Diff for /imach/src/imach.c between versions 1.17 and 1.180

version 1.17, 2002/02/20 17:15:02 version 1.180, 2015/02/11 17:33:45
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.180  2015/02/11 17:33:45  brouard
   individuals from different ages are interviewed on their health status    Summary: Finishing move from main to function (hpijx and prevalence_limit)
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.179  2015/01/04 09:57:06  brouard
   Health expectancies are computed from the transistions observed between    Summary: back to OS/X
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to    Revision 1.178  2015/01/04 09:35:48  brouard
   reach the Maximum Likelihood of the parameters involved in the model.    *** empty log message ***
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    Revision 1.177  2015/01/03 18:40:56  brouard
   to be observed in state i at the first wave. Therefore the model is:    Summary: Still testing ilc32 on OSX
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.176  2015/01/03 16:45:04  brouard
   age", you should modify the program where the markup    *** empty log message ***
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.175  2015/01/03 16:33:42  brouard
     *** empty log message ***
   The advantage that this computer programme claims, comes from that if the  
   delay between waves is not identical for each individual, or if some    Revision 1.174  2015/01/03 16:15:49  brouard
   individual missed an interview, the information is not rounded or lost, but    Summary: Still in cross-compilation
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.173  2015/01/03 12:06:26  brouard
   observed in state i at age x+h conditional to the observed state i at age    Summary: trying to detect cross-compilation
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.172  2014/12/27 12:07:47  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.171  2014/12/23 13:26:59  brouard
     Summary: Back from Visual C
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Still problem with utsname.h on Windows
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.170  2014/12/23 11:17:12  brouard
            Institut national d'études démographiques, Paris.    Summary: Cleaning some \%% back to %%
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    The escape was mandatory for a specific compiler (which one?), but too many warnings.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.169  2014/12/22 23:08:31  brouard
   can be accessed at http://euroreves.ined.fr/imach .    Summary: 0.98p
   **********************************************************************/  
      Outputs some informations on compiler used, OS etc. Testing on different platforms.
 #include <math.h>  
 #include <stdio.h>    Revision 1.168  2014/12/22 15:17:42  brouard
 #include <stdlib.h>    Summary: update
 #include <unistd.h>  
     Revision 1.167  2014/12/22 13:50:56  brouard
 #define MAXLINE 256    Summary: Testing uname and compiler version and if compiled 32 or 64
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Testing on Linux 64
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.166  2014/12/22 11:40:47  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    *** empty log message ***
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.165  2014/12/16 11:20:36  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Summary: After compiling on Visual C
   
 #define NINTERVMAX 8    * imach.c (Module): Merging 1.61 to 1.162
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.164  2014/12/16 10:52:11  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    * imach.c (Module): Merging 1.61 to 1.162
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.163  2014/12/16 10:30:11  brouard
     * imach.c (Module): Merging 1.61 to 1.162
   
 int nvar;    Revision 1.162  2014/09/25 11:43:39  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Summary: temporary backup 0.99!
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.1  2014/09/16 11:06:58  brouard
 int ndeath=1; /* Number of dead states */    Summary: With some code (wrong) for nlopt
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Author:
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.161  2014/09/15 20:41:41  brouard
 int maxwav; /* Maxim number of waves */    Summary: Problem with macro SQR on Intel compiler
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.160  2014/09/02 09:24:05  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    *** empty log message ***
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.159  2014/09/01 10:34:10  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Summary: WIN32
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Author: Brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;  
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    Revision 1.158  2014/08/27 17:11:51  brouard
 FILE *ficreseij;    *** empty log message ***
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.157  2014/08/27 16:26:55  brouard
   char fileresv[FILENAMELENGTH];    Summary: Preparing windows Visual studio version
  FILE  *ficresvpl;    Author: Brouard
   char fileresvpl[FILENAMELENGTH];  
     In order to compile on Visual studio, time.h is now correct and time_t
 #define NR_END 1    and tm struct should be used. difftime should be used but sometimes I
 #define FREE_ARG char*    just make the differences in raw time format (time(&now).
 #define FTOL 1.0e-10    Trying to suppress #ifdef LINUX
     Add xdg-open for __linux in order to open default browser.
 #define NRANSI  
 #define ITMAX 200    Revision 1.156  2014/08/25 20:10:10  brouard
     *** empty log message ***
 #define TOL 2.0e-4  
     Revision 1.155  2014/08/25 18:32:34  brouard
 #define CGOLD 0.3819660    Summary: New compile, minor changes
 #define ZEPS 1.0e-10    Author: Brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.154  2014/06/20 17:32:08  brouard
 #define GOLD 1.618034    Summary: Outputs now all graphs of convergence to period prevalence
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
 static double maxarg1,maxarg2;    Author: Brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.152  2014/06/18 17:54:09  brouard
      Summary: open browser, use gnuplot on same dir than imach if not found in the path
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.150  2014/06/18 16:42:35  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
     Author: brouard
 int imx;  
 int stepm;    Revision 1.149  2014/06/18 15:51:14  brouard
 /* Stepm, step in month: minimum step interpolation*/    Summary: Some fixes in parameter files errors
     Author: Nicolas Brouard
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.148  2014/06/17 17:38:48  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Summary: Nothing new
 double **pmmij, ***probs, ***mobaverage;    Author: Brouard
   
 double *weight;    Just a new packaging for OS/X version 0.98nS
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.147  2014/06/16 10:33:11  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    *** empty log message ***
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.146  2014/06/16 10:20:28  brouard
 double ftolhess; /* Tolerance for computing hessian */    Summary: Merge
     Author: Brouard
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name )    Merge, before building revised version.
 {  
    char *s;                             /* pointer */    Revision 1.145  2014/06/10 21:23:15  brouard
    int  l1, l2;                         /* length counters */    Summary: Debugging with valgrind
     Author: Nicolas Brouard
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Lot of changes in order to output the results with some covariates
    s = strrchr( path, '\\' );           /* find last / */    After the Edimburgh REVES conference 2014, it seems mandatory to
    if ( s == NULL ) {                   /* no directory, so use current */    improve the code.
 #if     defined(__bsd__)                /* get current working directory */    No more memory valgrind error but a lot has to be done in order to
       extern char       *getwd( );    continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
       if ( getwd( dirc ) == NULL ) {    optimal. nbcode should be improved. Documentation has been added in
 #else    the source code.
       extern char       *getcwd( );  
     Revision 1.143  2014/01/26 09:45:38  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 #endif  
          return( GLOCK_ERROR_GETCWD );    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
       }    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.142  2014/01/26 03:57:36  brouard
       s++;                              /* after this, the filename */    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.141  2014/01/26 02:42:01  brouard
       dirc[l1-l2] = 0;                  /* add zero */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.140  2011/09/02 10:37:54  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Summary: times.h is ok with mingw32 now.
    return( 0 );                         /* we're done */  
 }    Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 /******************************************/  
     Revision 1.138  2010/04/30 18:19:40  brouard
 void replace(char *s, char*t)    *** empty log message ***
 {  
   int i;    Revision 1.137  2010/04/29 18:11:38  brouard
   int lg=20;    (Module): Checking covariates for more complex models
   i=0;    than V1+V2. A lot of change to be done. Unstable.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.136  2010/04/26 20:30:53  brouard
     (s[i] = t[i]);    (Module): merging some libgsl code. Fixing computation
     if (t[i]== '\\') s[i]='/';    of likelione (using inter/intrapolation if mle = 0) in order to
   }    get same likelihood as if mle=1.
 }    Some cleaning of code and comments added.
   
 int nbocc(char *s, char occ)    Revision 1.135  2009/10/29 15:33:14  brouard
 {    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   int i,j=0;  
   int lg=20;    Revision 1.134  2009/10/29 13:18:53  brouard
   i=0;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.133  2009/07/06 10:21:25  brouard
   if  (s[i] == occ ) j++;    just nforces
   }  
   return j;    Revision 1.132  2009/07/06 08:22:05  brouard
 }    Many tings
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.131  2009/06/20 16:22:47  brouard
 {    Some dimensions resccaled
   int i,lg,j,p=0;  
   i=0;    Revision 1.130  2009/05/26 06:44:34  brouard
   for(j=0; j<=strlen(t)-1; j++) {    (Module): Max Covariate is now set to 20 instead of 8. A
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    lot of cleaning with variables initialized to 0. Trying to make
   }    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
   lg=strlen(t);    Revision 1.129  2007/08/31 13:49:27  lievre
   for(j=0; j<p; j++) {    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
     (u[j] = t[j]);  
   }    Revision 1.128  2006/06/30 13:02:05  brouard
      u[p]='\0';    (Module): Clarifications on computing e.j
   
    for(j=0; j<= lg; j++) {    Revision 1.127  2006/04/28 18:11:50  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    (Module): Yes the sum of survivors was wrong since
   }    imach-114 because nhstepm was no more computed in the age
 }    loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
 /********************** nrerror ********************/    compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
 void nrerror(char error_text[])    deviation (needs data from the Hessian matrices) which slows the
 {    computation.
   fprintf(stderr,"ERREUR ...\n");    In the future we should be able to stop the program is only health
   fprintf(stderr,"%s\n",error_text);    expectancies and graph are needed without standard deviations.
   exit(1);  
 }    Revision 1.126  2006/04/28 17:23:28  brouard
 /*********************** vector *******************/    (Module): Yes the sum of survivors was wrong since
 double *vector(int nl, int nh)    imach-114 because nhstepm was no more computed in the age
 {    loop. Now we define nhstepma in the age loop.
   double *v;    Version 0.98h
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.125  2006/04/04 15:20:31  lievre
   return v-nl+NR_END;    Errors in calculation of health expectancies. Age was not initialized.
 }    Forecasting file added.
   
 /************************ free vector ******************/    Revision 1.124  2006/03/22 17:13:53  lievre
 void free_vector(double*v, int nl, int nh)    Parameters are printed with %lf instead of %f (more numbers after the comma).
 {    The log-likelihood is printed in the log file
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
 /************************ivector *******************************/    name. <head> headers where missing.
 int *ivector(long nl,long nh)  
 {    * imach.c (Module): Weights can have a decimal point as for
   int *v;    English (a comma might work with a correct LC_NUMERIC environment,
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    otherwise the weight is truncated).
   if (!v) nrerror("allocation failure in ivector");    Modification of warning when the covariates values are not 0 or
   return v-nl+NR_END;    1.
 }    Version 0.98g
   
 /******************free ivector **************************/    Revision 1.122  2006/03/20 09:45:41  brouard
 void free_ivector(int *v, long nl, long nh)    (Module): Weights can have a decimal point as for
 {    English (a comma might work with a correct LC_NUMERIC environment,
   free((FREE_ARG)(v+nl-NR_END));    otherwise the weight is truncated).
 }    Modification of warning when the covariates values are not 0 or
     1.
 /******************* imatrix *******************************/    Version 0.98g
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Revision 1.121  2006/03/16 17:45:01  lievre
 {    * imach.c (Module): Comments concerning covariates added
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    * imach.c (Module): refinements in the computation of lli if
      status=-2 in order to have more reliable computation if stepm is
   /* allocate pointers to rows */    not 1 month. Version 0.98f
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.120  2006/03/16 15:10:38  lievre
   m += NR_END;    (Module): refinements in the computation of lli if
   m -= nrl;    status=-2 in order to have more reliable computation if stepm is
      not 1 month. Version 0.98f
    
   /* allocate rows and set pointers to them */    Revision 1.119  2006/03/15 17:42:26  brouard
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    (Module): Bug if status = -2, the loglikelihood was
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    computed as likelihood omitting the logarithm. Version O.98e
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.118  2006/03/14 18:20:07  brouard
      (Module): varevsij Comments added explaining the second
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    table of variances if popbased=1 .
      (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   /* return pointer to array of pointers to rows */    (Module): Function pstamp added
   return m;    (Module): Version 0.98d
 }  
     Revision 1.117  2006/03/14 17:16:22  brouard
 /****************** free_imatrix *************************/    (Module): varevsij Comments added explaining the second
 void free_imatrix(m,nrl,nrh,ncl,nch)    table of variances if popbased=1 .
       int **m;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
       long nch,ncl,nrh,nrl;    (Module): Function pstamp added
      /* free an int matrix allocated by imatrix() */    (Module): Version 0.98d
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Revision 1.116  2006/03/06 10:29:27  brouard
   free((FREE_ARG) (m+nrl-NR_END));    (Module): Variance-covariance wrong links and
 }    varian-covariance of ej. is needed (Saito).
   
 /******************* matrix *******************************/    Revision 1.115  2006/02/27 12:17:45  brouard
 double **matrix(long nrl, long nrh, long ncl, long nch)    (Module): One freematrix added in mlikeli! 0.98c
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Revision 1.114  2006/02/26 12:57:58  brouard
   double **m;    (Module): Some improvements in processing parameter
     filename with strsep.
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.113  2006/02/24 14:20:24  brouard
   m += NR_END;    (Module): Memory leaks checks with valgrind and:
   m -= nrl;    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.112  2006/01/30 09:55:26  brouard
   m[nrl] += NR_END;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   m[nrl] -= ncl;  
     Revision 1.111  2006/01/25 20:38:18  brouard
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    (Module): Lots of cleaning and bugs added (Gompertz)
   return m;    (Module): Comments can be added in data file. Missing date values
 }    can be a simple dot '.'.
   
 /*************************free matrix ************************/    Revision 1.110  2006/01/25 00:51:50  brouard
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    (Module): Lots of cleaning and bugs added (Gompertz)
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.109  2006/01/24 19:37:15  brouard
   free((FREE_ARG)(m+nrl-NR_END));    (Module): Comments (lines starting with a #) are allowed in data.
 }  
     Revision 1.108  2006/01/19 18:05:42  lievre
 /******************* ma3x *******************************/    Gnuplot problem appeared...
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    To be fixed
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Revision 1.107  2006/01/19 16:20:37  brouard
   double ***m;    Test existence of gnuplot in imach path
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.106  2006/01/19 13:24:36  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    Some cleaning and links added in html output
   m += NR_END;  
   m -= nrl;    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.104  2005/09/30 16:11:43  lievre
   m[nrl] += NR_END;    (Module): sump fixed, loop imx fixed, and simplifications.
   m[nrl] -= ncl;    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    the healthy state at last known wave). Version is 0.98
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    Revision 1.103  2005/09/30 15:54:49  lievre
   for (j=ncl+1; j<=nch; j++)    (Module): sump fixed, loop imx fixed, and simplifications.
     m[nrl][j]=m[nrl][j-1]+nlay;  
      Revision 1.102  2004/09/15 17:31:30  brouard
   for (i=nrl+1; i<=nrh; i++) {    Add the possibility to read data file including tab characters.
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)    Revision 1.101  2004/09/15 10:38:38  brouard
       m[i][j]=m[i][j-1]+nlay;    Fix on curr_time
   }  
   return m;    Revision 1.100  2004/07/12 18:29:06  brouard
 }    Add version for Mac OS X. Just define UNIX in Makefile
   
 /*************************free ma3x ************************/    Revision 1.99  2004/06/05 08:57:40  brouard
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    *** empty log message ***
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    Revision 1.98  2004/05/16 15:05:56  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    New version 0.97 . First attempt to estimate force of mortality
   free((FREE_ARG)(m+nrl-NR_END));    directly from the data i.e. without the need of knowing the health
 }    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 /***************** f1dim *************************/    other analysis, in order to test if the mortality estimated from the
 extern int ncom;    cross-longitudinal survey is different from the mortality estimated
 extern double *pcom,*xicom;    from other sources like vital statistic data.
 extern double (*nrfunc)(double []);  
      The same imach parameter file can be used but the option for mle should be -3.
 double f1dim(double x)  
 {    Agnès, who wrote this part of the code, tried to keep most of the
   int j;    former routines in order to include the new code within the former code.
   double f;  
   double *xt;    The output is very simple: only an estimate of the intercept and of
      the slope with 95% confident intervals.
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    Current limitations:
   f=(*nrfunc)(xt);    A) Even if you enter covariates, i.e. with the
   free_vector(xt,1,ncom);    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   return f;    B) There is no computation of Life Expectancy nor Life Table.
 }  
     Revision 1.97  2004/02/20 13:25:42  lievre
 /*****************brent *************************/    Version 0.96d. Population forecasting command line is (temporarily)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    suppressed.
 {  
   int iter;    Revision 1.96  2003/07/15 15:38:55  brouard
   double a,b,d,etemp;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   double fu,fv,fw,fx;    rewritten within the same printf. Workaround: many printfs.
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    Revision 1.95  2003/07/08 07:54:34  brouard
   double e=0.0;    * imach.c (Repository):
      (Repository): Using imachwizard code to output a more meaningful covariance
   a=(ax < cx ? ax : cx);    matrix (cov(a12,c31) instead of numbers.
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;    Revision 1.94  2003/06/27 13:00:02  brouard
   fw=fv=fx=(*f)(x);    Just cleaning
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    Revision 1.93  2003/06/25 16:33:55  brouard
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    (Module): On windows (cygwin) function asctime_r doesn't
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    exist so I changed back to asctime which exists.
     printf(".");fflush(stdout);    (Module): Version 0.96b
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    Revision 1.92  2003/06/25 16:30:45  brouard
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    (Module): On windows (cygwin) function asctime_r doesn't
 #endif    exist so I changed back to asctime which exists.
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;    Revision 1.91  2003/06/25 15:30:29  brouard
       return fx;    * imach.c (Repository): Duplicated warning errors corrected.
     }    (Repository): Elapsed time after each iteration is now output. It
     ftemp=fu;    helps to forecast when convergence will be reached. Elapsed time
     if (fabs(e) > tol1) {    is stamped in powell.  We created a new html file for the graphs
       r=(x-w)*(fx-fv);    concerning matrix of covariance. It has extension -cov.htm.
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    Revision 1.90  2003/06/24 12:34:15  brouard
       q=2.0*(q-r);    (Module): Some bugs corrected for windows. Also, when
       if (q > 0.0) p = -p;    mle=-1 a template is output in file "or"mypar.txt with the design
       q=fabs(q);    of the covariance matrix to be input.
       etemp=e;  
       e=d;    Revision 1.89  2003/06/24 12:30:52  brouard
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    (Module): Some bugs corrected for windows. Also, when
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    mle=-1 a template is output in file "or"mypar.txt with the design
       else {    of the covariance matrix to be input.
         d=p/q;  
         u=x+d;    Revision 1.88  2003/06/23 17:54:56  brouard
         if (u-a < tol2 || b-u < tol2)    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
           d=SIGN(tol1,xm-x);  
       }    Revision 1.87  2003/06/18 12:26:01  brouard
     } else {    Version 0.96
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }    Revision 1.86  2003/06/17 20:04:08  brouard
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    (Module): Change position of html and gnuplot routines and added
     fu=(*f)(u);    routine fileappend.
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;    Revision 1.85  2003/06/17 13:12:43  brouard
       SHFT(v,w,x,u)    * imach.c (Repository): Check when date of death was earlier that
         SHFT(fv,fw,fx,fu)    current date of interview. It may happen when the death was just
         } else {    prior to the death. In this case, dh was negative and likelihood
           if (u < x) a=u; else b=u;    was wrong (infinity). We still send an "Error" but patch by
           if (fu <= fw || w == x) {    assuming that the date of death was just one stepm after the
             v=w;    interview.
             w=u;    (Repository): Because some people have very long ID (first column)
             fv=fw;    we changed int to long in num[] and we added a new lvector for
             fw=fu;    memory allocation. But we also truncated to 8 characters (left
           } else if (fu <= fv || v == x || v == w) {    truncation)
             v=u;    (Repository): No more line truncation errors.
             fv=fu;  
           }    Revision 1.84  2003/06/13 21:44:43  brouard
         }    * imach.c (Repository): Replace "freqsummary" at a correct
   }    place. It differs from routine "prevalence" which may be called
   nrerror("Too many iterations in brent");    many times. Probs is memory consuming and must be used with
   *xmin=x;    parcimony.
   return fx;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 }  
     Revision 1.83  2003/06/10 13:39:11  lievre
 /****************** mnbrak ***********************/    *** empty log message ***
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    Revision 1.82  2003/06/05 15:57:20  brouard
             double (*func)(double))    Add log in  imach.c and  fullversion number is now printed.
 {  
   double ulim,u,r,q, dum;  */
   double fu;  /*
       Interpolated Markov Chain
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);    Short summary of the programme:
   if (*fb > *fa) {    
     SHFT(dum,*ax,*bx,dum)    This program computes Healthy Life Expectancies from
       SHFT(dum,*fb,*fa,dum)    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       }    first survey ("cross") where individuals from different ages are
   *cx=(*bx)+GOLD*(*bx-*ax);    interviewed on their health status or degree of disability (in the
   *fc=(*func)(*cx);    case of a health survey which is our main interest) -2- at least a
   while (*fb > *fc) {    second wave of interviews ("longitudinal") which measure each change
     r=(*bx-*ax)*(*fb-*fc);    (if any) in individual health status.  Health expectancies are
     q=(*bx-*cx)*(*fb-*fa);    computed from the time spent in each health state according to a
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    model. More health states you consider, more time is necessary to reach the
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    Maximum Likelihood of the parameters involved in the model.  The
     ulim=(*bx)+GLIMIT*(*cx-*bx);    simplest model is the multinomial logistic model where pij is the
     if ((*bx-u)*(u-*cx) > 0.0) {    probability to be observed in state j at the second wave
       fu=(*func)(u);    conditional to be observed in state i at the first wave. Therefore
     } else if ((*cx-u)*(u-ulim) > 0.0) {    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       fu=(*func)(u);    'age' is age and 'sex' is a covariate. If you want to have a more
       if (fu < *fc) {    complex model than "constant and age", you should modify the program
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    where the markup *Covariates have to be included here again* invites
           SHFT(*fb,*fc,fu,(*func)(u))    you to do it.  More covariates you add, slower the
           }    convergence.
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;    The advantage of this computer programme, compared to a simple
       fu=(*func)(u);    multinomial logistic model, is clear when the delay between waves is not
     } else {    identical for each individual. Also, if a individual missed an
       u=(*cx)+GOLD*(*cx-*bx);    intermediate interview, the information is lost, but taken into
       fu=(*func)(u);    account using an interpolation or extrapolation.  
     }  
     SHFT(*ax,*bx,*cx,u)    hPijx is the probability to be observed in state i at age x+h
       SHFT(*fa,*fb,*fc,fu)    conditional to the observed state i at age x. The delay 'h' can be
       }    split into an exact number (nh*stepm) of unobserved intermediate
 }    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 /*************** linmin ************************/    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 int ncom;    hPijx.
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    Also this programme outputs the covariance matrix of the parameters but also
      of the life expectancies. It also computes the period (stable) prevalence. 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   double brent(double ax, double bx, double cx,             Institut national d'études démographiques, Paris.
                double (*f)(double), double tol, double *xmin);    This software have been partly granted by Euro-REVES, a concerted action
   double f1dim(double x);    from the European Union.
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    It is copyrighted identically to a GNU software product, ie programme and
               double *fc, double (*func)(double));    software can be distributed freely for non commercial use. Latest version
   int j;    can be accessed at http://euroreves.ined.fr/imach .
   double xx,xmin,bx,ax;  
   double fx,fb,fa;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
      or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   ncom=n;    
   pcom=vector(1,n);    **********************************************************************/
   xicom=vector(1,n);  /*
   nrfunc=func;    main
   for (j=1;j<=n;j++) {    read parameterfile
     pcom[j]=p[j];    read datafile
     xicom[j]=xi[j];    concatwav
   }    freqsummary
   ax=0.0;    if (mle >= 1)
   xx=1.0;      mlikeli
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    print results files
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    if mle==1 
 #ifdef DEBUG       computes hessian
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    read end of parameter file: agemin, agemax, bage, fage, estepm
 #endif        begin-prev-date,...
   for (j=1;j<=n;j++) {    open gnuplot file
     xi[j] *= xmin;    open html file
     p[j] += xi[j];    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   }     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   free_vector(xicom,1,n);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   free_vector(pcom,1,n);      freexexit2 possible for memory heap.
 }  
     h Pij x                         | pij_nom  ficrestpij
 /*************** powell ************************/     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
             double (*func)(double []))         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
 {  
   void linmin(double p[], double xi[], int n, double *fret,         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
               double (*func)(double []));         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   int i,ibig,j;    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
   double del,t,*pt,*ptt,*xit;     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   double fp,fptt;     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   double *xits;  
   pt=vector(1,n);    forecasting if prevfcast==1 prevforecast call prevalence()
   ptt=vector(1,n);    health expectancies
   xit=vector(1,n);    Variance-covariance of DFLE
   xits=vector(1,n);    prevalence()
   *fret=(*func)(p);     movingaverage()
   for (j=1;j<=n;j++) pt[j]=p[j];    varevsij() 
   for (*iter=1;;++(*iter)) {    if popbased==1 varevsij(,popbased)
     fp=(*fret);    total life expectancies
     ibig=0;    Variance of period (stable) prevalence
     del=0.0;   end
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  */
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  #define POWELL /* Instead of NLOPT */
     printf("\n");  
     for (i=1;i<=n;i++) {  #include <math.h>
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  #include <stdio.h>
       fptt=(*fret);  #include <stdlib.h>
 #ifdef DEBUG  #include <string.h>
       printf("fret=%lf \n",*fret);  
 #endif  #ifdef _WIN32
       printf("%d",i);fflush(stdout);  #include <io.h>
       linmin(p,xit,n,fret,func);  #include <windows.h>
       if (fabs(fptt-(*fret)) > del) {  #include <tchar.h>
         del=fabs(fptt-(*fret));  #else
         ibig=i;  #include <unistd.h>
       }  #endif
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  #include <limits.h>
       for (j=1;j<=n;j++) {  #include <sys/types.h>
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  #if defined(__GNUC__)
       }  #include <sys/utsname.h> /* Doesn't work on Windows */
       for(j=1;j<=n;j++)  #endif
         printf(" p=%.12e",p[j]);  
       printf("\n");  #include <sys/stat.h>
 #endif  #include <errno.h>
     }  /* extern int errno; */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /* #ifdef LINUX */
       int k[2],l;  /* #include <time.h> */
       k[0]=1;  /* #include "timeval.h" */
       k[1]=-1;  /* #else */
       printf("Max: %.12e",(*func)(p));  /* #include <sys/time.h> */
       for (j=1;j<=n;j++)  /* #endif */
         printf(" %.12e",p[j]);  
       printf("\n");  #include <time.h>
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  #ifdef GSL
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #include <gsl/gsl_errno.h>
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #include <gsl/gsl_multimin.h>
         }  #endif
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  
 #endif  #ifdef NLOPT
   #include <nlopt.h>
   typedef struct {
       free_vector(xit,1,n);    double (* function)(double [] );
       free_vector(xits,1,n);  } myfunc_data ;
       free_vector(ptt,1,n);  #endif
       free_vector(pt,1,n);  
       return;  /* #include <libintl.h> */
     }  /* #define _(String) gettext (String) */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  #define GNUPLOTPROGRAM "gnuplot"
       pt[j]=p[j];  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     }  #define FILENAMELENGTH 132
     fptt=(*func)(ptt);  
     if (fptt < fp) {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
         for (j=1;j<=n;j++) {  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  #define NINTERVMAX 8
         }  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 #ifdef DEBUG  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
         for(j=1;j<=n;j++)  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
           printf(" %.12e",xit[j]);  #define MAXN 20000
         printf("\n");  #define YEARM 12. /**< Number of months per year */
 #endif  #define AGESUP 130
       }  #define AGEBASE 40
     }  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
   }  #ifdef _WIN32
 }  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
 /**** Prevalence limit ****************/  #define ODIRSEPARATOR '/'
   #else
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  #define ODIRSEPARATOR '\\'
      matrix by transitions matrix until convergence is reached */  #endif
   
   int i, ii,j,k;  /* $Id$ */
   double min, max, maxmin, maxmax,sumnew=0.;  /* $State$ */
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  char version[]="Imach version 0.98p, Février 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
   double **newm;  char fullversion[]="$Revision$ $Date$"; 
   double agefin, delaymax=50 ; /* Max number of years to converge */  char strstart[80];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   for (ii=1;ii<=nlstate+ndeath;ii++)  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     for (j=1;j<=nlstate+ndeath;j++){  int nvar=0, nforce=0; /* Number of variables, number of forces */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
     }  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
    cov[1]=1.;  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
    int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  int cptcoveff=0; /* Total number of covariates to vary for printing results */
     newm=savm;  int cptcov=0; /* Working variable */
     /* Covariates have to be included here again */  int npar=NPARMAX;
      cov[2]=agefin;  int nlstate=2; /* Number of live states */
    int ndeath=1; /* Number of dead states */
       for (k=1; k<=cptcovn;k++) {  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  int popbased=0;
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  
       }  int *wav; /* Number of waves for this individuual 0 is possible */
       for (k=1; k<=cptcovage;k++)  int maxwav=0; /* Maxim number of waves */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       for (k=1; k<=cptcovprod;k++)  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  int mle=1, weightopt=0;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
     savm=oldm;  int countcallfunc=0;  /* Count the number of calls to func */
     oldm=newm;  double jmean=1; /* Mean space between 2 waves */
     maxmax=0.;  double **matprod2(); /* test */
     for(j=1;j<=nlstate;j++){  double **oldm, **newm, **savm; /* Working pointers to matrices */
       min=1.;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       max=0.;  /*FILE *fic ; */ /* Used in readdata only */
       for(i=1; i<=nlstate; i++) {  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
         sumnew=0;  FILE *ficlog, *ficrespow;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  int globpr=0; /* Global variable for printing or not */
         prlim[i][j]= newm[i][j]/(1-sumnew);  double fretone; /* Only one call to likelihood */
         max=FMAX(max,prlim[i][j]);  long ipmx=0; /* Number of contributions */
         min=FMIN(min,prlim[i][j]);  double sw; /* Sum of weights */
       }  char filerespow[FILENAMELENGTH];
       maxmin=max-min;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       maxmax=FMAX(maxmax,maxmin);  FILE *ficresilk;
     }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     if(maxmax < ftolpl){  FILE *ficresprobmorprev;
       return prlim;  FILE *fichtm, *fichtmcov; /* Html File */
     }  FILE *ficreseij;
   }  char filerese[FILENAMELENGTH];
 }  FILE *ficresstdeij;
   char fileresstde[FILENAMELENGTH];
 /*************** transition probabilities ***************/  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  FILE  *ficresvij;
 {  char fileresv[FILENAMELENGTH];
   double s1, s2;  FILE  *ficresvpl;
   /*double t34;*/  char fileresvpl[FILENAMELENGTH];
   int i,j,j1, nc, ii, jj;  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     for(i=1; i<= nlstate; i++){  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     for(j=1; j<i;j++){  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char command[FILENAMELENGTH];
         /*s2 += param[i][j][nc]*cov[nc];*/  int  outcmd=0;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       }  
       ps[i][j]=s2;  char filelog[FILENAMELENGTH]; /* Log file */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  char filerest[FILENAMELENGTH];
     }  char fileregp[FILENAMELENGTH];
     for(j=i+1; j<=nlstate+ndeath;j++){  char popfile[FILENAMELENGTH];
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
       ps[i][j]=(s2);  /* struct timezone tzp; */
     }  /* extern int gettimeofday(); */
   }  struct tm tml, *gmtime(), *localtime();
     /*ps[3][2]=1;*/  
   extern time_t time();
   for(i=1; i<= nlstate; i++){  
      s1=0;  struct tm start_time, end_time, curr_time, last_time, forecast_time;
     for(j=1; j<i; j++)  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
       s1+=exp(ps[i][j]);  struct tm tm;
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  char strcurr[80], strfor[80];
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  char *endptr;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  long lval;
     for(j=i+1; j<=nlstate+ndeath; j++)  double dval;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #define NR_END 1
   } /* end i */  #define FREE_ARG char*
   #define FTOL 1.0e-10
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  #define NRANSI 
       ps[ii][jj]=0;  #define ITMAX 200 
       ps[ii][ii]=1;  
     }  #define TOL 2.0e-4 
   }  
   #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  #define GOLD 1.618034 
    }  #define GLIMIT 100.0 
     printf("\n ");  #define TINY 1.0e-20 
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  static double maxarg1,maxarg2;
 /*  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   goto end;*/    
     return ps;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 }  #define rint(a) floor(a+0.5)
   /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
 /**************** Product of 2 matrices ******************/  /* #define mytinydouble 1.0e-16 */
   /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
 {  /* static double dsqrarg; */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  static double sqrarg;
   /* in, b, out are matrice of pointers which should have been initialized  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
      before: only the contents of out is modified. The function returns  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
      a pointer to pointers identical to out */  int agegomp= AGEGOMP;
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  int imx; 
     for(k=ncolol; k<=ncoloh; k++)  int stepm=1;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  /* Stepm, step in month: minimum step interpolation*/
         out[i][k] +=in[i][j]*b[j][k];  
   int estepm;
   return out;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
   long *num;
 /************* Higher Matrix Product ***************/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  double **pmmij, ***probs;
 {  double *ageexmed,*agecens;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  double dateintmean=0;
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  double *weight;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  int **s; /* Status */
      (typically every 2 years instead of every month which is too big).  double *agedc;
      Model is determined by parameters x and covariates have to be  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
      included manually here.                    * covar=matrix(0,NCOVMAX,1,n); 
                     * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
      */  double  idx; 
   int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   int i, j, d, h, k;  int *Ndum; /** Freq of modality (tricode */
   double **out, cov[NCOVMAX];  int **codtab; /**< codtab=imatrix(1,100,1,10); */
   double **newm;  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     for (j=1;j<=nlstate+ndeath;j++){  double ftolhess; /**< Tolerance for computing hessian */
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /**************** split *************************/
     }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  {
   for(h=1; h <=nhstepm; h++){    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     for(d=1; d <=hstepm; d++){       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       newm=savm;    */ 
       /* Covariates have to be included here again */    char  *ss;                            /* pointer */
       cov[1]=1.;    int   l1, l2;                         /* length counters */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    l1 = strlen(path );                   /* length of path */
       for (k=1; k<=cptcovage;k++)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       for (k=1; k<=cptcovprod;k++)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      strcpy( name, path );               /* we got the fullname name because no directory */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      /* get current working directory */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      /*    extern  char* getcwd ( char *buf , int len);*/
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        return( GLOCK_ERROR_GETCWD );
       savm=oldm;      }
       oldm=newm;      /* got dirc from getcwd*/
     }      printf(" DIRC = %s \n",dirc);
     for(i=1; i<=nlstate+ndeath; i++)    } else {                              /* strip direcotry from path */
       for(j=1;j<=nlstate+ndeath;j++) {      ss++;                               /* after this, the filename */
         po[i][j][h]=newm[i][j];      l2 = strlen( ss );                  /* length of filename */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
          */      strcpy( name, ss );         /* save file name */
       }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   } /* end h */      dirc[l1-l2] = 0;                    /* add zero */
   return po;      printf(" DIRC2 = %s \n",dirc);
 }    }
     /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
 /*************** log-likelihood *************/    if( dirc[l1-1] != DIRSEPARATOR ){
 double func( double *x)      dirc[l1] =  DIRSEPARATOR;
 {      dirc[l1+1] = 0; 
   int i, ii, j, k, mi, d, kk;      printf(" DIRC3 = %s \n",dirc);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    }
   double **out;    ss = strrchr( name, '.' );            /* find last / */
   double sw; /* Sum of weights */    if (ss >0){
   double lli; /* Individual log likelihood */      ss++;
   long ipmx;      strcpy(ext,ss);                     /* save extension */
   /*extern weight */      l1= strlen( name);
   /* We are differentiating ll according to initial status */      l2= strlen(ss)+1;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      strncpy( finame, name, l1-l2);
   /*for(i=1;i<imx;i++)      finame[l1-l2]= 0;
     printf(" %d\n",s[4][i]);    }
   */  
   cov[1]=1.;    return( 0 );                          /* we're done */
   }
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  /******************************************/
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  void replace_back_to_slash(char *s, char*t)
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
       for(d=0; d<dh[mi][i]; d++){    int i;
         newm=savm;    int lg=0;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    i=0;
         for (kk=1; kk<=cptcovage;kk++) {    lg=strlen(t);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    for(i=0; i<= lg; i++) {
         }      (s[i] = t[i]);
              if (t[i]== '\\') s[i]='/';
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  }
         savm=oldm;  
         oldm=newm;  char *trimbb(char *out, char *in)
          { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
            char *s;
       } /* end mult */    s=out;
          while (*in != '\0'){
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        in++;
       ipmx +=1;      }
       sw += weight[i];      *out++ = *in++;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    }
     } /* end of wave */    *out='\0';
   } /* end of individual */    return s;
   }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  char *cutl(char *blocc, char *alocc, char *in, char occ)
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  {
   return -l;    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
 }       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
        If occ is not found blocc is null and alocc is equal to in. Returns blocc
 /*********** Maximum Likelihood Estimation ***************/    */
     char *s, *t;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    t=in;s=in;
 {    while ((*in != occ) && (*in != '\0')){
   int i,j, iter;      *alocc++ = *in++;
   double **xi,*delti;    }
   double fret;    if( *in == occ){
   xi=matrix(1,npar,1,npar);      *(alocc)='\0';
   for (i=1;i<=npar;i++)      s=++in;
     for (j=1;j<=npar;j++)    }
       xi[i][j]=(i==j ? 1.0 : 0.0);   
   printf("Powell\n");    if (s == t) {/* occ not found */
   powell(p,xi,npar,ftol,&iter,&fret,func);      *(alocc-(in-s))='\0';
       in=s;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    while ( *in != '\0'){
       *blocc++ = *in++;
 }    }
   
 /**** Computes Hessian and covariance matrix ***/    *blocc='\0';
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    return t;
 {  }
   double  **a,**y,*x,pd;  char *cutv(char *blocc, char *alocc, char *in, char occ)
   double **hess;  {
   int i, j,jk;    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   int *indx;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
   double hessii(double p[], double delta, int theta, double delti[]);       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   double hessij(double p[], double delti[], int i, int j);    */
   void lubksb(double **a, int npar, int *indx, double b[]) ;    char *s, *t;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    t=in;s=in;
     while (*in != '\0'){
   hess=matrix(1,npar,1,npar);      while( *in == occ){
         *blocc++ = *in++;
   printf("\nCalculation of the hessian matrix. Wait...\n");        s=in;
   for (i=1;i<=npar;i++){      }
     printf("%d",i);fflush(stdout);      *blocc++ = *in++;
     hess[i][i]=hessii(p,ftolhess,i,delti);    }
     /*printf(" %f ",p[i]);*/    if (s == t) /* occ not found */
     /*printf(" %lf ",hess[i][i]);*/      *(blocc-(in-s))='\0';
   }    else
        *(blocc-(in-s)-1)='\0';
   for (i=1;i<=npar;i++) {    in=s;
     for (j=1;j<=npar;j++)  {    while ( *in != '\0'){
       if (j>i) {      *alocc++ = *in++;
         printf(".%d%d",i,j);fflush(stdout);    }
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];        *alocc='\0';
         /*printf(" %lf ",hess[i][j]);*/    return s;
       }  }
     }  
   }  int nbocc(char *s, char occ)
   printf("\n");  {
     int i,j=0;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    int lg=20;
      i=0;
   a=matrix(1,npar,1,npar);    lg=strlen(s);
   y=matrix(1,npar,1,npar);    for(i=0; i<= lg; i++) {
   x=vector(1,npar);    if  (s[i] == occ ) j++;
   indx=ivector(1,npar);    }
   for (i=1;i<=npar;i++)    return j;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  }
   ludcmp(a,npar,indx,&pd);  
   /* void cutv(char *u,char *v, char*t, char occ) */
   for (j=1;j<=npar;j++) {  /* { */
     for (i=1;i<=npar;i++) x[i]=0;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     x[j]=1;  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
     lubksb(a,npar,indx,x);  /*      gives u="abcdef2ghi" and v="j" *\/ */
     for (i=1;i<=npar;i++){  /*   int i,lg,j,p=0; */
       matcov[i][j]=x[i];  /*   i=0; */
     }  /*   lg=strlen(t); */
   }  /*   for(j=0; j<=lg-1; j++) { */
   /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   printf("\n#Hessian matrix#\n");  /*   } */
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {  /*   for(j=0; j<p; j++) { */
       printf("%.3e ",hess[i][j]);  /*     (u[j] = t[j]); */
     }  /*   } */
     printf("\n");  /*      u[p]='\0'; */
   }  
   /*    for(j=0; j<= lg; j++) { */
   /* Recompute Inverse */  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   for (i=1;i<=npar;i++)  /*   } */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  /* } */
   ludcmp(a,npar,indx,&pd);  
   #ifdef _WIN32
   /*  printf("\n#Hessian matrix recomputed#\n");  char * strsep(char **pp, const char *delim)
   {
   for (j=1;j<=npar;j++) {    char *p, *q;
     for (i=1;i<=npar;i++) x[i]=0;           
     x[j]=1;    if ((p = *pp) == NULL)
     lubksb(a,npar,indx,x);      return 0;
     for (i=1;i<=npar;i++){    if ((q = strpbrk (p, delim)) != NULL)
       y[i][j]=x[i];    {
       printf("%.3e ",y[i][j]);      *pp = q + 1;
     }      *q = '\0';
     printf("\n");    }
   }    else
   */      *pp = 0;
     return p;
   free_matrix(a,1,npar,1,npar);  }
   free_matrix(y,1,npar,1,npar);  #endif
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);  /********************** nrerror ********************/
   free_matrix(hess,1,npar,1,npar);  
   void nrerror(char error_text[])
   {
 }    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
 /*************** hessian matrix ****************/    exit(EXIT_FAILURE);
 double hessii( double x[], double delta, int theta, double delti[])  }
 {  /*********************** vector *******************/
   int i;  double *vector(int nl, int nh)
   int l=1, lmax=20;  {
   double k1,k2;    double *v;
   double p2[NPARMAX+1];    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double res;    if (!v) nrerror("allocation failure in vector");
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    return v-nl+NR_END;
   double fx;  }
   int k=0,kmax=10;  
   double l1;  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
   fx=func(x);  {
   for (i=1;i<=npar;i++) p2[i]=x[i];    free((FREE_ARG)(v+nl-NR_END));
   for(l=0 ; l <=lmax; l++){  }
     l1=pow(10,l);  
     delts=delt;  /************************ivector *******************************/
     for(k=1 ; k <kmax; k=k+1){  int *ivector(long nl,long nh)
       delt = delta*(l1*k);  {
       p2[theta]=x[theta] +delt;    int *v;
       k1=func(p2)-fx;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       p2[theta]=x[theta]-delt;    if (!v) nrerror("allocation failure in ivector");
       k2=func(p2)-fx;    return v-nl+NR_END;
       /*res= (k1-2.0*fx+k2)/delt/delt; */  }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
        /******************free ivector **************************/
 #ifdef DEBUG  void free_ivector(int *v, long nl, long nh)
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  {
 #endif    free((FREE_ARG)(v+nl-NR_END));
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;  /************************lvector *******************************/
       }  long *lvector(long nl,long nh)
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  {
         k=kmax; l=lmax*10.;    long *v;
       }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    if (!v) nrerror("allocation failure in ivector");
         delts=delt;    return v-nl+NR_END;
       }  }
     }  
   }  /******************free lvector **************************/
   delti[theta]=delts;  void free_lvector(long *v, long nl, long nh)
   return res;  {
      free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 double hessij( double x[], double delti[], int thetai,int thetaj)  /******************* imatrix *******************************/
 {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   int i;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   int l=1, l1, lmax=20;  { 
   double k1,k2,k3,k4,res,fx;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   double p2[NPARMAX+1];    int **m; 
   int k;    
     /* allocate pointers to rows */ 
   fx=func(x);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   for (k=1; k<=2; k++) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
     for (i=1;i<=npar;i++) p2[i]=x[i];    m += NR_END; 
     p2[thetai]=x[thetai]+delti[thetai]/k;    m -= nrl; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    
     k1=func(p2)-fx;    
      /* allocate rows and set pointers to them */ 
     p2[thetai]=x[thetai]+delti[thetai]/k;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     k2=func(p2)-fx;    m[nrl] += NR_END; 
      m[nrl] -= ncl; 
     p2[thetai]=x[thetai]-delti[thetai]/k;    
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     k3=func(p2)-fx;    
      /* return pointer to array of pointers to rows */ 
     p2[thetai]=x[thetai]-delti[thetai]/k;    return m; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  } 
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  /****************** free_imatrix *************************/
 #ifdef DEBUG  void free_imatrix(m,nrl,nrh,ncl,nch)
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        int **m;
 #endif        long nch,ncl,nrh,nrl; 
   }       /* free an int matrix allocated by imatrix() */ 
   return res;  { 
 }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
 /************** Inverse of matrix **************/  } 
 void ludcmp(double **a, int n, int *indx, double *d)  
 {  /******************* matrix *******************************/
   int i,imax,j,k;  double **matrix(long nrl, long nrh, long ncl, long nch)
   double big,dum,sum,temp;  {
   double *vv;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
      double **m;
   vv=vector(1,n);  
   *d=1.0;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for (i=1;i<=n;i++) {    if (!m) nrerror("allocation failure 1 in matrix()");
     big=0.0;    m += NR_END;
     for (j=1;j<=n;j++)    m -= nrl;
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     vv[i]=1.0/big;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   }    m[nrl] += NR_END;
   for (j=1;j<=n;j++) {    m[nrl] -= ncl;
     for (i=1;i<j;i++) {  
       sum=a[i][j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    return m;
       a[i][j]=sum;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
     }  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
     big=0.0;  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     for (i=j;i<=n;i++) {     */
       sum=a[i][j];  }
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];  /*************************free matrix ************************/
       a[i][j]=sum;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       if ( (dum=vv[i]*fabs(sum)) >= big) {  {
         big=dum;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         imax=i;    free((FREE_ARG)(m+nrl-NR_END));
       }  }
     }  
     if (j != imax) {  /******************* ma3x *******************************/
       for (k=1;k<=n;k++) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         dum=a[imax][k];  {
         a[imax][k]=a[j][k];    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         a[j][k]=dum;    double ***m;
       }  
       *d = -(*d);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       vv[imax]=vv[j];    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
     indx[j]=imax;    m -= nrl;
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       dum=1.0/(a[j][j]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
   }  
   free_vector(vv,1,n);  /* Doesn't work */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 ;  
 }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 void lubksb(double **a, int n, int *indx, double b[])    m[nrl][ncl] += NR_END;
 {    m[nrl][ncl] -= nll;
   int i,ii=0,ip,j;    for (j=ncl+1; j<=nch; j++) 
   double sum;      m[nrl][j]=m[nrl][j-1]+nlay;
      
   for (i=1;i<=n;i++) {    for (i=nrl+1; i<=nrh; i++) {
     ip=indx[i];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     sum=b[ip];      for (j=ncl+1; j<=nch; j++) 
     b[ip]=b[i];        m[i][j]=m[i][j-1]+nlay;
     if (ii)    }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    return m; 
     else if (sum) ii=i;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     b[i]=sum;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   }    */
   for (i=n;i>=1;i--) {  }
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  /*************************free ma3x ************************/
     b[i]=sum/a[i][i];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   }  {
 }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 /************ Frequencies ********************/    free((FREE_ARG)(m+nrl-NR_END));
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1,double **mint,double **anint)  }
 {  /* Some frequencies */  
    /*************** function subdirf ***********/
   int i, m, jk, k1, k2,i1, j1, bool, z1,z2,j;  char *subdirf(char fileres[])
   double ***freq; /* Frequencies */  {
   double *pp;    /* Caution optionfilefiname is hidden */
   double pos;    strcpy(tmpout,optionfilefiname);
   FILE *ficresp;    strcat(tmpout,"/"); /* Add to the right */
   char fileresp[FILENAMELENGTH];    strcat(tmpout,fileres);
     return tmpout;
   pp=vector(1,nlstate);  }
   probs= ma3x(1,130 ,1,8, 1,8);  
   strcpy(fileresp,"p");  /*************** function subdirf2 ***********/
   strcat(fileresp,fileres);  char *subdirf2(char fileres[], char *preop)
   if((ficresp=fopen(fileresp,"w"))==NULL) {  {
     printf("Problem with prevalence resultfile: %s\n", fileresp);    
     exit(0);    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    strcat(tmpout,"/");
   j1=0;    strcat(tmpout,preop);
     strcat(tmpout,fileres);
   j=cptcoveff;    return tmpout;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  }
   
   for(k1=1; k1<=j;k1++){  /*************** function subdirf3 ***********/
    for(i1=1; i1<=ncodemax[k1];i1++){  char *subdirf3(char fileres[], char *preop, char *preop2)
        j1++;  {
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    
          scanf("%d", i);*/    /* Caution optionfilefiname is hidden */
         for (i=-1; i<=nlstate+ndeath; i++)      strcpy(tmpout,optionfilefiname);
          for (jk=-1; jk<=nlstate+ndeath; jk++)      strcat(tmpout,"/");
            for(m=agemin; m <= agemax+3; m++)    strcat(tmpout,preop);
              freq[i][jk][m]=0;    strcat(tmpout,preop2);
            strcat(tmpout,fileres);
        for (i=1; i<=imx; i++) {    return tmpout;
          bool=1;  }
          if  (cptcovn>0) {  
            for (z1=1; z1<=cptcoveff; z1++)  char *asc_diff_time(long time_sec, char ascdiff[])
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  {
                bool=0;    long sec_left, days, hours, minutes;
          }    days = (time_sec) / (60*60*24);
           if (bool==1) {    sec_left = (time_sec) % (60*60*24);
             for(m=fprev1; m<=lprev1; m++){    hours = (sec_left) / (60*60) ;
              k2=anint[m][i]+(mint[m][i]/12.);    sec_left = (sec_left) %(60*60);
              if ((k2>=1984) && (k2<=1988.5)) {    minutes = (sec_left) /60;
              if(agev[m][i]==0) agev[m][i]=agemax+1;    sec_left = (sec_left) % (60);
              if(agev[m][i]==1) agev[m][i]=agemax+2;    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    return ascdiff;
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  }
              }  
             }  /***************** f1dim *************************/
           }  extern int ncom; 
        }  extern double *pcom,*xicom;
         if  (cptcovn>0) {  extern double (*nrfunc)(double []); 
          fprintf(ficresp, "\n#********** Variable ");   
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  double f1dim(double x) 
        fprintf(ficresp, "**********\n#");  { 
         }    int j; 
        for(i=1; i<=nlstate;i++)    double f;
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    double *xt; 
        fprintf(ficresp, "\n");   
            xt=vector(1,ncom); 
   for(i=(int)agemin; i <= (int)agemax+3; i++){    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     if(i==(int)agemax+3)    f=(*nrfunc)(xt); 
       printf("Total");    free_vector(xt,1,ncom); 
     else    return f; 
       printf("Age %d", i);  } 
     for(jk=1; jk <=nlstate ; jk++){  
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /*****************brent *************************/
         pp[jk] += freq[jk][m][i];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     }  { 
     for(jk=1; jk <=nlstate ; jk++){    int iter; 
       for(m=-1, pos=0; m <=0 ; m++)    double a,b,d,etemp;
         pos += freq[jk][m][i];    double fu=0,fv,fw,fx;
       if(pp[jk]>=1.e-10)    double ftemp=0.;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       else    double e=0.0; 
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);   
     }    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
      for(jk=1; jk <=nlstate ; jk++){    x=w=v=bx; 
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    fw=fv=fx=(*f)(x); 
         pp[jk] += freq[jk][m][i];    for (iter=1;iter<=ITMAX;iter++) { 
      }      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for(jk=1,pos=0; jk <=nlstate ; jk++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       pos += pp[jk];      printf(".");fflush(stdout);
     for(jk=1; jk <=nlstate ; jk++){      fprintf(ficlog,".");fflush(ficlog);
       if(pos>=1.e-5)  #ifdef DEBUGBRENT
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       else      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       if( i <= (int) agemax){  #endif
         if(pos>=1.e-5){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        *xmin=x; 
           probs[i][jk][j1]= pp[jk]/pos;        return fx; 
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      } 
         }      ftemp=fu;
       else      if (fabs(e) > tol1) { 
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        r=(x-w)*(fx-fv); 
       }        q=(x-v)*(fx-fw); 
     }        p=(x-v)*q-(x-w)*r; 
     for(jk=-1; jk <=nlstate+ndeath; jk++)        q=2.0*(q-r); 
       for(m=-1; m <=nlstate+ndeath; m++)        if (q > 0.0) p = -p; 
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        q=fabs(q); 
     if(i <= (int) agemax)        etemp=e; 
       fprintf(ficresp,"\n");        e=d; 
     printf("\n");        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }        else { 
  }          d=p/q; 
            u=x+d; 
   fclose(ficresp);          if (u-a < tol2 || b-u < tol2) 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            d=SIGN(tol1,xm-x); 
   free_vector(pp,1,nlstate);        } 
       } else { 
 }  /* End of Freq */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
 /************ Prevalence ********************/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1)      fu=(*f)(u); 
 {  /* Some frequencies */      if (fu <= fx) { 
          if (u >= x) a=x; else b=x; 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        SHFT(v,w,x,u) 
   double ***freq; /* Frequencies */          SHFT(fv,fw,fx,fu) 
   double *pp;          } else { 
   double pos;            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
   pp=vector(1,nlstate);              v=w; 
   probs= ma3x(1,130 ,1,8, 1,8);              w=u; 
                fv=fw; 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);              fw=fu; 
   j1=0;            } else if (fu <= fv || v == x || v == w) { 
                v=u; 
   j=cptcoveff;              fv=fu; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            } 
            } 
  for(k1=1; k1<=j;k1++){    } 
     for(i1=1; i1<=ncodemax[k1];i1++){    nrerror("Too many iterations in brent"); 
       j1++;    *xmin=x; 
      return fx; 
       for (i=-1; i<=nlstate+ndeath; i++)    } 
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  /****************** mnbrak ***********************/
           freq[i][jk][m]=0;  
        void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       for (i=1; i<=imx; i++) {              double (*func)(double)) 
         bool=1;  { 
         if  (cptcovn>0) {    double ulim,u,r,q, dum;
           for (z1=1; z1<=cptcoveff; z1++)    double fu; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])   
               bool=0;    *fa=(*func)(*ax); 
               }    *fb=(*func)(*bx); 
         if (bool==1) {    if (*fb > *fa) { 
           for(m=fprev1; m<=lprev1; m++){      SHFT(dum,*ax,*bx,dum) 
             if(agev[m][i]==0) agev[m][i]=agemax+1;        SHFT(dum,*fb,*fa,dum) 
             if(agev[m][i]==1) agev[m][i]=agemax+2;        } 
             freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    *cx=(*bx)+GOLD*(*bx-*ax); 
             freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    *fc=(*func)(*cx); 
           }    while (*fb > *fc) { /* Declining fa, fb, fc */
         }      r=(*bx-*ax)*(*fb-*fc); 
       }      q=(*bx-*cx)*(*fb-*fa); 
        for(i=(int)agemin; i <= (int)agemax+3; i++){      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         for(jk=1; jk <=nlstate ; jk++){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
             pp[jk] += freq[jk][m][i];      if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
         }        fu=(*func)(u); 
         for(jk=1; jk <=nlstate ; jk++){  #ifdef DEBUG
           for(m=-1, pos=0; m <=0 ; m++)        /* f(x)=A(x-u)**2+f(u) */
             pos += freq[jk][m][i];        double A, fparabu; 
         }        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
                fparabu= *fa - A*(*ax-u)*(*ax-u);
          for(jk=1; jk <=nlstate ; jk++){        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
              pp[jk] += freq[jk][m][i];  #endif 
          }      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
                  fu=(*func)(u); 
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
          for(jk=1; jk <=nlstate ; jk++){                      SHFT(*fb,*fc,fu,(*func)(u)) 
            if( i <= (int) agemax){            } 
              if(pos>=1.e-5){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
                probs[i][jk][j1]= pp[jk]/pos;        u=ulim; 
              }        fu=(*func)(u); 
            }      } else { 
          }        u=(*cx)+GOLD*(*cx-*bx); 
                  fu=(*func)(u); 
          }      } 
     }      SHFT(*ax,*bx,*cx,u) 
   }        SHFT(*fa,*fb,*fc,fu) 
          } 
    } 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);  /*************** linmin ************************/
    /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
 }  /* End of Freq */  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
 /************* Waves Concatenation ***************/  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
   the value of func at the returned location p . This is actually all accomplished by calling the
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  routines mnbrak and brent .*/
 {  int ncom; 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  double *pcom,*xicom;
      Death is a valid wave (if date is known).  double (*nrfunc)(double []); 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i   
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
      and mw[mi+1][i]. dh depends on stepm.  { 
      */    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
   int i, mi, m;    double f1dim(double x); 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
      double sum=0., jmean=0.;*/                double *fc, double (*func)(double)); 
     int j; 
   int j, k=0,jk, ju, jl;    double xx,xmin,bx,ax; 
   double sum=0.;    double fx,fb,fa;
   jmin=1e+5;   
   jmax=-1;    ncom=n; 
   jmean=0.;    pcom=vector(1,n); 
   for(i=1; i<=imx; i++){    xicom=vector(1,n); 
     mi=0;    nrfunc=func; 
     m=firstpass;    for (j=1;j<=n;j++) { 
     while(s[m][i] <= nlstate){      pcom[j]=p[j]; 
       if(s[m][i]>=1)      xicom[j]=xi[j]; 
         mw[++mi][i]=m;    } 
       if(m >=lastpass)    ax=0.0; 
         break;    xx=1.0; 
       else    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
         m++;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
     }/* end while */  #ifdef DEBUG
     if (s[m][i] > nlstate){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       mi++;     /* Death is another wave */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       /* if(mi==0)  never been interviewed correctly before death */  #endif
          /* Only death is a correct wave */    for (j=1;j<=n;j++) { 
       mw[mi][i]=m;      xi[j] *= xmin; 
     }      p[j] += xi[j]; 
     } 
     wav[i]=mi;    free_vector(xicom,1,n); 
     if(mi==0)    free_vector(pcom,1,n); 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  } 
   }  
   
   for(i=1; i<=imx; i++){  /*************** powell ************************/
     for(mi=1; mi<wav[i];mi++){  /*
       if (stepm <=0)  Minimization of a function func of n variables. Input consists of an initial starting point
         dh[mi][i]=1;  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
       else{  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
         if (s[mw[mi+1][i]][i] > nlstate) {  such that failure to decrease by more than this amount on one iteration signals doneness. On
           if (agedc[i] < 2*AGESUP) {  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  function value at p , and iter is the number of iterations taken. The routine linmin is used.
           if(j==0) j=1;  /* Survives at least one month after exam */   */
           k=k+1;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
           if (j >= jmax) jmax=j;              double (*func)(double [])) 
           if (j <= jmin) jmin=j;  { 
           sum=sum+j;    void linmin(double p[], double xi[], int n, double *fret, 
           /* if (j<10) printf("j=%d num=%d ",j,i); */                double (*func)(double [])); 
           }    int i,ibig,j; 
         }    double del,t,*pt,*ptt,*xit;
         else{    double fp,fptt;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    double *xits;
           k=k+1;    int niterf, itmp;
           if (j >= jmax) jmax=j;  
           else if (j <= jmin)jmin=j;    pt=vector(1,n); 
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    ptt=vector(1,n); 
           sum=sum+j;    xit=vector(1,n); 
         }    xits=vector(1,n); 
         jk= j/stepm;    *fret=(*func)(p); 
         jl= j -jk*stepm;    for (j=1;j<=n;j++) pt[j]=p[j]; 
         ju= j -(jk+1)*stepm;      rcurr_time = time(NULL);  
         if(jl <= -ju)    for (*iter=1;;++(*iter)) { 
           dh[mi][i]=jk;      fp=(*fret); 
         else      ibig=0; 
           dh[mi][i]=jk+1;      del=0.0; 
         if(dh[mi][i]==0)      rlast_time=rcurr_time;
           dh[mi][i]=1; /* At least one step */      /* (void) gettimeofday(&curr_time,&tzp); */
       }      rcurr_time = time(NULL);  
     }      curr_time = *localtime(&rcurr_time);
   }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
   jmean=sum/k;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
  }     for (i=1;i<=n;i++) {
 /*********** Tricode ****************************/        printf(" %d %.12f",i, p[i]);
 void tricode(int *Tvar, int **nbcode, int imx)        fprintf(ficlog," %d %.12lf",i, p[i]);
 {        fprintf(ficrespow," %.12lf", p[i]);
   int Ndum[20],ij=1, k, j, i;      }
   int cptcode=0;      printf("\n");
   cptcoveff=0;      fprintf(ficlog,"\n");
        fprintf(ficrespow,"\n");fflush(ficrespow);
   for (k=0; k<19; k++) Ndum[k]=0;      if(*iter <=3){
   for (k=1; k<=7; k++) ncodemax[k]=0;        tml = *localtime(&rcurr_time);
         strcpy(strcurr,asctime(&tml));
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        rforecast_time=rcurr_time; 
     for (i=1; i<=imx; i++) {        itmp = strlen(strcurr);
       ij=(int)(covar[Tvar[j]][i]);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       Ndum[ij]++;          strcurr[itmp-1]='\0';
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       if (ij > cptcode) cptcode=ij;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
     }        for(niterf=10;niterf<=30;niterf+=10){
           rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
     for (i=0; i<=cptcode; i++) {          forecast_time = *localtime(&rforecast_time);
       if(Ndum[i]!=0) ncodemax[j]++;          strcpy(strfor,asctime(&forecast_time));
     }          itmp = strlen(strfor);
     ij=1;          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
     for (i=1; i<=ncodemax[j]; i++) {          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       for (k=0; k<=19; k++) {        }
         if (Ndum[k] != 0) {      }
           nbcode[Tvar[j]][ij]=k;      for (i=1;i<=n;i++) { 
           ij++;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         }        fptt=(*fret); 
         if (ij > ncodemax[j]) break;  #ifdef DEBUG
       }              printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
     }            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   }    #endif
         printf("%d",i);fflush(stdout);
  for (k=0; k<19; k++) Ndum[k]=0;        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
  for (i=1; i<=ncovmodel-2; i++) {        if (fabs(fptt-(*fret)) > del) { 
       ij=Tvar[i];          del=fabs(fptt-(*fret)); 
       Ndum[ij]++;          ibig=i; 
     }        } 
   #ifdef DEBUG
  ij=1;        printf("%d %.12e",i,(*fret));
  for (i=1; i<=10; i++) {        fprintf(ficlog,"%d %.12e",i,(*fret));
    if((Ndum[i]!=0) && (i<=ncov)){        for (j=1;j<=n;j++) {
      Tvaraff[ij]=i;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
      ij++;          printf(" x(%d)=%.12e",j,xit[j]);
    }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
  }        }
          for(j=1;j<=n;j++) {
     cptcoveff=ij-1;          printf(" p(%d)=%.12e",j,p[j]);
 }          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
         }
 /*********** Health Expectancies ****************/        printf("\n");
         fprintf(ficlog,"\n");
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  #endif
 {      } /* end i */
   /* Health expectancies */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   int i, j, nhstepm, hstepm, h;  #ifdef DEBUG
   double age, agelim,hf;        int k[2],l;
   double ***p3mat;        k[0]=1;
          k[1]=-1;
   fprintf(ficreseij,"# Health expectancies\n");        printf("Max: %.12e",(*func)(p));
   fprintf(ficreseij,"# Age");        fprintf(ficlog,"Max: %.12e",(*func)(p));
   for(i=1; i<=nlstate;i++)        for (j=1;j<=n;j++) {
     for(j=1; j<=nlstate;j++)          printf(" %.12e",p[j]);
       fprintf(ficreseij," %1d-%1d",i,j);          fprintf(ficlog," %.12e",p[j]);
   fprintf(ficreseij,"\n");        }
         printf("\n");
   hstepm=1*YEARM; /*  Every j years of age (in month) */        fprintf(ficlog,"\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
   agelim=AGESUP;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     /* nhstepm age range expressed in number of stepm */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          }
     /* Typically if 20 years = 20*12/6=40 stepm */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     if (stepm >= YEARM) hstepm=1;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */        }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #endif
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          free_vector(xit,1,n); 
         free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
     for(i=1; i<=nlstate;i++)        free_vector(pt,1,n); 
       for(j=1; j<=nlstate;j++)        return; 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){      } 
           eij[i][j][(int)age] +=p3mat[i][j][h];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         }      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
            ptt[j]=2.0*p[j]-pt[j]; 
     hf=1;        xit[j]=p[j]-pt[j]; 
     if (stepm >= YEARM) hf=stepm/YEARM;        pt[j]=p[j]; 
     fprintf(ficreseij,"%.0f",age );      } 
     for(i=1; i<=nlstate;i++)      fptt=(*func)(ptt); 
       for(j=1; j<=nlstate;j++){      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
       }        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
     fprintf(ficreseij,"\n");        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
   }        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
 }        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
         /* Thus we compare delta(2h) with observed f1-f3 */
 /************ Variance ******************/        /* or best gain on one ancient line 'del' with total  */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        /* gain f1-f2 = f1 - f2 - 'del' with del  */
 {        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
   double **newm;        t= t- del*SQR(fp-fptt);
   double **dnewm,**doldm;        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
   int i, j, nhstepm, hstepm, h;        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
   int k, cptcode;  #ifdef DEBUG
   double *xp;        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   double **gp, **gm;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   double ***gradg, ***trgradg;        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   double ***p3mat;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   double age,agelim;        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   int theta;        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   #endif
    fprintf(ficresvij,"# Covariances of life expectancies\n");        if (t < 0.0) { /* Then we use it for last direction */
   fprintf(ficresvij,"# Age");          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
   for(i=1; i<=nlstate;i++)          for (j=1;j<=n;j++) { 
     for(j=1; j<=nlstate;j++)            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
   fprintf(ficresvij,"\n");          }
           printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   xp=vector(1,npar);          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  #ifdef DEBUG
            printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   hstepm=1*YEARM; /* Every year of age */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          for(j=1;j<=n;j++){
   agelim = AGESUP;            printf(" %.12e",xit[j]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            fprintf(ficlog," %.12e",xit[j]);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          }
     if (stepm >= YEARM) hstepm=1;          printf("\n");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          fprintf(ficlog,"\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #endif
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        } /* end of t negative */
     gp=matrix(0,nhstepm,1,nlstate);      } /* end if (fptt < fp)  */
     gm=matrix(0,nhstepm,1,nlstate);    } 
   } 
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */  /**** Prevalence limit (stable or period prevalence)  ****************/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
       if (popbased==1) {    
         for(i=1; i<=nlstate;i++)    int i, ii,j,k;
           prlim[i][i]=probs[(int)age][i][ij];    double min, max, maxmin, maxmax,sumnew=0.;
       }    /* double **matprod2(); */ /* test */
          double **out, cov[NCOVMAX+1], **pmij();
       for(j=1; j<= nlstate; j++){    double **newm;
         for(h=0; h<=nhstepm; h++){    double agefin, delaymax=50 ; /* Max number of years to converge */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    for (ii=1;ii<=nlstate+ndeath;ii++)
         }      for (j=1;j<=nlstate+ndeath;j++){
       }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          }
       for(i=1; i<=npar; i++) /* Computes gradient */    
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    cov[1]=1.;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       if (popbased==1) {      newm=savm;
         for(i=1; i<=nlstate;i++)      /* Covariates have to be included here again */
           prlim[i][i]=probs[(int)age][i][ij];      cov[2]=agefin;
       }      
       for (k=1; k<=cptcovn;k++) {
       for(j=1; j<= nlstate; j++){        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for(h=0; h<=nhstepm; h++){        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
         }      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
       }      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
       
       for(j=1; j<= nlstate; j++)      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         for(h=0; h<=nhstepm; h++){      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         }      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     } /* End theta */      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      
       savm=oldm;
     for(h=0; h<=nhstepm; h++)      oldm=newm;
       for(j=1; j<=nlstate;j++)      maxmax=0.;
         for(theta=1; theta <=npar; theta++)      for(j=1;j<=nlstate;j++){
           trgradg[h][j][theta]=gradg[h][theta][j];        min=1.;
         max=0.;
     for(i=1;i<=nlstate;i++)        for(i=1; i<=nlstate; i++) {
       for(j=1;j<=nlstate;j++)          sumnew=0;
         vareij[i][j][(int)age] =0.;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     for(h=0;h<=nhstepm;h++){          prlim[i][j]= newm[i][j]/(1-sumnew);
       for(k=0;k<=nhstepm;k++){          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          max=FMAX(max,prlim[i][j]);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          min=FMIN(min,prlim[i][j]);
         for(i=1;i<=nlstate;i++)        }
           for(j=1;j<=nlstate;j++)        maxmin=max-min;
             vareij[i][j][(int)age] += doldm[i][j];        maxmax=FMAX(maxmax,maxmin);
       }      } /* j loop */
     }      if(maxmax < ftolpl){
     h=1;        return prlim;
     if (stepm >= YEARM) h=stepm/YEARM;      }
     fprintf(ficresvij,"%.0f ",age );    } /* age loop */
     for(i=1; i<=nlstate;i++)    return prlim; /* should not reach here */
       for(j=1; j<=nlstate;j++){  }
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);  
       }  /*************** transition probabilities ***************/ 
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     free_matrix(gm,0,nhstepm,1,nlstate);  {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    /* According to parameters values stored in x and the covariate's values stored in cov,
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);       computes the probability to be observed in state j being in state i by appying the
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       model to the ncovmodel covariates (including constant and age).
   } /* End age */       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
         and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   free_vector(xp,1,npar);       ncth covariate in the global vector x is given by the formula:
   free_matrix(doldm,1,nlstate,1,npar);       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   free_matrix(dnewm,1,nlstate,1,nlstate);       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
        Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 }       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
        Outputs ps[i][j] the probability to be observed in j being in j according to
 /************ Variance of prevlim ******************/       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    */
 {    double s1, lnpijopii;
   /* Variance of prevalence limit */    /*double t34;*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int i,j, nc, ii, jj;
   double **newm;  
   double **dnewm,**doldm;      for(i=1; i<= nlstate; i++){
   int i, j, nhstepm, hstepm;        for(j=1; j<i;j++){
   int k, cptcode;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   double *xp;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   double *gp, *gm;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   double **gradg, **trgradg;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   double age,agelim;          }
   int theta;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
      /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        }
   fprintf(ficresvpl,"# Age");        for(j=i+1; j<=nlstate+ndeath;j++){
   for(i=1; i<=nlstate;i++)          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       fprintf(ficresvpl," %1d-%1d",i,i);            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   fprintf(ficresvpl,"\n");            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   xp=vector(1,npar);          }
   dnewm=matrix(1,nlstate,1,npar);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   doldm=matrix(1,nlstate,1,nlstate);        }
        }
   hstepm=1*YEARM; /* Every year of age */      
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for(i=1; i<= nlstate; i++){
   agelim = AGESUP;        s1=0;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for(j=1; j<i; j++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     if (stepm >= YEARM) hstepm=1;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        }
     gradg=matrix(1,npar,1,nlstate);        for(j=i+1; j<=nlstate+ndeath; j++){
     gp=vector(1,nlstate);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     gm=vector(1,nlstate);          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }
     for(theta=1; theta <=npar; theta++){        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
       for(i=1; i<=npar; i++){ /* Computes gradient */        ps[i][i]=1./(s1+1.);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /* Computing other pijs */
       }        for(j=1; j<i; j++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(i=1;i<=nlstate;i++)        for(j=i+1; j<=nlstate+ndeath; j++)
         gp[i] = prlim[i][i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
            /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for(i=1; i<=npar; i++) /* Computes gradient */      } /* end i */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(i=1;i<=nlstate;i++)        for(jj=1; jj<= nlstate+ndeath; jj++){
         gm[i] = prlim[i][i];          ps[ii][jj]=0;
           ps[ii][ii]=1;
       for(i=1;i<=nlstate;i++)        }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      }
     } /* End theta */      
       
     trgradg =matrix(1,nlstate,1,npar);      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
       /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
     for(j=1; j<=nlstate;j++)      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
       for(theta=1; theta <=npar; theta++)      /*   } */
         trgradg[j][theta]=gradg[theta][j];      /*   printf("\n "); */
       /* } */
     for(i=1;i<=nlstate;i++)      /* printf("\n ");printf("%lf ",cov[2]);*/
       varpl[i][(int)age] =0.;      /*
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        goto end;*/
     for(i=1;i<=nlstate;i++)      return ps;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  }
   
     fprintf(ficresvpl,"%.0f ",age );  /**************** Product of 2 matrices ******************/
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
     fprintf(ficresvpl,"\n");  {
     free_vector(gp,1,nlstate);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     free_vector(gm,1,nlstate);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     free_matrix(gradg,1,npar,1,nlstate);    /* in, b, out are matrice of pointers which should have been initialized 
     free_matrix(trgradg,1,nlstate,1,npar);       before: only the contents of out is modified. The function returns
   } /* End age */       a pointer to pointers identical to out */
     int i, j, k;
   free_vector(xp,1,npar);    for(i=nrl; i<= nrh; i++)
   free_matrix(doldm,1,nlstate,1,npar);      for(k=ncolol; k<=ncoloh; k++){
   free_matrix(dnewm,1,nlstate,1,nlstate);        out[i][k]=0.;
         for(j=ncl; j<=nch; j++)
 }          out[i][k] +=in[i][j]*b[j][k];
       }
 /************ Variance of one-step probabilities  ******************/    return out;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)  }
 {  
   int i, j;  
   int k=0, cptcode;  /************* Higher Matrix Product ***************/
   double **dnewm,**doldm;  
   double *xp;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double *gp, *gm;  {
   double **gradg, **trgradg;    /* Computes the transition matrix starting at age 'age' over 
   double age,agelim, cov[NCOVMAX];       'nhstepm*hstepm*stepm' months (i.e. until
   int theta;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   char fileresprob[FILENAMELENGTH];       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   strcpy(fileresprob,"prob");       (typically every 2 years instead of every month which is too big 
   strcat(fileresprob,fileres);       for the memory).
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {       Model is determined by parameters x and covariates have to be 
     printf("Problem with resultfile: %s\n", fileresprob);       included manually here. 
   }  
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);       */
    
     int i, j, d, h, k;
   xp=vector(1,npar);    double **out, cov[NCOVMAX+1];
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double **newm;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  
      /* Hstepm could be zero and should return the unit matrix */
   cov[1]=1;    for (i=1;i<=nlstate+ndeath;i++)
   for (age=bage; age<=fage; age ++){      for (j=1;j<=nlstate+ndeath;j++){
     cov[2]=age;        oldm[i][j]=(i==j ? 1.0 : 0.0);
     gradg=matrix(1,npar,1,9);        po[i][j][0]=(i==j ? 1.0 : 0.0);
     trgradg=matrix(1,9,1,npar);      }
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    for(h=1; h <=nhstepm; h++){
          for(d=1; d <=hstepm; d++){
     for(theta=1; theta <=npar; theta++){        newm=savm;
       for(i=1; i<=npar; i++)        /* Covariates have to be included here again */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        cov[1]=1.;
              cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        for (k=1; k<=cptcovn;k++) 
              cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       k=0;        for (k=1; k<=cptcovage;k++)
       for(i=1; i<= (nlstate+ndeath); i++){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for(j=1; j<=(nlstate+ndeath);j++){        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
            k=k+1;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           gp[k]=pmmij[i][j];  
         }  
       }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       for(i=1; i<=npar; i++)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
            savm=oldm;
         oldm=newm;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      }
       k=0;      for(i=1; i<=nlstate+ndeath; i++)
       for(i=1; i<=(nlstate+ndeath); i++){        for(j=1;j<=nlstate+ndeath;j++) {
         for(j=1; j<=(nlstate+ndeath);j++){          po[i][j][h]=newm[i][j];
           k=k+1;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
           gm[k]=pmmij[i][j];        }
         }      /*printf("h=%d ",h);*/
       }    } /* end h */
        /*     printf("\n H=%d \n",h); */
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    return po;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    }
     }  
   #ifdef NLOPT
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
       for(theta=1; theta <=npar; theta++)    double fret;
       trgradg[j][theta]=gradg[theta][j];    double *xt;
      int j;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    myfunc_data *d2 = (myfunc_data *) pd;
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  /* xt = (p1-1); */
     xt=vector(1,n); 
      pmij(pmmij,cov,ncovmodel,x,nlstate);    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   
      k=0;    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
      for(i=1; i<=(nlstate+ndeath); i++){    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
        for(j=1; j<=(nlstate+ndeath);j++){    printf("Function = %.12lf ",fret);
          k=k+1;    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
          gm[k]=pmmij[i][j];    printf("\n");
         }   free_vector(xt,1,n);
      }    return fret;
        }
      /*printf("\n%d ",(int)age);  #endif
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
          /*************** log-likelihood *************/
   double func( double *x)
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  {
      }*/    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   fprintf(ficresprob,"\n%d ",(int)age);    double **out;
     double sw; /* Sum of weights */
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    double lli; /* Individual log likelihood */
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    int s1, s2;
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    double bbh, survp;
   }    long ipmx;
     /*extern weight */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    /* We are differentiating ll according to initial status */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    /*for(i=1;i<imx;i++) 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      printf(" %d\n",s[4][i]);
 }    */
  free_vector(xp,1,npar);  
 fclose(ficresprob);    ++countcallfunc;
  exit(0);  
 }    cov[1]=1.;
   
 /***********************************************/    for(k=1; k<=nlstate; k++) ll[k]=0.;
 /**************** Main Program *****************/  
 /***********************************************/    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /*int main(int argc, char *argv[])*/        /* Computes the values of the ncovmodel covariates of the model
 int main()           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
 {           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
            to be observed in j being in i according to the model.
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;         */
   double agedeb, agefin,hf;        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   double agemin=1.e20, agemax=-1.e20;          cov[2+k]=covar[Tvar[k]][i];
         }
   double fret;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   double **xi,tmp,delta;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
            has been calculated etc */
   double dum; /* Dummy variable */        for(mi=1; mi<= wav[i]-1; mi++){
   double ***p3mat;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int *indx;            for (j=1;j<=nlstate+ndeath;j++){
   char line[MAXLINE], linepar[MAXLINE];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   char title[MAXLINE];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];            }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];          for(d=0; d<dh[mi][i]; d++){
   char filerest[FILENAMELENGTH];            newm=savm;
   char fileregp[FILENAMELENGTH];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   char popfile[FILENAMELENGTH];            for (kk=1; kk<=cptcovage;kk++) {
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
   int firstobs=1, lastobs=10;            }
   int sdeb, sfin; /* Status at beginning and end */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int c,  h , cpt,l;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int ju,jl, mi;            savm=oldm;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;            oldm=newm;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          } /* end mult */
   int mobilav=0, fprev, lprev ,fprevfore=1, lprevfore=1,nforecast,popforecast=0;        
   int hstepm, nhstepm;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   int *popage;          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double bage, fage, age, agelim, agebase;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double ftolpl=FTOL;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double **prlim;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double *severity;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   double ***param; /* Matrix of parameters */           * probability in order to take into account the bias as a fraction of the way
   double  *p;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   double **matcov; /* Matrix of covariance */           * -stepm/2 to stepm/2 .
   double ***delti3; /* Scale */           * For stepm=1 the results are the same as for previous versions of Imach.
   double *delti; /* Scale */           * For stepm > 1 the results are less biased than in previous versions. 
   double ***eij, ***vareij;           */
   double **varpl; /* Variances of prevalence limits by age */          s1=s[mw[mi][i]][i];
   double *epj, vepp;          s2=s[mw[mi+1][i]][i];
   double kk1, kk2;          bbh=(double)bh[mi][i]/(double)stepm; 
   double *popeffectif,*popcount;          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";           */
   char *alph[]={"a","a","b","c","d","e"}, str[4];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known 
   char z[1]="c", occ;               then the contribution to the likelihood is the probability to 
 #include <sys/time.h>               die between last step unit time and current  step unit time, 
 #include <time.h>               which is also equal to probability to die before dh 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];               minus probability to die before dh-stepm . 
   /* long total_usecs;               In version up to 0.92 likelihood was computed
   struct timeval start_time, end_time;          as if date of death was unknown. Death was treated as any other
            health state: the date of the interview describes the actual state
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
   printf("\nIMACH, Version 0.7");          introduced the exact date of death then we should have modified
   printf("\nEnter the parameter file name: ");          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
 #ifdef windows          stepm. It is no more the probability to die between last interview
   scanf("%s",pathtot);          and month of death but the probability to survive from last
   getcwd(pathcd, size);          interview up to one month before death multiplied by the
   /*cygwin_split_path(pathtot,path,optionfile);          probability to die within a month. Thanks to Chris
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          Jackson for correcting this bug.  Former versions increased
   /* cutv(path,optionfile,pathtot,'\\');*/          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
 split(pathtot, path,optionfile);          lower mortality.
   chdir(path);            */
   replace(pathc,path);            lli=log(out[s1][s2] - savm[s1][s2]);
 #endif  
 #ifdef unix  
   scanf("%s",optionfile);          } else if  (s2==-2) {
 #endif            for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 /*-------- arguments in the command line --------*/            /*survp += out[s1][j]; */
             lli= log(survp);
   strcpy(fileres,"r");          }
   strcat(fileres, optionfile);          
           else if  (s2==-4) { 
   /*---------arguments file --------*/            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            lli= log(survp); 
     printf("Problem with optionfile %s\n",optionfile);          } 
     goto end;  
   }          else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
   strcpy(filereso,"o");              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   strcat(filereso,fileres);            lli= log(survp); 
   if((ficparo=fopen(filereso,"w"))==NULL) {          } 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          
   }          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /* Reads comments: lines beginning with '#' */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   while((c=getc(ficpar))=='#' && c!= EOF){          } 
     ungetc(c,ficpar);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     fgets(line, MAXLINE, ficpar);          /*if(lli ==000.0)*/
     puts(line);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     fputs(line,ficparo);          ipmx +=1;
   }          sw += weight[i];
   ungetc(c,ficpar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      } /* end of individual */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    }  else if(mle==2){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 while((c=getc(ficpar))=='#' && c!= EOF){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     ungetc(c,ficpar);        for(mi=1; mi<= wav[i]-1; mi++){
     fgets(line, MAXLINE, ficpar);          for (ii=1;ii<=nlstate+ndeath;ii++)
     puts(line);            for (j=1;j<=nlstate+ndeath;j++){
     fputs(line,ficparo);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   ungetc(c,ficpar);            }
            for(d=0; d<=dh[mi][i]; d++){
   fscanf(ficpar,"fprevalence=%d lprevalence=%d pop_based=%d\n",&fprev,&lprev,&popbased);            newm=savm;
   fprintf(ficparo,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
  while((c=getc(ficpar))=='#' && c!= EOF){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     puts(line);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fputs(line,ficparo);            savm=oldm;
   }            oldm=newm;
   ungetc(c,ficpar);          } /* end mult */
          
   fscanf(ficpar,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",&fprevfore,&lprevfore,&nforecast,&mobilav);          s1=s[mw[mi][i]][i];
   fprintf(ficparo,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);          s2=s[mw[mi+1][i]][i];
                bbh=(double)bh[mi][i]/(double)stepm; 
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 while((c=getc(ficpar))=='#' && c!= EOF){          ipmx +=1;
     ungetc(c,ficpar);          sw += weight[i];
     fgets(line, MAXLINE, ficpar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     puts(line);        } /* end of wave */
     fputs(line,ficparo);      } /* end of individual */
   }    }  else if(mle==3){  /* exponential inter-extrapolation */
   ungetc(c,ficpar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fscanf(ficpar,"popforecast=%d popfile=%s\n",&popforecast,popfile);        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   covar=matrix(0,NCOVMAX,1,n);            for (j=1;j<=nlstate+ndeath;j++){
   cptcovn=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   ncovmodel=2+cptcovn;          for(d=0; d<dh[mi][i]; d++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* Read guess parameters */            for (kk=1; kk<=cptcovage;kk++) {
   /* Reads comments: lines beginning with '#' */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fgets(line, MAXLINE, ficpar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     puts(line);            savm=oldm;
     fputs(line,ficparo);            oldm=newm;
   }          } /* end mult */
   ungetc(c,ficpar);        
            s1=s[mw[mi][i]][i];
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          s2=s[mw[mi+1][i]][i];
     for(i=1; i <=nlstate; i++)          bbh=(double)bh[mi][i]/(double)stepm; 
     for(j=1; j <=nlstate+ndeath-1; j++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       fscanf(ficpar,"%1d%1d",&i1,&j1);          ipmx +=1;
       fprintf(ficparo,"%1d%1d",i1,j1);          sw += weight[i];
       printf("%1d%1d",i,j);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(k=1; k<=ncovmodel;k++){        } /* end of wave */
         fscanf(ficpar," %lf",&param[i][j][k]);      } /* end of individual */
         printf(" %lf",param[i][j][k]);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         fprintf(ficparo," %lf",param[i][j][k]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       fscanf(ficpar,"\n");        for(mi=1; mi<= wav[i]-1; mi++){
       printf("\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficparo,"\n");            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;            }
           for(d=0; d<dh[mi][i]; d++){
   p=param[1][1];            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* Reads comments: lines beginning with '#' */            for (kk=1; kk<=cptcovage;kk++) {
   while((c=getc(ficpar))=='#' && c!= EOF){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);          
     puts(line);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fputs(line,ficparo);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   ungetc(c,ficpar);            oldm=newm;
           } /* end mult */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          s1=s[mw[mi][i]][i];
   for(i=1; i <=nlstate; i++){          s2=s[mw[mi+1][i]][i];
     for(j=1; j <=nlstate+ndeath-1; j++){          if( s2 > nlstate){ 
       fscanf(ficpar,"%1d%1d",&i1,&j1);            lli=log(out[s1][s2] - savm[s1][s2]);
       printf("%1d%1d",i,j);          }else{
       fprintf(ficparo,"%1d%1d",i1,j1);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(k=1; k<=ncovmodel;k++){          }
         fscanf(ficpar,"%le",&delti3[i][j][k]);          ipmx +=1;
         printf(" %le",delti3[i][j][k]);          sw += weight[i];
         fprintf(ficparo," %le",delti3[i][j][k]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       fscanf(ficpar,"\n");        } /* end of wave */
       printf("\n");      } /* end of individual */
       fprintf(ficparo,"\n");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   delti=delti3[1][1];        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Reads comments: lines beginning with '#' */            for (j=1;j<=nlstate+ndeath;j++){
   while((c=getc(ficpar))=='#' && c!= EOF){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     ungetc(c,ficpar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fgets(line, MAXLINE, ficpar);            }
     puts(line);          for(d=0; d<dh[mi][i]; d++){
     fputs(line,ficparo);            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   ungetc(c,ficpar);            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   matcov=matrix(1,npar,1,npar);            }
   for(i=1; i <=npar; i++){          
     fscanf(ficpar,"%s",&str);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     printf("%s",str);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(ficparo,"%s",str);            savm=oldm;
     for(j=1; j <=i; j++){            oldm=newm;
       fscanf(ficpar," %le",&matcov[i][j]);          } /* end mult */
       printf(" %.5le",matcov[i][j]);        
       fprintf(ficparo," %.5le",matcov[i][j]);          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
     fscanf(ficpar,"\n");          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     printf("\n");          ipmx +=1;
     fprintf(ficparo,"\n");          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(i=1; i <=npar; i++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     for(j=i+1;j<=npar;j++)        } /* end of wave */
       matcov[i][j]=matcov[j][i];      } /* end of individual */
        } /* End of if */
   printf("\n");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     /*-------- data file ----------*/    return -l;
     if((ficres =fopen(fileres,"w"))==NULL) {  }
       printf("Problem with resultfile: %s\n", fileres);goto end;  
     }  /*************** log-likelihood *************/
     fprintf(ficres,"#%s\n",version);  double funcone( double *x)
      {
     if((fic=fopen(datafile,"r"))==NULL)    {    /* Same as likeli but slower because of a lot of printf and if */
       printf("Problem with datafile: %s\n", datafile);goto end;    int i, ii, j, k, mi, d, kk;
     }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
     n= lastobs;    double lli; /* Individual log likelihood */
     severity = vector(1,maxwav);    double llt;
     outcome=imatrix(1,maxwav+1,1,n);    int s1, s2;
     num=ivector(1,n);    double bbh, survp;
     moisnais=vector(1,n);    /*extern weight */
     annais=vector(1,n);    /* We are differentiating ll according to initial status */
     moisdc=vector(1,n);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     andc=vector(1,n);    /*for(i=1;i<imx;i++) 
     agedc=vector(1,n);      printf(" %d\n",s[4][i]);
     cod=ivector(1,n);    */
     weight=vector(1,n);    cov[1]=1.;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     adl=imatrix(1,maxwav+1,1,n);          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     tab=ivector(1,NCOVMAX);      for(mi=1; mi<= wav[i]-1; mi++){
     ncodemax=ivector(1,8);        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
     i=1;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     while (fgets(line, MAXLINE, fic) != NULL)    {            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if ((i >= firstobs) && (i <=lastobs)) {          }
                for(d=0; d<dh[mi][i]; d++){
         for (j=maxwav;j>=1;j--){          newm=savm;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           strcpy(line,stra);          for (kk=1; kk<=cptcovage;kk++) {
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
           /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          savm=oldm;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          oldm=newm;
         } /* end mult */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        
         for (j=ncov;j>=1;j--){        s1=s[mw[mi][i]][i];
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        s2=s[mw[mi+1][i]][i];
         }        bbh=(double)bh[mi][i]/(double)stepm; 
         num[i]=atol(stra);        /* bias is positive if real duration
                 * is higher than the multiple of stepm and negative otherwise.
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){         */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
         i=i+1;        } else if  (s2==-2) {
       }          for (j=1,survp=0. ; j<=nlstate; j++) 
     }            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     /* printf("ii=%d", ij);          lli= log(survp);
        scanf("%d",i);*/        }else if (mle==1){
   imx=i-1; /* Number of individuals */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
   /* for (i=1; i<=imx; i++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        } else if(mle==3){  /* exponential inter-extrapolation */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     }          lli=log(out[s1][s2]); /* Original formula */
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/        } else{  /* mle=0 back to 1 */
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /* Calculation of the number of parameter from char model*/          /*lli=log(out[s1][s2]); */ /* Original formula */
   Tvar=ivector(1,15);        } /* End of if */
   Tprod=ivector(1,15);        ipmx +=1;
   Tvaraff=ivector(1,15);        sw += weight[i];
   Tvard=imatrix(1,15,1,2);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   Tage=ivector(1,15);              /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
            if(globpr){
   if (strlen(model) >1){          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     j=0, j1=0, k1=1, k2=1;   %11.6f %11.6f %11.6f ", \
     j=nbocc(model,'+');                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     j1=nbocc(model,'*');                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     cptcovn=j+1;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     cptcovprod=j1;            llt +=ll[k]*gipmx/gsw;
                fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
              }
     strcpy(modelsav,model);          fprintf(ficresilk," %10.6f\n", -llt);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        }
       printf("Error. Non available option model=%s ",model);      } /* end of wave */
       goto end;    } /* end of individual */
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
        /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for(i=(j+1); i>=1;i--){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       cutv(stra,strb,modelsav,'+');    if(globpr==0){ /* First time we count the contributions and weights */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      gipmx=ipmx;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      gsw=sw;
       /*scanf("%d",i);*/    }
       if (strchr(strb,'*')) {    return -l;
         cutv(strd,strc,strb,'*');  }
         if (strcmp(strc,"age")==0) {  
           cptcovprod--;  
           cutv(strb,stre,strd,'V');  /*************** function likelione ***********/
           Tvar[i]=atoi(stre);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
           cptcovage++;  {
             Tage[cptcovage]=i;    /* This routine should help understanding what is done with 
             /*printf("stre=%s ", stre);*/       the selection of individuals/waves and
         }       to check the exact contribution to the likelihood.
         else if (strcmp(strd,"age")==0) {       Plotting could be done.
           cptcovprod--;     */
           cutv(strb,stre,strc,'V');    int k;
           Tvar[i]=atoi(stre);  
           cptcovage++;    if(*globpri !=0){ /* Just counts and sums, no printings */
           Tage[cptcovage]=i;      strcpy(fileresilk,"ilk"); 
         }      strcat(fileresilk,fileres);
         else {      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           cutv(strb,stre,strc,'V');        printf("Problem with resultfile: %s\n", fileresilk);
           Tvar[i]=ncov+k1;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
           cutv(strb,strc,strd,'V');      }
           Tprod[k1]=i;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
           Tvard[k1][1]=atoi(strc);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
           Tvard[k1][2]=atoi(stre);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
           Tvar[cptcovn+k2]=Tvard[k1][1];      for(k=1; k<=nlstate; k++) 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
           for (k=1; k<=lastobs;k++)      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    }
           k1++;  
           k2=k2+2;    *fretone=(*funcone)(p);
         }    if(*globpri !=0){
       }      fclose(ficresilk);
       else {      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      fflush(fichtm); 
        /*  scanf("%d",i);*/    } 
       cutv(strd,strc,strb,'V');    return;
       Tvar[i]=atoi(strc);  }
       }  
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  /*********** Maximum Likelihood Estimation ***************/
         scanf("%d",i);*/  
     }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 }  {
      int i,j, iter=0;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    double **xi;
   printf("cptcovprod=%d ", cptcovprod);    double fret;
   scanf("%d ",i);*/    double fretone; /* Only one call to likelihood */
     fclose(fic);    /*  char filerespow[FILENAMELENGTH];*/
   
     /*  if(mle==1){*/  #ifdef NLOPT
     if (weightopt != 1) { /* Maximisation without weights*/    int creturn;
       for(i=1;i<=n;i++) weight[i]=1.0;    nlopt_opt opt;
     }    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
     /*-calculation of age at interview from date of interview and age at death -*/    double *lb;
     agev=matrix(1,maxwav,1,imx);    double minf; /* the minimum objective value, upon return */
     double * p1; /* Shifted parameters from 0 instead of 1 */
    for (i=1; i<=imx; i++)    myfunc_data dinst, *d = &dinst;
      for(m=2; (m<= maxwav); m++)  #endif
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  
          anint[m][i]=9999;  
          s[m][i]=-1;    xi=matrix(1,npar,1,npar);
        }    for (i=1;i<=npar;i++)
          for (j=1;j<=npar;j++)
     for (i=1; i<=imx; i++)  {        xi[i][j]=(i==j ? 1.0 : 0.0);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(m=1; (m<= maxwav); m++){    strcpy(filerespow,"pow"); 
         if(s[m][i] >0){    strcat(filerespow,fileres);
           if (s[m][i] == nlstate+1) {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
             if(agedc[i]>0)      printf("Problem with resultfile: %s\n", filerespow);
               if(moisdc[i]!=99 && andc[i]!=9999)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
               agev[m][i]=agedc[i];    }
             else {    fprintf(ficrespow,"# Powell\n# iter -2*LL");
               if (andc[i]!=9999){    for (i=1;i<=nlstate;i++)
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      for(j=1;j<=nlstate+ndeath;j++)
               agev[m][i]=-1;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
               }    fprintf(ficrespow,"\n");
             }  #ifdef POWELL
           }    powell(p,xi,npar,ftol,&iter,&fret,func);
           else if(s[m][i] !=9){ /* Should no more exist */  #endif
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)  #ifdef NLOPT
               agev[m][i]=1;  #ifdef NEWUOA
             else if(agev[m][i] <agemin){    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
               agemin=agev[m][i];  #else
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
             }  #endif
             else if(agev[m][i] >agemax){    lb=vector(0,npar-1);
               agemax=agev[m][i];    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    nlopt_set_lower_bounds(opt, lb);
             }    nlopt_set_initial_step1(opt, 0.1);
             /*agev[m][i]=anint[m][i]-annais[i];*/    
             /*   agev[m][i] = age[i]+2*m;*/    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
           }    d->function = func;
           else { /* =9 */    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
             agev[m][i]=1;    nlopt_set_min_objective(opt, myfunc, d);
             s[m][i]=-1;    nlopt_set_xtol_rel(opt, ftol);
           }    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
         }      printf("nlopt failed! %d\n",creturn); 
         else /*= 0 Unknown */    }
           agev[m][i]=1;    else {
       }      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
          printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
     }      iter=1; /* not equal */
     for (i=1; i<=imx; i++)  {    }
       for(m=1; (m<= maxwav); m++){    nlopt_destroy(opt);
         if (s[m][i] > (nlstate+ndeath)) {  #endif
           printf("Error: Wrong value in nlstate or ndeath\n");      free_matrix(xi,1,npar,1,npar);
           goto end;    fclose(ficrespow);
         }    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
       }    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     }    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  }
   
     free_vector(severity,1,maxwav);  /**** Computes Hessian and covariance matrix ***/
     free_imatrix(outcome,1,maxwav+1,1,n);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     free_vector(moisnais,1,n);  {
     free_vector(annais,1,n);    double  **a,**y,*x,pd;
     /* free_matrix(mint,1,maxwav,1,n);    double **hess;
        free_matrix(anint,1,maxwav,1,n);*/    int i, j;
     free_vector(moisdc,1,n);    int *indx;
     free_vector(andc,1,n);  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
        double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     wav=ivector(1,imx);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    double gompertz(double p[]);
        hess=matrix(1,npar,1,npar);
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
       Tcode=ivector(1,100);      printf("%d",i);fflush(stdout);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      fprintf(ficlog,"%d",i);fflush(ficlog);
       ncodemax[1]=1;     
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
            
    codtab=imatrix(1,100,1,10);      /*  printf(" %f ",p[i]);
    h=0;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
    m=pow(2,cptcoveff);    }
      
    for(k=1;k<=cptcoveff; k++){    for (i=1;i<=npar;i++) {
      for(i=1; i <=(m/pow(2,k));i++){      for (j=1;j<=npar;j++)  {
        for(j=1; j <= ncodemax[k]; j++){        if (j>i) { 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          printf(".%d%d",i,j);fflush(stdout);
            h++;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
            if (h>m) h=1;codtab[h][k]=j;          hess[i][j]=hessij(p,delti,i,j,func,npar);
          }          
        }          hess[j][i]=hess[i][j];    
      }          /*printf(" %lf ",hess[i][j]);*/
    }        }
          }
    /* Calculates basic frequencies. Computes observed prevalence at single age    }
        and prints on file fileres'p'. */    printf("\n");
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprev, lprev,mint,anint);    fprintf(ficlog,"\n");
    
   free_matrix(mint,1,maxwav,1,n);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   free_matrix(anint,1,maxwav,1,n);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    a=matrix(1,npar,1,npar);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    y=matrix(1,npar,1,npar);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    x=vector(1,npar);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    indx=ivector(1,npar);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    for (i=1;i<=npar;i++)
            for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     /* For Powell, parameters are in a vector p[] starting at p[1]    ludcmp(a,npar,indx,&pd);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
     if(mle==1){      x[j]=1;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      lubksb(a,npar,indx,x);
     }      for (i=1;i<=npar;i++){ 
            matcov[i][j]=x[i];
     /*--------- results files --------------*/      }
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    }
    fprintf(ficres,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);  
    fprintf(ficres,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
    jk=1;    for (i=1;i<=npar;i++) { 
    fprintf(ficres,"# Parameters\n");      for (j=1;j<=npar;j++) { 
    printf("# Parameters\n");        printf("%.3e ",hess[i][j]);
    for(i=1,jk=1; i <=nlstate; i++){        fprintf(ficlog,"%.3e ",hess[i][j]);
      for(k=1; k <=(nlstate+ndeath); k++){      }
        if (k != i)      printf("\n");
          {      fprintf(ficlog,"\n");
            printf("%d%d ",i,k);    }
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){    /* Recompute Inverse */
              printf("%f ",p[jk]);    for (i=1;i<=npar;i++)
              fprintf(ficres,"%f ",p[jk]);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
              jk++;    ludcmp(a,npar,indx,&pd);
            }  
            printf("\n");    /*  printf("\n#Hessian matrix recomputed#\n");
            fprintf(ficres,"\n");  
          }    for (j=1;j<=npar;j++) {
      }      for (i=1;i<=npar;i++) x[i]=0;
    }      x[j]=1;
  if(mle==1){      lubksb(a,npar,indx,x);
     /* Computing hessian and covariance matrix */      for (i=1;i<=npar;i++){ 
     ftolhess=ftol; /* Usually correct */        y[i][j]=x[i];
     hesscov(matcov, p, npar, delti, ftolhess, func);        printf("%.3e ",y[i][j]);
  }        fprintf(ficlog,"%.3e ",y[i][j]);
     fprintf(ficres,"# Scales\n");      }
     printf("# Scales\n");      printf("\n");
      for(i=1,jk=1; i <=nlstate; i++){      fprintf(ficlog,"\n");
       for(j=1; j <=nlstate+ndeath; j++){    }
         if (j!=i) {    */
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);    free_matrix(a,1,npar,1,npar);
           for(k=1; k<=ncovmodel;k++){    free_matrix(y,1,npar,1,npar);
             printf(" %.5e",delti[jk]);    free_vector(x,1,npar);
             fprintf(ficres," %.5e",delti[jk]);    free_ivector(indx,1,npar);
             jk++;    free_matrix(hess,1,npar,1,npar);
           }  
           printf("\n");  
           fprintf(ficres,"\n");  }
         }  
       }  /*************** hessian matrix ****************/
       }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
      {
     k=1;    int i;
     fprintf(ficres,"# Covariance\n");    int l=1, lmax=20;
     printf("# Covariance\n");    double k1,k2;
     for(i=1;i<=npar;i++){    double p2[MAXPARM+1]; /* identical to x */
       /*  if (k>nlstate) k=1;    double res;
       i1=(i-1)/(ncovmodel*nlstate)+1;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    double fx;
       printf("%s%d%d",alph[k],i1,tab[i]);*/    int k=0,kmax=10;
       fprintf(ficres,"%3d",i);    double l1;
       printf("%3d",i);  
       for(j=1; j<=i;j++){    fx=func(x);
         fprintf(ficres," %.5e",matcov[i][j]);    for (i=1;i<=npar;i++) p2[i]=x[i];
         printf(" %.5e",matcov[i][j]);    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
       }      l1=pow(10,l);
       fprintf(ficres,"\n");      delts=delt;
       printf("\n");      for(k=1 ; k <kmax; k=k+1){
       k++;        delt = delta*(l1*k);
     }        p2[theta]=x[theta] +delt;
            k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
     while((c=getc(ficpar))=='#' && c!= EOF){        p2[theta]=x[theta]-delt;
       ungetc(c,ficpar);        k2=func(p2)-fx;
       fgets(line, MAXLINE, ficpar);        /*res= (k1-2.0*fx+k2)/delt/delt; */
       puts(line);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       fputs(line,ficparo);        
     }  #ifdef DEBUGHESS
     ungetc(c,ficpar);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
          fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  #endif
            /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     if (fage <= 2) {        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       bage = agemin;          k=kmax;
       fage = agemax;        }
     }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
            }
 /*------------ gnuplot -------------*/      }
 chdir(pathcd);    }
   if((ficgp=fopen("graph.plt","w"))==NULL) {    delti[theta]=delts;
     printf("Problem with file graph.gp");goto end;    return res; 
   }    
 #ifdef windows  }
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 m=pow(2,cptcoveff);  {
      int i;
  /* 1eme*/    int l=1, lmax=20;
   for (cpt=1; cpt<= nlstate ; cpt ++) {    double k1,k2,k3,k4,res,fx;
    for (k1=1; k1<= m ; k1 ++) {    double p2[MAXPARM+1];
     int k;
 #ifdef windows  
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    fx=func(x);
 #endif    for (k=1; k<=2; k++) {
 #ifdef unix      for (i=1;i<=npar;i++) p2[i]=x[i];
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);      p2[thetai]=x[thetai]+delti[thetai]/k;
 #endif      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
 for (i=1; i<= nlstate ; i ++) {    
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      p2[thetai]=x[thetai]+delti[thetai]/k;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 }      k2=func(p2)-fx;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    
     for (i=1; i<= nlstate ; i ++) {      p2[thetai]=x[thetai]-delti[thetai]/k;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      k3=func(p2)-fx;
 }    
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      p2[thetai]=x[thetai]-delti[thetai]/k;
      for (i=1; i<= nlstate ; i ++) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      k4=func(p2)-fx;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 }    #ifdef DEBUG
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 #ifdef unix      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 fprintf(ficgp,"\nset ter gif small size 400,300");  #endif
 #endif    }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    return res;
    }  }
   }  
   /*2 eme*/  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
   for (k1=1; k1<= m ; k1 ++) {  { 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    int i,imax,j,k; 
        double big,dum,sum,temp; 
     for (i=1; i<= nlstate+1 ; i ++) {    double *vv; 
       k=2*i;   
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    vv=vector(1,n); 
       for (j=1; j<= nlstate+1 ; j ++) {    *d=1.0; 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for (i=1;i<=n;i++) { 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      big=0.0; 
 }        for (j=1;j<=n;j++) 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        if ((temp=fabs(a[i][j])) > big) big=temp; 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      vv[i]=1.0/big; 
       for (j=1; j<= nlstate+1 ; j ++) {    } 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for (j=1;j<=n;j++) { 
         else fprintf(ficgp," \%%*lf (\%%*lf)");      for (i=1;i<j;i++) { 
 }          sum=a[i][j]; 
       fprintf(ficgp,"\" t\"\" w l 0,");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        a[i][j]=sum; 
       for (j=1; j<= nlstate+1 ; j ++) {      } 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      big=0.0; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for (i=j;i<=n;i++) { 
 }          sum=a[i][j]; 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        for (k=1;k<j;k++) 
       else fprintf(ficgp,"\" t\"\" w l 0,");          sum -= a[i][k]*a[k][j]; 
     }        a[i][j]=sum; 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   }          big=dum; 
            imax=i; 
   /*3eme*/        } 
       } 
   for (k1=1; k1<= m ; k1 ++) {      if (j != imax) { 
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for (k=1;k<=n;k++) { 
       k=2+nlstate*(cpt-1);          dum=a[imax][k]; 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);          a[imax][k]=a[j][k]; 
       for (i=1; i< nlstate ; i ++) {          a[j][k]=dum; 
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);        } 
       }        *d = -(*d); 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        vv[imax]=vv[j]; 
     }      } 
   }      indx[j]=imax; 
        if (a[j][j] == 0.0) a[j][j]=TINY; 
   /* CV preval stat */      if (j != n) { 
   for (k1=1; k1<= m ; k1 ++) {        dum=1.0/(a[j][j]); 
     for (cpt=1; cpt<nlstate ; cpt ++) {        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       k=3;      } 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    } 
       for (i=1; i< nlstate ; i ++)    free_vector(vv,1,n);  /* Doesn't work */
         fprintf(ficgp,"+$%d",k+i+1);  ;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  } 
        
       l=3+(nlstate+ndeath)*cpt;  void lubksb(double **a, int n, int *indx, double b[]) 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  { 
       for (i=1; i< nlstate ; i ++) {    int i,ii=0,ip,j; 
         l=3+(nlstate+ndeath)*cpt;    double sum; 
         fprintf(ficgp,"+$%d",l+i+1);   
       }    for (i=1;i<=n;i++) { 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        ip=indx[i]; 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      sum=b[ip]; 
     }      b[ip]=b[i]; 
   }        if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   /* proba elementaires */      else if (sum) ii=i; 
    for(i=1,jk=1; i <=nlstate; i++){      b[i]=sum; 
     for(k=1; k <=(nlstate+ndeath); k++){    } 
       if (k != i) {    for (i=n;i>=1;i--) { 
         for(j=1; j <=ncovmodel; j++){      sum=b[i]; 
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           /*fprintf(ficgp,"%s",alph[1]);*/      b[i]=sum/a[i][i]; 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    } 
           jk++;  } 
           fprintf(ficgp,"\n");  
         }  void pstamp(FILE *fichier)
       }  {
     }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
     }  }
   
   for(jk=1; jk <=m; jk++) {  /************ Frequencies ********************/
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
    i=1;  {  /* Some frequencies */
    for(k2=1; k2<=nlstate; k2++) {    
      k3=i;    int i, m, jk, j1, bool, z1,j;
      for(k=1; k<=(nlstate+ndeath); k++) {    int first;
        if (k != k2){    double ***freq; /* Frequencies */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    double *pp, **prop;
 ij=1;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         for(j=3; j <=ncovmodel; j++) {    char fileresp[FILENAMELENGTH];
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    pp=vector(1,nlstate);
             ij++;    prop=matrix(1,nlstate,iagemin,iagemax+3);
           }    strcpy(fileresp,"p");
           else    strcat(fileresp,fileres);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    if((ficresp=fopen(fileresp,"w"))==NULL) {
         }      printf("Problem with prevalence resultfile: %s\n", fileresp);
           fprintf(ficgp,")/(1");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
              exit(0);
         for(k1=1; k1 <=nlstate; k1++){      }
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 ij=1;    j1=0;
           for(j=3; j <=ncovmodel; j++){    
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    j=cptcoveff;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             ij++;  
           }    first=1;
           else  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
           }    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
           fprintf(ficgp,")");    /*    j1++; */
         }    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          scanf("%d", i);*/
         i=i+ncovmodel;        for (i=-5; i<=nlstate+ndeath; i++)  
        }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
      }            for(m=iagemin; m <= iagemax+3; m++)
    }              freq[i][jk][m]=0;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        
   }        for (i=1; i<=nlstate; i++)  
              for(m=iagemin; m <= iagemax+3; m++)
   fclose(ficgp);            prop[i][m]=0;
            
 chdir(path);        dateintsum=0;
            k2cpt=0;
     free_ivector(wav,1,imx);        for (i=1; i<=imx; i++) {
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          bool=1;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
     free_ivector(num,1,n);            for (z1=1; z1<=cptcoveff; z1++)       
     free_vector(agedc,1,n);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
     /*free_matrix(covar,1,NCOVMAX,1,n);*/                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
     fclose(ficparo);                bool=0;
     fclose(ficres);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
     /*  }*/                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
                      j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
    /*________fin mle=1_________*/                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
                  } 
           }
     
     /* No more information from the sample is required now */          if (bool==1){
   /* Reads comments: lines beginning with '#' */            for(m=firstpass; m<=lastpass; m++){
   while((c=getc(ficpar))=='#' && c!= EOF){              k2=anint[m][i]+(mint[m][i]/12.);
     ungetc(c,ficpar);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     fgets(line, MAXLINE, ficpar);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     puts(line);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fputs(line,ficparo);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                if (m<lastpass) {
   ungetc(c,ficpar);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                    freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);                }
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);                
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 /*--------- index.htm --------*/                  dateintsum=dateintsum+k2;
                   k2cpt++;
   strcpy(optionfilehtm,optionfile);                }
   strcat(optionfilehtm,".htm");                /*}*/
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            }
     printf("Problem with %s \n",optionfilehtm);goto end;          }
   }        } /* end i */
          
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>        pstamp(ficresp);
 Total number of observations=%d <br>        if  (cptcovn>0) {
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>          fprintf(ficresp, "\n#********** Variable "); 
 <hr  size=\"2\" color=\"#EC5E5E\">          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 <li>Outputs files<br><br>\n          fprintf(ficresp, "**********\n#");
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          fprintf(ficlog, "\n#********** Variable "); 
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>          fprintf(ficlog, "**********\n#");
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>        }
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>        for(i=1; i<=nlstate;i++) 
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>        fprintf(ficresp, "\n");
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>        
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>        for(i=iagemin; i <= iagemax+3; i++){
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>          if(i==iagemax+3){
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);            fprintf(ficlog,"Total");
           }else{
  fprintf(fichtm," <li>Graphs</li><p>");            if(first==1){
               first=0;
  m=cptcoveff;              printf("See log file for details...\n");
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            }
             fprintf(ficlog,"Age %d", i);
  j1=0;          }
  for(k1=1; k1<=m;k1++){          for(jk=1; jk <=nlstate ; jk++){
    for(i1=1; i1<=ncodemax[k1];i1++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
        j1++;              pp[jk] += freq[jk][m][i]; 
        if (cptcovn > 0) {          }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          for(jk=1; jk <=nlstate ; jk++){
          for (cpt=1; cpt<=cptcoveff;cpt++)            for(m=-1, pos=0; m <=0 ; m++)
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);              pos += freq[jk][m][i];
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            if(pp[jk]>=1.e-10){
        }              if(first==1){
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                  }
        for(cpt=1; cpt<nlstate;cpt++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>            }else{
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              if(first==1)
        }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     for(cpt=1; cpt<=nlstate;cpt++) {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            }
 interval) in state (%d): v%s%d%d.gif <br>          }
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    
      }          for(jk=1; jk <=nlstate ; jk++){
      for(cpt=1; cpt<=nlstate;cpt++) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>              pp[jk] += freq[jk][m][i];
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          }       
      }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            pos += pp[jk];
 health expectancies in states (1) and (2): e%s%d.gif<br>            posprop += prop[jk][i];
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          }
 fprintf(fichtm,"\n</body>");          for(jk=1; jk <=nlstate ; jk++){
    }            if(pos>=1.e-5){
  }              if(first==1)
 fclose(fichtm);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   /*--------------- Prevalence limit --------------*/            }else{
                if(first==1)
   strcpy(filerespl,"pl");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   strcat(filerespl,fileres);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            if( i <= iagemax){
   }              if(pos>=1.e-5){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   fprintf(ficrespl,"#Prevalence limit\n");                /*probs[i][jk][j1]= pp[jk]/pos;*/
   fprintf(ficrespl,"#Age ");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);              }
   fprintf(ficrespl,"\n");              else
                  fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   prlim=matrix(1,nlstate,1,nlstate);            }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(jk=-1; jk <=nlstate+ndeath; jk++)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(m=-1; m <=nlstate+ndeath; m++)
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              if(freq[jk][m][i] !=0 ) {
   k=0;              if(first==1)
   agebase=agemin;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   agelim=agemax;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   ftolpl=1.e-10;              }
   i1=cptcoveff;          if(i <= iagemax)
   if (cptcovn < 1){i1=1;}            fprintf(ficresp,"\n");
           if(first==1)
   for(cptcov=1;cptcov<=i1;cptcov++){            printf("Others in log...\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficlog,"\n");
         k=k+1;        }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        /*}*/
         fprintf(ficrespl,"\n#******");    }
         for(j=1;j<=cptcoveff;j++)    dateintmean=dateintsum/k2cpt; 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   
         fprintf(ficrespl,"******\n");    fclose(ficresp);
            free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
         for (age=agebase; age<=agelim; age++){    free_vector(pp,1,nlstate);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           fprintf(ficrespl,"%.0f",age );    /* End of Freq */
           for(i=1; i<=nlstate;i++)  }
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");  /************ Prevalence ********************/
         }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       }  {  
     }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   fclose(ficrespl);       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
   /*------------- h Pij x at various ages ------------*/    */
     
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    int i, m, jk, j1, bool, z1,j;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    double **prop;
   }    double posprop; 
   printf("Computing pij: result on file '%s' \n", filerespij);    double  y2; /* in fractional years */
      int iagemin, iagemax;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int first; /** to stop verbosity which is redirected to log file */
   /*if (stepm<=24) stepsize=2;*/  
     iagemin= (int) agemin;
   agelim=AGESUP;    iagemax= (int) agemax;
   hstepm=stepsize*YEARM; /* Every year of age */    /*pp=vector(1,nlstate);*/
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   k=0;    j1=0;
   for(cptcov=1;cptcov<=i1;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /*j=cptcoveff;*/
       k=k+1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         fprintf(ficrespij,"\n#****** ");    
         for(j=1;j<=cptcoveff;j++)    first=1;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
         fprintf(ficrespij,"******\n");      /*for(i1=1; i1<=ncodemax[k1];i1++){
                j1++;*/
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for (i=1; i<=nlstate; i++)  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          for(m=iagemin; m <= iagemax+3; m++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            prop[i][m]=0.0;
           oldm=oldms;savm=savms;       
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for (i=1; i<=imx; i++) { /* Each individual */
           fprintf(ficrespij,"# Age");          bool=1;
           for(i=1; i<=nlstate;i++)          if  (cptcovn>0) {
             for(j=1; j<=nlstate+ndeath;j++)            for (z1=1; z1<=cptcoveff; z1++) 
               fprintf(ficrespij," %1d-%1d",i,j);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           fprintf(ficrespij,"\n");                bool=0;
           for (h=0; h<=nhstepm; h++){          } 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          if (bool==1) { 
             for(i=1; i<=nlstate;i++)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               for(j=1; j<=nlstate+ndeath;j++)              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
             fprintf(ficrespij,"\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           fprintf(ficrespij,"\n");                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/              }
             } /* end selection of waves */
   fclose(ficrespij);          }
         }
   /*---------- Forecasting ------------------*/        for(i=iagemin; i <= iagemax+3; i++){  
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   strcpy(fileresf,"f");            posprop += prop[jk][i]; 
   strcat(fileresf,fileres);          } 
   if((ficresf=fopen(fileresf,"w"))==NULL) {          
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;          for(jk=1; jk <=nlstate ; jk++){     
   }            if( i <=  iagemax){ 
   printf("Computing forecasting: result on file '%s' \n", fileresf);              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprevfore, lprevfore);              } else{
                 if(first==1){
  free_matrix(agev,1,maxwav,1,imx);                  first=0;
   /* Mobile average */                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
                 }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              }
             } 
   if (mobilav==1) {          }/* end jk */ 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }/* end i */ 
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)      /*} *//* end i1 */
       for (i=1; i<=nlstate;i++)    } /* end j1 */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    
           mobaverage[(int)agedeb][i][cptcod]=0.;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
        /*free_vector(pp,1,nlstate);*/
     for (agedeb=bage+4; agedeb<=fage; agedeb++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       for (i=1; i<=nlstate;i++){  }  /* End of prevalence */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){  /************* Waves Concatenation ***************/
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  
           }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  {
         }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       }       Death is a valid wave (if date is known).
     }         mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
   stepsize=(int) (stepm+YEARM-1)/YEARM;       */
   if (stepm<=12) stepsize=1;  
     int i, mi, m;
   agelim=AGESUP;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   hstepm=stepsize*YEARM; /* Every year of age */       double sum=0., jmean=0.;*/
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */    int first;
      int j, k=0,jk, ju, jl;
   if (popforecast==1) {    double sum=0.;
     if((ficpop=fopen(popfile,"r"))==NULL)    {    first=0;
       printf("Problem with population file : %s\n",popfile);goto end;    jmin=100000;
     }    jmax=-1;
     popage=ivector(0,AGESUP);    jmean=0.;
     popeffectif=vector(0,AGESUP);    for(i=1; i<=imx; i++){
     popcount=vector(0,AGESUP);      mi=0;
       m=firstpass;
     i=1;        while(s[m][i] <= nlstate){
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       {          mw[++mi][i]=m;
         i=i+1;        if(m >=lastpass)
       }          break;
     imx=i;        else
            m++;
   for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      }/* end while */
   }      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
   for(cptcov=1;cptcov<=i1;cptcov++){        /* if(mi==0)  never been interviewed correctly before death */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){           /* Only death is a correct wave */
       k=k+1;        mw[mi][i]=m;
       fprintf(ficresf,"\n#****** ");      }
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      wav[i]=mi;
       }      if(mi==0){
       fprintf(ficresf,"******\n");        nbwarn++;
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");        if(first==0){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       if (popforecast==1)  fprintf(ficresf," [Population]");          first=1;
         }
       for (agedeb=fage; agedeb>=bage; agedeb--){        if(first==1){
         fprintf(ficresf,"\n%.f %.f 0",agedeb, agedeb);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
        if (mobilav==1) {        }
         for(j=1; j<=nlstate;j++)      } /* end mi==0 */
           fprintf(ficresf," %.3f",mobaverage[(int)agedeb][j][cptcod]);    } /* End individuals */
         }  
         else {    for(i=1; i<=imx; i++){
           for(j=1; j<=nlstate;j++)      for(mi=1; mi<wav[i];mi++){
           fprintf(ficresf," %.3f",probs[(int)agedeb][j][cptcod]);        if (stepm <=0)
         }            dh[mi][i]=1;
         else{
        for(j=1; j<=ndeath;j++) fprintf(ficresf," 0.00000");          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
        if (popforecast==1) fprintf(ficresf," [%.f] ",popeffectif[(int)agedeb]);            if (agedc[i] < 2*AGESUP) {
       }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                    if(j==0) j=1;  /* Survives at least one month after exam */
       for (cpt=1; cpt<=nforecast;cpt++) {              else if(j<0){
         fprintf(ficresf,"\n");                nberr++;
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                j=1; /* Temporary Dangerous patch */
         nhstepm = nhstepm/hstepm;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              }
         oldm=oldms;savm=savms;              k=k+1;
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                if (j >= jmax){
                                jmax=j;
         for (h=0; h<=nhstepm; h++){                ijmax=i;
                      }
          if (h*hstepm/YEARM*stepm==cpt)              if (j <= jmin){
             fprintf(ficresf,"\n%.f %.f %.f",agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);                jmin=j;
                          ijmin=i;
                        }
          for(j=1; j<=nlstate+ndeath;j++) {              sum=sum+j;
            kk1=0.;kk2=0;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
            for(i=1; i<=nlstate;i++) {                      /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
              if (mobilav==1)            }
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];          }
              else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];          else{
              if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
            if (h*hstepm/YEARM*stepm==cpt) {  
              fprintf(ficresf," %.3f", kk1);            k=k+1;
                if (popforecast==1) fprintf(ficresf," [%.f]", kk2);            if (j >= jmax) {
            }              jmax=j;
           }              ijmax=i;
         }            }
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            else if (j <= jmin){
                      jmin=j;
       }              ijmin=i;
       }            }
     }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            if(j<0){
   if (popforecast==1) {              nberr++;
     free_ivector(popage,0,AGESUP);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_vector(popeffectif,0,AGESUP);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_vector(popcount,0,AGESUP);            }
   }            sum=sum+j;
   free_imatrix(s,1,maxwav+1,1,n);          }
   free_vector(weight,1,n);          jk= j/stepm;
   fclose(ficresf);          jl= j -jk*stepm;
   /*---------- Health expectancies and variances ------------*/          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   strcpy(filerest,"t");            if(jl==0){
   strcat(filerest,fileres);              dh[mi][i]=jk;
   if((ficrest=fopen(filerest,"w"))==NULL) {              bh[mi][i]=0;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            }else{ /* We want a negative bias in order to only have interpolation ie
   }                    * to avoid the price of an extra matrix product in likelihood */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
   strcpy(filerese,"e");          }else{
   strcat(filerese,fileres);            if(jl <= -ju){
   if((ficreseij=fopen(filerese,"w"))==NULL) {              dh[mi][i]=jk;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              bh[mi][i]=jl;       /* bias is positive if real duration
   }                                   * is higher than the multiple of stepm and negative otherwise.
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                                   */
             }
  strcpy(fileresv,"v");            else{
   strcat(fileresv,fileres);              dh[mi][i]=jk+1;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {              bh[mi][i]=ju;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            }
   }            if(dh[mi][i]==0){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
   k=0;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   for(cptcov=1;cptcov<=i1;cptcov++){            }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          } /* end if mle */
       k=k+1;        }
       fprintf(ficrest,"\n#****** ");      } /* end wave */
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    jmean=sum/k;
       fprintf(ficrest,"******\n");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       fprintf(ficreseij,"\n#****** ");   }
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  /*********** Tricode ****************************/
       fprintf(ficreseij,"******\n");  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   {
       fprintf(ficresvij,"\n#****** ");    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
       for(j=1;j<=cptcoveff;j++)    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);     * Boring subroutine which should only output nbcode[Tvar[j]][k]
       fprintf(ficresvij,"******\n");     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
      * nbcode[Tvar[j]][1]= 
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    */
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    int modmaxcovj=0; /* Modality max of covariates j */
       oldm=oldms;savm=savms;    int cptcode=0; /* Modality max of covariates j */
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    int modmincovj=0; /* Modality min of covariates j */
        
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    cptcoveff=0; 
       fprintf(ficrest,"\n");   
            for (k=-1; k < maxncov; k++) Ndum[k]=0;
       hf=1;    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
       if (stepm >= YEARM) hf=stepm/YEARM;  
       epj=vector(1,nlstate+1);    /* Loop on covariates without age and products */
       for(age=bage; age <=fage ;age++){    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
         if (popbased==1) {                                 modality of this covariate Vj*/ 
           for(i=1; i<=nlstate;i++)        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
             prlim[i][i]=probs[(int)age][i][k];                                      * If product of Vn*Vm, still boolean *:
         }                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                                              * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
         fprintf(ficrest," %.0f",age);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                                        modality of the nth covariate of individual i. */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        if (ij > modmaxcovj)
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];          modmaxcovj=ij; 
           }        else if (ij < modmincovj) 
           epj[nlstate+1] +=epj[j];          modmincovj=ij; 
         }        if ((ij < -1) && (ij > NCOVMAX)){
         for(i=1, vepp=0.;i <=nlstate;i++)          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
           for(j=1;j <=nlstate;j++)          exit(1);
             vepp += vareij[i][j][(int)age];        }else
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         for(j=1;j <=nlstate;j++){        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         }        /* getting the maximum value of the modality of the covariate
         fprintf(ficrest,"\n");           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
       }           female is 1, then modmaxcovj=1.*/
     }      }
   }      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
              cptcode=modmaxcovj;
              /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
      /*for (i=0; i<=cptcode; i++) {*/
       for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
  fclose(ficreseij);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
  fclose(ficresvij);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
   fclose(ficrest);          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
   fclose(ficpar);        }
   free_vector(epj,1,nlstate+1);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
   /*  scanf("%d ",i); */           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
       } /* Ndum[-1] number of undefined modalities */
   /*------- Variance limit prevalence------*/    
       /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 strcpy(fileresvpl,"vpl");      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
   strcat(fileresvpl,fileres);      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {         modmincovj=3; modmaxcovj = 7;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
     exit(0);         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
   }         variables V1_1 and V1_2.
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);         nbcode[Tvar[j]][ij]=k;
          nbcode[Tvar[j]][1]=0;
  k=0;         nbcode[Tvar[j]][2]=1;
  for(cptcov=1;cptcov<=i1;cptcov++){         nbcode[Tvar[j]][3]=2;
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      */
      k=k+1;      ij=1; /* ij is similar to i but can jumps over null modalities */
      fprintf(ficresvpl,"\n#****** ");      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
      for(j=1;j<=cptcoveff;j++)        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          /*recode from 0 */
      fprintf(ficresvpl,"******\n");          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
                  nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
      varpl=matrix(1,nlstate,(int) bage, (int) fage);                                       k is a modality. If we have model=V1+V1*sex 
      oldm=oldms;savm=savms;                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            ij++;
    }          }
  }          if (ij > ncodemax[j]) break; 
         }  /* end of loop on */
   fclose(ficresvpl);      } /* end of loop on modality */ 
     } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   /*---------- End : free ----------------*/    
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
      
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
       ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
       Ndum[ij]++; 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);   } 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);   ij=1;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
       /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   free_matrix(matcov,1,npar,1,npar);     if((Ndum[i]!=0) && (i<=ncovcol)){
   free_vector(delti,1,npar);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
         Tvaraff[ij]=i; /*For printing (unclear) */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       ij++;
      }else
   printf("End of Imach\n");         Tvaraff[ij]=0;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */   }
     ij--;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   cptcoveff=ij; /*Number of total covariates*/
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/  }
   
   
  end:  /*********** Health Expectancies ****************/
 #ifdef windows  
  chdir(pathcd);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 #endif  
    {
  system("..\\gp37mgw\\wgnuplot graph.plt");    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm;
 #ifdef windows    int nhstepma, nstepma; /* Decreasing with age */
   while (z[0] != 'q') {    double age, agelim, hf;
     chdir(pathcd);    double ***p3mat;
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    double eip;
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");    pstamp(ficreseij);
     else if (z[0] == 'e') {    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       chdir(path);    fprintf(ficreseij,"# Age");
       system(optionfilehtm);    for(i=1; i<=nlstate;i++){
     }      for(j=1; j<=nlstate;j++){
     else if (z[0] == 'q') exit(0);        fprintf(ficreseij," e%1d%1d ",i,j);
   }      }
 #endif      fprintf(ficreseij," e%1d. ",i);
 }    }
     fprintf(ficreseij,"\n");
   
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
     int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
   
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for ");fprintf(ficlog," for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
     double age, agebase, agelim;
   
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         /*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
           k=k+1; 
       /* for (k=1; k <= (int) pow(2,cptcoveff); k++){*/
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
               fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         /*}*/
       }
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.17  
changed lines
  Added in v.1.180


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>