARM ;        }
                   mu2=mu[j][(int) age]/stepm*YEARM;      } /* end of wave */
                   /* Computing eigen value of matrix of covariance */    } /* end of individual */
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                   /* Eigen vectors */    if(globpr==0){ /* First time we count the contributions and weights */
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));      gipmx=ipmx;
                   v21=sqrt(1.-v11*v11);      gsw=sw;
                   v12=-v21;    }
                   v22=v11;    return -l;
                   /*printf(fignu*/  }
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */  
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */  
                   if(first==1){  /*************** function likelione ***********/
                     first=0;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
                     fprintf(ficgp,"\nset parametric;set nolabel");  {
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);    /* This routine should help understanding what is done with 
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");       the selection of individuals/waves and
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);       to check the exact contribution to the likelihood.
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);       Plotting could be done.
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);     */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    int k;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    if(*globpri !=0){ /* Just counts and sums, no printings */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      strcpy(fileresilk,"ilk"); 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);      strcat(fileresilk,fileres);
                   }else{      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
                     first=0;        printf("Problem with resultfile: %s\n", fileresilk);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);      }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
                   }/* if first */      for(k=1; k<=nlstate; k++) 
                 } /* age mod 5 */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
               } /* end loop age */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);    }
               first=1;  
             } /*l12 */    *fretone=(*funcone)(p);
           } /* k12 */    if(*globpri !=0){
         } /*l1 */      fclose(ficresilk);
       }/* k1 */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     } /* loop covariates */      fflush(fichtm); 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    } 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    return;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  }
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  /*********** Maximum Likelihood Estimation ***************/
   }  
   free_vector(xp,1,npar);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   fclose(ficresprob);  {
   fclose(ficresprobcov);    int i,j, iter=0;
   fclose(ficresprobcor);    double **xi;
   fclose(ficgp);    double fret;
   fclose(fichtm);    double fretone; /* Only one call to likelihood */
 }    /*  char filerespow[FILENAMELENGTH];*/
   
   #ifdef NLOPT
 /******************* Printing html file ***********/    int creturn;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    nlopt_opt opt;
                   int lastpass, int stepm, int weightopt, char model[],\    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    double *lb;
                   int popforecast, int estepm ,\    double minf; /* the minimum objective value, upon return */
                   double jprev1, double mprev1,double anprev1, \    double * p1; /* Shifted parameters from 0 instead of 1 */
                   double jprev2, double mprev2,double anprev2){    myfunc_data dinst, *d = &dinst;
   int jj1, k1, i1, cpt;  #endif
   /*char optionfilehtm[FILENAMELENGTH];*/  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);    xi=matrix(1,npar,1,npar);
   }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n        xi[i][j]=(i==j ? 1.0 : 0.0);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    printf("Powell\n");  fprintf(ficlog,"Powell\n");
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    strcpy(filerespow,"pow"); 
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    strcat(filerespow,fileres);
  - Life expectancies by age and initial health status (estepm=%2d months):    if((ficrespow=fopen(filerespow,"w"))==NULL) {
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      printf("Problem with resultfile: %s\n", filerespow);
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n    fprintf(ficrespow,"# Powell\n# iter -2*LL");
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    for (i=1;i<=nlstate;i++)
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      for(j=1;j<=nlstate+ndeath;j++)
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    fprintf(ficrespow,"\n");
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  #ifdef POWELL
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    powell(p,xi,npar,ftol,&iter,&fret,func);
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  #endif
   
  if(popforecast==1) fprintf(fichtm,"\n  #ifdef NLOPT
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  #ifdef NEWUOA
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
         <br>",fileres,fileres,fileres,fileres);  #else
  else    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  #endif
 fprintf(fichtm," <li>Graphs</li><p>");    lb=vector(0,npar-1);
     for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
  m=cptcoveff;    nlopt_set_lower_bounds(opt, lb);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    nlopt_set_initial_step1(opt, 0.1);
     
  jj1=0;    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
  for(k1=1; k1<=m;k1++){    d->function = func;
    for(i1=1; i1<=ncodemax[k1];i1++){    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
      jj1++;    nlopt_set_min_objective(opt, myfunc, d);
      if (cptcovn > 0) {    nlopt_set_xtol_rel(opt, ftol);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
        for (cpt=1; cpt<=cptcoveff;cpt++)      printf("nlopt failed! %d\n",creturn); 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    else {
      }      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
      /* Pij */      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>      iter=1; /* not equal */
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        }
      /* Quasi-incidences */    nlopt_destroy(opt);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  #endif
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    free_matrix(xi,1,npar,1,npar);
        /* Stable prevalence in each health state */    fclose(ficrespow);
        for(cpt=1; cpt<nlstate;cpt++){    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {  }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.png <br>  /**** Computes Hessian and covariance matrix ***/
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
      }  {
      for(cpt=1; cpt<=nlstate;cpt++) {    double  **a,**y,*x,pd;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    double **hess;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    int i, j;
      }    int *indx;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.png<br>    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
    }    void lubksb(double **a, int npar, int *indx, double b[]) ;
  }    void ludcmp(double **a, int npar, int *indx, double *d) ;
 fclose(fichtm);    double gompertz(double p[]);
 }    hess=matrix(1,npar,1,npar);
   
 /******************* Gnuplot file **************/    printf("\nCalculation of the hessian matrix. Wait...\n");
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      printf("%d",i);fflush(stdout);
   int ng;      fprintf(ficlog,"%d",i);fflush(ficlog);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {     
     printf("Problem with file %s",optionfilegnuplot);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   }      
       /*  printf(" %f ",p[i]);
 #ifdef windows          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     fprintf(ficgp,"cd \"%s\" \n",pathc);    }
 #endif    
 m=pow(2,cptcoveff);    for (i=1;i<=npar;i++) {
        for (j=1;j<=npar;j++)  {
  /* 1eme*/        if (j>i) { 
   for (cpt=1; cpt<= nlstate ; cpt ++) {          printf(".%d%d",i,j);fflush(stdout);
    for (k1=1; k1<= m ; k1 ++) {          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
 #ifdef windows          
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          hess[j][i]=hess[i][j];    
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          /*printf(" %lf ",hess[i][j]);*/
 #endif        }
 #ifdef unix      }
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    printf("\n");
 #endif    fprintf(ficlog,"\n");
   
 for (i=1; i<= nlstate ; i ++) {    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }    a=matrix(1,npar,1,npar);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    y=matrix(1,npar,1,npar);
     for (i=1; i<= nlstate ; i ++) {    x=vector(1,npar);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    indx=ivector(1,npar);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for (i=1;i<=npar;i++)
 }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    ludcmp(a,npar,indx,&pd);
      for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for (j=1;j<=npar;j++) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for (i=1;i<=npar;i++) x[i]=0;
 }        x[j]=1;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      lubksb(a,npar,indx,x);
 #ifdef unix      for (i=1;i<=npar;i++){ 
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        matcov[i][j]=x[i];
 #endif      }
    }    }
   }  
   /*2 eme*/    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
   for (k1=1; k1<= m ; k1 ++) {    for (i=1;i<=npar;i++) { 
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);      for (j=1;j<=npar;j++) { 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        printf("%.3e ",hess[i][j]);
            fprintf(ficlog,"%.3e ",hess[i][j]);
     for (i=1; i<= nlstate+1 ; i ++) {      }
       k=2*i;      printf("\n");
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      fprintf(ficlog,"\n");
       for (j=1; j<= nlstate+1 ; j ++) {    }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* Recompute Inverse */
 }      for (i=1;i<=npar;i++)
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    ludcmp(a,npar,indx,&pd);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    /*  printf("\n#Hessian matrix recomputed#\n");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");    for (j=1;j<=npar;j++) {
 }        for (i=1;i<=npar;i++) x[i]=0;
       fprintf(ficgp,"\" t\"\" w l 0,");      x[j]=1;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      lubksb(a,npar,indx,x);
       for (j=1; j<= nlstate+1 ; j ++) {      for (i=1;i<=npar;i++){ 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        y[i][j]=x[i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");        printf("%.3e ",y[i][j]);
 }          fprintf(ficlog,"%.3e ",y[i][j]);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      }
       else fprintf(ficgp,"\" t\"\" w l 0,");      printf("\n");
     }      fprintf(ficlog,"\n");
   }    }
      */
   /*3eme*/  
     free_matrix(a,1,npar,1,npar);
   for (k1=1; k1<= m ; k1 ++) {    free_matrix(y,1,npar,1,npar);
     for (cpt=1; cpt<= nlstate ; cpt ++) {    free_vector(x,1,npar);
       k=2+nlstate*(2*cpt-2);    free_ivector(indx,1,npar);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    free_matrix(hess,1,npar,1,npar);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  /*************** hessian matrix ****************/
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  {
     int i;
 */    int l=1, lmax=20;
       for (i=1; i< nlstate ; i ++) {    double k1,k2;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    double p2[MAXPARM+1]; /* identical to x */
     double res;
       }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     }    double fx;
   }    int k=0,kmax=10;
      double l1;
   /* CV preval stat */  
     for (k1=1; k1<= m ; k1 ++) {    fx=func(x);
     for (cpt=1; cpt<nlstate ; cpt ++) {    for (i=1;i<=npar;i++) p2[i]=x[i];
       k=3;    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      l1=pow(10,l);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
       for (i=1; i< nlstate ; i ++)        delt = delta*(l1*k);
         fprintf(ficgp,"+$%d",k+i+1);        p2[theta]=x[theta] +delt;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
              p2[theta]=x[theta]-delt;
       l=3+(nlstate+ndeath)*cpt;        k2=func(p2)-fx;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        /*res= (k1-2.0*fx+k2)/delt/delt; */
       for (i=1; i< nlstate ; i ++) {        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         l=3+(nlstate+ndeath)*cpt;        
         fprintf(ficgp,"+$%d",l+i+1);  #ifdef DEBUGHESS
       }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     }  #endif
   }          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   /* proba elementaires */          k=kmax;
    for(i=1,jk=1; i <=nlstate; i++){        }
     for(k=1; k <=(nlstate+ndeath); k++){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       if (k != i) {          k=kmax; l=lmax*10;
         for(j=1; j <=ncovmodel; j++){        }
                else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          delts=delt;
           jk++;        }
           fprintf(ficgp,"\n");      }
         }    }
       }    delti[theta]=delts;
     }    return res; 
    }    
   }
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  
      for(jk=1; jk <=m; jk++) {  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);  {
        if (ng==2)    int i;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    int l=1, lmax=20;
        else    double k1,k2,k3,k4,res,fx;
          fprintf(ficgp,"\nset title \"Probability\"\n");    double p2[MAXPARM+1];
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    int k;
        i=1;  
        for(k2=1; k2<=nlstate; k2++) {    fx=func(x);
          k3=i;    for (k=1; k<=2; k++) {
          for(k=1; k<=(nlstate+ndeath); k++) {      for (i=1;i<=npar;i++) p2[i]=x[i];
            if (k != k2){      p2[thetai]=x[thetai]+delti[thetai]/k;
              if(ng==2)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      k1=func(p2)-fx;
              else    
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      p2[thetai]=x[thetai]+delti[thetai]/k;
              ij=1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
              for(j=3; j <=ncovmodel; j++) {      k2=func(p2)-fx;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      p2[thetai]=x[thetai]-delti[thetai]/k;
                  ij++;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                }      k3=func(p2)-fx;
                else    
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      p2[thetai]=x[thetai]-delti[thetai]/k;
              }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
              fprintf(ficgp,")/(1");      k4=func(p2)-fx;
                    res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
              for(k1=1; k1 <=nlstate; k1++){    #ifdef DEBUG
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                ij=1;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                for(j=3; j <=ncovmodel; j++){  #endif
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    }
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    return res;
                    ij++;  }
                  }  
                  else  /************** Inverse of matrix **************/
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  void ludcmp(double **a, int n, int *indx, double *d) 
                }  { 
                fprintf(ficgp,")");    int i,imax,j,k; 
              }    double big,dum,sum,temp; 
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    double *vv; 
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");   
              i=i+ncovmodel;    vv=vector(1,n); 
            }    *d=1.0; 
          }    for (i=1;i<=n;i++) { 
        }      big=0.0; 
      }      for (j=1;j<=n;j++) 
    }        if ((temp=fabs(a[i][j])) > big) big=temp; 
    fclose(ficgp);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 }  /* end gnuplot */      vv[i]=1.0/big; 
     } 
     for (j=1;j<=n;j++) { 
 /*************** Moving average **************/      for (i=1;i<j;i++) { 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   int i, cpt, cptcod;        a[i][j]=sum; 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      } 
       for (i=1; i<=nlstate;i++)      big=0.0; 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      for (i=j;i<=n;i++) { 
           mobaverage[(int)agedeb][i][cptcod]=0.;        sum=a[i][j]; 
            for (k=1;k<j;k++) 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          sum -= a[i][k]*a[k][j]; 
       for (i=1; i<=nlstate;i++){        a[i][j]=sum; 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           for (cpt=0;cpt<=4;cpt++){          big=dum; 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          imax=i; 
           }        } 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      } 
         }      if (j != imax) { 
       }        for (k=1;k<=n;k++) { 
     }          dum=a[imax][k]; 
              a[imax][k]=a[j][k]; 
 }          a[j][k]=dum; 
         } 
         *d = -(*d); 
 /************** Forecasting ******************/        vv[imax]=vv[j]; 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      } 
        indx[j]=imax; 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   int *popage;      if (j != n) { 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        dum=1.0/(a[j][j]); 
   double *popeffectif,*popcount;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double ***p3mat;      } 
   char fileresf[FILENAMELENGTH];    } 
     free_vector(vv,1,n);  /* Doesn't work */
  agelim=AGESUP;  ;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  } 
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  void lubksb(double **a, int n, int *indx, double b[]) 
    { 
      int i,ii=0,ip,j; 
   strcpy(fileresf,"f");    double sum; 
   strcat(fileresf,fileres);   
   if((ficresf=fopen(fileresf,"w"))==NULL) {    for (i=1;i<=n;i++) { 
     printf("Problem with forecast resultfile: %s\n", fileresf);      ip=indx[i]; 
   }      sum=b[ip]; 
   printf("Computing forecasting: result on file '%s' \n", fileresf);      b[ip]=b[i]; 
       if (ii) 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
   if (mobilav==1) {      b[i]=sum; 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    } 
     movingaverage(agedeb, fage, ageminpar, mobaverage);    for (i=n;i>=1;i--) { 
   }      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   stepsize=(int) (stepm+YEARM-1)/YEARM;      b[i]=sum/a[i][i]; 
   if (stepm<=12) stepsize=1;    } 
    } 
   agelim=AGESUP;  
    void pstamp(FILE *fichier)
   hstepm=1;  {
   hstepm=hstepm/stepm;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   yp1=modf(dateintmean,&yp);  }
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);  /************ Frequencies ********************/
   mprojmean=yp;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   yp1=modf((yp2*30.5),&yp);  {  /* Some frequencies */
   jprojmean=yp;    
   if(jprojmean==0) jprojmean=1;    int i, m, jk, j1, bool, z1,j;
   if(mprojmean==0) jprojmean=1;    int first;
      double ***freq; /* Frequencies */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    double *pp, **prop;
      double pos,posprop, k2, dateintsum=0,k2cpt=0;
   for(cptcov=1;cptcov<=i2;cptcov++){    char fileresp[FILENAMELENGTH];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    
       k=k+1;    pp=vector(1,nlstate);
       fprintf(ficresf,"\n#******");    prop=matrix(1,nlstate,iagemin,iagemax+3);
       for(j=1;j<=cptcoveff;j++) {    strcpy(fileresp,"p");
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcat(fileresp,fileres);
       }    if((ficresp=fopen(fileresp,"w"))==NULL) {
       fprintf(ficresf,"******\n");      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficresf,"# StartingAge FinalAge");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      exit(0);
          }
          freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    j1=0;
         fprintf(ficresf,"\n");    
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    first=1;
           nhstepm = nhstepm/hstepm;  
              /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
           oldm=oldms;savm=savms;    /*    j1++; */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
                /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           for (h=0; h<=nhstepm; h++){          scanf("%d", i);*/
             if (h==(int) (calagedate+YEARM*cpt)) {        for (i=-5; i<=nlstate+ndeath; i++)  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             }            for(m=iagemin; m <= iagemax+3; m++)
             for(j=1; j<=nlstate+ndeath;j++) {              freq[i][jk][m]=0;
               kk1=0.;kk2=0;        
               for(i=1; i<=nlstate;i++) {                      for (i=1; i<=nlstate; i++)  
                 if (mobilav==1)          for(m=iagemin; m <= iagemax+3; m++)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            prop[i][m]=0;
                 else {        
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        dateintsum=0;
                 }        k2cpt=0;
                        for (i=1; i<=imx; i++) {
               }          bool=1;
               if (h==(int)(calagedate+12*cpt)){          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
                 fprintf(ficresf," %.3f", kk1);            for (z1=1; z1<=cptcoveff; z1++)       
                                      if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
               }                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
             }                bool=0;
           }                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
         }                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
       }                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
     }              } 
   }          }
           
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
   fclose(ficresf);              k2=anint[m][i]+(mint[m][i]/12.);
 }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 /************** Forecasting ******************/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                if (m<lastpass) {
   int *popage;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   double *popeffectif,*popcount;                }
   double ***p3mat,***tabpop,***tabpopprev;                
   char filerespop[FILENAMELENGTH];                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  k2cpt++;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                }
   agelim=AGESUP;                /*}*/
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            }
            }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        } /* end i */
           
          /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   strcpy(filerespop,"pop");        pstamp(ficresp);
   strcat(filerespop,fileres);        if  (cptcovn>0) {
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          fprintf(ficresp, "\n#********** Variable "); 
     printf("Problem with forecast resultfile: %s\n", filerespop);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresp, "**********\n#");
   printf("Computing forecasting: result on file '%s' \n", filerespop);          fprintf(ficlog, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          fprintf(ficlog, "**********\n#");
         }
   if (mobilav==1) {        for(i=1; i<=nlstate;i++) 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     movingaverage(agedeb, fage, ageminpar, mobaverage);        fprintf(ficresp, "\n");
   }        
         for(i=iagemin; i <= iagemax+3; i++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;          if(i==iagemax+3){
   if (stepm<=12) stepsize=1;            fprintf(ficlog,"Total");
            }else{
   agelim=AGESUP;            if(first==1){
                first=0;
   hstepm=1;              printf("See log file for details...\n");
   hstepm=hstepm/stepm;            }
              fprintf(ficlog,"Age %d", i);
   if (popforecast==1) {          }
     if((ficpop=fopen(popfile,"r"))==NULL) {          for(jk=1; jk <=nlstate ; jk++){
       printf("Problem with population file : %s\n",popfile);exit(0);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     }              pp[jk] += freq[jk][m][i]; 
     popage=ivector(0,AGESUP);          }
     popeffectif=vector(0,AGESUP);          for(jk=1; jk <=nlstate ; jk++){
     popcount=vector(0,AGESUP);            for(m=-1, pos=0; m <=0 ; m++)
                  pos += freq[jk][m][i];
     i=1;              if(pp[jk]>=1.e-10){
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              if(first==1){
                    printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     imx=i;              }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   }            }else{
               if(first==1)
   for(cptcov=1;cptcov<=i2;cptcov++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       k=k+1;            }
       fprintf(ficrespop,"\n#******");          }
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       fprintf(ficrespop,"******\n");              pp[jk] += freq[jk][m][i];
       fprintf(ficrespop,"# Age");          }       
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       if (popforecast==1)  fprintf(ficrespop," [Population]");            pos += pp[jk];
                  posprop += prop[jk][i];
       for (cpt=0; cpt<=0;cpt++) {          }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            for(jk=1; jk <=nlstate ; jk++){
                    if(pos>=1.e-5){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              if(first==1)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           nhstepm = nhstepm/hstepm;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                      }else{
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if(first==1)
           oldm=oldms;savm=savms;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                    }
           for (h=0; h<=nhstepm; h++){            if( i <= iagemax){
             if (h==(int) (calagedate+YEARM*cpt)) {              if(pos>=1.e-5){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
             }                /*probs[i][jk][j1]= pp[jk]/pos;*/
             for(j=1; j<=nlstate+ndeath;j++) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               kk1=0.;kk2=0;              }
               for(i=1; i<=nlstate;i++) {                            else
                 if (mobilav==1)                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            }
                 else {          }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          
                 }          for(jk=-1; jk <=nlstate+ndeath; jk++)
               }            for(m=-1; m <=nlstate+ndeath; m++)
               if (h==(int)(calagedate+12*cpt)){              if(freq[jk][m][i] !=0 ) {
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              if(first==1)
                   /*fprintf(ficrespop," %.3f", kk1);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }              }
             }          if(i <= iagemax)
             for(i=1; i<=nlstate;i++){            fprintf(ficresp,"\n");
               kk1=0.;          if(first==1)
                 for(j=1; j<=nlstate;j++){            printf("Others in log...\n");
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          fprintf(ficlog,"\n");
                 }        }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        /*}*/
             }    }
     dateintmean=dateintsum/k2cpt; 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)   
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    fclose(ficresp);
           }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_vector(pp,1,nlstate);
         }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       }    /* End of Freq */
    }
   /******/  
   /************ Prevalence ********************/
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    {  
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       in each health status at the date of interview (if between dateprev1 and dateprev2).
           nhstepm = nhstepm/hstepm;       We still use firstpass and lastpass as another selection.
              */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
           oldm=oldms;savm=savms;    int i, m, jk, j1, bool, z1,j;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){    double **prop;
             if (h==(int) (calagedate+YEARM*cpt)) {    double posprop; 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double  y2; /* in fractional years */
             }    int iagemin, iagemax;
             for(j=1; j<=nlstate+ndeath;j++) {    int first; /** to stop verbosity which is redirected to log file */
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  iagemin= (int) agemin;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        iagemax= (int) agemax;
               }    /*pp=vector(1,nlstate);*/
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
             }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           }    j1=0;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
         }    /*j=cptcoveff;*/
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    }    
   }    first=1;
      for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /*for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;*/
   if (popforecast==1) {        
     free_ivector(popage,0,AGESUP);        for (i=1; i<=nlstate; i++)  
     free_vector(popeffectif,0,AGESUP);          for(m=iagemin; m <= iagemax+3; m++)
     free_vector(popcount,0,AGESUP);            prop[i][m]=0.0;
   }       
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for (i=1; i<=imx; i++) { /* Each individual */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          bool=1;
   fclose(ficrespop);          if  (cptcovn>0) {
 }            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 /***********************************************/                bool=0;
 /**************** Main Program *****************/          } 
 /***********************************************/          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 int main(int argc, char *argv[])              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   double agedeb, agefin,hf;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   double fret;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   double **xi,tmp,delta;                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
   double dum; /* Dummy variable */              }
   double ***p3mat;            } /* end selection of waves */
   int *indx;          }
   char line[MAXLINE], linepar[MAXLINE];        }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        for(i=iagemin; i <= iagemax+3; i++){  
   int firstobs=1, lastobs=10;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   int sdeb, sfin; /* Status at beginning and end */            posprop += prop[jk][i]; 
   int c,  h , cpt,l;          } 
   int ju,jl, mi;          
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          for(jk=1; jk <=nlstate ; jk++){     
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            if( i <=  iagemax){ 
   int mobilav=0,popforecast=0;              if(posprop>=1.e-5){ 
   int hstepm, nhstepm;                probs[i][jk][j1]= prop[jk][i]/posprop;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;              } else{
                 if(first==1){
   double bage, fage, age, agelim, agebase;                  first=0;
   double ftolpl=FTOL;                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
   double **prlim;                }
   double *severity;              }
   double ***param; /* Matrix of parameters */            } 
   double  *p;          }/* end jk */ 
   double **matcov; /* Matrix of covariance */        }/* end i */ 
   double ***delti3; /* Scale */      /*} *//* end i1 */
   double *delti; /* Scale */    } /* end j1 */
   double ***eij, ***vareij;    
   double **varpl; /* Variances of prevalence limits by age */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   double *epj, vepp;    /*free_vector(pp,1,nlstate);*/
   double kk1, kk2;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  }  /* End of prevalence */
    
   /************* Waves Concatenation ***************/
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
   char z[1]="c", occ;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 #include <sys/time.h>       Death is a valid wave (if date is known).
 #include <time.h>       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         and mw[mi+1][i]. dh depends on stepm.
   /* long total_usecs;       */
   struct timeval start_time, end_time;  
      int i, mi, m;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   getcwd(pathcd, size);       double sum=0., jmean=0.;*/
     int first;
   printf("\n%s",version);    int j, k=0,jk, ju, jl;
   if(argc <=1){    double sum=0.;
     printf("\nEnter the parameter file name: ");    first=0;
     scanf("%s",pathtot);    jmin=100000;
   }    jmax=-1;
   else{    jmean=0.;
     strcpy(pathtot,argv[1]);    for(i=1; i<=imx; i++){
   }      mi=0;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      m=firstpass;
   /*cygwin_split_path(pathtot,path,optionfile);      while(s[m][i] <= nlstate){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   /* cutv(path,optionfile,pathtot,'\\');*/          mw[++mi][i]=m;
         if(m >=lastpass)
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          break;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        else
   chdir(path);          m++;
   replace(pathc,path);      }/* end while */
       if (s[m][i] > nlstate){
 /*-------- arguments in the command line --------*/        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
   strcpy(fileres,"r");           /* Only death is a correct wave */
   strcat(fileres, optionfilefiname);        mw[mi][i]=m;
   strcat(fileres,".txt");    /* Other files have txt extension */      }
   
   /*---------arguments file --------*/      wav[i]=mi;
       if(mi==0){
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        nbwarn++;
     printf("Problem with optionfile %s\n",optionfile);        if(first==0){
     goto end;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   }          first=1;
         }
   strcpy(filereso,"o");        if(first==1){
   strcat(filereso,fileres);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   if((ficparo=fopen(filereso,"w"))==NULL) {        }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      } /* end mi==0 */
   }    } /* End individuals */
   
   /* Reads comments: lines beginning with '#' */    for(i=1; i<=imx; i++){
   while((c=getc(ficpar))=='#' && c!= EOF){      for(mi=1; mi<wav[i];mi++){
     ungetc(c,ficpar);        if (stepm <=0)
     fgets(line, MAXLINE, ficpar);          dh[mi][i]=1;
     puts(line);        else{
     fputs(line,ficparo);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   }            if (agedc[i] < 2*AGESUP) {
   ungetc(c,ficpar);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);              else if(j<0){
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                nberr++;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 while((c=getc(ficpar))=='#' && c!= EOF){                j=1; /* Temporary Dangerous patch */
     ungetc(c,ficpar);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     fgets(line, MAXLINE, ficpar);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     puts(line);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     fputs(line,ficparo);              }
   }              k=k+1;
   ungetc(c,ficpar);              if (j >= jmax){
                  jmax=j;
                    ijmax=i;
   covar=matrix(0,NCOVMAX,1,n);              }
   cptcovn=0;              if (j <= jmin){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                jmin=j;
                 ijmin=i;
   ncovmodel=2+cptcovn;              }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */              sum=sum+j;
                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   /* Read guess parameters */              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   /* Reads comments: lines beginning with '#' */            }
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);          else{
     fgets(line, MAXLINE, ficpar);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     puts(line);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     fputs(line,ficparo);  
   }            k=k+1;
   ungetc(c,ficpar);            if (j >= jmax) {
                jmax=j;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              ijmax=i;
     for(i=1; i <=nlstate; i++)            }
     for(j=1; j <=nlstate+ndeath-1; j++){            else if (j <= jmin){
       fscanf(ficpar,"%1d%1d",&i1,&j1);              jmin=j;
       fprintf(ficparo,"%1d%1d",i1,j1);              ijmin=i;
       printf("%1d%1d",i,j);            }
       for(k=1; k<=ncovmodel;k++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         fscanf(ficpar," %lf",&param[i][j][k]);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         printf(" %lf",param[i][j][k]);            if(j<0){
         fprintf(ficparo," %lf",param[i][j][k]);              nberr++;
       }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fscanf(ficpar,"\n");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       printf("\n");            }
       fprintf(ficparo,"\n");            sum=sum+j;
     }          }
            jk= j/stepm;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
   p=param[1][1];          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
              if(jl==0){
   /* Reads comments: lines beginning with '#' */              dh[mi][i]=jk;
   while((c=getc(ficpar))=='#' && c!= EOF){              bh[mi][i]=0;
     ungetc(c,ficpar);            }else{ /* We want a negative bias in order to only have interpolation ie
     fgets(line, MAXLINE, ficpar);                    * to avoid the price of an extra matrix product in likelihood */
     puts(line);              dh[mi][i]=jk+1;
     fputs(line,ficparo);              bh[mi][i]=ju;
   }            }
   ungetc(c,ficpar);          }else{
             if(jl <= -ju){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              dh[mi][i]=jk;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */              bh[mi][i]=jl;       /* bias is positive if real duration
   for(i=1; i <=nlstate; i++){                                   * is higher than the multiple of stepm and negative otherwise.
     for(j=1; j <=nlstate+ndeath-1; j++){                                   */
       fscanf(ficpar,"%1d%1d",&i1,&j1);            }
       printf("%1d%1d",i,j);            else{
       fprintf(ficparo,"%1d%1d",i1,j1);              dh[mi][i]=jk+1;
       for(k=1; k<=ncovmodel;k++){              bh[mi][i]=ju;
         fscanf(ficpar,"%le",&delti3[i][j][k]);            }
         printf(" %le",delti3[i][j][k]);            if(dh[mi][i]==0){
         fprintf(ficparo," %le",delti3[i][j][k]);              dh[mi][i]=1; /* At least one step */
       }              bh[mi][i]=ju; /* At least one step */
       fscanf(ficpar,"\n");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       printf("\n");            }
       fprintf(ficparo,"\n");          } /* end if mle */
     }        }
   }      } /* end wave */
   delti=delti3[1][1];    }
      jmean=sum/k;
   /* Reads comments: lines beginning with '#' */    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     ungetc(c,ficpar);   }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /*********** Tricode ****************************/
     fputs(line,ficparo);  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   }  {
   ungetc(c,ficpar);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
      /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   matcov=matrix(1,npar,1,npar);     * Boring subroutine which should only output nbcode[Tvar[j]][k]
   for(i=1; i <=npar; i++){     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     fscanf(ficpar,"%s",&str);     * nbcode[Tvar[j]][1]= 
     printf("%s",str);    */
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
       fscanf(ficpar," %le",&matcov[i][j]);    int modmaxcovj=0; /* Modality max of covariates j */
       printf(" %.5le",matcov[i][j]);    int cptcode=0; /* Modality max of covariates j */
       fprintf(ficparo," %.5le",matcov[i][j]);    int modmincovj=0; /* Modality min of covariates j */
     }  
     fscanf(ficpar,"\n");  
     printf("\n");    cptcoveff=0; 
     fprintf(ficparo,"\n");   
   }    for (k=-1; k < maxncov; k++) Ndum[k]=0;
   for(i=1; i <=npar; i++)    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];    /* Loop on covariates without age and products */
        for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
   printf("\n");      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
                                  modality of this covariate Vj*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
     /*-------- Rewriting paramater file ----------*/                                      * If product of Vn*Vm, still boolean *:
      strcpy(rfileres,"r");    /* "Rparameterfile */                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
      strcat(rfileres,".");    /* */        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
      strcat(rfileres,optionfilext);    /* Other files have txt extension */                                        modality of the nth covariate of individual i. */
     if((ficres =fopen(rfileres,"w"))==NULL) {        if (ij > modmaxcovj)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          modmaxcovj=ij; 
     }        else if (ij < modmincovj) 
     fprintf(ficres,"#%s\n",version);          modmincovj=ij; 
            if ((ij < -1) && (ij > NCOVMAX)){
     /*-------- data file ----------*/          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
     if((fic=fopen(datafile,"r"))==NULL)    {          exit(1);
       printf("Problem with datafile: %s\n", datafile);goto end;        }else
     }        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
     n= lastobs;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     severity = vector(1,maxwav);        /* getting the maximum value of the modality of the covariate
     outcome=imatrix(1,maxwav+1,1,n);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
     num=ivector(1,n);           female is 1, then modmaxcovj=1.*/
     moisnais=vector(1,n);      }
     annais=vector(1,n);      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
     moisdc=vector(1,n);      cptcode=modmaxcovj;
     andc=vector(1,n);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
     agedc=vector(1,n);     /*for (i=0; i<=cptcode; i++) {*/
     cod=ivector(1,n);      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
     weight=vector(1,n);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
     mint=matrix(1,maxwav,1,n);          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
     anint=matrix(1,maxwav,1,n);        }
     s=imatrix(1,maxwav+1,1,n);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
     adl=imatrix(1,maxwav+1,1,n);               historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
     tab=ivector(1,NCOVMAX);      } /* Ndum[-1] number of undefined modalities */
     ncodemax=ivector(1,8);  
       /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     i=1;      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
     while (fgets(line, MAXLINE, fic) != NULL)    {      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
       if ((i >= firstobs) && (i <=lastobs)) {         modmincovj=3; modmaxcovj = 7;
                 There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
         for (j=maxwav;j>=1;j--){         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);         variables V1_1 and V1_2.
           strcpy(line,stra);         nbcode[Tvar[j]][ij]=k;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);         nbcode[Tvar[j]][1]=0;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);         nbcode[Tvar[j]][2]=1;
         }         nbcode[Tvar[j]][3]=2;
              */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      ij=1; /* ij is similar to i but can jumps over null modalities */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
         for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          /*recode from 0 */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);                                       k is a modality. If we have model=V1+V1*sex 
         for (j=ncovcol;j>=1;j--){                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            ij++;
         }          }
         num[i]=atol(stra);          if (ij > ncodemax[j]) break; 
                }  /* end of loop on */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      } /* end of loop on modality */ 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
         i=i+1;   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
       }    
     }    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
     /* printf("ii=%d", ij);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
        scanf("%d",i);*/     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   imx=i-1; /* Number of individuals */     Ndum[ij]++; 
    } 
   /* for (i=1; i<=imx; i++){  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;   ij=1;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
     }*/     if((Ndum[i]!=0) && (i<=ncovcol)){
    /*  for (i=1; i<=imx; i++){       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
      if (s[4][i]==9)  s[4][i]=-1;       Tvaraff[ij]=i; /*For printing (unclear) */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/       ij++;
       }else
           Tvaraff[ij]=0;
   /* Calculation of the number of parameter from char model*/   }
   Tvar=ivector(1,15);   ij--;
   Tprod=ivector(1,15);   cptcoveff=ij; /*Number of total covariates*/
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);  }
   Tage=ivector(1,15);        
      
   if (strlen(model) >1){  /*********** Health Expectancies ****************/
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+');  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     j1=nbocc(model,'*');  
     cptcovn=j+1;  {
     cptcovprod=j1;    /* Health expectancies, no variances */
        int i, j, nhstepm, hstepm, h, nstepm;
     strcpy(modelsav,model);    int nhstepma, nstepma; /* Decreasing with age */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    double age, agelim, hf;
       printf("Error. Non available option model=%s ",model);    double ***p3mat;
       goto end;    double eip;
     }  
        pstamp(ficreseij);
     for(i=(j+1); i>=1;i--){    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       cutv(stra,strb,modelsav,'+');    fprintf(ficreseij,"# Age");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    for(i=1; i<=nlstate;i++){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      for(j=1; j<=nlstate;j++){
       /*scanf("%d",i);*/        fprintf(ficreseij," e%1d%1d ",i,j);
       if (strchr(strb,'*')) {      }
         cutv(strd,strc,strb,'*');      fprintf(ficreseij," e%1d. ",i);
         if (strcmp(strc,"age")==0) {    }
           cptcovprod--;    fprintf(ficreseij,"\n");
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre);    
           cptcovage++;    if(estepm < stepm){
             Tage[cptcovage]=i;      printf ("Problem %d lower than %d\n",estepm, stepm);
             /*printf("stre=%s ", stre);*/    }
         }    else  hstepm=estepm;   
         else if (strcmp(strd,"age")==0) {    /* We compute the life expectancy from trapezoids spaced every estepm months
           cptcovprod--;     * This is mainly to measure the difference between two models: for example
           cutv(strb,stre,strc,'V');     * if stepm=24 months pijx are given only every 2 years and by summing them
           Tvar[i]=atoi(stre);     * we are calculating an estimate of the Life Expectancy assuming a linear 
           cptcovage++;     * progression in between and thus overestimating or underestimating according
           Tage[cptcovage]=i;     * to the curvature of the survival function. If, for the same date, we 
         }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         else {     * to compare the new estimate of Life expectancy with the same linear 
           cutv(strb,stre,strc,'V');     * hypothesis. A more precise result, taking into account a more precise
           Tvar[i]=ncovcol+k1;     * curvature will be obtained if estepm is as small as stepm. */
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;    /* For example we decided to compute the life expectancy with the smallest unit */
           Tvard[k1][1]=atoi(strc);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           Tvard[k1][2]=atoi(stre);       nhstepm is the number of hstepm from age to agelim 
           Tvar[cptcovn+k2]=Tvard[k1][1];       nstepm is the number of stepm from age to agelin. 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       Look at hpijx to understand the reason of that which relies in memory size
           for (k=1; k<=lastobs;k++)       and note for a fixed period like estepm months */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           k1++;       survival function given by stepm (the optimization length). Unfortunately it
           k2=k2+2;       means that if the survival funtion is printed only each two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
       else {    */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');    agelim=AGESUP;
       Tvar[i]=atoi(strc);    /* If stepm=6 months */
       }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       strcpy(modelsav,stra);           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      
         scanf("%d",i);*/  /* nhstepm age range expressed in number of stepm */
     }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      /* if (stepm >= YEARM) hstepm=1;*/
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   printf("cptcovprod=%d ", cptcovprod);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   scanf("%d ",i);*/  
     fclose(fic);    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /*  if(mle==1){*/      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     if (weightopt != 1) { /* Maximisation without weights*/      /* if (stepm >= YEARM) hstepm=1;*/
       for(i=1;i<=n;i++) weight[i]=1.0;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     }  
     /*-calculation of age at interview from date of interview and age at death -*/      /* If stepm=6 months */
     agev=matrix(1,maxwav,1,imx);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     for (i=1; i<=imx; i++) {      
       for(m=2; (m<= maxwav); m++) {      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      
          anint[m][i]=9999;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          s[m][i]=-1;      
        }      printf("%d|",(int)age);fflush(stdout);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       }      
     }      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
     for (i=1; i<=imx; i++)  {        for(j=1; j<=nlstate;j++)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       for(m=1; (m<= maxwav); m++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         if(s[m][i] >0){            
           if (s[m][i] >= nlstate+1) {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)          }
                 agev[m][i]=agedc[i];  
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      fprintf(ficreseij,"%3.0f",age );
            else {      for(i=1; i<=nlstate;i++){
               if (andc[i]!=9999){        eip=0;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        for(j=1; j<=nlstate;j++){
               agev[m][i]=-1;          eip +=eij[i][j][(int)age];
               }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
             }        }
           }        fprintf(ficreseij,"%9.4f", eip );
           else if(s[m][i] !=9){ /* Should no more exist */      }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      fprintf(ficreseij,"\n");
             if(mint[m][i]==99 || anint[m][i]==9999)      
               agev[m][i]=1;    }
             else if(agev[m][i] <agemin){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               agemin=agev[m][i];    printf("\n");
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    fprintf(ficlog,"\n");
             }    
             else if(agev[m][i] >agemax){  }
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/  {
             /*   agev[m][i] = age[i]+2*m;*/    /* Covariances of health expectancies eij and of total life expectancies according
           }     to initial status i, ei. .
           else { /* =9 */    */
             agev[m][i]=1;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
             s[m][i]=-1;    int nhstepma, nstepma; /* Decreasing with age */
           }    double age, agelim, hf;
         }    double ***p3matp, ***p3matm, ***varhe;
         else /*= 0 Unknown */    double **dnewm,**doldm;
           agev[m][i]=1;    double *xp, *xm;
       }    double **gp, **gm;
        double ***gradg, ***trgradg;
     }    int theta;
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){    double eip, vip;
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: Wrong value in nlstate or ndeath\n");      varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           goto end;    xp=vector(1,npar);
         }    xm=vector(1,npar);
       }    dnewm=matrix(1,nlstate*nlstate,1,npar);
     }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     free_vector(severity,1,maxwav);    fprintf(ficresstdeij,"# Age");
     free_imatrix(outcome,1,maxwav+1,1,n);    for(i=1; i<=nlstate;i++){
     free_vector(moisnais,1,n);      for(j=1; j<=nlstate;j++)
     free_vector(annais,1,n);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     /* free_matrix(mint,1,maxwav,1,n);      fprintf(ficresstdeij," e%1d. ",i);
        free_matrix(anint,1,maxwav,1,n);*/    }
     free_vector(moisdc,1,n);    fprintf(ficresstdeij,"\n");
     free_vector(andc,1,n);  
     pstamp(ficrescveij);
        fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     wav=ivector(1,imx);    fprintf(ficrescveij,"# Age");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    for(i=1; i<=nlstate;i++)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      for(j=1; j<=nlstate;j++){
            cptj= (j-1)*nlstate+i;
     /* Concatenates waves */        for(i2=1; i2<=nlstate;i2++)
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
       Tcode=ivector(1,100);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          }
       ncodemax[1]=1;      }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    fprintf(ficrescveij,"\n");
          
    codtab=imatrix(1,100,1,10);    if(estepm < stepm){
    h=0;      printf ("Problem %d lower than %d\n",estepm, stepm);
    m=pow(2,cptcoveff);    }
      else  hstepm=estepm;   
    for(k=1;k<=cptcoveff; k++){    /* We compute the life expectancy from trapezoids spaced every estepm months
      for(i=1; i <=(m/pow(2,k));i++){     * This is mainly to measure the difference between two models: for example
        for(j=1; j <= ncodemax[k]; j++){     * if stepm=24 months pijx are given only every 2 years and by summing them
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
            h++;     * progression in between and thus overestimating or underestimating according
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;     * to the curvature of the survival function. If, for the same date, we 
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
          }     * to compare the new estimate of Life expectancy with the same linear 
        }     * hypothesis. A more precise result, taking into account a more precise
      }     * curvature will be obtained if estepm is as small as stepm. */
    }  
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    /* For example we decided to compute the life expectancy with the smallest unit */
       codtab[1][2]=1;codtab[2][2]=2; */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
    /* for(i=1; i <=m ;i++){       nhstepm is the number of hstepm from age to agelim 
       for(k=1; k <=cptcovn; k++){       nstepm is the number of stepm from age to agelin. 
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like estepm months */
       printf("\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       }       survival function given by stepm (the optimization length). Unfortunately it
       scanf("%d",i);*/       means that if the survival funtion is printed only each two years of age and if
           you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    /* Calculates basic frequencies. Computes observed prevalence at single age       results. So we changed our mind and took the option of the best precision.
        and prints on file fileres'p'. */    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      
        /* If stepm=6 months */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* nhstepm age range expressed in number of stepm */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    agelim=AGESUP;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* if (stepm >= YEARM) hstepm=1;*/
          nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     /* For Powell, parameters are in a vector p[] starting at p[1]    
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     if(mle==1){    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
      
     /*--------- results files --------------*/    for (age=bage; age<=fage; age ++){ 
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
    jk=1;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      /* If stepm=6 months */
    for(i=1,jk=1; i <=nlstate; i++){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
      for(k=1; k <=(nlstate+ndeath); k++){         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
        if (k != i)      
          {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);      /* Computing  Variances of health expectancies */
            for(j=1; j <=ncovmodel; j++){      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
              printf("%f ",p[jk]);         decrease memory allocation */
              fprintf(ficres,"%f ",p[jk]);      for(theta=1; theta <=npar; theta++){
              jk++;        for(i=1; i<=npar; i++){ 
            }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
            printf("\n");          xm[i] = x[i] - (i==theta ?delti[theta]:0);
            fprintf(ficres,"\n");        }
          }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
      }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
    }    
  if(mle==1){        for(j=1; j<= nlstate; j++){
     /* Computing hessian and covariance matrix */          for(i=1; i<=nlstate; i++){
     ftolhess=ftol; /* Usually correct */            for(h=0; h<=nhstepm-1; h++){
     hesscov(matcov, p, npar, delti, ftolhess, func);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
  }              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");            }
     printf("# Scales (for hessian or gradient estimation)\n");          }
      for(i=1,jk=1; i <=nlstate; i++){        }
       for(j=1; j <=nlstate+ndeath; j++){       
         if (j!=i) {        for(ij=1; ij<= nlstate*nlstate; ij++)
           fprintf(ficres,"%1d%1d",i,j);          for(h=0; h<=nhstepm-1; h++){
           printf("%1d%1d",i,j);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           for(k=1; k<=ncovmodel;k++){          }
             printf(" %.5e",delti[jk]);      }/* End theta */
             fprintf(ficres," %.5e",delti[jk]);      
             jk++;      
           }      for(h=0; h<=nhstepm-1; h++)
           printf("\n");        for(j=1; j<=nlstate*nlstate;j++)
           fprintf(ficres,"\n");          for(theta=1; theta <=npar; theta++)
         }            trgradg[h][j][theta]=gradg[h][theta][j];
       }      
      }  
           for(ij=1;ij<=nlstate*nlstate;ij++)
     k=1;        for(ji=1;ji<=nlstate*nlstate;ji++)
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          varhe[ij][ji][(int)age] =0.;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     for(i=1;i<=npar;i++){       printf("%d|",(int)age);fflush(stdout);
       /*  if (k>nlstate) k=1;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       i1=(i-1)/(ncovmodel*nlstate)+1;       for(h=0;h<=nhstepm-1;h++){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        for(k=0;k<=nhstepm-1;k++){
       printf("%s%d%d",alph[k],i1,tab[i]);*/          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       fprintf(ficres,"%3d",i);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       printf("%3d",i);          for(ij=1;ij<=nlstate*nlstate;ij++)
       for(j=1; j<=i;j++){            for(ji=1;ji<=nlstate*nlstate;ji++)
         fprintf(ficres," %.5e",matcov[i][j]);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         printf(" %.5e",matcov[i][j]);        }
       }      }
       fprintf(ficres,"\n");  
       printf("\n");      /* Computing expectancies */
       k++;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     }      for(i=1; i<=nlstate;i++)
            for(j=1; j<=nlstate;j++)
     while((c=getc(ficpar))=='#' && c!= EOF){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       ungetc(c,ficpar);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       fgets(line, MAXLINE, ficpar);            
       puts(line);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fputs(line,ficparo);  
     }          }
     ungetc(c,ficpar);  
     estepm=0;      fprintf(ficresstdeij,"%3.0f",age );
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      for(i=1; i<=nlstate;i++){
     if (estepm==0 || estepm < stepm) estepm=stepm;        eip=0.;
     if (fage <= 2) {        vip=0.;
       bage = ageminpar;        for(j=1; j<=nlstate;j++){
       fage = agemaxpar;          eip += eij[i][j][(int)age];
     }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
        }
     while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresstdeij,"\n");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      fprintf(ficrescveij,"%3.0f",age );
     puts(line);      for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);        for(j=1; j<=nlstate;j++){
   }          cptj= (j-1)*nlstate+i;
   ungetc(c,ficpar);          for(i2=1; i2<=nlstate;i2++)
              for(j2=1; j2<=nlstate;j2++){
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);              cptj2= (j2-1)*nlstate+i2;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              if(cptj2 <= cptj)
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                  }
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      fprintf(ficrescveij,"\n");
     fgets(line, MAXLINE, ficpar);     
     puts(line);    }
     fputs(line,ficparo);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   }    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   ungetc(c,ficpar);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    printf("\n");
     fprintf(ficlog,"\n");
   fscanf(ficpar,"pop_based=%d\n",&popbased);  
   fprintf(ficparo,"pop_based=%d\n",popbased);      free_vector(xm,1,npar);
   fprintf(ficres,"pop_based=%d\n",popbased);      free_vector(xp,1,npar);
      free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     ungetc(c,ficpar);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     fgets(line, MAXLINE, ficpar);  }
     puts(line);  
     fputs(line,ficparo);  /************ Variance ******************/
   }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   ungetc(c,ficpar);  {
     /* Variance of health expectancies */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    /* double **newm;*/
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
     int movingaverage();
 while((c=getc(ficpar))=='#' && c!= EOF){    double **dnewm,**doldm;
     ungetc(c,ficpar);    double **dnewmp,**doldmp;
     fgets(line, MAXLINE, ficpar);    int i, j, nhstepm, hstepm, h, nstepm ;
     puts(line);    int k;
     fputs(line,ficparo);    double *xp;
   }    double **gp, **gm;  /* for var eij */
   ungetc(c,ficpar);    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    double *gpp, *gmp; /* for var p point j */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    double ***p3mat;
     double age,agelim, hf;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double ***mobaverage;
     int theta;
 /*------------ gnuplot -------------*/    char digit[4];
   strcpy(optionfilegnuplot,optionfilefiname);    char digitp[25];
   strcat(optionfilegnuplot,".gp");  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    char fileresprobmorprev[FILENAMELENGTH];
     printf("Problem with file %s",optionfilegnuplot);  
   }    if(popbased==1){
   fclose(ficgp);      if(mobilav!=0)
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);        strcpy(digitp,"-populbased-mobilav-");
 /*--------- index.htm --------*/      else strcpy(digitp,"-populbased-nomobil-");
     }
   strcpy(optionfilehtm,optionfile);    else 
   strcat(optionfilehtm,".htm");      strcpy(digitp,"-stablbased-");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);    if (mobilav!=0) {
   }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 \n      }
 Total number of observations=%d <br>\n    }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n  
 <hr  size=\"2\" color=\"#EC5E5E\">    strcpy(fileresprobmorprev,"prmorprev"); 
  <ul><li>Parameter files<br>\n    sprintf(digit,"%-d",ij);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   fclose(fichtm);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobmorprev);
 /*------------ free_vector  -------------*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
  chdir(path);    }
      printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
  free_ivector(wav,1,imx);   
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      pstamp(ficresprobmorprev);
  free_ivector(num,1,n);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
  free_vector(agedc,1,n);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
  fclose(ficparo);      fprintf(ficresprobmorprev," p.%-d SE",j);
  fclose(ficres);      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
   /*--------------- Prevalence limit --------------*/    fprintf(ficresprobmorprev,"\n");
      fprintf(ficgp,"\n# Routine varevsij");
   strcpy(filerespl,"pl");    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   strcat(filerespl,fileres);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  /*   } */
   }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    pstamp(ficresvij);
   fprintf(ficrespl,"#Prevalence limit\n");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   fprintf(ficrespl,"#Age ");    if(popbased==1)
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   fprintf(ficrespl,"\n");    else
        fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   prlim=matrix(1,nlstate,1,nlstate);    fprintf(ficresvij,"# Age");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for(i=1; i<=nlstate;i++)
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(j=1; j<=nlstate;j++)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresvij,"\n");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;    xp=vector(1,npar);
   agebase=ageminpar;    dnewm=matrix(1,nlstate,1,npar);
   agelim=agemaxpar;    doldm=matrix(1,nlstate,1,nlstate);
   ftolpl=1.e-10;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   i1=cptcoveff;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if (cptcovn < 1){i1=1;}  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   for(cptcov=1;cptcov<=i1;cptcov++){    gpp=vector(nlstate+1,nlstate+ndeath);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    gmp=vector(nlstate+1,nlstate+ndeath);
         k=k+1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    
         fprintf(ficrespl,"\n#******");    if(estepm < stepm){
         for(j=1;j<=cptcoveff;j++)      printf ("Problem %d lower than %d\n",estepm, stepm);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
         fprintf(ficrespl,"******\n");    else  hstepm=estepm;   
            /* For example we decided to compute the life expectancy with the smallest unit */
         for (age=agebase; age<=agelim; age++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       nhstepm is the number of hstepm from age to agelim 
           fprintf(ficrespl,"%.0f",age );       nstepm is the number of stepm from age to agelin. 
           for(i=1; i<=nlstate;i++)       Look at function hpijx to understand why (it is linked to memory size questions) */
           fprintf(ficrespl," %.5f", prlim[i][i]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           fprintf(ficrespl,"\n");       survival function given by stepm (the optimization length). Unfortunately it
         }       means that if the survival funtion is printed every two years of age and if
       }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     }       results. So we changed our mind and took the option of the best precision.
   fclose(ficrespl);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /*------------- h Pij x at various ages ------------*/    agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   printf("Computing pij: result on file '%s' \n", filerespij);      gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/  
       for(theta=1; theta <=npar; theta++){
   agelim=AGESUP;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   hstepm=stepsize*YEARM; /* Every year of age */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        }
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   k=0;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        if (popbased==1) {
       k=k+1;          if(mobilav ==0){
         fprintf(ficrespij,"\n#****** ");            for(i=1; i<=nlstate;i++)
         for(j=1;j<=cptcoveff;j++)              prlim[i][i]=probs[(int)age][i][ij];
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }else{ /* mobilav */ 
         fprintf(ficrespij,"******\n");            for(i=1; i<=nlstate;i++)
                      prlim[i][i]=mobaverage[(int)age][i][ij];
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<= nlstate; j++){
           oldm=oldms;savm=savms;          for(h=0; h<=nhstepm; h++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           fprintf(ficrespij,"# Age");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           for(i=1; i<=nlstate;i++)          }
             for(j=1; j<=nlstate+ndeath;j++)        }
               fprintf(ficrespij," %1d-%1d",i,j);        /* This for computing probability of death (h=1 means
           fprintf(ficrespij,"\n");           computed over hstepm matrices product = hstepm*stepm months) 
            for (h=0; h<=nhstepm; h++){           as a weighted average of prlim.
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        */
             for(i=1; i<=nlstate;i++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
               for(j=1; j<=nlstate+ndeath;j++)          for(i=1,gpp[j]=0.; i<= nlstate; i++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
             fprintf(ficrespij,"\n");        }    
              }        /* end probability of death */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        if (popbased==1) {
           if(mobilav ==0){
   fclose(ficrespij);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
   /*---------- Forecasting ------------------*/            for(i=1; i<=nlstate;i++)
   if((stepm == 1) && (strcmp(model,".")==0)){              prlim[i][i]=mobaverage[(int)age][i][ij];
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);          }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        }
   }  
   else{        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
     erreur=108;          for(h=0; h<=nhstepm; h++){
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
         }
   /*---------- Health expectancies and variances ------------*/        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
   strcpy(filerest,"t");           as a weighted average of prlim.
   strcat(filerest,fileres);        */
   if((ficrest=fopen(filerest,"w"))==NULL) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        }    
         /* end probability of death */
   
   strcpy(filerese,"e");        for(j=1; j<= nlstate; j++) /* vareij */
   strcat(filerese,fileres);          for(h=0; h<=nhstepm; h++){
   if((ficreseij=fopen(filerese,"w"))==NULL) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          }
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
  strcpy(fileresv,"v");        }
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      } /* End theta */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   calagedate=-1;      for(h=0; h<=nhstepm; h++) /* veij */
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   k=0;            trgradg[h][j][theta]=gradg[h][theta][j];
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       k=k+1;        for(theta=1; theta <=npar; theta++)
       fprintf(ficrest,"\n#****** ");          trgradgp[j][theta]=gradgp[theta][j];
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
       fprintf(ficreseij,"\n#****** ");        for(j=1;j<=nlstate;j++)
       for(j=1;j<=cptcoveff;j++)          vareij[i][j][(int)age] =0.;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");      for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
       fprintf(ficresvij,"\n#****** ");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       for(j=1;j<=cptcoveff;j++)          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(i=1;i<=nlstate;i++)
       fprintf(ficresvij,"******\n");            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }
       oldm=oldms;savm=savms;      }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      
        /* pptj */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       oldm=oldms;savm=savms;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
            for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
        /* end ppptj */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      /*  x centered again */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficrest,"\n");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       epj=vector(1,nlstate+1);      if (popbased==1) {
       for(age=bage; age <=fage ;age++){        if(mobilav ==0){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for(i=1; i<=nlstate;i++)
         if (popbased==1) {            prlim[i][i]=probs[(int)age][i][ij];
           for(i=1; i<=nlstate;i++)        }else{ /* mobilav */ 
             prlim[i][i]=probs[(int)age][i][k];          for(i=1; i<=nlstate;i++)
         }            prlim[i][i]=mobaverage[(int)age][i][ij];
                }
         fprintf(ficrest," %4.0f",age);      }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){               
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      /* This for computing probability of death (h=1 means
             epj[j] += prlim[i][i]*eij[i][j][(int)age];         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/         as a weighted average of prlim.
           }      */
           epj[nlstate+1] +=epj[j];      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
         for(i=1, vepp=0.;i <=nlstate;i++)      }    
           for(j=1;j <=nlstate;j++)      /* end probability of death */
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         for(j=1;j <=nlstate;j++){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         }        for(i=1; i<=nlstate;i++){
         fprintf(ficrest,"\n");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       }        }
     }      } 
   }      fprintf(ficresprobmorprev,"\n");
 free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      fprintf(ficresvij,"%.0f ",age );
     free_vector(weight,1,n);      for(i=1; i<=nlstate;i++)
   fclose(ficreseij);        for(j=1; j<=nlstate;j++){
   fclose(ficresvij);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   fclose(ficrest);        }
   fclose(ficpar);      fprintf(ficresvij,"\n");
   free_vector(epj,1,nlstate+1);      free_matrix(gp,0,nhstepm,1,nlstate);
        free_matrix(gm,0,nhstepm,1,nlstate);
   /*------- Variance limit prevalence------*/        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   strcpy(fileresvpl,"vpl");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(fileresvpl,fileres);    } /* End age */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    free_vector(gpp,nlstate+1,nlstate+ndeath);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     exit(0);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   k=0;    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   for(cptcov=1;cptcov<=i1;cptcov++){  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       k=k+1;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficresvpl,"\n#****** ");    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
       for(j=1;j<=cptcoveff;j++)    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
       fprintf(ficresvpl,"******\n");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
          fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       oldm=oldms;savm=savms;  */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
  }  
     free_vector(xp,1,npar);
   fclose(ficresvpl);    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
   /*---------- End : free ----------------*/    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fclose(ficresprobmorprev);
      fflush(ficgp);
      fflush(fichtm); 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  }  /* end varevsij */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  /************ Variance of prevlim ******************/
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
    {
   free_matrix(matcov,1,npar,1,npar);    /* Variance of prevalence limit */
   free_vector(delti,1,npar);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   free_matrix(agev,1,maxwav,1,imx);  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
   fprintf(fichtm,"\n</body>");    double *xp;
   fclose(fichtm);    double *gp, *gm;
   fclose(ficgp);    double **gradg, **trgradg;
      double age,agelim;
     int theta;
   if(erreur >0)    
     printf("End of Imach with error or warning %d\n",erreur);    pstamp(ficresvpl);
   else   printf("End of Imach\n");    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    fprintf(ficresvpl,"# Age");
      for(i=1; i<=nlstate;i++)
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        fprintf(ficresvpl," %1d-%1d",i,i);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    fprintf(ficresvpl,"\n");
   /*------ End -----------*/  
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
  end:    doldm=matrix(1,nlstate,1,nlstate);
 #ifdef windows    
   /* chdir(pathcd);*/    hstepm=1*YEARM; /* Every year of age */
 #endif    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
  /*system("wgnuplot graph.plt");*/    agelim = AGESUP;
  /*system("../gp37mgw/wgnuplot graph.plt");*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  /*system("cd ../gp37mgw");*/      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      if (stepm >= YEARM) hstepm=1;
  strcpy(plotcmd,GNUPLOTPROGRAM);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
  strcat(plotcmd," ");      gradg=matrix(1,npar,1,nlstate);
  strcat(plotcmd,optionfilegnuplot);      gp=vector(1,nlstate);
  system(plotcmd);      gm=vector(1,nlstate);
   
 #ifdef windows      for(theta=1; theta <=npar; theta++){
   while (z[0] != 'q') {        for(i=1; i<=npar; i++){ /* Computes gradient */
     /* chdir(path); */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        }
     scanf("%s",z);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     if (z[0] == 'c') system("./imach");        for(i=1;i<=nlstate;i++)
     else if (z[0] == 'e') system(optionfilehtm);          gp[i] = prlim[i][i];
     else if (z[0] == 'g') system(plotcmd);      
     else if (z[0] == 'q') exit(0);        for(i=1; i<=npar; i++) /* Computes gradient */
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 #endif        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 }        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
   #if defined(__GNUC__) 
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
   
   #include <stdint.h>
      int cross = CROSS;
      if (cross){
        printf("Cross-");
        fprintf(ficlog,"Cross-");
      }
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for ");fprintf(ficlog," for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   /* struct utsname sysInfo;
   
      if (uname(&sysInfo) != -1) {
        printf(" %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog," %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
             */
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version()); 
   
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("The program (probably compile for 32bit) is running under WOW64 (64bit) emulation.\n");
              fprintf(ficlog, "The program (ie 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("The process is not running under WOW64 (i.e probably on a 64bits windows).\n");
              frintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bits windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.48  
changed lines
  Added in v.1.175


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>