Diff for /imach/src/imach.c between versions 1.125 and 1.189

version 1.125, 2006/04/04 15:20:31 version 1.189, 2015/04/30 14:45:16
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.189  2015/04/30 14:45:16  brouard
     Summary: 0.98q2
   
     Revision 1.188  2015/04/30 08:27:53  brouard
     *** empty log message ***
   
     Revision 1.187  2015/04/29 09:11:15  brouard
     *** empty log message ***
   
     Revision 1.186  2015/04/23 12:01:52  brouard
     Summary: V1*age is working now, version 0.98q1
   
     Some codes had been disabled in order to simplify and Vn*age was
     working in the optimization phase, ie, giving correct MLE parameters,
     but, as usual, outputs were not correct and program core dumped.
   
     Revision 1.185  2015/03/11 13:26:42  brouard
     Summary: Inclusion of compile and links command line for Intel Compiler
   
     Revision 1.184  2015/03/11 11:52:39  brouard
     Summary: Back from Windows 8. Intel Compiler
   
     Revision 1.183  2015/03/10 20:34:32  brouard
     Summary: 0.98q0, trying with directest, mnbrak fixed
   
     We use directest instead of original Powell test; probably no
     incidence on the results, but better justifications;
     We fixed Numerical Recipes mnbrak routine which was wrong and gave
     wrong results.
   
     Revision 1.182  2015/02/12 08:19:57  brouard
     Summary: Trying to keep directest which seems simpler and more general
     Author: Nicolas Brouard
   
     Revision 1.181  2015/02/11 23:22:24  brouard
     Summary: Comments on Powell added
   
     Author:
   
     Revision 1.180  2015/02/11 17:33:45  brouard
     Summary: Finishing move from main to function (hpijx and prevalence_limit)
   
     Revision 1.179  2015/01/04 09:57:06  brouard
     Summary: back to OS/X
   
     Revision 1.178  2015/01/04 09:35:48  brouard
     *** empty log message ***
   
     Revision 1.177  2015/01/03 18:40:56  brouard
     Summary: Still testing ilc32 on OSX
   
     Revision 1.176  2015/01/03 16:45:04  brouard
     *** empty log message ***
   
     Revision 1.175  2015/01/03 16:33:42  brouard
     *** empty log message ***
   
     Revision 1.174  2015/01/03 16:15:49  brouard
     Summary: Still in cross-compilation
   
     Revision 1.173  2015/01/03 12:06:26  brouard
     Summary: trying to detect cross-compilation
   
     Revision 1.172  2014/12/27 12:07:47  brouard
     Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   
     Revision 1.171  2014/12/23 13:26:59  brouard
     Summary: Back from Visual C
   
     Still problem with utsname.h on Windows
   
     Revision 1.170  2014/12/23 11:17:12  brouard
     Summary: Cleaning some \%% back to %%
   
     The escape was mandatory for a specific compiler (which one?), but too many warnings.
   
     Revision 1.169  2014/12/22 23:08:31  brouard
     Summary: 0.98p
   
     Outputs some informations on compiler used, OS etc. Testing on different platforms.
   
     Revision 1.168  2014/12/22 15:17:42  brouard
     Summary: update
   
     Revision 1.167  2014/12/22 13:50:56  brouard
     Summary: Testing uname and compiler version and if compiled 32 or 64
   
     Testing on Linux 64
   
     Revision 1.166  2014/12/22 11:40:47  brouard
     *** empty log message ***
   
     Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.164  2014/12/16 10:52:11  brouard
     Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.163  2014/12/16 10:30:11  brouard
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.162  2014/09/25 11:43:39  brouard
     Summary: temporary backup 0.99!
   
     Revision 1.1  2014/09/16 11:06:58  brouard
     Summary: With some code (wrong) for nlopt
   
     Author:
   
     Revision 1.161  2014/09/15 20:41:41  brouard
     Summary: Problem with macro SQR on Intel compiler
   
     Revision 1.160  2014/09/02 09:24:05  brouard
     *** empty log message ***
   
     Revision 1.159  2014/09/01 10:34:10  brouard
     Summary: WIN32
     Author: Brouard
   
     Revision 1.158  2014/08/27 17:11:51  brouard
     *** empty log message ***
   
     Revision 1.157  2014/08/27 16:26:55  brouard
     Summary: Preparing windows Visual studio version
     Author: Brouard
   
     In order to compile on Visual studio, time.h is now correct and time_t
     and tm struct should be used. difftime should be used but sometimes I
     just make the differences in raw time format (time(&now).
     Trying to suppress #ifdef LINUX
     Add xdg-open for __linux in order to open default browser.
   
     Revision 1.156  2014/08/25 20:10:10  brouard
     *** empty log message ***
   
     Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
     Author: Brouard
   
     Revision 1.154  2014/06/20 17:32:08  brouard
     Summary: Outputs now all graphs of convergence to period prevalence
   
     Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
     Author: Brouard
   
     Revision 1.152  2014/06/18 17:54:09  brouard
     Summary: open browser, use gnuplot on same dir than imach if not found in the path
   
     Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
   
     Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
     Author: brouard
   
     Revision 1.149  2014/06/18 15:51:14  brouard
     Summary: Some fixes in parameter files errors
     Author: Nicolas Brouard
   
     Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
     Author: Brouard
   
     Just a new packaging for OS/X version 0.98nS
   
     Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
   
     Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
     Author: Brouard
   
     Merge, before building revised version.
   
     Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
     Author: Nicolas Brouard
   
     Lot of changes in order to output the results with some covariates
     After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
     No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
     the source code.
   
     Revision 1.143  2014/01/26 09:45:38  brouard
     Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
     Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
   
     Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   
     Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
   
     Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
   
     Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
     of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
     Some cleaning of code and comments added.
   
     Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
   
     Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
   
     Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
   
     Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
     Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
     Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
   
     Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
     computation.
     In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   
     Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     Version 0.98h
   
   Revision 1.125  2006/04/04 15:20:31  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   Errors in calculation of health expectancies. Age was not initialized.    Errors in calculation of health expectancies. Age was not initialized.
   Forecasting file added.    Forecasting file added.
   
   Revision 1.124  2006/03/22 17:13:53  lievre    Revision 1.124  2006/03/22 17:13:53  lievre
   Parameters are printed with %lf instead of %f (more numbers after the comma).    Parameters are printed with %lf instead of %f (more numbers after the comma).
   The log-likelihood is printed in the log file    The log-likelihood is printed in the log file
   
   Revision 1.123  2006/03/20 10:52:43  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   * imach.c (Module): <title> changed, corresponds to .htm file    * imach.c (Module): <title> changed, corresponds to .htm file
   name. <head> headers where missing.    name. <head> headers where missing.
   
   * imach.c (Module): Weights can have a decimal point as for    * imach.c (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.122  2006/03/20 09:45:41  brouard    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Weights can have a decimal point as for    (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.121  2006/03/16 17:45:01  lievre    Revision 1.121  2006/03/16 17:45:01  lievre
   * imach.c (Module): Comments concerning covariates added    * imach.c (Module): Comments concerning covariates added
   
   * imach.c (Module): refinements in the computation of lli if    * imach.c (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.120  2006/03/16 15:10:38  lievre    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): refinements in the computation of lli if    (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.119  2006/03/15 17:42:26  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): Bug if status = -2, the loglikelihood was    (Module): Bug if status = -2, the loglikelihood was
   computed as likelihood omitting the logarithm. Version O.98e    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.118  2006/03/14 18:20:07  brouard    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.117  2006/03/14 17:16:22  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.116  2006/03/06 10:29:27  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   (Module): Variance-covariance wrong links and    (Module): Variance-covariance wrong links and
   varian-covariance of ej. is needed (Saito).    varian-covariance of ej. is needed (Saito).
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.115  2006/02/27 12:17:45  brouard
   (Module): One freematrix added in mlikeli! 0.98c    (Module): One freematrix added in mlikeli! 0.98c
   
   Revision 1.114  2006/02/26 12:57:58  brouard    Revision 1.114  2006/02/26 12:57:58  brouard
   (Module): Some improvements in processing parameter    (Module): Some improvements in processing parameter
   filename with strsep.    filename with strsep.
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   (Module): Memory leaks checks with valgrind and:    (Module): Memory leaks checks with valgrind and:
   datafile was not closed, some imatrix were not freed and on matrix    datafile was not closed, some imatrix were not freed and on matrix
   allocation too.    allocation too.
   
   Revision 1.112  2006/01/30 09:55:26  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.111  2006/01/25 20:38:18  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   (Module): Comments can be added in data file. Missing date values    (Module): Comments can be added in data file. Missing date values
   can be a simple dot '.'.    can be a simple dot '.'.
   
   Revision 1.110  2006/01/25 00:51:50  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.109  2006/01/24 19:37:15  brouard
   (Module): Comments (lines starting with a #) are allowed in data.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.108  2006/01/19 18:05:42  lievre    Revision 1.108  2006/01/19 18:05:42  lievre
   Gnuplot problem appeared...    Gnuplot problem appeared...
   To be fixed    To be fixed
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.107  2006/01/19 16:20:37  brouard
   Test existence of gnuplot in imach path    Test existence of gnuplot in imach path
   
   Revision 1.106  2006/01/19 13:24:36  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   Some cleaning and links added in html output    Some cleaning and links added in html output
   
   Revision 1.105  2006/01/05 20:23:19  lievre    Revision 1.105  2006/01/05 20:23:19  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.104  2005/09/30 16:11:43  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): If the status is missing at the last wave but we know    (Module): If the status is missing at the last wave but we know
   that the person is alive, then we can code his/her status as -2    that the person is alive, then we can code his/her status as -2
   (instead of missing=-1 in earlier versions) and his/her    (instead of missing=-1 in earlier versions) and his/her
   contributions to the likelihood is 1 - Prob of dying from last    contributions to the likelihood is 1 - Prob of dying from last
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   the healthy state at last known wave). Version is 0.98    the healthy state at last known wave). Version is 0.98
   
   Revision 1.103  2005/09/30 15:54:49  lievre    Revision 1.103  2005/09/30 15:54:49  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.102  2004/09/15 17:31:30  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   Add the possibility to read data file including tab characters.    Add the possibility to read data file including tab characters.
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.101  2004/09/15 10:38:38  brouard
   Fix on curr_time    Fix on curr_time
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.100  2004/07/12 18:29:06  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   *** empty log message ***    *** empty log message ***
   
   Revision 1.98  2004/05/16 15:05:56  brouard    Revision 1.98  2004/05/16 15:05:56  brouard
   New version 0.97 . First attempt to estimate force of mortality    New version 0.97 . First attempt to estimate force of mortality
   directly from the data i.e. without the need of knowing the health    directly from the data i.e. without the need of knowing the health
   state at each age, but using a Gompertz model: log u =a + b*age .    state at each age, but using a Gompertz model: log u =a + b*age .
   This is the basic analysis of mortality and should be done before any    This is the basic analysis of mortality and should be done before any
   other analysis, in order to test if the mortality estimated from the    other analysis, in order to test if the mortality estimated from the
   cross-longitudinal survey is different from the mortality estimated    cross-longitudinal survey is different from the mortality estimated
   from other sources like vital statistic data.    from other sources like vital statistic data.
   
   The same imach parameter file can be used but the option for mle should be -3.    The same imach parameter file can be used but the option for mle should be -3.
   
   Agnès, who wrote this part of the code, tried to keep most of the    Agnès, who wrote this part of the code, tried to keep most of the
   former routines in order to include the new code within the former code.    former routines in order to include the new code within the former code.
   
   The output is very simple: only an estimate of the intercept and of    The output is very simple: only an estimate of the intercept and of
   the slope with 95% confident intervals.    the slope with 95% confident intervals.
   
   Current limitations:    Current limitations:
   A) Even if you enter covariates, i.e. with the    A) Even if you enter covariates, i.e. with the
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   B) There is no computation of Life Expectancy nor Life Table.    B) There is no computation of Life Expectancy nor Life Table.
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.97  2004/02/20 13:25:42  lievre
   Version 0.96d. Population forecasting command line is (temporarily)    Version 0.96d. Population forecasting command line is (temporarily)
   suppressed.    suppressed.
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.96  2003/07/15 15:38:55  brouard
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   rewritten within the same printf. Workaround: many printfs.    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.95  2003/07/08 07:54:34  brouard
   * imach.c (Repository):    * imach.c (Repository):
   (Repository): Using imachwizard code to output a more meaningful covariance    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix (cov(a12,c31) instead of numbers.    matrix (cov(a12,c31) instead of numbers.
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.94  2003/06/27 13:00:02  brouard
   Just cleaning    Just cleaning
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.93  2003/06/25 16:33:55  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   (Module): Version 0.96b    (Module): Version 0.96b
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.92  2003/06/25 16:30:45  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.91  2003/06/25 15:30:29  brouard
   * imach.c (Repository): Duplicated warning errors corrected.    * imach.c (Repository): Duplicated warning errors corrected.
   (Repository): Elapsed time after each iteration is now output. It    (Repository): Elapsed time after each iteration is now output. It
   helps to forecast when convergence will be reached. Elapsed time    helps to forecast when convergence will be reached. Elapsed time
   is stamped in powell.  We created a new html file for the graphs    is stamped in powell.  We created a new html file for the graphs
   concerning matrix of covariance. It has extension -cov.htm.    concerning matrix of covariance. It has extension -cov.htm.
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.90  2003/06/24 12:34:15  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    Revision 1.89  2003/06/24 12:30:52  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.88  2003/06/23 17:54:56  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.87  2003/06/18 12:26:01  brouard
   Version 0.96    Version 0.96
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.86  2003/06/17 20:04:08  brouard
   (Module): Change position of html and gnuplot routines and added    (Module): Change position of html and gnuplot routines and added
   routine fileappend.    routine fileappend.
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.85  2003/06/17 13:12:43  brouard
   * imach.c (Repository): Check when date of death was earlier that    * imach.c (Repository): Check when date of death was earlier that
   current date of interview. It may happen when the death was just    current date of interview. It may happen when the death was just
   prior to the death. In this case, dh was negative and likelihood    prior to the death. In this case, dh was negative and likelihood
   was wrong (infinity). We still send an "Error" but patch by    was wrong (infinity). We still send an "Error" but patch by
   assuming that the date of death was just one stepm after the    assuming that the date of death was just one stepm after the
   interview.    interview.
   (Repository): Because some people have very long ID (first column)    (Repository): Because some people have very long ID (first column)
   we changed int to long in num[] and we added a new lvector for    we changed int to long in num[] and we added a new lvector for
   memory allocation. But we also truncated to 8 characters (left    memory allocation. But we also truncated to 8 characters (left
   truncation)    truncation)
   (Repository): No more line truncation errors.    (Repository): No more line truncation errors.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.84  2003/06/13 21:44:43  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    * imach.c (Repository): Replace "freqsummary" at a correct
   place. It differs from routine "prevalence" which may be called    place. It differs from routine "prevalence" which may be called
   many times. Probs is memory consuming and must be used with    many times. Probs is memory consuming and must be used with
   parcimony.    parcimony.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.83  2003/06/10 13:39:11  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.82  2003/06/05 15:57:20  brouard
   Add log in  imach.c and  fullversion number is now printed.    Add log in  imach.c and  fullversion number is now printed.
   
 */  */
 /*  /*
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month, quarter,    states. This elementary transition (by month, quarter,
   semester or year) is modelled as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the period (stable) prevalence.    of the life expectancies. It also computes the period (stable) prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   **********************************************************************/    **********************************************************************/
 /*  /*
   main    main
   read parameterfile    read parameterfile
   read datafile    read datafile
   concatwav    concatwav
   freqsummary    freqsummary
   if (mle >= 1)    if (mle >= 1)
     mlikeli      mlikeli
   print results files    print results files
   if mle==1    if mle==1 
      computes hessian       computes hessian
   read end of parameter file: agemin, agemax, bage, fage, estepm    read end of parameter file: agemin, agemax, bage, fage, estepm
       begin-prev-date,...        begin-prev-date,...
   open gnuplot file    open gnuplot file
   open html file    open html file
   period (stable) prevalence    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
    for age prevalim()     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   h Pij x                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   variance of p varprob      freexexit2 possible for memory heap.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    h Pij x                         | pij_nom  ficrestpij
   Variance-covariance of DFLE     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   prevalence()         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
    movingaverage()         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   varevsij()  
   if popbased==1 varevsij(,popbased)         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   total life expectancies         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   Variance of period (stable) prevalence    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  end     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 */     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   
     forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
      Variance-covariance of DFLE
 #include <math.h>    prevalence()
 #include <stdio.h>     movingaverage()
 #include <stdlib.h>    varevsij() 
 #include <string.h>    if popbased==1 varevsij(,popbased)
 #include <unistd.h>    total life expectancies
     Variance of period (stable) prevalence
 #include <limits.h>   end
 #include <sys/types.h>  */
 #include <sys/stat.h>  
 #include <errno.h>  /* #define DEBUG */
 extern int errno;  /* #define DEBUGBRENT */
   #define POWELL /* Instead of NLOPT */
 /* #include <sys/time.h> */  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
 #include <time.h>  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
 #include "timeval.h"  
   #include <math.h>
 /* #include <libintl.h> */  #include <stdio.h>
 /* #define _(String) gettext (String) */  #include <stdlib.h>
   #include <string.h>
 #define MAXLINE 256  
   #ifdef _WIN32
 #define GNUPLOTPROGRAM "gnuplot"  #include <io.h>
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  #include <windows.h>
 #define FILENAMELENGTH 132  #include <tchar.h>
   #else
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #include <unistd.h>
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  #endif
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  #include <limits.h>
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  #include <sys/types.h>
   
 #define NINTERVMAX 8  #if defined(__GNUC__)
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  #include <sys/utsname.h> /* Doesn't work on Windows */
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  #endif
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000  #include <sys/stat.h>
 #define YEARM 12. /* Number of months per year */  #include <errno.h>
 #define AGESUP 130  /* extern int errno; */
 #define AGEBASE 40  
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */  /* #ifdef LINUX */
 #ifdef UNIX  /* #include <time.h> */
 #define DIRSEPARATOR '/'  /* #include "timeval.h" */
 #define CHARSEPARATOR "/"  /* #else */
 #define ODIRSEPARATOR '\\'  /* #include <sys/time.h> */
 #else  /* #endif */
 #define DIRSEPARATOR '\\'  
 #define CHARSEPARATOR "\\"  #include <time.h>
 #define ODIRSEPARATOR '/'  
 #endif  #ifdef GSL
   #include <gsl/gsl_errno.h>
 /* $Id$ */  #include <gsl/gsl_multimin.h>
 /* $State$ */  #endif
   
 char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";  
 char fullversion[]="$Revision$ $Date$";  #ifdef NLOPT
 char strstart[80];  #include <nlopt.h>
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  typedef struct {
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */    double (* function)(double [] );
 int nvar;  } myfunc_data ;
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  #endif
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */  /* #include <libintl.h> */
 int ndeath=1; /* Number of dead states */  /* #define _(String) gettext (String) */
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   
 int *wav; /* Number of waves for this individuual 0 is possible */  #define GNUPLOTPROGRAM "gnuplot"
 int maxwav; /* Maxim number of waves */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int jmin, jmax; /* min, max spacing between 2 waves */  #define FILENAMELENGTH 132
 int ijmin, ijmax; /* Individuals having jmin and jmax */  
 int gipmx, gsw; /* Global variables on the number of contributions  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
                    to the likelihood and the sum of weights (done by funcone)*/  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  #define NINTERVMAX 8
 double jmean; /* Mean space between 2 waves */  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
 FILE *ficlog, *ficrespow;  #define MAXN 20000
 int globpr; /* Global variable for printing or not */  #define YEARM 12. /**< Number of months per year */
 double fretone; /* Only one call to likelihood */  #define AGESUP 130
 long ipmx; /* Number of contributions */  #define AGEBASE 40
 double sw; /* Sum of weights */  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
 char filerespow[FILENAMELENGTH];  #ifdef _WIN32
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  #define DIRSEPARATOR '\\'
 FILE *ficresilk;  #define CHARSEPARATOR "\\"
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #define ODIRSEPARATOR '/'
 FILE *ficresprobmorprev;  #else
 FILE *fichtm, *fichtmcov; /* Html File */  #define DIRSEPARATOR '/'
 FILE *ficreseij;  #define CHARSEPARATOR "/"
 char filerese[FILENAMELENGTH];  #define ODIRSEPARATOR '\\'
 FILE *ficresstdeij;  #endif
 char fileresstde[FILENAMELENGTH];  
 FILE *ficrescveij;  /* $Id$ */
 char filerescve[FILENAMELENGTH];  /* $State$ */
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];  char version[]="Imach version 0.98q2, April 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
 FILE  *ficresvpl;  char fullversion[]="$Revision$ $Date$"; 
 char fileresvpl[FILENAMELENGTH];  char strstart[80];
 char title[MAXLINE];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
 char command[FILENAMELENGTH];  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 int  outcmd=0;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   int cptcovprodnoage=0; /**< Number of covariate products without age */   
 char filelog[FILENAMELENGTH]; /* Log file */  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 char filerest[FILENAMELENGTH];  int cptcov=0; /* Working variable */
 char fileregp[FILENAMELENGTH];  int npar=NPARMAX;
 char popfile[FILENAMELENGTH];  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  
 struct timezone tzp;  int *wav; /* Number of waves for this individuual 0 is possible */
 extern int gettimeofday();  int maxwav=0; /* Maxim number of waves */
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 long time_value;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 extern long time();  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 char strcurr[80], strfor[80];                     to the likelihood and the sum of weights (done by funcone)*/
   int mle=1, weightopt=0;
 char *endptr;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 long lval;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 double dval;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #define NR_END 1  int countcallfunc=0;  /* Count the number of calls to func */
 #define FREE_ARG char*  double jmean=1; /* Mean space between 2 waves */
 #define FTOL 1.0e-10  double **matprod2(); /* test */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 #define NRANSI  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 #define ITMAX 200  /*FILE *fic ; */ /* Used in readdata only */
   FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #define TOL 2.0e-4  FILE *ficlog, *ficrespow;
   int globpr=0; /* Global variable for printing or not */
 #define CGOLD 0.3819660  double fretone; /* Only one call to likelihood */
 #define ZEPS 1.0e-10  long ipmx=0; /* Number of contributions */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  double sw; /* Sum of weights */
   char filerespow[FILENAMELENGTH];
 #define GOLD 1.618034  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #define GLIMIT 100.0  FILE *ficresilk;
 #define TINY 1.0e-20  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 static double maxarg1,maxarg2;  FILE *fichtm, *fichtmcov; /* Html File */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  FILE *ficreseij;
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  char filerese[FILENAMELENGTH];
    FILE *ficresstdeij;
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  char fileresstde[FILENAMELENGTH];
 #define rint(a) floor(a+0.5)  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
 static double sqrarg;  FILE  *ficresvij;
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  char fileresv[FILENAMELENGTH];
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  FILE  *ficresvpl;
 int agegomp= AGEGOMP;  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 int imx;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 int stepm=1;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 /* Stepm, step in month: minimum step interpolation*/  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 int estepm;  int  outcmd=0;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 int m,nb;  
 long *num;  char filelog[FILENAMELENGTH]; /* Log file */
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  char filerest[FILENAMELENGTH];
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  char fileregp[FILENAMELENGTH];
 double **pmmij, ***probs;  char popfile[FILENAMELENGTH];
 double *ageexmed,*agecens;  
 double dateintmean=0;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
 double *weight;  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
 int **s; /* Status */  /* struct timezone tzp; */
 double *agedc, **covar, idx;  /* extern int gettimeofday(); */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  struct tm tml, *gmtime(), *localtime();
 double *lsurv, *lpop, *tpop;  
   extern time_t time();
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
 /**************** split *************************/  struct tm tm;
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {  char strcurr[80], strfor[80];
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  char *endptr;
   */  long lval;
   char  *ss;                            /* pointer */  double dval;
   int   l1, l2;                         /* length counters */  
   #define NR_END 1
   l1 = strlen(path );                   /* length of path */  #define FREE_ARG char*
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define FTOL 1.0e-10
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  #define NRANSI 
     strcpy( name, path );               /* we got the fullname name because no directory */  #define ITMAX 200 
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  #define TOL 2.0e-4 
     /* get current working directory */  
     /*    extern  char* getcwd ( char *buf , int len);*/  #define CGOLD 0.3819660 
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define ZEPS 1.0e-10 
       return( GLOCK_ERROR_GETCWD );  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     }  
     /* got dirc from getcwd*/  #define GOLD 1.618034 
     printf(" DIRC = %s \n",dirc);  #define GLIMIT 100.0 
   } else {                              /* strip direcotry from path */  #define TINY 1.0e-20 
     ss++;                               /* after this, the filename */  
     l2 = strlen( ss );                  /* length of filename */  static double maxarg1,maxarg2;
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     strcpy( name, ss );         /* save file name */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     strncpy( dirc, path, l1 - l2 );     /* now the directory */    
     dirc[l1-l2] = 0;                    /* add zero */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     printf(" DIRC2 = %s \n",dirc);  #define rint(a) floor(a+0.5)
   }  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   /* We add a separator at the end of dirc if not exists */  #define mytinydouble 1.0e-16
   l1 = strlen( dirc );                  /* length of directory */  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   if( dirc[l1-1] != DIRSEPARATOR ){  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
     dirc[l1] =  DIRSEPARATOR;  /* static double dsqrarg; */
     dirc[l1+1] = 0;  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
     printf(" DIRC3 = %s \n",dirc);  static double sqrarg;
   }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   ss = strrchr( name, '.' );            /* find last / */  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   if (ss >0){  int agegomp= AGEGOMP;
     ss++;  
     strcpy(ext,ss);                     /* save extension */  int imx; 
     l1= strlen( name);  int stepm=1;
     l2= strlen(ss)+1;  /* Stepm, step in month: minimum step interpolation*/
     strncpy( finame, name, l1-l2);  
     finame[l1-l2]= 0;  int estepm;
   }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
   return( 0 );                          /* we're done */  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 /******************************************/  double **pmmij, ***probs;
   double *ageexmed,*agecens;
 void replace_back_to_slash(char *s, char*t)  double dateintmean=0;
 {  
   int i;  double *weight;
   int lg=0;  int **s; /* Status */
   i=0;  double *agedc;
   lg=strlen(t);  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
   for(i=0; i<= lg; i++) {                    * covar=matrix(0,NCOVMAX,1,n); 
     (s[i] = t[i]);                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
     if (t[i]== '\\') s[i]='/';  double  idx; 
   }  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
 }  int *Ndum; /** Freq of modality (tricode */
   int **codtab; /**< codtab=imatrix(1,100,1,10); */
 int nbocc(char *s, char occ)  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
 {  double *lsurv, *lpop, *tpop;
   int i,j=0;  
   int lg=20;  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   i=0;  double ftolhess; /**< Tolerance for computing hessian */
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  /**************** split *************************/
   if  (s[i] == occ ) j++;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   }  {
   return j;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
 void cutv(char *u,char *v, char*t, char occ)    char  *ss;                            /* pointer */
 {    int   l1=0, l2=0;                             /* length counters */
   /* cuts string t into u and v where u ends before first occurence of char 'occ'  
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')    l1 = strlen(path );                   /* length of path */
      gives u="abcedf" and v="ghi2j" */    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   int i,lg,j,p=0;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   i=0;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   for(j=0; j<=strlen(t)-1; j++) {      strcpy( name, path );               /* we got the fullname name because no directory */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
   lg=strlen(t);      /*    extern  char* getcwd ( char *buf , int len);*/
   for(j=0; j<p; j++) {  #ifdef WIN32
     (u[j] = t[j]);      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
   }  #else
      u[p]='\0';          if (getcwd(dirc, FILENAME_MAX) == NULL) {
   #endif
    for(j=0; j<= lg; j++) {        return( GLOCK_ERROR_GETCWD );
     if (j>=(p+1))(v[j-p-1] = t[j]);      }
   }      /* got dirc from getcwd*/
 }      printf(" DIRC = %s \n",dirc);
     } else {                              /* strip direcotry from path */
 /********************** nrerror ********************/      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
 void nrerror(char error_text[])      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 {      strcpy( name, ss );         /* save file name */
   fprintf(stderr,"ERREUR ...\n");      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   fprintf(stderr,"%s\n",error_text);      dirc[l1-l2] = '\0';                 /* add zero */
   exit(EXIT_FAILURE);      printf(" DIRC2 = %s \n",dirc);
 }    }
 /*********************** vector *******************/    /* We add a separator at the end of dirc if not exists */
 double *vector(int nl, int nh)    l1 = strlen( dirc );                  /* length of directory */
 {    if( dirc[l1-1] != DIRSEPARATOR ){
   double *v;      dirc[l1] =  DIRSEPARATOR;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      dirc[l1+1] = 0; 
   if (!v) nrerror("allocation failure in vector");      printf(" DIRC3 = %s \n",dirc);
   return v-nl+NR_END;    }
 }    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
 /************************ free vector ******************/      ss++;
 void free_vector(double*v, int nl, int nh)      strcpy(ext,ss);                     /* save extension */
 {      l1= strlen( name);
   free((FREE_ARG)(v+nl-NR_END));      l2= strlen(ss)+1;
 }      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
 /************************ivector *******************************/    }
 int *ivector(long nl,long nh)  
 {    return( 0 );                          /* we're done */
   int *v;  }
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  /******************************************/
 }  
   void replace_back_to_slash(char *s, char*t)
 /******************free ivector **************************/  {
 void free_ivector(int *v, long nl, long nh)    int i;
 {    int lg=0;
   free((FREE_ARG)(v+nl-NR_END));    i=0;
 }    lg=strlen(t);
     for(i=0; i<= lg; i++) {
 /************************lvector *******************************/      (s[i] = t[i]);
 long *lvector(long nl,long nh)      if (t[i]== '\\') s[i]='/';
 {    }
   long *v;  }
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  
   if (!v) nrerror("allocation failure in ivector");  char *trimbb(char *out, char *in)
   return v-nl+NR_END;  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
 }    char *s;
     s=out;
 /******************free lvector **************************/    while (*in != '\0'){
 void free_lvector(long *v, long nl, long nh)      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
 {        in++;
   free((FREE_ARG)(v+nl-NR_END));      }
 }      *out++ = *in++;
     }
 /******************* imatrix *******************************/    *out='\0';
 int **imatrix(long nrl, long nrh, long ncl, long nch)    return s;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  }
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  /* char *substrchaine(char *out, char *in, char *chain) */
   int **m;  /* { */
    /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
   /* allocate pointers to rows */  /*   char *s, *t; */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  /*   t=in;s=out; */
   if (!m) nrerror("allocation failure 1 in matrix()");  /*   while ((*in != *chain) && (*in != '\0')){ */
   m += NR_END;  /*     *out++ = *in++; */
   m -= nrl;  /*   } */
    
    /*   /\* *in matches *chain *\/ */
   /* allocate rows and set pointers to them */  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /*   } */
   m[nrl] += NR_END;  /*   in--; chain--; */
   m[nrl] -= ncl;  /*   while ( (*in != '\0')){ */
    /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  /*     *out++ = *in++; */
    /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   /* return pointer to array of pointers to rows */  /*   } */
   return m;  /*   *out='\0'; */
 }  /*   out=s; */
   /*   return out; */
 /****************** free_imatrix *************************/  /* } */
 void free_imatrix(m,nrl,nrh,ncl,nch)  char *substrchaine(char *out, char *in, char *chain)
       int **m;  {
       long nch,ncl,nrh,nrl;    /* Substract chain 'chain' from 'in', return and output 'out' */
      /* free an int matrix allocated by imatrix() */    /* in="V1+V1*age+age*age+V2", chain="age*age" */
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    char *strloc;
   free((FREE_ARG) (m+nrl-NR_END));  
 }    strcpy (out, in); 
     strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
 /******************* matrix *******************************/    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
 double **matrix(long nrl, long nrh, long ncl, long nch)    if(strloc != NULL){ 
 {      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
   double **m;      /* strcpy (strloc, strloc +strlen(chain));*/
     }
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
   if (!m) nrerror("allocation failure 1 in matrix()");    return out;
   m += NR_END;  }
   m -= nrl;  
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char *cutl(char *blocc, char *alocc, char *in, char occ)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
   m[nrl] -= ncl;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef" and alocc="ghi2j".
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   return m;    */
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])    char *s, *t;
    */    t=in;s=in;
 }    while ((*in != occ) && (*in != '\0')){
       *alocc++ = *in++;
 /*************************free matrix ************************/    }
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    if( *in == occ){
 {      *(alocc)='\0';
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      s=++in;
   free((FREE_ARG)(m+nrl-NR_END));    }
 }   
     if (s == t) {/* occ not found */
 /******************* ma3x *******************************/      *(alocc-(in-s))='\0';
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)      in=s;
 {    }
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    while ( *in != '\0'){
   double ***m;      *blocc++ = *in++;
     }
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    *blocc='\0';
   m += NR_END;    return t;
   m -= nrl;  }
   char *cutv(char *blocc, char *alocc, char *in, char occ)
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
   m[nrl] += NR_END;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   m[nrl] -= ncl;       gives blocc="abcdef2ghi" and alocc="j".
        If occ is not found blocc is null and alocc is equal to in. Returns alocc
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    */
     char *s, *t;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    t=in;s=in;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    while (*in != '\0'){
   m[nrl][ncl] += NR_END;      while( *in == occ){
   m[nrl][ncl] -= nll;        *blocc++ = *in++;
   for (j=ncl+1; j<=nch; j++)        s=in;
     m[nrl][j]=m[nrl][j-1]+nlay;      }
        *blocc++ = *in++;
   for (i=nrl+1; i<=nrh; i++) {    }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    if (s == t) /* occ not found */
     for (j=ncl+1; j<=nch; j++)      *(blocc-(in-s))='\0';
       m[i][j]=m[i][j-1]+nlay;    else
   }      *(blocc-(in-s)-1)='\0';
   return m;    in=s;
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    while ( *in != '\0'){
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)      *alocc++ = *in++;
   */    }
 }  
     *alocc='\0';
 /*************************free ma3x ************************/    return s;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  }
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int nbocc(char *s, char occ)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  {
   free((FREE_ARG)(m+nrl-NR_END));    int i,j=0;
 }    int lg=20;
     i=0;
 /*************** function subdirf ***********/    lg=strlen(s);
 char *subdirf(char fileres[])    for(i=0; i<= lg; i++) {
 {    if  (s[i] == occ ) j++;
   /* Caution optionfilefiname is hidden */    }
   strcpy(tmpout,optionfilefiname);    return j;
   strcat(tmpout,"/"); /* Add to the right */  }
   strcat(tmpout,fileres);  
   return tmpout;  /* void cutv(char *u,char *v, char*t, char occ) */
 }  /* { */
   /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
 /*************** function subdirf2 ***********/  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
 char *subdirf2(char fileres[], char *preop)  /*      gives u="abcdef2ghi" and v="j" *\/ */
 {  /*   int i,lg,j,p=0; */
    /*   i=0; */
   /* Caution optionfilefiname is hidden */  /*   lg=strlen(t); */
   strcpy(tmpout,optionfilefiname);  /*   for(j=0; j<=lg-1; j++) { */
   strcat(tmpout,"/");  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   strcat(tmpout,preop);  /*   } */
   strcat(tmpout,fileres);  
   return tmpout;  /*   for(j=0; j<p; j++) { */
 }  /*     (u[j] = t[j]); */
   /*   } */
 /*************** function subdirf3 ***********/  /*      u[p]='\0'; */
 char *subdirf3(char fileres[], char *preop, char *preop2)  
 {  /*    for(j=0; j<= lg; j++) { */
    /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   /* Caution optionfilefiname is hidden */  /*   } */
   strcpy(tmpout,optionfilefiname);  /* } */
   strcat(tmpout,"/");  
   strcat(tmpout,preop);  #ifdef _WIN32
   strcat(tmpout,preop2);  char * strsep(char **pp, const char *delim)
   strcat(tmpout,fileres);  {
   return tmpout;    char *p, *q;
 }           
     if ((p = *pp) == NULL)
 /***************** f1dim *************************/      return 0;
 extern int ncom;    if ((q = strpbrk (p, delim)) != NULL)
 extern double *pcom,*xicom;    {
 extern double (*nrfunc)(double []);      *pp = q + 1;
        *q = '\0';
 double f1dim(double x)    }
 {    else
   int j;      *pp = 0;
   double f;    return p;
   double *xt;  }
    #endif
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  /********************** nrerror ********************/
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  void nrerror(char error_text[])
   return f;  {
 }    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
 /*****************brent *************************/    exit(EXIT_FAILURE);
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  }
 {  /*********************** vector *******************/
   int iter;  double *vector(int nl, int nh)
   double a,b,d,etemp;  {
   double fu,fv,fw,fx;    double *v;
   double ftemp;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double p,q,r,tol1,tol2,u,v,w,x,xm;    if (!v) nrerror("allocation failure in vector");
   double e=0.0;    return v-nl+NR_END;
    }
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  /************************ free vector ******************/
   x=w=v=bx;  void free_vector(double*v, int nl, int nh)
   fw=fv=fx=(*f)(x);  {
   for (iter=1;iter<=ITMAX;iter++) {    free((FREE_ARG)(v+nl-NR_END));
     xm=0.5*(a+b);  }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /************************ivector *******************************/
     printf(".");fflush(stdout);  int *ivector(long nl,long nh)
     fprintf(ficlog,".");fflush(ficlog);  {
 #ifdef DEBUG    int *v;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    if (!v) nrerror("allocation failure in ivector");
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    return v-nl+NR_END;
 #endif  }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  /******************free ivector **************************/
       return fx;  void free_ivector(int *v, long nl, long nh)
     }  {
     ftemp=fu;    free((FREE_ARG)(v+nl-NR_END));
     if (fabs(e) > tol1) {  }
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  /************************lvector *******************************/
       p=(x-v)*q-(x-w)*r;  long *lvector(long nl,long nh)
       q=2.0*(q-r);  {
       if (q > 0.0) p = -p;    long *v;
       q=fabs(q);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       etemp=e;    if (!v) nrerror("allocation failure in ivector");
       e=d;    return v-nl+NR_END;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  }
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  /******************free lvector **************************/
         d=p/q;  void free_lvector(long *v, long nl, long nh)
         u=x+d;  {
         if (u-a < tol2 || b-u < tol2)    free((FREE_ARG)(v+nl-NR_END));
           d=SIGN(tol1,xm-x);  }
       }  
     } else {  /******************* imatrix *******************************/
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  { 
     fu=(*f)(u);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     if (fu <= fx) {    int **m; 
       if (u >= x) a=x; else b=x;    
       SHFT(v,w,x,u)    /* allocate pointers to rows */ 
         SHFT(fv,fw,fx,fu)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         } else {    if (!m) nrerror("allocation failure 1 in matrix()"); 
           if (u < x) a=u; else b=u;    m += NR_END; 
           if (fu <= fw || w == x) {    m -= nrl; 
             v=w;    
             w=u;    
             fv=fw;    /* allocate rows and set pointers to them */ 
             fw=fu;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
           } else if (fu <= fv || v == x || v == w) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
             v=u;    m[nrl] += NR_END; 
             fv=fu;    m[nrl] -= ncl; 
           }    
         }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   }    
   nrerror("Too many iterations in brent");    /* return pointer to array of pointers to rows */ 
   *xmin=x;    return m; 
   return fx;  } 
 }  
   /****************** free_imatrix *************************/
 /****************** mnbrak ***********************/  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,        long nch,ncl,nrh,nrl; 
             double (*func)(double))       /* free an int matrix allocated by imatrix() */ 
 {  { 
   double ulim,u,r,q, dum;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double fu;    free((FREE_ARG) (m+nrl-NR_END)); 
    } 
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  /******************* matrix *******************************/
   if (*fb > *fa) {  double **matrix(long nrl, long nrh, long ncl, long nch)
     SHFT(dum,*ax,*bx,dum)  {
       SHFT(dum,*fb,*fa,dum)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       }    double **m;
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   while (*fb > *fc) {    if (!m) nrerror("allocation failure 1 in matrix()");
     r=(*bx-*ax)*(*fb-*fc);    m += NR_END;
     q=(*bx-*cx)*(*fb-*fa);    m -= nrl;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     ulim=(*bx)+GLIMIT*(*cx-*bx);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     if ((*bx-u)*(u-*cx) > 0.0) {    m[nrl] += NR_END;
       fu=(*func)(u);    m[nrl] -= ncl;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       if (fu < *fc) {    return m;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
           SHFT(*fb,*fc,fu,(*func)(u))  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
           }  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {     */
       u=ulim;  }
       fu=(*func)(u);  
     } else {  /*************************free matrix ************************/
       u=(*cx)+GOLD*(*cx-*bx);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       fu=(*func)(u);  {
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     SHFT(*ax,*bx,*cx,u)    free((FREE_ARG)(m+nrl-NR_END));
       SHFT(*fa,*fb,*fc,fu)  }
       }  
 }  /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 /*************** linmin ************************/  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 int ncom;    double ***m;
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      if (!m) nrerror("allocation failure 1 in matrix()");
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m += NR_END;
 {    m -= nrl;
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double f1dim(double x);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    m[nrl] += NR_END;
               double *fc, double (*func)(double));    m[nrl] -= ncl;
   int j;  
   double xx,xmin,bx,ax;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double fx,fb,fa;  
      m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   ncom=n;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   pcom=vector(1,n);    m[nrl][ncl] += NR_END;
   xicom=vector(1,n);    m[nrl][ncl] -= nll;
   nrfunc=func;    for (j=ncl+1; j<=nch; j++) 
   for (j=1;j<=n;j++) {      m[nrl][j]=m[nrl][j-1]+nlay;
     pcom[j]=p[j];    
     xicom[j]=xi[j];    for (i=nrl+1; i<=nrh; i++) {
   }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   ax=0.0;      for (j=ncl+1; j<=nch; j++) 
   xx=1.0;        m[i][j]=m[i][j-1]+nlay;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    return m; 
 #ifdef DEBUG    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    */
 #endif  }
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /*************************free ma3x ************************/
     p[j] += xi[j];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   }  {
   free_vector(xicom,1,n);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   free_vector(pcom,1,n);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 }    free((FREE_ARG)(m+nrl-NR_END));
   }
 char *asc_diff_time(long time_sec, char ascdiff[])  
 {  /*************** function subdirf ***********/
   long sec_left, days, hours, minutes;  char *subdirf(char fileres[])
   days = (time_sec) / (60*60*24);  {
   sec_left = (time_sec) % (60*60*24);    /* Caution optionfilefiname is hidden */
   hours = (sec_left) / (60*60) ;    strcpy(tmpout,optionfilefiname);
   sec_left = (sec_left) %(60*60);    strcat(tmpout,"/"); /* Add to the right */
   minutes = (sec_left) /60;    strcat(tmpout,fileres);
   sec_left = (sec_left) % (60);    return tmpout;
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);    }
   return ascdiff;  
 }  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
 /*************** powell ************************/  {
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    
             double (*func)(double []))    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   void linmin(double p[], double xi[], int n, double *fret,    strcat(tmpout,"/");
               double (*func)(double []));    strcat(tmpout,preop);
   int i,ibig,j;    strcat(tmpout,fileres);
   double del,t,*pt,*ptt,*xit;    return tmpout;
   double fp,fptt;  }
   double *xits;  
   int niterf, itmp;  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
   pt=vector(1,n);  {
   ptt=vector(1,n);    
   xit=vector(1,n);    /* Caution optionfilefiname is hidden */
   xits=vector(1,n);    strcpy(tmpout,optionfilefiname);
   *fret=(*func)(p);    strcat(tmpout,"/");
   for (j=1;j<=n;j++) pt[j]=p[j];    strcat(tmpout,preop);
   for (*iter=1;;++(*iter)) {    strcat(tmpout,preop2);
     fp=(*fret);    strcat(tmpout,fileres);
     ibig=0;    return tmpout;
     del=0.0;  }
     last_time=curr_time;  
     (void) gettimeofday(&curr_time,&tzp);  char *asc_diff_time(long time_sec, char ascdiff[])
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);  {
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);    long sec_left, days, hours, minutes;
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */    days = (time_sec) / (60*60*24);
    for (i=1;i<=n;i++) {    sec_left = (time_sec) % (60*60*24);
       printf(" %d %.12f",i, p[i]);    hours = (sec_left) / (60*60) ;
       fprintf(ficlog," %d %.12lf",i, p[i]);    sec_left = (sec_left) %(60*60);
       fprintf(ficrespow," %.12lf", p[i]);    minutes = (sec_left) /60;
     }    sec_left = (sec_left) % (60);
     printf("\n");    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
     fprintf(ficlog,"\n");    return ascdiff;
     fprintf(ficrespow,"\n");fflush(ficrespow);  }
     if(*iter <=3){  
       tm = *localtime(&curr_time.tv_sec);  /***************** f1dim *************************/
       strcpy(strcurr,asctime(&tm));  extern int ncom; 
 /*       asctime_r(&tm,strcurr); */  extern double *pcom,*xicom;
       forecast_time=curr_time;  extern double (*nrfunc)(double []); 
       itmp = strlen(strcurr);   
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */  double f1dim(double x) 
         strcurr[itmp-1]='\0';  { 
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    int j; 
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    double f;
       for(niterf=10;niterf<=30;niterf+=10){    double *xt; 
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);   
         tmf = *localtime(&forecast_time.tv_sec);    xt=vector(1,ncom); 
 /*      asctime_r(&tmf,strfor); */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         strcpy(strfor,asctime(&tmf));    f=(*nrfunc)(xt); 
         itmp = strlen(strfor);    free_vector(xt,1,ncom); 
         if(strfor[itmp-1]=='\n')    return f; 
         strfor[itmp-1]='\0';  } 
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);  
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);  /*****************brent *************************/
       }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     }  {
     for (i=1;i<=n;i++) {    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
       fptt=(*fret);     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
 #ifdef DEBUG     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
       printf("fret=%lf \n",*fret);     * returned function value. 
       fprintf(ficlog,"fret=%lf \n",*fret);    */
 #endif    int iter; 
       printf("%d",i);fflush(stdout);    double a,b,d,etemp;
       fprintf(ficlog,"%d",i);fflush(ficlog);    double fu=0,fv,fw,fx;
       linmin(p,xit,n,fret,func);    double ftemp=0.;
       if (fabs(fptt-(*fret)) > del) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         del=fabs(fptt-(*fret));    double e=0.0; 
         ibig=i;   
       }    a=(ax < cx ? ax : cx); 
 #ifdef DEBUG    b=(ax > cx ? ax : cx); 
       printf("%d %.12e",i,(*fret));    x=w=v=bx; 
       fprintf(ficlog,"%d %.12e",i,(*fret));    fw=fv=fx=(*f)(x); 
       for (j=1;j<=n;j++) {    for (iter=1;iter<=ITMAX;iter++) { 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      xm=0.5*(a+b); 
         printf(" x(%d)=%.12e",j,xit[j]);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       }      printf(".");fflush(stdout);
       for(j=1;j<=n;j++) {      fprintf(ficlog,".");fflush(ficlog);
         printf(" p=%.12e",p[j]);  #ifdef DEBUGBRENT
         fprintf(ficlog," p=%.12e",p[j]);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       printf("\n");      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       fprintf(ficlog,"\n");  #endif
 #endif      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     }        *xmin=x; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        return fx; 
 #ifdef DEBUG      } 
       int k[2],l;      ftemp=fu;
       k[0]=1;      if (fabs(e) > tol1) { 
       k[1]=-1;        r=(x-w)*(fx-fv); 
       printf("Max: %.12e",(*func)(p));        q=(x-v)*(fx-fw); 
       fprintf(ficlog,"Max: %.12e",(*func)(p));        p=(x-v)*q-(x-w)*r; 
       for (j=1;j<=n;j++) {        q=2.0*(q-r); 
         printf(" %.12e",p[j]);        if (q > 0.0) p = -p; 
         fprintf(ficlog," %.12e",p[j]);        q=fabs(q); 
       }        etemp=e; 
       printf("\n");        e=d; 
       fprintf(ficlog,"\n");        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       for(l=0;l<=1;l++) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         for (j=1;j<=n;j++) {        else { 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];          d=p/q; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);          u=x+d; 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);          if (u-a < tol2 || b-u < tol2) 
         }            d=SIGN(tol1,xm-x); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        } 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      } else { 
       }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #endif      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
       free_vector(xit,1,n);      if (fu <= fx) { 
       free_vector(xits,1,n);        if (u >= x) a=x; else b=x; 
       free_vector(ptt,1,n);        SHFT(v,w,x,u) 
       free_vector(pt,1,n);        SHFT(fv,fw,fx,fu) 
       return;      } else { 
     }        if (u < x) a=u; else b=u; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");        if (fu <= fw || w == x) { 
     for (j=1;j<=n;j++) {          v=w; 
       ptt[j]=2.0*p[j]-pt[j];          w=u; 
       xit[j]=p[j]-pt[j];          fv=fw; 
       pt[j]=p[j];          fw=fu; 
     }        } else if (fu <= fv || v == x || v == w) { 
     fptt=(*func)(ptt);          v=u; 
     if (fptt < fp) {          fv=fu; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        } 
       if (t < 0.0) {      } 
         linmin(p,xit,n,fret,func);    } 
         for (j=1;j<=n;j++) {    nrerror("Too many iterations in brent"); 
           xi[j][ibig]=xi[j][n];    *xmin=x; 
           xi[j][n]=xit[j];    return fx; 
         }  } 
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /****************** mnbrak ***********************/
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
           printf(" %.12e",xit[j]);              double (*func)(double)) 
           fprintf(ficlog," %.12e",xit[j]);  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
         }  the downhill direction (defined by the function as evaluated at the initial points) and returns
         printf("\n");  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
         fprintf(ficlog,"\n");  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
 #endif     */
       }    double ulim,u,r,q, dum;
     }    double fu; 
   }  
 }    double scale=10.;
     int iterscale=0;
 /**** Prevalence limit (stable or period prevalence)  ****************/  
     *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
     /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
   int i, ii,j,k;    /*   *bx = *ax - (*ax - *bx)/scale; */
   double min, max, maxmin, maxmax,sumnew=0.;    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
   double **matprod2();    /* } */
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;    if (*fb > *fa) { 
   double agefin, delaymax=50 ; /* Max number of years to converge */      SHFT(dum,*ax,*bx,dum) 
       SHFT(dum,*fb,*fa,dum) 
   for (ii=1;ii<=nlstate+ndeath;ii++)    } 
     for (j=1;j<=nlstate+ndeath;j++){    *cx=(*bx)+GOLD*(*bx-*ax); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    *fc=(*func)(*cx); 
     }  #ifdef DEBUG
     printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
    cov[1]=1.;    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
    #endif
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      r=(*bx-*ax)*(*fb-*fc); 
     newm=savm;      q=(*bx-*cx)*(*fb-*fa); 
     /* Covariates have to be included here again */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
      cov[2]=agefin;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
        ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
       for (k=1; k<=cptcovn;k++) {      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        fu=(*func)(u); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  #ifdef DEBUG
       }        /* f(x)=A(x-u)**2+f(u) */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        double A, fparabu; 
       for (k=1; k<=cptcovprod;k++)        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        fparabu= *fa - A*(*ax-u)*(*ax-u);
         printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        /* And thus,it can be that fu > *fc even if fparabu < *fc */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
         /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
     savm=oldm;  #endif 
     oldm=newm;  #ifdef MNBRAKORIGINAL
     maxmax=0.;  #else
     for(j=1;j<=nlstate;j++){        if (fu > *fc) {
       min=1.;  #ifdef DEBUG
       max=0.;        printf("mnbrak4  fu > fc \n");
       for(i=1; i<=nlstate; i++) {        fprintf(ficlog, "mnbrak4 fu > fc\n");
         sumnew=0;  #endif
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          /* SHFT(u,*cx,*cx,u) /\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\/  */
         prlim[i][j]= newm[i][j]/(1-sumnew);          /* SHFT(*fa,*fc,fu,*fc) /\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\/ */
         max=FMAX(max,prlim[i][j]);          dum=u; /* Shifting c and u */
         min=FMIN(min,prlim[i][j]);          u = *cx;
       }          *cx = dum;
       maxmin=max-min;          dum = fu;
       maxmax=FMAX(maxmax,maxmin);          fu = *fc;
     }          *fc =dum;
     if(maxmax < ftolpl){        } else { /* end */
       return prlim;  #ifdef DEBUG
     }        printf("mnbrak3  fu < fc \n");
   }        fprintf(ficlog, "mnbrak3 fu < fc\n");
 }  #endif
           dum=u; /* Shifting c and u */
 /*************** transition probabilities ***************/          u = *cx;
           *cx = dum;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          dum = fu;
 {          fu = *fc;
   double s1, s2;          *fc =dum;
   /*double t34;*/        }
   int i,j,j1, nc, ii, jj;  #endif
       } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
     for(i=1; i<= nlstate; i++){  #ifdef DEBUG
       for(j=1; j<i;j++){        printf("mnbrak2  u after c but before ulim\n");
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
           /*s2 += param[i][j][nc]*cov[nc];*/  #endif
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        fu=(*func)(u); 
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */        if (fu < *fc) { 
         }  #ifdef DEBUG
         ps[i][j]=s2;        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
       }  #endif
       for(j=i+1; j<=nlstate+ndeath;j++){          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          SHFT(*fb,*fc,fu,(*func)(u)) 
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        } 
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
         }  #ifdef DEBUG
         ps[i][j]=s2;        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
       }        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
     }  #endif
     /*ps[3][2]=1;*/        u=ulim; 
            fu=(*func)(u); 
     for(i=1; i<= nlstate; i++){      } else { /* u could be left to b (if r > q parabola has a maximum) */
       s1=0;  #ifdef DEBUG
       for(j=1; j<i; j++)        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
         s1+=exp(ps[i][j]);        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
       for(j=i+1; j<=nlstate+ndeath; j++)  #endif
         s1+=exp(ps[i][j]);        u=(*cx)+GOLD*(*cx-*bx); 
       ps[i][i]=1./(s1+1.);        fu=(*func)(u); 
       for(j=1; j<i; j++)      } /* end tests */
         ps[i][j]= exp(ps[i][j])*ps[i][i];      SHFT(*ax,*bx,*cx,u) 
       for(j=i+1; j<=nlstate+ndeath; j++)      SHFT(*fa,*fb,*fc,fu) 
         ps[i][j]= exp(ps[i][j])*ps[i][i];  #ifdef DEBUG
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
     } /* end i */        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
      #endif
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
       for(jj=1; jj<= nlstate+ndeath; jj++){  } 
         ps[ii][jj]=0;  
         ps[ii][ii]=1;  /*************** linmin ************************/
       }  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
     }  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
      and replaces xi by the actual vector displacement that p was moved. Also returns as fret
   the value of func at the returned location p . This is actually all accomplished by calling the
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */  routines mnbrak and brent .*/
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */  int ncom; 
 /*         printf("ddd %lf ",ps[ii][jj]); */  double *pcom,*xicom;
 /*       } */  double (*nrfunc)(double []); 
 /*       printf("\n "); */   
 /*        } */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 /*        printf("\n ");printf("%lf ",cov[2]); */  { 
        /*    double brent(double ax, double bx, double cx, 
       for(i=1; i<= npar; i++) printf("%f ",x[i]);                 double (*f)(double), double tol, double *xmin); 
       goto end;*/    double f1dim(double x); 
     return ps;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 }                double *fc, double (*func)(double)); 
     int j; 
 /**************** Product of 2 matrices ******************/    double xx,xmin,bx,ax; 
     double fx,fb,fa;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {    double scale=10., axs, xxs, xxss; /* Scale added for infinity */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times   
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    ncom=n; 
   /* in, b, out are matrice of pointers which should have been initialized    pcom=vector(1,n); 
      before: only the contents of out is modified. The function returns    xicom=vector(1,n); 
      a pointer to pointers identical to out */    nrfunc=func; 
   long i, j, k;    for (j=1;j<=n;j++) { 
   for(i=nrl; i<= nrh; i++)      pcom[j]=p[j]; 
     for(k=ncolol; k<=ncoloh; k++)      xicom[j]=xi[j]; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    } 
         out[i][k] +=in[i][j]*b[j][k];  
     axs=0.0;
   return out;    xxss=1; /* 1 and using scale */
 }    xxs=1;
     do{
       ax=0.;
 /************* Higher Matrix Product ***************/      xx= xxs;
       mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
 {      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
   /* Computes the transition matrix starting at age 'age' over      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
      'nhstepm*hstepm*stepm' months (i.e. until      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
      nhstepm*hstepm matrices.      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      if (fx != fx){
      (typically every 2 years instead of every month which is too big          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
      for the memory).          printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
      Model is determined by parameters x and covariates have to be      }
      included manually here.    }while(fx != fx);
   
      */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
     /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
   int i, j, d, h, k;    /* fmin = f(p[j] + xmin * xi[j]) */
   double **out, cov[NCOVMAX];    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
   double **newm;    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
   #ifdef DEBUG
   /* Hstepm could be zero and should return the unit matrix */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (i=1;i<=nlstate+ndeath;i++)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (j=1;j<=nlstate+ndeath;j++){  #endif
       oldm[i][j]=(i==j ? 1.0 : 0.0);    /* printf("linmin end "); */
       po[i][j][0]=(i==j ? 1.0 : 0.0);    for (j=1;j<=n;j++) { 
     }      /* printf(" before xi[%d]=%12.8f", j,xi[j]); */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      xi[j] *= xmin; /* xi rescaled by xmin: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
   for(h=1; h <=nhstepm; h++){      /* if(xxs <1.0) */
     for(d=1; d <=hstepm; d++){      /*   printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs ); */
       newm=savm;      p[j] += xi[j]; /* Parameters values are updated accordingly */
       /* Covariates have to be included here again */    } 
       cov[1]=1.;    /* printf("\n"); */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    /* printf("Comparing last *frec(xmin)=%12.8f from Brent and frec(0.)=%12.8f \n", *fret, (*func)(p)); */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    free_vector(xicom,1,n); 
       for (k=1; k<=cptcovage;k++)    free_vector(pcom,1,n); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  } 
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /*************** powell ************************/
   /*
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  Minimization of a function func of n variables. Input consists of an initial starting point
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  such that failure to decrease by more than this amount on one iteration signals doneness. On
       savm=oldm;  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
       oldm=newm;  function value at p , and iter is the number of iterations taken. The routine linmin is used.
     }   */
     for(i=1; i<=nlstate+ndeath; i++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for(j=1;j<=nlstate+ndeath;j++) {              double (*func)(double [])) 
         po[i][j][h]=newm[i][j];  { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    void linmin(double p[], double xi[], int n, double *fret, 
          */                double (*func)(double [])); 
       }    int i,ibig,j; 
   } /* end h */    double del,t,*pt,*ptt,*xit;
   return po;    double directest;
 }    double fp,fptt;
     double *xits;
     int niterf, itmp;
 /*************** log-likelihood *************/  
 double func( double *x)    pt=vector(1,n); 
 {    ptt=vector(1,n); 
   int i, ii, j, k, mi, d, kk;    xit=vector(1,n); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    xits=vector(1,n); 
   double **out;    *fret=(*func)(p); 
   double sw; /* Sum of weights */    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double lli; /* Individual log likelihood */      rcurr_time = time(NULL);  
   int s1, s2;    for (*iter=1;;++(*iter)) { 
   double bbh, survp;      fp=(*fret); /* From former iteration or initial value */
   long ipmx;      ibig=0; 
   /*extern weight */      del=0.0; 
   /* We are differentiating ll according to initial status */      rlast_time=rcurr_time;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      /* (void) gettimeofday(&curr_time,&tzp); */
   /*for(i=1;i<imx;i++)      rcurr_time = time(NULL);  
     printf(" %d\n",s[4][i]);      curr_time = *localtime(&rcurr_time);
   */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
   cov[1]=1.;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
   for(k=1; k<=nlstate; k++) ll[k]=0.;     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
   if(mle==1){        fprintf(ficlog," %d %.12lf",i, p[i]);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        fprintf(ficrespow," %.12lf", p[i]);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      }
       for(mi=1; mi<= wav[i]-1; mi++){      printf("\n");
         for (ii=1;ii<=nlstate+ndeath;ii++)      fprintf(ficlog,"\n");
           for (j=1;j<=nlstate+ndeath;j++){      fprintf(ficrespow,"\n");fflush(ficrespow);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if(*iter <=3){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        tml = *localtime(&rcurr_time);
           }        strcpy(strcurr,asctime(&tml));
         for(d=0; d<dh[mi][i]; d++){        rforecast_time=rcurr_time; 
           newm=savm;        itmp = strlen(strcurr);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           for (kk=1; kk<=cptcovage;kk++) {          strcurr[itmp-1]='\0';
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for(niterf=10;niterf<=30;niterf+=10){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
           savm=oldm;          forecast_time = *localtime(&rforecast_time);
           oldm=newm;          strcpy(strfor,asctime(&forecast_time));
         } /* end mult */          itmp = strlen(strfor);
                if(strfor[itmp-1]=='\n')
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */          strfor[itmp-1]='\0';
         /* But now since version 0.9 we anticipate for bias at large stepm.          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
          * If stepm is larger than one month (smallest stepm) and if the exact delay          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
          * (in months) between two waves is not a multiple of stepm, we rounded to        }
          * the nearest (and in case of equal distance, to the lowest) interval but now      }
          * we keep into memory the bias bh[mi][i] and also the previous matrix product      for (i=1;i<=n;i++) { /* For each direction i */
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
          * probability in order to take into account the bias as a fraction of the way        fptt=(*fret); 
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies  #ifdef DEBUG
          * -stepm/2 to stepm/2 .            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
          * For stepm=1 the results are the same as for previous versions of Imach.            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
          * For stepm > 1 the results are less biased than in previous versions.  #endif
          */            printf("%d",i);fflush(stdout); /* print direction (parameter) i */
         s1=s[mw[mi][i]][i];        fprintf(ficlog,"%d",i);fflush(ficlog);
         s2=s[mw[mi+1][i]][i];        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
         bbh=(double)bh[mi][i]/(double)stepm;                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
         /* bias bh is positive if real duration        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
          * is higher than the multiple of stepm and negative otherwise.          /* because that direction will be replaced unless the gain del is small */
          */          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
         if( s2 > nlstate){          /* with the new direction. */
           /* i.e. if s2 is a death state and if the date of death is known          del=fabs(fptt-(*fret)); 
              then the contribution to the likelihood is the probability to          ibig=i; 
              die between last step unit time and current  step unit time,        } 
              which is also equal to probability to die before dh  #ifdef DEBUG
              minus probability to die before dh-stepm .        printf("%d %.12e",i,(*fret));
              In version up to 0.92 likelihood was computed        fprintf(ficlog,"%d %.12e",i,(*fret));
         as if date of death was unknown. Death was treated as any other        for (j=1;j<=n;j++) {
         health state: the date of the interview describes the actual state          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         and not the date of a change in health state. The former idea was          printf(" x(%d)=%.12e",j,xit[j]);
         to consider that at each interview the state was recorded          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         (healthy, disable or death) and IMaCh was corrected; but when we        }
         introduced the exact date of death then we should have modified        for(j=1;j<=n;j++) {
         the contribution of an exact death to the likelihood. This new          printf(" p(%d)=%.12e",j,p[j]);
         contribution is smaller and very dependent of the step unit          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
         stepm. It is no more the probability to die between last interview        }
         and month of death but the probability to survive from last        printf("\n");
         interview up to one month before death multiplied by the        fprintf(ficlog,"\n");
         probability to die within a month. Thanks to Chris  #endif
         Jackson for correcting this bug.  Former versions increased      } /* end loop on each direction i */
         mortality artificially. The bad side is that we add another loop      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
         which slows down the processing. The difference can be up to 10%      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
         lower mortality.      /* New value of last point Pn is not computed, P(n-1) */
           */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
           lli=log(out[s1][s2] - savm[s1][s2]);        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
         /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
         /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
         } else if  (s2==-2) {        /* decreased of more than 3.84  */
           for (j=1,survp=0. ; j<=nlstate; j++)        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
           /*survp += out[s1][j]; */        /* By adding 10 parameters more the gain should be 18.31 */
           lli= log(survp);  
         }        /* Starting the program with initial values given by a former maximization will simply change */
                /* the scales of the directions and the directions, because the are reset to canonical directions */
         else if  (s2==-4) {        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
           for (j=3,survp=0. ; j<=nlstate; j++)          /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];  #ifdef DEBUG
           lli= log(survp);        int k[2],l;
         }        k[0]=1;
         k[1]=-1;
         else if  (s2==-5) {        printf("Max: %.12e",(*func)(p));
           for (j=1,survp=0. ; j<=2; j++)          fprintf(ficlog,"Max: %.12e",(*func)(p));
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];        for (j=1;j<=n;j++) {
           lli= log(survp);          printf(" %.12e",p[j]);
         }          fprintf(ficlog," %.12e",p[j]);
                }
         else{        printf("\n");
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */        fprintf(ficlog,"\n");
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */        for(l=0;l<=1;l++) {
         }          for (j=1;j<=n;j++) {
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         /*if(lli ==000.0)*/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         ipmx +=1;          }
         sw += weight[i];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       } /* end of wave */        }
     } /* end of individual */  #endif
   }  else if(mle==2){  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        free_vector(xit,1,n); 
       for(mi=1; mi<= wav[i]-1; mi++){        free_vector(xits,1,n); 
         for (ii=1;ii<=nlstate+ndeath;ii++)        free_vector(ptt,1,n); 
           for (j=1;j<=nlstate+ndeath;j++){        free_vector(pt,1,n); 
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        return; 
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      } 
           }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         for(d=0; d<=dh[mi][i]; d++){      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
           newm=savm;        ptt[j]=2.0*p[j]-pt[j]; 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        xit[j]=p[j]-pt[j]; 
           for (kk=1; kk<=cptcovage;kk++) {        pt[j]=p[j]; 
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      } 
           }      fptt=(*func)(ptt); /* f_3 */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
           savm=oldm;        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
           oldm=newm;        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         } /* end mult */        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
              /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
         s1=s[mw[mi][i]][i];        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
         s2=s[mw[mi+1][i]][i];        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
         bbh=(double)bh[mi][i]/(double)stepm;  #ifdef NRCORIGINAL
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
         ipmx +=1;  #else
         sw += weight[i];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        t= t- del*SQR(fp-fptt);
       } /* end of wave */  #endif
     } /* end of individual */        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
   }  else if(mle==3){  /* exponential inter-extrapolation */  #ifdef DEBUG
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
       for(mi=1; mi<= wav[i]-1; mi++){        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
         for (ii=1;ii<=nlstate+ndeath;ii++)               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
           for (j=1;j<=nlstate+ndeath;j++){        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
           }        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         for(d=0; d<dh[mi][i]; d++){  #endif
           newm=savm;  #ifdef POWELLORIGINAL
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        if (t < 0.0) { /* Then we use it for new direction */
           for (kk=1; kk<=cptcovage;kk++) {  #else
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        if (directest*t < 0.0) { /* Contradiction between both tests */
           }        printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
           savm=oldm;        fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
           oldm=newm;      } 
         } /* end mult */        if (directest < 0.0) { /* Then we use it for new direction */
        #endif
         s1=s[mw[mi][i]][i];          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
         s2=s[mw[mi+1][i]][i];          for (j=1;j<=n;j++) { 
         bbh=(double)bh[mi][i]/(double)stepm;            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
         ipmx +=1;          }
         sw += weight[i];          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       } /* end of wave */  
     } /* end of individual */  #ifdef DEBUG
   }else if (mle==4){  /* ml=4 no inter-extrapolation */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          for(j=1;j<=n;j++){
       for(mi=1; mi<= wav[i]-1; mi++){            printf(" %.12e",xit[j]);
         for (ii=1;ii<=nlstate+ndeath;ii++)            fprintf(ficlog," %.12e",xit[j]);
           for (j=1;j<=nlstate+ndeath;j++){          }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          printf("\n");
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          fprintf(ficlog,"\n");
           }  #endif
         for(d=0; d<dh[mi][i]; d++){        } /* end of t negative */
           newm=savm;      } /* end if (fptt < fp)  */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    } 
           for (kk=1; kk<=cptcovage;kk++) {  } 
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
           }  /**** Prevalence limit (stable or period prevalence)  ****************/
          
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  {
           savm=oldm;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
           oldm=newm;       matrix by transitions matrix until convergence is reached */
         } /* end mult */    
          int i, ii,j,k;
         s1=s[mw[mi][i]][i];    double min, max, maxmin, maxmax,sumnew=0.;
         s2=s[mw[mi+1][i]][i];    /* double **matprod2(); */ /* test */
         if( s2 > nlstate){    double **out, cov[NCOVMAX+1], **pmij();
           lli=log(out[s1][s2] - savm[s1][s2]);    double **newm;
         }else{    double agefin, delaymax=50 ; /* Max number of years to converge */
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */    
         }    for (ii=1;ii<=nlstate+ndeath;ii++)
         ipmx +=1;      for (j=1;j<=nlstate+ndeath;j++){
         sw += weight[i];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      }
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */    
       } /* end of wave */    cov[1]=1.;
     } /* end of individual */    
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      newm=savm;
       for(mi=1; mi<= wav[i]-1; mi++){      /* Covariates have to be included here again */
         for (ii=1;ii<=nlstate+ndeath;ii++)      cov[2]=agefin;
           for (j=1;j<=nlstate+ndeath;j++){      if(nagesqr==1)
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        cov[3]= agefin*agefin;;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      for (k=1; k<=cptcovn;k++) {
           }        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for(d=0; d<dh[mi][i]; d++){        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
           newm=savm;      }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (kk=1; kk<=cptcovage;kk++) {      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]*cov[2];
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      for (k=1; k<=cptcovprod;k++) /* Useless */
           }        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
              
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
           savm=oldm;      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
           oldm=newm;      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         } /* end mult */      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
            out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
         s1=s[mw[mi][i]][i];      
         s2=s[mw[mi+1][i]][i];      savm=oldm;
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */      oldm=newm;
         ipmx +=1;      maxmax=0.;
         sw += weight[i];      for(j=1;j<=nlstate;j++){
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        min=1.;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/        max=0.;
       } /* end of wave */        for(i=1; i<=nlstate; i++) {
     } /* end of individual */          sumnew=0;
   } /* End of if */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          prlim[i][j]= newm[i][j]/(1-sumnew);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          max=FMAX(max,prlim[i][j]);
   return -l;          min=FMIN(min,prlim[i][j]);
 }        }
         maxmin=max-min;
 /*************** log-likelihood *************/        maxmax=FMAX(maxmax,maxmin);
 double funcone( double *x)      } /* j loop */
 {      if(maxmax < ftolpl){
   /* Same as likeli but slower because of a lot of printf and if */        return prlim;
   int i, ii, j, k, mi, d, kk;      }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    } /* age loop */
   double **out;    return prlim; /* should not reach here */
   double lli; /* Individual log likelihood */  }
   double llt;  
   int s1, s2;  /*************** transition probabilities ***************/ 
   double bbh, survp;  
   /*extern weight */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   /* We are differentiating ll according to initial status */  {
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /* According to parameters values stored in x and the covariate's values stored in cov,
   /*for(i=1;i<imx;i++)       computes the probability to be observed in state j being in state i by appying the
     printf(" %d\n",s[4][i]);       model to the ncovmodel covariates (including constant and age).
   */       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   cov[1]=1.;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
        ncth covariate in the global vector x is given by the formula:
   for(k=1; k<=nlstate; k++) ll[k]=0.;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
        j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
     for(mi=1; mi<= wav[i]-1; mi++){       Outputs ps[i][j] the probability to be observed in j being in j according to
       for (ii=1;ii<=nlstate+ndeath;ii++)       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         for (j=1;j<=nlstate+ndeath;j++){    */
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double s1, lnpijopii;
           savm[ii][j]=(ii==j ? 1.0 : 0.0);    /*double t34;*/
         }    int i,j, nc, ii, jj;
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;      for(i=1; i<= nlstate; i++){
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for(j=1; j<i;j++){
         for (kk=1; kk<=cptcovage;kk++) {          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            /*lnpijopii += param[i][j][nc]*cov[nc];*/
         }            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          }
         savm=oldm;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         oldm=newm;  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       } /* end mult */        }
              for(j=i+1; j<=nlstate+ndeath;j++){
       s1=s[mw[mi][i]][i];          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       s2=s[mw[mi+1][i]][i];            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
       bbh=(double)bh[mi][i]/(double)stepm;            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
       /* bias is positive if real duration  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
        * is higher than the multiple of stepm and negative otherwise.          }
        */          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       if( s2 > nlstate && (mle <5) ){  /* Jackson */        }
         lli=log(out[s1][s2] - savm[s1][s2]);      }
       } else if  (s2==-2) {      
         for (j=1,survp=0. ; j<=nlstate; j++)      for(i=1; i<= nlstate; i++){
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];        s1=0;
         lli= log(survp);        for(j=1; j<i; j++){
       }else if (mle==1){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       } else if(mle==2){        }
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */        for(j=i+1; j<=nlstate+ndeath; j++){
       } else if(mle==3){  /* exponential inter-extrapolation */          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       } else if (mle==4){  /* mle=4 no inter-extrapolation */        }
         lli=log(out[s1][s2]); /* Original formula */        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */        ps[i][i]=1./(s1+1.);
         lli=log(out[s1][s2]); /* Original formula */        /* Computing other pijs */
       } /* End of if */        for(j=1; j<i; j++)
       ipmx +=1;          ps[i][j]= exp(ps[i][j])*ps[i][i];
       sw += weight[i];        for(j=i+1; j<=nlstate+ndeath; j++)
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          ps[i][j]= exp(ps[i][j])*ps[i][i];
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       if(globpr){      } /* end i */
         fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\      
  %11.6f %11.6f %11.6f ", \      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],        for(jj=1; jj<= nlstate+ndeath; jj++){
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);          ps[ii][jj]=0;
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){          ps[ii][ii]=1;
           llt +=ll[k]*gipmx/gsw;        }
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);      }
         }      
         fprintf(ficresilk," %10.6f\n", -llt);      
       }      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     } /* end of wave */      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   } /* end of individual */      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      /*   } */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      /*   printf("\n "); */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      /* } */
   if(globpr==0){ /* First time we count the contributions and weights */      /* printf("\n ");printf("%lf ",cov[2]);*/
     gipmx=ipmx;      /*
     gsw=sw;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   }        goto end;*/
   return -l;      return ps;
 }  }
   
   /**************** Product of 2 matrices ******************/
 /*************** function likelione ***********/  
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
 {  {
   /* This routine should help understanding what is done with    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
      the selection of individuals/waves and       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
      to check the exact contribution to the likelihood.    /* in, b, out are matrice of pointers which should have been initialized 
      Plotting could be done.       before: only the contents of out is modified. The function returns
    */       a pointer to pointers identical to out */
   int k;    int i, j, k;
     for(i=nrl; i<= nrh; i++)
   if(*globpri !=0){ /* Just counts and sums, no printings */      for(k=ncolol; k<=ncoloh; k++){
     strcpy(fileresilk,"ilk");        out[i][k]=0.;
     strcat(fileresilk,fileres);        for(j=ncl; j<=nch; j++)
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {          out[i][k] +=in[i][j]*b[j][k];
       printf("Problem with resultfile: %s\n", fileresilk);      }
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);    return out;
     }  }
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");  
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");  
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */  /************* Higher Matrix Product ***************/
     for(k=1; k<=nlstate; k++)  
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");  {
   }    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
   *fretone=(*funcone)(p);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   if(*globpri !=0){       nhstepm*hstepm matrices. 
     fclose(ficresilk);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));       (typically every 2 years instead of every month which is too big 
     fflush(fichtm);       for the memory).
   }       Model is determined by parameters x and covariates have to be 
   return;       included manually here. 
 }  
        */
   
 /*********** Maximum Likelihood Estimation ***************/    int i, j, d, h, k;
     double **out, cov[NCOVMAX+1];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    double **newm;
 {    double agexact;
   int i,j, iter;  
   double **xi;    /* Hstepm could be zero and should return the unit matrix */
   double fret;    for (i=1;i<=nlstate+ndeath;i++)
   double fretone; /* Only one call to likelihood */      for (j=1;j<=nlstate+ndeath;j++){
   /*  char filerespow[FILENAMELENGTH];*/        oldm[i][j]=(i==j ? 1.0 : 0.0);
   xi=matrix(1,npar,1,npar);        po[i][j][0]=(i==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       xi[i][j]=(i==j ? 1.0 : 0.0);    for(h=1; h <=nhstepm; h++){
   printf("Powell\n");  fprintf(ficlog,"Powell\n");      for(d=1; d <=hstepm; d++){
   strcpy(filerespow,"pow");        newm=savm;
   strcat(filerespow,fileres);        /* Covariates have to be included here again */
   if((ficrespow=fopen(filerespow,"w"))==NULL) {        cov[1]=1.;
     printf("Problem with resultfile: %s\n", filerespow);        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        cov[2]=agexact;
   }        if(nagesqr==1)
   fprintf(ficrespow,"# Powell\n# iter -2*LL");          cov[3]= agexact*agexact;
   for (i=1;i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) 
     for(j=1;j<=nlstate+ndeath;j++)          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
   fprintf(ficrespow,"\n");          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
   powell(p,xi,npar,ftol,&iter,&fret,func);        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   free_matrix(xi,1,npar,1,npar);  
   fclose(ficrespow);  
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
 }        savm=oldm;
         oldm=newm;
 /**** Computes Hessian and covariance matrix ***/      }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      for(i=1; i<=nlstate+ndeath; i++)
 {        for(j=1;j<=nlstate+ndeath;j++) {
   double  **a,**y,*x,pd;          po[i][j][h]=newm[i][j];
   double **hess;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   int i, j,jk;        }
   int *indx;      /*printf("h=%d ",h);*/
     } /* end h */
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);  /*     printf("\n H=%d \n",h); */
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);    return po;
   void lubksb(double **a, int npar, int *indx, double b[]) ;  }
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   double gompertz(double p[]);  #ifdef NLOPT
   hess=matrix(1,npar,1,npar);    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
     double fret;
   printf("\nCalculation of the hessian matrix. Wait...\n");    double *xt;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    int j;
   for (i=1;i<=npar;i++){    myfunc_data *d2 = (myfunc_data *) pd;
     printf("%d",i);fflush(stdout);  /* xt = (p1-1); */
     fprintf(ficlog,"%d",i);fflush(ficlog);    xt=vector(1,n); 
        for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);  
        fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
     /*  printf(" %f ",p[i]);    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/    printf("Function = %.12lf ",fret);
   }    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
      printf("\n");
   for (i=1;i<=npar;i++) {   free_vector(xt,1,n);
     for (j=1;j<=npar;j++)  {    return fret;
       if (j>i) {  }
         printf(".%d%d",i,j);fflush(stdout);  #endif
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  
         hess[i][j]=hessij(p,delti,i,j,func,npar);  /*************** log-likelihood *************/
          double func( double *x)
         hess[j][i]=hess[i][j];      {
         /*printf(" %lf ",hess[i][j]);*/    int i, ii, j, k, mi, d, kk;
       }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     }    double **out;
   }    double sw; /* Sum of weights */
   printf("\n");    double lli; /* Individual log likelihood */
   fprintf(ficlog,"\n");    int s1, s2;
     double bbh, survp;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    long ipmx;
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    double agexact;
      /*extern weight */
   a=matrix(1,npar,1,npar);    /* We are differentiating ll according to initial status */
   y=matrix(1,npar,1,npar);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   x=vector(1,npar);    /*for(i=1;i<imx;i++) 
   indx=ivector(1,npar);      printf(" %d\n",s[4][i]);
   for (i=1;i<=npar;i++)    */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);    ++countcallfunc;
   
   for (j=1;j<=npar;j++) {    cov[1]=1.;
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){    if(mle==1){
       matcov[i][j]=x[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        /* Computes the values of the ncovmodel covariates of the model
   }           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
            Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   printf("\n#Hessian matrix#\n");           to be observed in j being in i according to the model.
   fprintf(ficlog,"\n#Hessian matrix#\n");         */
   for (i=1;i<=npar;i++) {        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
     for (j=1;j<=npar;j++) {            cov[2+nagesqr+k]=covar[Tvar[k]][i];
       printf("%.3e ",hess[i][j]);        }
       fprintf(ficlog,"%.3e ",hess[i][j]);        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
     }           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
     printf("\n");           has been calculated etc */
     fprintf(ficlog,"\n");        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   /* Recompute Inverse */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            }
   ludcmp(a,npar,indx,&pd);          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   /*  printf("\n#Hessian matrix recomputed#\n");            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
             cov[2]=agexact;
   for (j=1;j<=npar;j++) {            if(nagesqr==1)
     for (i=1;i<=npar;i++) x[i]=0;              cov[3]= agexact*agexact;
     x[j]=1;            for (kk=1; kk<=cptcovage;kk++) {
     lubksb(a,npar,indx,x);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
     for (i=1;i<=npar;i++){            }
       y[i][j]=x[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       printf("%.3e ",y[i][j]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficlog,"%.3e ",y[i][j]);            savm=oldm;
     }            oldm=newm;
     printf("\n");          } /* end mult */
     fprintf(ficlog,"\n");        
   }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   */          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
   free_matrix(a,1,npar,1,npar);           * (in months) between two waves is not a multiple of stepm, we rounded to 
   free_matrix(y,1,npar,1,npar);           * the nearest (and in case of equal distance, to the lowest) interval but now
   free_vector(x,1,npar);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   free_ivector(indx,1,npar);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   free_matrix(hess,1,npar,1,npar);           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
 }           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
 /*************** hessian matrix ****************/           */
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)          s1=s[mw[mi][i]][i];
 {          s2=s[mw[mi+1][i]][i];
   int i;          bbh=(double)bh[mi][i]/(double)stepm; 
   int l=1, lmax=20;          /* bias bh is positive if real duration
   double k1,k2;           * is higher than the multiple of stepm and negative otherwise.
   double p2[NPARMAX+1];           */
   double res;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;          if( s2 > nlstate){ 
   double fx;            /* i.e. if s2 is a death state and if the date of death is known 
   int k=0,kmax=10;               then the contribution to the likelihood is the probability to 
   double l1;               die between last step unit time and current  step unit time, 
                which is also equal to probability to die before dh 
   fx=func(x);               minus probability to die before dh-stepm . 
   for (i=1;i<=npar;i++) p2[i]=x[i];               In version up to 0.92 likelihood was computed
   for(l=0 ; l <=lmax; l++){          as if date of death was unknown. Death was treated as any other
     l1=pow(10,l);          health state: the date of the interview describes the actual state
     delts=delt;          and not the date of a change in health state. The former idea was
     for(k=1 ; k <kmax; k=k+1){          to consider that at each interview the state was recorded
       delt = delta*(l1*k);          (healthy, disable or death) and IMaCh was corrected; but when we
       p2[theta]=x[theta] +delt;          introduced the exact date of death then we should have modified
       k1=func(p2)-fx;          the contribution of an exact death to the likelihood. This new
       p2[theta]=x[theta]-delt;          contribution is smaller and very dependent of the step unit
       k2=func(p2)-fx;          stepm. It is no more the probability to die between last interview
       /*res= (k1-2.0*fx+k2)/delt/delt; */          and month of death but the probability to survive from last
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          interview up to one month before death multiplied by the
                probability to die within a month. Thanks to Chris
 #ifdef DEBUG          Jackson for correcting this bug.  Former versions increased
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          mortality artificially. The bad side is that we add another loop
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          which slows down the processing. The difference can be up to 10%
 #endif          lower mortality.
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          /* If, at the beginning of the maximization mostly, the
         k=kmax;             cumulative probability or probability to be dead is
       }             constant (ie = 1) over time d, the difference is equal to
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */             0.  out[s1][3] = savm[s1][3]: probability, being at state
         k=kmax; l=lmax*10.;             s1 at precedent wave, to be dead a month before current
       }             wave is equal to probability, being at state s1 at
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){             precedent wave, to be dead at mont of the current
         delts=delt;             wave. Then the observed probability (that this person died)
       }             is null according to current estimated parameter. In fact,
     }             it should be very low but not zero otherwise the log go to
   }             infinity.
   delti[theta]=delts;          */
   return res;  /* #ifdef INFINITYORIGINAL */
    /*          lli=log(out[s1][s2] - savm[s1][s2]); */
 }  /* #else */
   /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)  /*          lli=log(mytinydouble); */
 {  /*        else */
   int i;  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   int l=1, l1, lmax=20;  /* #endif */
   double k1,k2,k3,k4,res,fx;              lli=log(out[s1][s2] - savm[s1][s2]);
   double p2[NPARMAX+1];  
   int k;          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
   fx=func(x);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for (k=1; k<=2; k++) {            /*survp += out[s1][j]; */
     for (i=1;i<=npar;i++) p2[i]=x[i];            lli= log(survp);
     p2[thetai]=x[thetai]+delti[thetai]/k;          }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          
     k1=func(p2)-fx;          else if  (s2==-4) { 
              for (j=3,survp=0. ; j<=nlstate; j++)  
     p2[thetai]=x[thetai]+delti[thetai]/k;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            lli= log(survp); 
     k2=func(p2)-fx;          } 
    
     p2[thetai]=x[thetai]-delti[thetai]/k;          else if  (s2==-5) { 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            for (j=1,survp=0. ; j<=2; j++)  
     k3=func(p2)-fx;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              lli= log(survp); 
     p2[thetai]=x[thetai]-delti[thetai]/k;          } 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          
     k4=func(p2)-fx;          else{
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 #ifdef DEBUG            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          } 
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 #endif          /*if(lli ==000.0)*/
   }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   return res;          ipmx +=1;
 }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /************** Inverse of matrix **************/          /* if (lli < log(mytinydouble)){ */
 void ludcmp(double **a, int n, int *indx, double *d)          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
 {          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
   int i,imax,j,k;          /* } */
   double big,dum,sum,temp;        } /* end of wave */
   double *vv;      } /* end of individual */
      }  else if(mle==2){
   vv=vector(1,n);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   *d=1.0;        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   for (i=1;i<=n;i++) {        for(mi=1; mi<= wav[i]-1; mi++){
     big=0.0;          for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=1;j<=n;j++)            for (j=1;j<=nlstate+ndeath;j++){
       if ((temp=fabs(a[i][j])) > big) big=temp;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     vv[i]=1.0/big;            }
   }          for(d=0; d<=dh[mi][i]; d++){
   for (j=1;j<=n;j++) {            newm=savm;
     for (i=1;i<j;i++) {            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
       sum=a[i][j];            cov[2]=agexact;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            if(nagesqr==1)
       a[i][j]=sum;              cov[3]= agexact*agexact;
     }            for (kk=1; kk<=cptcovage;kk++) {
     big=0.0;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
     for (i=j;i<=n;i++) {            }
       sum=a[i][j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (k=1;k<j;k++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         sum -= a[i][k]*a[k][j];            savm=oldm;
       a[i][j]=sum;            oldm=newm;
       if ( (dum=vv[i]*fabs(sum)) >= big) {          } /* end mult */
         big=dum;        
         imax=i;          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
     if (j != imax) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for (k=1;k<=n;k++) {          ipmx +=1;
         dum=a[imax][k];          sw += weight[i];
         a[imax][k]=a[j][k];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         a[j][k]=dum;        } /* end of wave */
       }      } /* end of individual */
       *d = -(*d);    }  else if(mle==3){  /* exponential inter-extrapolation */
       vv[imax]=vv[j];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
     indx[j]=imax;        for(mi=1; mi<= wav[i]-1; mi++){
     if (a[j][j] == 0.0) a[j][j]=TINY;          for (ii=1;ii<=nlstate+ndeath;ii++)
     if (j != n) {            for (j=1;j<=nlstate+ndeath;j++){
       dum=1.0/(a[j][j]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
   }          for(d=0; d<dh[mi][i]; d++){
   free_vector(vv,1,n);  /* Doesn't work */            newm=savm;
 ;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            cov[2]=agexact;
             if(nagesqr==1)
 void lubksb(double **a, int n, int *indx, double b[])              cov[3]= agexact*agexact;
 {            for (kk=1; kk<=cptcovage;kk++) {
   int i,ii=0,ip,j;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   double sum;            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (i=1;i<=n;i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     ip=indx[i];            savm=oldm;
     sum=b[ip];            oldm=newm;
     b[ip]=b[i];          } /* end mult */
     if (ii)        
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          s1=s[mw[mi][i]][i];
     else if (sum) ii=i;          s2=s[mw[mi+1][i]][i];
     b[i]=sum;          bbh=(double)bh[mi][i]/(double)stepm; 
   }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   for (i=n;i>=1;i--) {          ipmx +=1;
     sum=b[i];          sw += weight[i];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     b[i]=sum/a[i][i];        } /* end of wave */
   }      } /* end of individual */
 }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void pstamp(FILE *fichier)        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);          for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Frequencies ********************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])            }
 {  /* Some frequencies */          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int first;            cov[2]=agexact;
   double ***freq; /* Frequencies */            if(nagesqr==1)
   double *pp, **prop;              cov[3]= agexact*agexact;
   double pos,posprop, k2, dateintsum=0,k2cpt=0;            for (kk=1; kk<=cptcovage;kk++) {
   char fileresp[FILENAMELENGTH];              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
              }
   pp=vector(1,nlstate);          
   prop=matrix(1,nlstate,iagemin,iagemax+3);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   strcpy(fileresp,"p");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcat(fileresp,fileres);            savm=oldm;
   if((ficresp=fopen(fileresp,"w"))==NULL) {            oldm=newm;
     printf("Problem with prevalence resultfile: %s\n", fileresp);          } /* end mult */
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);        
     exit(0);          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);          if( s2 > nlstate){ 
   j1=0;            lli=log(out[s1][s2] - savm[s1][s2]);
            }else{
   j=cptcoveff;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          }
           ipmx +=1;
   first=1;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(k1=1; k1<=j;k1++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(i1=1; i1<=ncodemax[k1];i1++){        } /* end of wave */
       j1++;      } /* end of individual */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         scanf("%d", i);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (i=-5; i<=nlstate+ndeath; i++)          for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         for (jk=-5; jk<=nlstate+ndeath; jk++)          for(mi=1; mi<= wav[i]-1; mi++){
           for(m=iagemin; m <= iagemax+3; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             freq[i][jk][m]=0;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<=nlstate; i++)                savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(m=iagemin; m <= iagemax+3; m++)            }
         prop[i][m]=0;          for(d=0; d<dh[mi][i]; d++){
                  newm=savm;
       dateintsum=0;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
       k2cpt=0;            cov[2]=agexact;
       for (i=1; i<=imx; i++) {            if(nagesqr==1)
         bool=1;              cov[3]= agexact*agexact;
         if  (cptcovn>0) {            for (kk=1; kk<=cptcovage;kk++) {
           for (z1=1; z1<=cptcoveff; z1++)              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            }
               bool=0;          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if (bool==1){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=firstpass; m<=lastpass; m++){            savm=oldm;
             k2=anint[m][i]+(mint[m][i]/12.);            oldm=newm;
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/          } /* end mult */
               if(agev[m][i]==0) agev[m][i]=iagemax+1;        
               if(agev[m][i]==1) agev[m][i]=iagemax+2;          s1=s[mw[mi][i]][i];
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];          s2=s[mw[mi+1][i]][i];
               if (m<lastpass) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          ipmx +=1;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];          sw += weight[i];
               }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {        } /* end of wave */
                 dateintsum=dateintsum+k2;      } /* end of individual */
                 k2cpt++;    } /* End of if */
               }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
               /*}*/    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         }    return -l;
       }  }
          
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/  /*************** log-likelihood *************/
       pstamp(ficresp);  double funcone( double *x)
       if  (cptcovn>0) {  {
         fprintf(ficresp, "\n#********** Variable ");    /* Same as likeli but slower because of a lot of printf and if */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int i, ii, j, k, mi, d, kk;
         fprintf(ficresp, "**********\n#");    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       }    double **out;
       for(i=1; i<=nlstate;i++)    double lli; /* Individual log likelihood */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    double llt;
       fprintf(ficresp, "\n");    int s1, s2;
          double bbh, survp;
       for(i=iagemin; i <= iagemax+3; i++){    double agexact;
         if(i==iagemax+3){    /*extern weight */
           fprintf(ficlog,"Total");    /* We are differentiating ll according to initial status */
         }else{    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           if(first==1){    /*for(i=1;i<imx;i++) 
             first=0;      printf(" %d\n",s[4][i]);
             printf("See log file for details...\n");    */
           }    cov[1]=1.;
           fprintf(ficlog,"Age %d", i);  
         }    for(k=1; k<=nlstate; k++) ll[k]=0.;
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             pp[jk] += freq[jk][m][i];      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         }      for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1; jk <=nlstate ; jk++){        for (ii=1;ii<=nlstate+ndeath;ii++)
           for(m=-1, pos=0; m <=0 ; m++)          for (j=1;j<=nlstate+ndeath;j++){
             pos += freq[jk][m][i];            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if(pp[jk]>=1.e-10){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(first==1){          }
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for(d=0; d<dh[mi][i]; d++){
             }          newm=savm;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }else{          cov[2]=agexact;
             if(first==1)          if(nagesqr==1)
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            cov[3]= agexact*agexact;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          for (kk=1; kk<=cptcovage;kk++) {
           }            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
         }          }
   
         for(jk=1; jk <=nlstate ; jk++){          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             pp[jk] += freq[jk][m][i];                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }                /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
           pos += pp[jk];          savm=oldm;
           posprop += prop[jk][i];          oldm=newm;
         }        } /* end mult */
         for(jk=1; jk <=nlstate ; jk++){        
           if(pos>=1.e-5){        s1=s[mw[mi][i]][i];
             if(first==1)        s2=s[mw[mi+1][i]][i];
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        bbh=(double)bh[mi][i]/(double)stepm; 
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        /* bias is positive if real duration
           }else{         * is higher than the multiple of stepm and negative otherwise.
             if(first==1)         */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          lli=log(out[s1][s2] - savm[s1][s2]);
           }        } else if  (s2==-2) {
           if( i <= iagemax){          for (j=1,survp=0. ; j<=nlstate; j++) 
             if(pos>=1.e-5){            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);          lli= log(survp);
               /*probs[i][jk][j1]= pp[jk]/pos;*/        }else if (mle==1){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             }        } else if(mle==2){
             else          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);        } else if(mle==3){  /* exponential inter-extrapolation */
           }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
                  lli=log(out[s1][s2]); /* Original formula */
         for(jk=-1; jk <=nlstate+ndeath; jk++)        } else{  /* mle=0 back to 1 */
           for(m=-1; m <=nlstate+ndeath; m++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             if(freq[jk][m][i] !=0 ) {          /*lli=log(out[s1][s2]); */ /* Original formula */
             if(first==1)        } /* End of if */
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        ipmx +=1;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        sw += weight[i];
             }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if(i <= iagemax)        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           fprintf(ficresp,"\n");        if(globpr){
         if(first==1)          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
           printf("Others in log...\n");   %11.6f %11.6f %11.6f ", \
         fprintf(ficlog,"\n");                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   }            llt +=ll[k]*gipmx/gsw;
   dateintmean=dateintsum/k2cpt;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
            }
   fclose(ficresp);          fprintf(ficresilk," %10.6f\n", -llt);
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);        }
   free_vector(pp,1,nlstate);      } /* end of wave */
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);    } /* end of individual */
   /* End of Freq */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 /************ Prevalence ********************/    if(globpr==0){ /* First time we count the contributions and weights */
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)      gipmx=ipmx;
 {        gsw=sw;
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people    }
      in each health status at the date of interview (if between dateprev1 and dateprev2).    return -l;
      We still use firstpass and lastpass as another selection.  }
   */  
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  /*************** function likelione ***********/
   double ***freq; /* Frequencies */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   double *pp, **prop;  {
   double pos,posprop;    /* This routine should help understanding what is done with 
   double  y2; /* in fractional years */       the selection of individuals/waves and
   int iagemin, iagemax;       to check the exact contribution to the likelihood.
        Plotting could be done.
   iagemin= (int) agemin;     */
   iagemax= (int) agemax;    int k;
   /*pp=vector(1,nlstate);*/  
   prop=matrix(1,nlstate,iagemin,iagemax+3);    if(*globpri !=0){ /* Just counts and sums, no printings */
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/      strcpy(fileresilk,"ilk"); 
   j1=0;      strcat(fileresilk,fileres);
        if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   j=cptcoveff;        printf("Problem with resultfile: %s\n", fileresilk);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
        }
   for(k1=1; k1<=j;k1++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     for(i1=1; i1<=ncodemax[k1];i1++){      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       j1++;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
            for(k=1; k<=nlstate; k++) 
       for (i=1; i<=nlstate; i++)          fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         for(m=iagemin; m <= iagemax+3; m++)      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
           prop[i][m]=0.0;    }
        
       for (i=1; i<=imx; i++) { /* Each individual */    *fretone=(*funcone)(p);
         bool=1;    if(*globpri !=0){
         if  (cptcovn>0) {      fclose(ficresilk);
           for (z1=1; z1<=cptcoveff; z1++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      fflush(fichtm); 
               bool=0;    } 
         }    return;
         if (bool==1) {  }
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/  
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */  
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */  /*********** Maximum Likelihood Estimation ***************/
               if(agev[m][i]==0) agev[m][i]=iagemax+1;  
               if(agev[m][i]==1) agev[m][i]=iagemax+2;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);  {
               if (s[m][i]>0 && s[m][i]<=nlstate) {    int i,j, iter=0;
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/    double **xi;
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];    double fret;
                 prop[s[m][i]][iagemax+3] += weight[i];    double fretone; /* Only one call to likelihood */
               }    /*  char filerespow[FILENAMELENGTH];*/
             }  
           } /* end selection of waves */  #ifdef NLOPT
         }    int creturn;
       }    nlopt_opt opt;
       for(i=iagemin; i <= iagemax+3; i++){      /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
            double *lb;
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {    double minf; /* the minimum objective value, upon return */
           posprop += prop[jk][i];    double * p1; /* Shifted parameters from 0 instead of 1 */
         }    myfunc_data dinst, *d = &dinst;
   #endif
         for(jk=1; jk <=nlstate ; jk++){      
           if( i <=  iagemax){  
             if(posprop>=1.e-5){    xi=matrix(1,npar,1,npar);
               probs[i][jk][j1]= prop[jk][i]/posprop;    for (i=1;i<=npar;i++)
             }      for (j=1;j<=npar;j++)
           }        xi[i][j]=(i==j ? 1.0 : 0.0);
         }/* end jk */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       }/* end i */    strcpy(filerespow,"pow"); 
     } /* end i1 */    strcat(filerespow,fileres);
   } /* end k1 */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", filerespow);
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   /*free_vector(pp,1,nlstate);*/    }
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
 }  /* End of prevalence */    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
 /************* Waves Concatenation ***************/        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  #ifdef POWELL
 {    powell(p,xi,npar,ftol,&iter,&fret,func);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  #endif
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  #ifdef NLOPT
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]  #ifdef NEWUOA
      and mw[mi+1][i]. dh depends on stepm.    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
      */  #else
     opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   int i, mi, m;  #endif
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    lb=vector(0,npar-1);
      double sum=0., jmean=0.;*/    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
   int first;    nlopt_set_lower_bounds(opt, lb);
   int j, k=0,jk, ju, jl;    nlopt_set_initial_step1(opt, 0.1);
   double sum=0.;    
   first=0;    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
   jmin=1e+5;    d->function = func;
   jmax=-1;    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
   jmean=0.;    nlopt_set_min_objective(opt, myfunc, d);
   for(i=1; i<=imx; i++){    nlopt_set_xtol_rel(opt, ftol);
     mi=0;    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
     m=firstpass;      printf("nlopt failed! %d\n",creturn); 
     while(s[m][i] <= nlstate){    }
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)    else {
         mw[++mi][i]=m;      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       if(m >=lastpass)      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
         break;      iter=1; /* not equal */
       else    }
         m++;    nlopt_destroy(opt);
     }/* end while */  #endif
     if (s[m][i] > nlstate){    free_matrix(xi,1,npar,1,npar);
       mi++;     /* Death is another wave */    fclose(ficrespow);
       /* if(mi==0)  never been interviewed correctly before death */    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
          /* Only death is a correct wave */    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
       mw[mi][i]=m;    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     }  
   }
     wav[i]=mi;  
     if(mi==0){  /**** Computes Hessian and covariance matrix ***/
       nbwarn++;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       if(first==0){  {
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);    double  **a,**y,*x,pd;
         first=1;    double **hess;
       }    int i, j;
       if(first==1){    int *indx;
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);  
       }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     } /* end mi==0 */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   } /* End individuals */    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
   for(i=1; i<=imx; i++){    double gompertz(double p[]);
     for(mi=1; mi<wav[i];mi++){    hess=matrix(1,npar,1,npar);
       if (stepm <=0)  
         dh[mi][i]=1;    printf("\nCalculation of the hessian matrix. Wait...\n");
       else{    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */    for (i=1;i<=npar;i++){
           if (agedc[i] < 2*AGESUP) {      printf("%d",i);fflush(stdout);
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      fprintf(ficlog,"%d",i);fflush(ficlog);
             if(j==0) j=1;  /* Survives at least one month after exam */     
             else if(j<0){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
               nberr++;      
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);      /*  printf(" %f ",p[i]);
               j=1; /* Temporary Dangerous patch */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);    }
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);    for (i=1;i<=npar;i++) {
             }      for (j=1;j<=npar;j++)  {
             k=k+1;        if (j>i) { 
             if (j >= jmax){          printf(".%d%d",i,j);fflush(stdout);
               jmax=j;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
               ijmax=i;          hess[i][j]=hessij(p,delti,i,j,func,npar);
             }          
             if (j <= jmin){          hess[j][i]=hess[i][j];    
               jmin=j;          /*printf(" %lf ",hess[i][j]);*/
               ijmin=i;        }
             }      }
             sum=sum+j;    }
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/    printf("\n");
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/    fprintf(ficlog,"\n");
           }  
         }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         else{    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
           k=k+1;    x=vector(1,npar);
           if (j >= jmax) {    indx=ivector(1,npar);
             jmax=j;    for (i=1;i<=npar;i++)
             ijmax=i;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           }    ludcmp(a,npar,indx,&pd);
           else if (j <= jmin){  
             jmin=j;    for (j=1;j<=npar;j++) {
             ijmin=i;      for (i=1;i<=npar;i++) x[i]=0;
           }      x[j]=1;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      lubksb(a,npar,indx,x);
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/      for (i=1;i<=npar;i++){ 
           if(j<0){        matcov[i][j]=x[i];
             nberr++;      }
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    }
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);  
           }    printf("\n#Hessian matrix#\n");
           sum=sum+j;    fprintf(ficlog,"\n#Hessian matrix#\n");
         }    for (i=1;i<=npar;i++) { 
         jk= j/stepm;      for (j=1;j<=npar;j++) { 
         jl= j -jk*stepm;        printf("%.3e ",hess[i][j]);
         ju= j -(jk+1)*stepm;        fprintf(ficlog,"%.3e ",hess[i][j]);
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */      }
           if(jl==0){      printf("\n");
             dh[mi][i]=jk;      fprintf(ficlog,"\n");
             bh[mi][i]=0;    }
           }else{ /* We want a negative bias in order to only have interpolation ie  
                   * at the price of an extra matrix product in likelihood */    /* Recompute Inverse */
             dh[mi][i]=jk+1;    for (i=1;i<=npar;i++)
             bh[mi][i]=ju;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           }    ludcmp(a,npar,indx,&pd);
         }else{  
           if(jl <= -ju){    /*  printf("\n#Hessian matrix recomputed#\n");
             dh[mi][i]=jk;  
             bh[mi][i]=jl;       /* bias is positive if real duration    for (j=1;j<=npar;j++) {
                                  * is higher than the multiple of stepm and negative otherwise.      for (i=1;i<=npar;i++) x[i]=0;
                                  */      x[j]=1;
           }      lubksb(a,npar,indx,x);
           else{      for (i=1;i<=npar;i++){ 
             dh[mi][i]=jk+1;        y[i][j]=x[i];
             bh[mi][i]=ju;        printf("%.3e ",y[i][j]);
           }        fprintf(ficlog,"%.3e ",y[i][j]);
           if(dh[mi][i]==0){      }
             dh[mi][i]=1; /* At least one step */      printf("\n");
             bh[mi][i]=ju; /* At least one step */      fprintf(ficlog,"\n");
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/    }
           }    */
         } /* end if mle */  
       }    free_matrix(a,1,npar,1,npar);
     } /* end wave */    free_matrix(y,1,npar,1,npar);
   }    free_vector(x,1,npar);
   jmean=sum/k;    free_ivector(indx,1,npar);
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);    free_matrix(hess,1,npar,1,npar);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);  
  }  
   }
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)  /*************** hessian matrix ****************/
 {  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
    {
   int Ndum[20],ij=1, k, j, i, maxncov=19;    int i;
   int cptcode=0;    int l=1, lmax=20;
   cptcoveff=0;    double k1,k2;
      double p2[MAXPARM+1]; /* identical to x */
   for (k=0; k<maxncov; k++) Ndum[k]=0;    double res;
   for (k=1; k<=7; k++) ncodemax[k]=0;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    int k=0,kmax=10;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum    double l1;
                                modality*/  
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/    fx=func(x);
       Ndum[ij]++; /*store the modality */    for (i=1;i<=npar;i++) p2[i]=x[i];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable      l1=pow(10,l);
                                        Tvar[j]. If V=sex and male is 0 and      delts=delt;
                                        female is 1, then  cptcode=1.*/      for(k=1 ; k <kmax; k=k+1){
     }        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
     for (i=0; i<=cptcode; i++) {        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */        p2[theta]=x[theta]-delt;
     }        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
     ij=1;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     for (i=1; i<=ncodemax[j]; i++) {        
       for (k=0; k<= maxncov; k++) {  #ifdef DEBUGHESS
         if (Ndum[k] != 0) {        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           nbcode[Tvar[j]][ij]=k;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */  #endif
                  /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           ij++;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         }          k=kmax;
         if (ij > ncodemax[j]) break;        }
       }          else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     }          k=kmax; l=lmax*10;
   }          }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
  for (k=0; k< maxncov; k++) Ndum[k]=0;          delts=delt;
         }
  for (i=1; i<=ncovmodel-2; i++) {      }
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/    }
    ij=Tvar[i];    delti[theta]=delts;
    Ndum[ij]++;    return res; 
  }    
   }
  ij=1;  
  for (i=1; i<= maxncov; i++) {  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
    if((Ndum[i]!=0) && (i<=ncovcol)){  {
      Tvaraff[ij]=i; /*For printing */    int i;
      ij++;    int l=1, lmax=20;
    }    double k1,k2,k3,k4,res,fx;
  }    double p2[MAXPARM+1];
      int k;
  cptcoveff=ij-1; /*Number of simple covariates*/  
 }    fx=func(x);
     for (k=1; k<=2; k++) {
 /*********** Health Expectancies ****************/      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
 {    
   /* Health expectancies, no variances */      p2[thetai]=x[thetai]+delti[thetai]/k;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double age, agelim, hf;      k2=func(p2)-fx;
   double ***p3mat;    
   double eip;      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   pstamp(ficreseij);      k3=func(p2)-fx;
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");    
   fprintf(ficreseij,"# Age");      p2[thetai]=x[thetai]-delti[thetai]/k;
   for(i=1; i<=nlstate;i++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for(j=1; j<=nlstate;j++){      k4=func(p2)-fx;
       fprintf(ficreseij," e%1d%1d ",i,j);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     }  #ifdef DEBUG
     fprintf(ficreseij," e%1d. ",i);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fprintf(ficreseij,"\n");  #endif
     }
      return res;
   if(estepm < stepm){  }
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  /************** Inverse of matrix **************/
   else  hstepm=estepm;    void ludcmp(double **a, int n, int *indx, double *d) 
   /* We compute the life expectancy from trapezoids spaced every estepm months  { 
    * This is mainly to measure the difference between two models: for example    int i,imax,j,k; 
    * if stepm=24 months pijx are given only every 2 years and by summing them    double big,dum,sum,temp; 
    * we are calculating an estimate of the Life Expectancy assuming a linear    double *vv; 
    * progression in between and thus overestimating or underestimating according   
    * to the curvature of the survival function. If, for the same date, we    vv=vector(1,n); 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    *d=1.0; 
    * to compare the new estimate of Life expectancy with the same linear    for (i=1;i<=n;i++) { 
    * hypothesis. A more precise result, taking into account a more precise      big=0.0; 
    * curvature will be obtained if estepm is as small as stepm. */      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
   /* For example we decided to compute the life expectancy with the smallest unit */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      vv[i]=1.0/big; 
      nhstepm is the number of hstepm from age to agelim    } 
      nstepm is the number of stepm from age to agelin.    for (j=1;j<=n;j++) { 
      Look at hpijx to understand the reason of that which relies in memory size      for (i=1;i<j;i++) { 
      and note for a fixed period like estepm months */        sum=a[i][j]; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      survival function given by stepm (the optimization length). Unfortunately it        a[i][j]=sum; 
      means that if the survival funtion is printed only each two years of age and if      } 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      big=0.0; 
      results. So we changed our mind and took the option of the best precision.      for (i=j;i<=n;i++) { 
   */        sum=a[i][j]; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
   agelim=AGESUP;        a[i][j]=sum; 
   /* If stepm=6 months */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          big=dum; 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          imax=i; 
            } 
 /* nhstepm age range expressed in number of stepm */      } 
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);      if (j != imax) { 
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */        for (k=1;k<=n;k++) { 
   /* if (stepm >= YEARM) hstepm=1;*/          dum=a[imax][k]; 
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          a[imax][k]=a[j][k]; 
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          a[j][k]=dum; 
         } 
   for (age=bage; age<=fage; age ++){        *d = -(*d); 
         vv[imax]=vv[j]; 
       } 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);        indx[j]=imax; 
          if (a[j][j] == 0.0) a[j][j]=TINY; 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      if (j != n) { 
            dum=1.0/(a[j][j]); 
     printf("%d|",(int)age);fflush(stdout);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      } 
        } 
     free_vector(vv,1,n);  /* Doesn't work */
     /* Computing expectancies */  ;
     for(i=1; i<=nlstate;i++)  } 
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  void lubksb(double **a, int n, int *indx, double b[]) 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  { 
              int i,ii=0,ip,j; 
           /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    double sum; 
    
         }    for (i=1;i<=n;i++) { 
          ip=indx[i]; 
     fprintf(ficreseij,"%3.0f",age );      sum=b[ip]; 
     for(i=1; i<=nlstate;i++){      b[ip]=b[i]; 
       eip=0;      if (ii) 
       for(j=1; j<=nlstate;j++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         eip +=eij[i][j][(int)age];      else if (sum) ii=i; 
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );      b[i]=sum; 
       }    } 
       fprintf(ficreseij,"%9.4f", eip );    for (i=n;i>=1;i--) { 
     }      sum=b[i]; 
     fprintf(ficreseij,"\n");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
          b[i]=sum/a[i][i]; 
   }    } 
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  } 
   printf("\n");  
   fprintf(ficlog,"\n");  void pstamp(FILE *fichier)
    {
 }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )  
   /************ Frequencies ********************/
 {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   /* Covariances of health expectancies eij and of total life expectancies according  {  /* Some frequencies */
    to initial status i, ei. .    
   */    int i, m, jk, j1, bool, z1,j;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;    int first;
   double age, agelim, hf;    double ***freq; /* Frequencies */
   double ***p3matp, ***p3matm, ***varhe;    double *pp, **prop;
   double **dnewm,**doldm;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   double *xp, *xm;    char fileresp[FILENAMELENGTH];
   double **gp, **gm;    
   double ***gradg, ***trgradg;    pp=vector(1,nlstate);
   int theta;    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
   double eip, vip;    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   xp=vector(1,npar);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   xm=vector(1,npar);      exit(0);
   dnewm=matrix(1,nlstate*nlstate,1,npar);    }
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
      j1=0;
   pstamp(ficresstdeij);    
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");    j=cptcoveff;
   fprintf(ficresstdeij,"# Age");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   for(i=1; i<=nlstate;i++){  
     for(j=1; j<=nlstate;j++)    first=1;
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);  
     fprintf(ficresstdeij," e%1d. ",i);    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
   }    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
   fprintf(ficresstdeij,"\n");    /*    j1++; */
     for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
   pstamp(ficrescveij);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");          scanf("%d", i);*/
   fprintf(ficrescveij,"# Age");        for (i=-5; i<=nlstate+ndeath; i++)  
   for(i=1; i<=nlstate;i++)          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     for(j=1; j<=nlstate;j++){            for(m=iagemin; m <= iagemax+3; m++)
       cptj= (j-1)*nlstate+i;              freq[i][jk][m]=0;
       for(i2=1; i2<=nlstate;i2++)        
         for(j2=1; j2<=nlstate;j2++){        for (i=1; i<=nlstate; i++)  
           cptj2= (j2-1)*nlstate+i2;          for(m=iagemin; m <= iagemax+3; m++)
           if(cptj2 <= cptj)            prop[i][m]=0;
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);        
         }        dateintsum=0;
     }        k2cpt=0;
   fprintf(ficrescveij,"\n");        for (i=1; i<=imx; i++) {
            bool=1;
   if(estepm < stepm){          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
     printf ("Problem %d lower than %d\n",estepm, stepm);            for (z1=1; z1<=cptcoveff; z1++)       
   }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
   else  hstepm=estepm;                    /* Tests if the value of each of the covariates of i is equal to filter j1 */
   /* We compute the life expectancy from trapezoids spaced every estepm months                bool=0;
    * This is mainly to measure the difference between two models: for example                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
    * if stepm=24 months pijx are given only every 2 years and by summing them                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
    * we are calculating an estimate of the Life Expectancy assuming a linear                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
    * progression in between and thus overestimating or underestimating according                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
    * to the curvature of the survival function. If, for the same date, we              } 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          }
    * to compare the new estimate of Life expectancy with the same linear   
    * hypothesis. A more precise result, taking into account a more precise          if (bool==1){
    * curvature will be obtained if estepm is as small as stepm. */            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
   /* For example we decided to compute the life expectancy with the smallest unit */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                if(agev[m][i]==0) agev[m][i]=iagemax+1;
      nhstepm is the number of hstepm from age to agelim                if(agev[m][i]==1) agev[m][i]=iagemax+2;
      nstepm is the number of stepm from age to agelin.                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
      Look at hpijx to understand the reason of that which relies in memory size                if (m<lastpass) {
      and note for a fixed period like estepm months */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
      survival function given by stepm (the optimization length). Unfortunately it                }
      means that if the survival funtion is printed only each two years of age and if                
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
      results. So we changed our mind and took the option of the best precision.                  dateintsum=dateintsum+k2;
   */                  k2cpt++;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                }
                 /*}*/
   /* If stepm=6 months */            }
   /* nhstepm age range expressed in number of stepm */          }
   agelim=AGESUP;        } /* end i */
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);         
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   /* if (stepm >= YEARM) hstepm=1;*/        pstamp(ficresp);
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        if  (cptcovn>0) {
            fprintf(ficresp, "\n#********** Variable "); 
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresp, "**********\n#");
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);          fprintf(ficlog, "\n#********** Variable "); 
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   gp=matrix(0,nhstepm,1,nlstate*nlstate);          fprintf(ficlog, "**********\n#");
   gm=matrix(0,nhstepm,1,nlstate*nlstate);        }
         for(i=1; i<=nlstate;i++) 
   for (age=bage; age<=fage; age ++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        for(i=iagemin; i <= iagemax+3; i++){
            if(i==iagemax+3){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            fprintf(ficlog,"Total");
           }else{
     /* Computing  Variances of health expectancies */            if(first==1){
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to              first=0;
        decrease memory allocation */              printf("See log file for details...\n");
     for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++){            fprintf(ficlog,"Age %d", i);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          }
         xm[i] = x[i] - (i==theta ?delti[theta]:0);          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);                pp[jk] += freq[jk][m][i]; 
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);            }
            for(jk=1; jk <=nlstate ; jk++){
       for(j=1; j<= nlstate; j++){            for(m=-1, pos=0; m <=0 ; m++)
         for(i=1; i<=nlstate; i++){              pos += freq[jk][m][i];
           for(h=0; h<=nhstepm-1; h++){            if(pp[jk]>=1.e-10){
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;              if(first==1){
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           }              }
         }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       }            }else{
                    if(first==1)
       for(ij=1; ij<= nlstate*nlstate; ij++)                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         for(h=0; h<=nhstepm-1; h++){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];            }
         }          }
     }/* End theta */  
              for(jk=1; jk <=nlstate ; jk++){
                for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     for(h=0; h<=nhstepm-1; h++)              pp[jk] += freq[jk][m][i];
       for(j=1; j<=nlstate*nlstate;j++)          }       
         for(theta=1; theta <=npar; theta++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           trgradg[h][j][theta]=gradg[h][theta][j];            pos += pp[jk];
                posprop += prop[jk][i];
           }
      for(ij=1;ij<=nlstate*nlstate;ij++)          for(jk=1; jk <=nlstate ; jk++){
       for(ji=1;ji<=nlstate*nlstate;ji++)            if(pos>=1.e-5){
         varhe[ij][ji][(int)age] =0.;              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      printf("%d|",(int)age);fflush(stdout);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);            }else{
      for(h=0;h<=nhstepm-1;h++){              if(first==1)
       for(k=0;k<=nhstepm-1;k++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);            }
         for(ij=1;ij<=nlstate*nlstate;ij++)            if( i <= iagemax){
           for(ji=1;ji<=nlstate*nlstate;ji++)              if(pos>=1.e-5){
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       }                /*probs[i][jk][j1]= pp[jk]/pos;*/
     }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
     /* Computing expectancies */              else
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);                  fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++)          }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;          for(jk=-1; jk <=nlstate+ndeath; jk++)
                      for(m=-1; m <=nlstate+ndeath; m++)
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/              if(freq[jk][m][i] !=0 ) {
               if(first==1)
         }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     fprintf(ficresstdeij,"%3.0f",age );              }
     for(i=1; i<=nlstate;i++){          if(i <= iagemax)
       eip=0.;            fprintf(ficresp,"\n");
       vip=0.;          if(first==1)
       for(j=1; j<=nlstate;j++){            printf("Others in log...\n");
         eip += eij[i][j][(int)age];          fprintf(ficlog,"\n");
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */        }
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];        /*}*/
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );    }
       }    dateintmean=dateintsum/k2cpt; 
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));   
     }    fclose(ficresp);
     fprintf(ficresstdeij,"\n");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
     fprintf(ficrescveij,"%3.0f",age );    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     for(i=1; i<=nlstate;i++)    /* End of Freq */
       for(j=1; j<=nlstate;j++){  }
         cptj= (j-1)*nlstate+i;  
         for(i2=1; i2<=nlstate;i2++)  /************ Prevalence ********************/
           for(j2=1; j2<=nlstate;j2++){  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
             cptj2= (j2-1)*nlstate+i2;  {  
             if(cptj2 <= cptj)    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);       in each health status at the date of interview (if between dateprev1 and dateprev2).
           }       We still use firstpass and lastpass as another selection.
       }    */
     fprintf(ficrescveij,"\n");   
        int i, m, jk, j1, bool, z1,j;
   }  
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);    double **prop;
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);    double posprop; 
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);    double  y2; /* in fractional years */
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);    int iagemin, iagemax;
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int first; /** to stop verbosity which is redirected to log file */
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   printf("\n");    iagemin= (int) agemin;
   fprintf(ficlog,"\n");    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
   free_vector(xm,1,npar);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   free_vector(xp,1,npar);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);    j1=0;
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);    
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);    /*j=cptcoveff;*/
 }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
 /************ Variance ******************/    first=1;
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
 {      /*for(i1=1; i1<=ncodemax[k1];i1++){
   /* Variance of health expectancies */        j1++;*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        
   /* double **newm;*/        for (i=1; i<=nlstate; i++)  
   double **dnewm,**doldm;          for(m=iagemin; m <= iagemax+3; m++)
   double **dnewmp,**doldmp;            prop[i][m]=0.0;
   int i, j, nhstepm, hstepm, h, nstepm ;       
   int k, cptcode;        for (i=1; i<=imx; i++) { /* Each individual */
   double *xp;          bool=1;
   double **gp, **gm;  /* for var eij */          if  (cptcovn>0) {
   double ***gradg, ***trgradg; /*for var eij */            for (z1=1; z1<=cptcoveff; z1++) 
   double **gradgp, **trgradgp; /* for var p point j */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   double *gpp, *gmp; /* for var p point j */                bool=0;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */          } 
   double ***p3mat;          if (bool==1) { 
   double age,agelim, hf;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   double ***mobaverage;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   int theta;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   char digit[4];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   char digitp[25];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   char fileresprobmorprev[FILENAMELENGTH];                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   if(popbased==1){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     if(mobilav!=0)                  prop[s[m][i]][iagemax+3] += weight[i]; 
       strcpy(digitp,"-populbased-mobilav-");                } 
     else strcpy(digitp,"-populbased-nomobil-");              }
   }            } /* end selection of waves */
   else          }
     strcpy(digitp,"-stablbased-");        }
         for(i=iagemin; i <= iagemax+3; i++){  
   if (mobilav!=0) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            posprop += prop[jk][i]; 
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){          } 
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          
       printf(" Error in movingaverage mobilav=%d\n",mobilav);          for(jk=1; jk <=nlstate ; jk++){     
     }            if( i <=  iagemax){ 
   }              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
   strcpy(fileresprobmorprev,"prmorprev");              } else{
   sprintf(digit,"%-d",ij);                if(first==1){
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/                  first=0;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */                }
   strcat(fileresprobmorprev,fileres);              }
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {            } 
     printf("Problem with resultfile: %s\n", fileresprobmorprev);          }/* end jk */ 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);        }/* end i */ 
   }      /*} *//* end i1 */
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    } /* end j1 */
      
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   pstamp(ficresprobmorprev);    /*free_vector(pp,1,nlstate);*/
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  }  /* End of prevalence */
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
     fprintf(ficresprobmorprev," p.%-d SE",j);  /************* Waves Concatenation ***************/
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   }    {
   fprintf(ficresprobmorprev,"\n");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   fprintf(ficgp,"\n# Routine varevsij");       Death is a valid wave (if date is known).
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);       and mw[mi+1][i]. dh depends on stepm.
 /*   } */       */
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   pstamp(ficresvij);    int i, mi, m;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   if(popbased==1)       double sum=0., jmean=0.;*/
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");    int first;
   else    int j, k=0,jk, ju, jl;
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");    double sum=0.;
   fprintf(ficresvij,"# Age");    first=0;
   for(i=1; i<=nlstate;i++)    jmin=100000;
     for(j=1; j<=nlstate;j++)    jmax=-1;
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);    jmean=0.;
   fprintf(ficresvij,"\n");    for(i=1; i<=imx; i++){
       mi=0;
   xp=vector(1,npar);      m=firstpass;
   dnewm=matrix(1,nlstate,1,npar);      while(s[m][i] <= nlstate){
   doldm=matrix(1,nlstate,1,nlstate);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          mw[++mi][i]=m;
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        if(m >=lastpass)
           break;
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        else
   gpp=vector(nlstate+1,nlstate+ndeath);          m++;
   gmp=vector(nlstate+1,nlstate+ndeath);      }/* end while */
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      if (s[m][i] > nlstate){
          mi++;     /* Death is another wave */
   if(estepm < stepm){        /* if(mi==0)  never been interviewed correctly before death */
     printf ("Problem %d lower than %d\n",estepm, stepm);           /* Only death is a correct wave */
   }        mw[mi][i]=m;
   else  hstepm=estepm;        }
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      wav[i]=mi;
      nhstepm is the number of hstepm from age to agelim      if(mi==0){
      nstepm is the number of stepm from age to agelin.        nbwarn++;
      Look at hpijx to understand the reason of that which relies in memory size        if(first==0){
      and note for a fixed period like k years */          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          first=1;
      survival function given by stepm (the optimization length). Unfortunately it        }
      means that if the survival funtion is printed every two years of age and if        if(first==1){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
      results. So we changed our mind and took the option of the best precision.        }
   */      } /* end mi==0 */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    } /* End individuals */
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for(i=1; i<=imx; i++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for(mi=1; mi<wav[i];mi++){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        if (stepm <=0)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          dh[mi][i]=1;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        else{
     gp=matrix(0,nhstepm,1,nlstate);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     gm=matrix(0,nhstepm,1,nlstate);            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
     for(theta=1; theta <=npar; theta++){              else if(j<0){
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/                nberr++;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }                j=1; /* Temporary Dangerous patch */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                  printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       if (popbased==1) {              }
         if(mobilav ==0){              k=k+1;
           for(i=1; i<=nlstate;i++)              if (j >= jmax){
             prlim[i][i]=probs[(int)age][i][ij];                jmax=j;
         }else{ /* mobilav */                ijmax=i;
           for(i=1; i<=nlstate;i++)              }
             prlim[i][i]=mobaverage[(int)age][i][ij];              if (j <= jmin){
         }                jmin=j;
       }                ijmin=i;
                }
       for(j=1; j<= nlstate; j++){              sum=sum+j;
         for(h=0; h<=nhstepm; h++){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            }
         }          }
       }          else{
       /* This for computing probability of death (h=1 means            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
          computed over hstepm matrices product = hstepm*stepm months)  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
          as a weighted average of prlim.  
       */            k=k+1;
       for(j=nlstate+1;j<=nlstate+ndeath;j++){            if (j >= jmax) {
         for(i=1,gpp[j]=0.; i<= nlstate; i++)              jmax=j;
           gpp[j] += prlim[i][i]*p3mat[i][j][1];              ijmax=i;
       }                }
       /* end probability of death */            else if (j <= jmin){
               jmin=j;
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */              ijmin=i;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
              if(j<0){
       if (popbased==1) {              nberr++;
         if(mobilav ==0){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           for(i=1; i<=nlstate;i++)              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             prlim[i][i]=probs[(int)age][i][ij];            }
         }else{ /* mobilav */            sum=sum+j;
           for(i=1; i<=nlstate;i++)          }
             prlim[i][i]=mobaverage[(int)age][i][ij];          jk= j/stepm;
         }          jl= j -jk*stepm;
       }          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       for(j=1; j<= nlstate; j++){            if(jl==0){
         for(h=0; h<=nhstepm; h++){              dh[mi][i]=jk;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              bh[mi][i]=0;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            }else{ /* We want a negative bias in order to only have interpolation ie
         }                    * to avoid the price of an extra matrix product in likelihood */
       }              dh[mi][i]=jk+1;
       /* This for computing probability of death (h=1 means              bh[mi][i]=ju;
          computed over hstepm matrices product = hstepm*stepm months)            }
          as a weighted average of prlim.          }else{
       */            if(jl <= -ju){
       for(j=nlstate+1;j<=nlstate+ndeath;j++){              dh[mi][i]=jk;
         for(i=1,gmp[j]=0.; i<= nlstate; i++)              bh[mi][i]=jl;       /* bias is positive if real duration
          gmp[j] += prlim[i][i]*p3mat[i][j][1];                                   * is higher than the multiple of stepm and negative otherwise.
       }                                       */
       /* end probability of death */            }
             else{
       for(j=1; j<= nlstate; j++) /* vareij */              dh[mi][i]=jk+1;
         for(h=0; h<=nhstepm; h++){              bh[mi][i]=ju;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            }
         }            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */              bh[mi][i]=ju; /* At least one step */
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       }            }
           } /* end if mle */
     } /* End theta */        }
       } /* end wave */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    }
     jmean=sum/k;
     for(h=0; h<=nhstepm; h++) /* veij */    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       for(j=1; j<=nlstate;j++)    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         for(theta=1; theta <=npar; theta++)   }
           trgradg[h][j][theta]=gradg[h][theta][j];  
   /*********** Tricode ****************************/
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
       for(theta=1; theta <=npar; theta++)  {
         trgradgp[j][theta]=gradgp[theta][j];    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
      /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
      * Boring subroutine which should only output nbcode[Tvar[j]][k]
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     for(i=1;i<=nlstate;i++)     * nbcode[Tvar[j]][1]= 
       for(j=1;j<=nlstate;j++)    */
         vareij[i][j][(int)age] =0.;  
     int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     for(h=0;h<=nhstepm;h++){    int modmaxcovj=0; /* Modality max of covariates j */
       for(k=0;k<=nhstepm;k++){    int cptcode=0; /* Modality max of covariates j */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    int modmincovj=0; /* Modality min of covariates j */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)    cptcoveff=0; 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;   
       }    for (k=-1; k < maxncov; k++) Ndum[k]=0;
     }    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
    
     /* pptj */    /* Loop on covariates without age and products */
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
     for(j=nlstate+1;j<=nlstate+ndeath;j++)                                 modality of this covariate Vj*/ 
       for(i=nlstate+1;i<=nlstate+ndeath;i++)        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
         varppt[j][i]=doldmp[j][i];                                      * If product of Vn*Vm, still boolean *:
     /* end ppptj */                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
     /*  x centered again */                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);                                        modality of the nth covariate of individual i. */
          if (ij > modmaxcovj)
     if (popbased==1) {          modmaxcovj=ij; 
       if(mobilav ==0){        else if (ij < modmincovj) 
         for(i=1; i<=nlstate;i++)          modmincovj=ij; 
           prlim[i][i]=probs[(int)age][i][ij];        if ((ij < -1) && (ij > NCOVMAX)){
       }else{ /* mobilav */          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
         for(i=1; i<=nlstate;i++)          exit(1);
           prlim[i][i]=mobaverage[(int)age][i][ij];        }else
       }        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
     }        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
                      /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     /* This for computing probability of death (h=1 means        /* getting the maximum value of the modality of the covariate
        computed over hstepm (estepm) matrices product = hstepm*stepm months)           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
        as a weighted average of prlim.           female is 1, then modmaxcovj=1.*/
     */      } /* end for loop on individuals */
     for(j=nlstate+1;j<=nlstate+ndeath;j++){      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
       for(i=1,gmp[j]=0.;i<= nlstate; i++)      cptcode=modmaxcovj;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
     }         /*for (i=0; i<=cptcode; i++) {*/
     /* end probability of death */      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
         printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], i, Ndum[i]);
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        }
       for(i=1; i<=nlstate;i++){        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
       }      } /* Ndum[-1] number of undefined modalities */
     }  
     fprintf(ficresprobmorprev,"\n");      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
     fprintf(ficresvij,"%.0f ",age );         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
     for(i=1; i<=nlstate;i++)         modmincovj=3; modmaxcovj = 7;
       for(j=1; j<=nlstate;j++){         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
       }         defining two dummy variables: variables V1_1 and V1_2.
     fprintf(ficresvij,"\n");         nbcode[Tvar[j]][ij]=k;
     free_matrix(gp,0,nhstepm,1,nlstate);         nbcode[Tvar[j]][1]=0;
     free_matrix(gm,0,nhstepm,1,nlstate);         nbcode[Tvar[j]][2]=1;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);         nbcode[Tvar[j]][3]=2;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      ij=1; /* ij is similar to i but can jumps over null modalities */
   } /* End age */      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
   free_vector(gpp,nlstate+1,nlstate+ndeath);        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
   free_vector(gmp,nlstate+1,nlstate+ndeath);          /*recode from 0 */
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/            nbcode[Tvar[j]][ij]=k;  /* stores the modality k in an array nbcode. 
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");                                       k is a modality. If we have model=V1+V1*sex 
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");            ij++;
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */          }
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */          if (ij > ncodemax[j]) break; 
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */        }  /* end of loop on */
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));      } /* end of loop on modality */ 
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));    
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
 */     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);     Ndum[ij]++; /* Might be supersed V1 + V1*age */
    } 
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,nlstate);   ij=1;
   free_matrix(dnewm,1,nlstate,1,npar);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);     if((Ndum[i]!=0) && (i<=ncovcol)){
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       Tvaraff[ij]=i; /*For printing (unclear) */
   fclose(ficresprobmorprev);       ij++;
   fflush(ficgp);     }else
   fflush(fichtm);         Tvaraff[ij]=0;
 }  /* end varevsij */   }
    ij--;
 /************ Variance of prevlim ******************/   cptcoveff=ij; /*Number of total covariates*/
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])  
 {  }
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/  
   double **newm;  /*********** Health Expectancies ****************/
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   int k, cptcode;  
   double *xp;  {
   double *gp, *gm;    /* Health expectancies, no variances */
   double **gradg, **trgradg;    int i, j, nhstepm, hstepm, h, nstepm;
   double age,agelim;    int nhstepma, nstepma; /* Decreasing with age */
   int theta;    double age, agelim, hf;
      double ***p3mat;
   pstamp(ficresvpl);    double eip;
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");  
   fprintf(ficresvpl,"# Age");    pstamp(ficreseij);
   for(i=1; i<=nlstate;i++)    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       fprintf(ficresvpl," %1d-%1d",i,i);    fprintf(ficreseij,"# Age");
   fprintf(ficresvpl,"\n");    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
   xp=vector(1,npar);        fprintf(ficreseij," e%1d%1d ",i,j);
   dnewm=matrix(1,nlstate,1,npar);      }
   doldm=matrix(1,nlstate,1,nlstate);      fprintf(ficreseij," e%1d. ",i);
      }
   hstepm=1*YEARM; /* Every year of age */    fprintf(ficreseij,"\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;    
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    if(estepm < stepm){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      printf ("Problem %d lower than %d\n",estepm, stepm);
     if (stepm >= YEARM) hstepm=1;    }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    else  hstepm=estepm;   
     gradg=matrix(1,npar,1,nlstate);    /* We compute the life expectancy from trapezoids spaced every estepm months
     gp=vector(1,nlstate);     * This is mainly to measure the difference between two models: for example
     gm=vector(1,nlstate);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
     for(theta=1; theta <=npar; theta++){     * progression in between and thus overestimating or underestimating according
       for(i=1; i<=npar; i++){ /* Computes gradient */     * to the curvature of the survival function. If, for the same date, we 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       }     * to compare the new estimate of Life expectancy with the same linear 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     * hypothesis. A more precise result, taking into account a more precise
       for(i=1;i<=nlstate;i++)     * curvature will be obtained if estepm is as small as stepm. */
         gp[i] = prlim[i][i];  
        /* For example we decided to compute the life expectancy with the smallest unit */
       for(i=1; i<=npar; i++) /* Computes gradient */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       nhstepm is the number of hstepm from age to agelim 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       nstepm is the number of stepm from age to agelin. 
       for(i=1;i<=nlstate;i++)       Look at hpijx to understand the reason of that which relies in memory size
         gm[i] = prlim[i][i];       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for(i=1;i<=nlstate;i++)       survival function given by stepm (the optimization length). Unfortunately it
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];       means that if the survival funtion is printed only each two years of age and if
     } /* End theta */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     trgradg =matrix(1,nlstate,1,npar);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)    agelim=AGESUP;
         trgradg[j][theta]=gradg[theta][j];    /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
     for(i=1;i<=nlstate;i++)         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       varpl[i][(int)age] =0.;      
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  /* nhstepm age range expressed in number of stepm */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     for(i=1;i<=nlstate;i++)    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficresvpl,"%.0f ",age );    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    for (age=bage; age<=fage; age ++){ 
     fprintf(ficresvpl,"\n");      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     free_vector(gp,1,nlstate);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_vector(gm,1,nlstate);      /* if (stepm >= YEARM) hstepm=1;*/
     free_matrix(gradg,1,npar,1,nlstate);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */      /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
   free_vector(xp,1,npar);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   free_matrix(doldm,1,nlstate,1,npar);      
   free_matrix(dnewm,1,nlstate,1,nlstate);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
 }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
 /************ Variance of one-step probabilities  ******************/      printf("%d|",(int)age);fflush(stdout);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 {      
   int i, j=0,  i1, k1, l1, t, tj;      /* Computing expectancies */
   int k2, l2, j1,  z1;      for(i=1; i<=nlstate;i++)
   int k=0,l, cptcode;        for(j=1; j<=nlstate;j++)
   int first=1, first1;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   double **dnewm,**doldm;            
   double *xp;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   double *gp, *gm;  
   double **gradg, **trgradg;          }
   double **mu;  
   double age,agelim, cov[NCOVMAX];      fprintf(ficreseij,"%3.0f",age );
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      for(i=1; i<=nlstate;i++){
   int theta;        eip=0;
   char fileresprob[FILENAMELENGTH];        for(j=1; j<=nlstate;j++){
   char fileresprobcov[FILENAMELENGTH];          eip +=eij[i][j][(int)age];
   char fileresprobcor[FILENAMELENGTH];          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
   double ***varpij;        fprintf(ficreseij,"%9.4f", eip );
       }
   strcpy(fileresprob,"prob");      fprintf(ficreseij,"\n");
   strcat(fileresprob,fileres);      
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    }
     printf("Problem with resultfile: %s\n", fileresprob);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    printf("\n");
   }    fprintf(ficlog,"\n");
   strcpy(fileresprobcov,"probcov");    
   strcat(fileresprobcov,fileres);  }
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcov);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);  
   }  {
   strcpy(fileresprobcor,"probcor");    /* Covariances of health expectancies eij and of total life expectancies according
   strcat(fileresprobcor,fileres);     to initial status i, ei. .
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    */
     printf("Problem with resultfile: %s\n", fileresprobcor);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    int nhstepma, nstepma; /* Decreasing with age */
   }    double age, agelim, hf;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    double ***p3matp, ***p3matm, ***varhe;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    double **dnewm,**doldm;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double *xp, *xm;
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double **gp, **gm;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    double ***gradg, ***trgradg;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    int theta;
   pstamp(ficresprob);  
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    double eip, vip;
   fprintf(ficresprob,"# Age");  
   pstamp(ficresprobcov);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    xp=vector(1,npar);
   fprintf(ficresprobcov,"# Age");    xm=vector(1,npar);
   pstamp(ficresprobcor);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   fprintf(ficresprobcor,"# Age");    
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   for(i=1; i<=nlstate;i++)    fprintf(ficresstdeij,"# Age");
     for(j=1; j<=(nlstate+ndeath);j++){    for(i=1; i<=nlstate;i++){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      for(j=1; j<=nlstate;j++)
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      fprintf(ficresstdeij," e%1d. ",i);
     }      }
  /* fprintf(ficresprob,"\n");    fprintf(ficresstdeij,"\n");
   fprintf(ficresprobcov,"\n");  
   fprintf(ficresprobcor,"\n");    pstamp(ficrescveij);
  */    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
  xp=vector(1,npar);    fprintf(ficrescveij,"# Age");
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    for(i=1; i<=nlstate;i++)
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      for(j=1; j<=nlstate;j++){
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        cptj= (j-1)*nlstate+i;
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        for(i2=1; i2<=nlstate;i2++)
   first=1;          for(j2=1; j2<=nlstate;j2++){
   fprintf(ficgp,"\n# Routine varprob");            cptj2= (j2-1)*nlstate+i2;
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");            if(cptj2 <= cptj)
   fprintf(fichtm,"\n");              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);      }
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\    fprintf(ficrescveij,"\n");
   file %s<br>\n",optionfilehtmcov);    
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\    if(estepm < stepm){
 and drawn. It helps understanding how is the covariance between two incidences.\      printf ("Problem %d lower than %d\n",estepm, stepm);
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    }
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \    else  hstepm=estepm;   
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \    /* We compute the life expectancy from trapezoids spaced every estepm months
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \     * This is mainly to measure the difference between two models: for example
 standard deviations wide on each axis. <br>\     * if stepm=24 months pijx are given only every 2 years and by summing them
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\     * we are calculating an estimate of the Life Expectancy assuming a linear 
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\     * progression in between and thus overestimating or underestimating according
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   cov[1]=1;     * to compare the new estimate of Life expectancy with the same linear 
   tj=cptcoveff;     * hypothesis. A more precise result, taking into account a more precise
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}     * curvature will be obtained if estepm is as small as stepm. */
   j1=0;  
   for(t=1; t<=tj;t++){    /* For example we decided to compute the life expectancy with the smallest unit */
     for(i1=1; i1<=ncodemax[t];i1++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       j1++;       nhstepm is the number of hstepm from age to agelim 
       if  (cptcovn>0) {       nstepm is the number of stepm from age to agelin. 
         fprintf(ficresprob, "\n#********** Variable ");       Look at hpijx to understand the reason of that which relies in memory size
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       and note for a fixed period like estepm months */
         fprintf(ficresprob, "**********\n#\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         fprintf(ficresprobcov, "\n#********** Variable ");       survival function given by stepm (the optimization length). Unfortunately it
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       means that if the survival funtion is printed only each two years of age and if
         fprintf(ficresprobcov, "**********\n#\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               results. So we changed our mind and took the option of the best precision.
         fprintf(ficgp, "\n#********** Variable ");    */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficgp, "**********\n#\n");  
            /* If stepm=6 months */
            /* nhstepm age range expressed in number of stepm */
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    agelim=AGESUP;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
            /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficresprobcor, "\n#********** Variable ");        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    
         fprintf(ficresprobcor, "**********\n#");        p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       for (age=bage; age<=fage; age ++){    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         cov[2]=age;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
         for (k=1; k<=cptcovn;k++) {    gm=matrix(0,nhstepm,1,nlstate*nlstate);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  
         }    for (age=bage; age<=fage; age ++){ 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         for (k=1; k<=cptcovprod;k++)      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      /* if (stepm >= YEARM) hstepm=1;*/
              nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      /* If stepm=6 months */
         gp=vector(1,(nlstate)*(nlstate+ndeath));      /* Computed by stepm unit matrices, product of hstepma matrices, stored
         gm=vector(1,(nlstate)*(nlstate+ndeath));         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
          
         for(theta=1; theta <=npar; theta++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);      /* Computing  Variances of health expectancies */
                /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           pmij(pmmij,cov,ncovmodel,xp,nlstate);         decrease memory allocation */
                for(theta=1; theta <=npar; theta++){
           k=0;        for(i=1; i<=npar; i++){ 
           for(i=1; i<= (nlstate); i++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             for(j=1; j<=(nlstate+ndeath);j++){          xm[i] = x[i] - (i==theta ?delti[theta]:0);
               k=k+1;        }
               gp[k]=pmmij[i][j];        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
             }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
           }    
                  for(j=1; j<= nlstate; j++){
           for(i=1; i<=npar; i++)          for(i=1; i<=nlstate; i++){
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);            for(h=0; h<=nhstepm-1; h++){
                  gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           k=0;            }
           for(i=1; i<=(nlstate); i++){          }
             for(j=1; j<=(nlstate+ndeath);j++){        }
               k=k+1;       
               gm[k]=pmmij[i][j];        for(ij=1; ij<= nlstate*nlstate; ij++)
             }          for(h=0; h<=nhstepm-1; h++){
           }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
                }
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      }/* End theta */
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];        
         }      
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)          for(theta=1; theta <=npar; theta++)
             trgradg[j][theta]=gradg[theta][j];            trgradg[h][j][theta]=gradg[h][theta][j];
              
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);       for(ij=1;ij<=nlstate*nlstate;ij++)
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        for(ji=1;ji<=nlstate*nlstate;ji++)
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          varhe[ij][ji][(int)age] =0.;
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         pmij(pmmij,cov,ncovmodel,x,nlstate);       for(h=0;h<=nhstepm-1;h++){
                for(k=0;k<=nhstepm-1;k++){
         k=0;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         for(i=1; i<=(nlstate); i++){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(j=1; j<=(nlstate+ndeath);j++){          for(ij=1;ij<=nlstate*nlstate;ij++)
             k=k+1;            for(ji=1;ji<=nlstate*nlstate;ji++)
             mu[k][(int) age]=pmmij[i][j];              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
           }        }
         }      }
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      /* Computing expectancies */
             varpij[i][j][(int)age] = doldm[i][j];      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         /*printf("\n%d ",(int)age);        for(j=1; j<=nlstate;j++)
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            
           }*/            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
         fprintf(ficresprob,"\n%d ",(int)age);          }
         fprintf(ficresprobcov,"\n%d ",(int)age);  
         fprintf(ficresprobcor,"\n%d ",(int)age);      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        eip=0.;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        vip=0.;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(j=1; j<=nlstate;j++){
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          eip += eij[i][j][(int)age];
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
         }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
         i=0;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         for (k=1; k<=(nlstate);k++){        }
           for (l=1; l<=(nlstate+ndeath);l++){        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
             i=i++;      }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);      fprintf(ficresstdeij,"\n");
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  
             for (j=1; j<=i;j++){      fprintf(ficrescveij,"%3.0f",age );
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);      for(i=1; i<=nlstate;i++)
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        for(j=1; j<=nlstate;j++){
             }          cptj= (j-1)*nlstate+i;
           }          for(i2=1; i2<=nlstate;i2++)
         }/* end of loop for state */            for(j2=1; j2<=nlstate;j2++){
       } /* end of loop for age */              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
       /* Confidence intervalle of pij  */                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
       /*            }
         fprintf(ficgp,"\nset noparametric;unset label");        }
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");      fprintf(ficrescveij,"\n");
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");     
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    }
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       */    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       first1=1;    printf("\n");
       for (k2=1; k2<=(nlstate);k2++){    fprintf(ficlog,"\n");
         for (l2=1; l2<=(nlstate+ndeath);l2++){  
           if(l2==k2) continue;    free_vector(xm,1,npar);
           j=(k2-1)*(nlstate+ndeath)+l2;    free_vector(xp,1,npar);
           for (k1=1; k1<=(nlstate);k1++){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
             for (l1=1; l1<=(nlstate+ndeath);l1++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
               if(l1==k1) continue;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
               i=(k1-1)*(nlstate+ndeath)+l1;  }
               if(i<=j) continue;  
               for (age=bage; age<=fage; age ++){  /************ Variance ******************/
                 if ((int)age %5==0){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  {
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    /* Variance of health expectancies */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                   mu1=mu[i][(int) age]/stepm*YEARM ;    /* double **newm;*/
                   mu2=mu[j][(int) age]/stepm*YEARM;    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
                   c12=cv12/sqrt(v1*v2);    
                   /* Computing eigen value of matrix of covariance */    int movingaverage();
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    double **dnewm,**doldm;
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    double **dnewmp,**doldmp;
                   /* Eigen vectors */    int i, j, nhstepm, hstepm, h, nstepm ;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    int k;
                   /*v21=sqrt(1.-v11*v11); *//* error */    double *xp;
                   v21=(lc1-v1)/cv12*v11;    double **gp, **gm;  /* for var eij */
                   v12=-v21;    double ***gradg, ***trgradg; /*for var eij */
                   v22=v11;    double **gradgp, **trgradgp; /* for var p point j */
                   tnalp=v21/v11;    double *gpp, *gmp; /* for var p point j */
                   if(first1==1){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                     first1=0;    double ***p3mat;
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    double age,agelim, hf;
                   }    double ***mobaverage;
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    int theta;
                   /*printf(fignu*/    char digit[4];
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    char digitp[25];
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */  
                   if(first==1){    char fileresprobmorprev[FILENAMELENGTH];
                     first=0;  
                     fprintf(ficgp,"\nset parametric;unset label");    if(popbased==1){
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);      if(mobilav!=0)
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        strcpy(digitp,"-populbased-mobilav-");
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\      else strcpy(digitp,"-populbased-nomobil-");
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    }
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\    else 
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\      strcpy(digitp,"-stablbased-");
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);  
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    if (mobilav!=0) {
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    }
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  
                   }else{    strcpy(fileresprobmorprev,"prmorprev"); 
                     first=0;    sprintf(digit,"%-d",ij);
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    strcat(fileresprobmorprev,fileres);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      printf("Problem with resultfile: %s\n", fileresprobmorprev);
                   }/* if first */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                 } /* age mod 5 */    }
               } /* end loop age */    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);   
               first=1;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             } /*l12 */    pstamp(ficresprobmorprev);
           } /* k12 */    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         } /*l1 */    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       }/* k1 */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     } /* loop covariates */      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    }  
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    fprintf(ficresprobmorprev,"\n");
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);    fprintf(ficgp,"\n# Routine varevsij");
   free_vector(xp,1,npar);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   fclose(ficresprob);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   fclose(ficresprobcov);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   fclose(ficresprobcor);  /*   } */
   fflush(ficgp);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fflush(fichtmcov);    pstamp(ficresvij);
 }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
 /******************* Printing html file ***********/    else
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
                   int lastpass, int stepm, int weightopt, char model[],\    fprintf(ficresvij,"# Age");
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    for(i=1; i<=nlstate;i++)
                   int popforecast, int estepm ,\      for(j=1; j<=nlstate;j++)
                   double jprev1, double mprev1,double anprev1, \        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
                   double jprev2, double mprev2,double anprev2){    fprintf(ficresvij,"\n");
   int jj1, k1, i1, cpt;  
     xp=vector(1,npar);
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \    dnewm=matrix(1,nlstate,1,npar);
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \    doldm=matrix(1,nlstate,1,nlstate);
 </ul>");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",  
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
    fprintf(fichtm,"\    gpp=vector(nlstate+1,nlstate+ndeath);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",    gmp=vector(nlstate+1,nlstate+ndeath);
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
    fprintf(fichtm,"\    
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",    if(estepm < stepm){
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));      printf ("Problem %d lower than %d\n",estepm, stepm);
    fprintf(fichtm,"\    }
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \    else  hstepm=estepm;   
    <a href=\"%s\">%s</a> <br>\n",    /* For example we decided to compute the life expectancy with the smallest unit */
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
    fprintf(fichtm,"\       nhstepm is the number of hstepm from age to agelim 
  - Population projections by age and states: \       nstepm is the number of stepm from age to agelin. 
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));       Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
  m=cptcoveff;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       results. So we changed our mind and took the option of the best precision.
     */
  jj1=0;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  for(k1=1; k1<=m;k1++){    agelim = AGESUP;
    for(i1=1; i1<=ncodemax[k1];i1++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      jj1++;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
      if (cptcovn > 0) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        for (cpt=1; cpt<=cptcoveff;cpt++)      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      gp=matrix(0,nhstepm,1,nlstate);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      gm=matrix(0,nhstepm,1,nlstate);
      }  
      /* Pij */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \      for(theta=1; theta <=npar; theta++){
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);            for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
      /* Quasi-incidences */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\        }
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        /* Period (stable) prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){        if (popbased==1) {
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \          if(mobilav ==0){
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);            for(i=1; i<=nlstate;i++)
        }              prlim[i][i]=probs[(int)age][i][ij];
      for(cpt=1; cpt<=nlstate;cpt++) {          }else{ /* mobilav */ 
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \            for(i=1; i<=nlstate;i++)
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);              prlim[i][i]=mobaverage[(int)age][i][ij];
      }          }
    } /* end i1 */        }
  }/* End k1 */    
  fprintf(fichtm,"</ul>");        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
  fprintf(fichtm,"\              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\          }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);        }
         /* This for computing probability of death (h=1 means
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",           computed over hstepm matrices product = hstepm*stepm months) 
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));           as a weighted average of prlim.
  fprintf(fichtm,"\        */
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",        for(j=nlstate+1;j<=nlstate+ndeath;j++){
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
  fprintf(fichtm,"\        }    
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",        /* end probability of death */
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));  
  fprintf(fichtm,"\        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \          xp[i] = x[i] - (i==theta ?delti[theta]:0);
    <a href=\"%s\">%s</a> <br>\n</li>",        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  fprintf(fichtm,"\   
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \        if (popbased==1) {
    <a href=\"%s\">%s</a> <br>\n</li>",          if(mobilav ==0){
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));            for(i=1; i<=nlstate;i++)
  fprintf(fichtm,"\              prlim[i][i]=probs[(int)age][i][ij];
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",          }else{ /* mobilav */ 
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));            for(i=1; i<=nlstate;i++)
  fprintf(fichtm,"\              prlim[i][i]=mobaverage[(int)age][i][ij];
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",          }
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));        }
  fprintf(fichtm,"\  
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 /*  if(popforecast==1) fprintf(fichtm,"\n */              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */          }
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */        }
 /*      <br>",fileres,fileres,fileres,fileres); */        /* This for computing probability of death (h=1 means
 /*  else  */           computed over hstepm matrices product = hstepm*stepm months) 
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */           as a weighted average of prlim.
  fflush(fichtm);        */
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
  m=cptcoveff;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        }    
         /* end probability of death */
  jj1=0;  
  for(k1=1; k1<=m;k1++){        for(j=1; j<= nlstate; j++) /* vareij */
    for(i1=1; i1<=ncodemax[k1];i1++){          for(h=0; h<=nhstepm; h++){
      jj1++;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
      if (cptcovn > 0) {          }
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        }
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {      } /* End theta */
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \  
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);    
      }      for(h=0; h<=nhstepm; h++) /* veij */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \        for(j=1; j<=nlstate;j++)
 health expectancies in states (1) and (2): %s%d.png<br>\          for(theta=1; theta <=npar; theta++)
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);            trgradg[h][j][theta]=gradg[h][theta][j];
    } /* end i1 */  
  }/* End k1 */      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
  fprintf(fichtm,"</ul>");        for(theta=1; theta <=npar; theta++)
  fflush(fichtm);          trgradgp[j][theta]=gradgp[theta][j];
 }    
   
 /******************* Gnuplot file **************/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
   char dirfileres[132],optfileres[132];          vareij[i][j][(int)age] =0.;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   int ng;      for(h=0;h<=nhstepm;h++){
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */        for(k=0;k<=nhstepm;k++){
 /*     printf("Problem with file %s",optionfilegnuplot); */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 /*   } */          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
   /*#ifdef windows */              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   fprintf(ficgp,"cd \"%s\" \n",pathc);        }
     /*#endif */      }
   m=pow(2,cptcoveff);    
       /* pptj */
   strcpy(dirfileres,optionfilefiname);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   strcpy(optfileres,"vpl");      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
  /* 1eme*/      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   for (cpt=1; cpt<= nlstate ; cpt ++) {        for(i=nlstate+1;i<=nlstate+ndeath;i++)
    for (k1=1; k1<= m ; k1 ++) {          varppt[j][i]=doldmp[j][i];
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);      /* end ppptj */
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);      /*  x centered again */
      fprintf(ficgp,"set xlabel \"Age\" \n\      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 set ylabel \"Probability\" \n\      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 set ter png small\n\   
 set size 0.65,0.65\n\      if (popbased==1) {
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
      for (i=1; i<= nlstate ; i ++) {            prlim[i][i]=probs[(int)age][i][ij];
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }else{ /* mobilav */ 
        else fprintf(ficgp," \%%*lf (\%%*lf)");          for(i=1; i<=nlstate;i++)
      }            prlim[i][i]=mobaverage[(int)age][i][ij];
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);        }
      for (i=1; i<= nlstate ; i ++) {      }
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");               
        else fprintf(ficgp," \%%*lf (\%%*lf)");      /* This for computing probability of death (h=1 means
      }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);         as a weighted average of prlim.
      for (i=1; i<= nlstate ; i ++) {      */
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for(j=nlstate+1;j<=nlstate+ndeath;j++){
        else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
      }            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));      }    
    }      /* end probability of death */
   }  
   /*2 eme*/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   for (k1=1; k1<= m ; k1 ++) {        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);        for(i=1; i<=nlstate;i++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
            }
     for (i=1; i<= nlstate+1 ; i ++) {      } 
       k=2*i;      fprintf(ficresprobmorprev,"\n");
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {      fprintf(ficresvij,"%.0f ",age );
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for(i=1; i<=nlstate;i++)
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1; j<=nlstate;j++){
       }            fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      fprintf(ficresvij,"\n");
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);      free_matrix(gp,0,nhstepm,1,nlstate);
       for (j=1; j<= nlstate+1 ; j ++) {      free_matrix(gm,0,nhstepm,1,nlstate);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         else fprintf(ficgp," \%%*lf (\%%*lf)");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       }        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficgp,"\" t\"\" w l 0,");    } /* End age */
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    free_vector(gpp,nlstate+1,nlstate+ndeath);
       for (j=1; j<= nlstate+1 ; j ++) {    free_vector(gmp,nlstate+1,nlstate+ndeath);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       }      fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       else fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*3eme*/    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
   for (k1=1; k1<= m ; k1 ++) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       /*       k=2+nlstate*(2*cpt-2); */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       k=2+(nlstate+1)*(cpt-1);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);  */
       fprintf(ficgp,"set ter png small\n\  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 set size 0.65,0.65\n\    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    free_vector(xp,1,npar);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    free_matrix(doldm,1,nlstate,1,nlstate);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    free_matrix(dnewm,1,nlstate,1,npar);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
            if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       */    fclose(ficresprobmorprev);
       for (i=1; i< nlstate ; i ++) {    fflush(ficgp);
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);    fflush(fichtm); 
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/  }  /* end varevsij */
          
       }  /************ Variance of prevlim ******************/
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     }  {
   }    /* Variance of prevalence limit */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   /* CV preval stable (period) */  
   for (k1=1; k1<= m ; k1 ++) {    double **dnewm,**doldm;
     for (cpt=1; cpt<=nlstate ; cpt ++) {    int i, j, nhstepm, hstepm;
       k=3;    double *xp;
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);    double *gp, *gm;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\    double **gradg, **trgradg;
 set ter png small\nset size 0.65,0.65\n\    double age,agelim;
 unset log y\n\    int theta;
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);    
          pstamp(ficresvpl);
       for (i=1; i< nlstate ; i ++)    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
         fprintf(ficgp,"+$%d",k+i+1);    fprintf(ficresvpl,"# Age");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    for(i=1; i<=nlstate;i++)
              fprintf(ficresvpl," %1d-%1d",i,i);
       l=3+(nlstate+ndeath)*cpt;    fprintf(ficresvpl,"\n");
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {    xp=vector(1,npar);
         l=3+(nlstate+ndeath)*cpt;    dnewm=matrix(1,nlstate,1,npar);
         fprintf(ficgp,"+$%d",l+i+1);    doldm=matrix(1,nlstate,1,nlstate);
       }    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      hstepm=1*YEARM; /* Every year of age */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   }      agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /* proba elementaires */      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   for(i=1,jk=1; i <=nlstate; i++){      if (stepm >= YEARM) hstepm=1;
     for(k=1; k <=(nlstate+ndeath); k++){      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       if (k != i) {      gradg=matrix(1,npar,1,nlstate);
         for(j=1; j <=ncovmodel; j++){      gp=vector(1,nlstate);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      gm=vector(1,nlstate);
           jk++;  
           fprintf(ficgp,"\n");      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ /* Computes gradient */
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
    }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          gp[i] = prlim[i][i];
      for(jk=1; jk <=m; jk++) {      
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);        for(i=1; i<=npar; i++) /* Computes gradient */
        if (ng==2)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        else        for(i=1;i<=nlstate;i++)
          fprintf(ficgp,"\nset title \"Probability\"\n");          gm[i] = prlim[i][i];
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  
        i=1;        for(i=1;i<=nlstate;i++)
        for(k2=1; k2<=nlstate; k2++) {          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
          k3=i;      } /* End theta */
          for(k=1; k<=(nlstate+ndeath); k++) {  
            if (k != k2){      trgradg =matrix(1,nlstate,1,npar);
              if(ng==2)  
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      for(j=1; j<=nlstate;j++)
              else        for(theta=1; theta <=npar; theta++)
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          trgradg[j][theta]=gradg[theta][j];
              ij=1;  
              for(j=3; j <=ncovmodel; j++) {      for(i=1;i<=nlstate;i++)
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        varpl[i][(int)age] =0.;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
                  ij++;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
                }      for(i=1;i<=nlstate;i++)
                else        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
              }      fprintf(ficresvpl,"%.0f ",age );
              fprintf(ficgp,")/(1");      for(i=1; i<=nlstate;i++)
                      fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
              for(k1=1; k1 <=nlstate; k1++){        fprintf(ficresvpl,"\n");
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      free_vector(gp,1,nlstate);
                ij=1;      free_vector(gm,1,nlstate);
                for(j=3; j <=ncovmodel; j++){      free_matrix(gradg,1,npar,1,nlstate);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      free_matrix(trgradg,1,nlstate,1,npar);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    } /* End age */
                    ij++;  
                  }    free_vector(xp,1,npar);
                  else    free_matrix(doldm,1,nlstate,1,npar);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    free_matrix(dnewm,1,nlstate,1,nlstate);
                }  
                fprintf(ficgp,")");  }
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  /************ Variance of one-step probabilities  ******************/
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
              i=i+ncovmodel;  {
            }    int i, j=0,  k1, l1, tj;
          } /* end k */    int k2, l2, j1,  z1;
        } /* end k2 */    int k=0, l;
      } /* end jk */    int first=1, first1, first2;
    } /* end ng */    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
    fflush(ficgp);    double **dnewm,**doldm;
 }  /* end gnuplot */    double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
 /*************** Moving average **************/    double **mu;
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){    double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   int i, cpt, cptcod;    int theta;
   int modcovmax =1;    char fileresprob[FILENAMELENGTH];
   int mobilavrange, mob;    char fileresprobcov[FILENAMELENGTH];
   double age;    char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose  
                            a covariate has 2 modalities */    strcpy(fileresprob,"prob"); 
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */    strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){      printf("Problem with resultfile: %s\n", fileresprob);
     if(mobilav==1) mobilavrange=5; /* default */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     else mobilavrange=mobilav;    }
     for (age=bage; age<=fage; age++)    strcpy(fileresprobcov,"probcov"); 
       for (i=1; i<=nlstate;i++)    strcat(fileresprobcov,fileres);
         for (cptcod=1;cptcod<=modcovmax;cptcod++)    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];      printf("Problem with resultfile: %s\n", fileresprobcov);
     /* We keep the original values on the extreme ages bage, fage and for      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2    }
        we use a 5 terms etc. until the borders are no more concerned.    strcpy(fileresprobcor,"probcor"); 
     */    strcat(fileresprobcor,fileres);
     for (mob=3;mob <=mobilavrange;mob=mob+2){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){      printf("Problem with resultfile: %s\n", fileresprobcor);
         for (i=1; i<=nlstate;i++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           for (cptcod=1;cptcod<=modcovmax;cptcod++){    }
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               for (cpt=1;cpt<=(mob-1)/2;cpt++){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
               }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           }    pstamp(ficresprob);
         }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       }/* end age */    fprintf(ficresprob,"# Age");
     }/* end mob */    pstamp(ficresprobcov);
   }else return -1;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   return 0;    fprintf(ficresprobcov,"# Age");
 }/* End movingaverage */    pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){  
   /* proj1, year, month, day of starting projection    for(i=1; i<=nlstate;i++)
      agemin, agemax range of age      for(j=1; j<=(nlstate+ndeath);j++){
      dateprev1 dateprev2 range of dates during which prevalence is computed        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
      anproj2 year of en of projection (same day and month as proj1).        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   */        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;      }  
   int *popage;   /* fprintf(ficresprob,"\n");
   double agec; /* generic age */    fprintf(ficresprobcov,"\n");
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(ficresprobcor,"\n");
   double *popeffectif,*popcount;   */
   double ***p3mat;    xp=vector(1,npar);
   double ***mobaverage;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   char fileresf[FILENAMELENGTH];    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   agelim=AGESUP;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    first=1;
      fprintf(ficgp,"\n# Routine varprob");
   strcpy(fileresf,"f");    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   strcat(fileresf,fileres);    fprintf(fichtm,"\n");
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   }    file %s<br>\n",optionfilehtmcov);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   if (mobilav!=0) {  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  standard deviations wide on each axis. <br>\
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     }  
   }    cov[1]=1;
     /* tj=cptcoveff; */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    tj = (int) pow(2,cptcoveff);
   if (stepm<=12) stepsize=1;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   if(estepm < stepm){    j1=0;
     printf ("Problem %d lower than %d\n",estepm, stepm);    for(j1=1; j1<=tj;j1++){
   }      /*for(i1=1; i1<=ncodemax[t];i1++){ */
   else  hstepm=estepm;        /*j1++;*/
         if  (cptcovn>0) {
   hstepm=hstepm/stepm;          fprintf(ficresprob, "\n#********** Variable "); 
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                                fractional in yp1 */          fprintf(ficresprob, "**********\n#\n");
   anprojmean=yp;          fprintf(ficresprobcov, "\n#********** Variable "); 
   yp2=modf((yp1*12),&yp);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   mprojmean=yp;          fprintf(ficresprobcov, "**********\n#\n");
   yp1=modf((yp2*30.5),&yp);          
   jprojmean=yp;          fprintf(ficgp, "\n#********** Variable "); 
   if(jprojmean==0) jprojmean=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if(mprojmean==0) jprojmean=1;          fprintf(ficgp, "**********\n#\n");
           
   i1=cptcoveff;          
   if (cptcovn < 1){i1=1;}          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            
   fprintf(ficresf,"#****** Routine prevforecast **\n");          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /*            if (h==(int)(YEARM*yearp)){ */          fprintf(ficresprobcor, "**********\n#");    
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        
       k=k+1;        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       fprintf(ficresf,"\n#******");        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       for(j=1;j<=cptcoveff;j++) {        gp=vector(1,(nlstate)*(nlstate+ndeath));
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        gm=vector(1,(nlstate)*(nlstate+ndeath));
       }        for (age=bage; age<=fage; age ++){ 
       fprintf(ficresf,"******\n");          cov[2]=age;
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");          if(nagesqr==1)
       for(j=1; j<=nlstate+ndeath;j++){            cov[3]= age*age;
         for(i=1; i<=nlstate;i++)                        for (k=1; k<=cptcovn;k++) {
           fprintf(ficresf," p%d%d",i,j);            cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
         fprintf(ficresf," p.%d",j);                                                           * 1  1 1 1 1
       }                                                           * 2  2 1 1 1
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {                                                           * 3  1 2 1 1
         fprintf(ficresf,"\n");                                                           */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);              /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
         for (agec=fage; agec>=(ageminpar-1); agec--){          /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
           nhstepm = nhstepm/hstepm;          for (k=1; k<=cptcovprod;k++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           oldm=oldms;savm=savms;          
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);        
                  for(theta=1; theta <=npar; theta++){
           for (h=0; h<=nhstepm; h++){            for(i=1; i<=npar; i++)
             if (h*hstepm/YEARM*stepm ==yearp) {              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
               fprintf(ficresf,"\n");            
               for(j=1;j<=cptcoveff;j++)            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);            k=0;
             }            for(i=1; i<= (nlstate); i++){
             for(j=1; j<=nlstate+ndeath;j++) {              for(j=1; j<=(nlstate+ndeath);j++){
               ppij=0.;                k=k+1;
               for(i=1; i<=nlstate;i++) {                gp[k]=pmmij[i][j];
                 if (mobilav==1)              }
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];            }
                 else {            
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];            for(i=1; i<=npar; i++)
                 }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
                 if (h*hstepm/YEARM*stepm== yearp) {      
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                 }            k=0;
               } /* end i */            for(i=1; i<=(nlstate); i++){
               if (h*hstepm/YEARM*stepm==yearp) {              for(j=1; j<=(nlstate+ndeath);j++){
                 fprintf(ficresf," %.3f", ppij);                k=k+1;
               }                gm[k]=pmmij[i][j];
             }/* end j */              }
           } /* end h */            }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       
         } /* end agec */            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       } /* end yearp */              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     } /* end cptcod */          }
   } /* end  cptcov */  
                  for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
   fclose(ficresf);          
 }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 /************** Forecasting *****not tested NB*************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          pmij(pmmij,cov,ncovmodel,x,nlstate);
            
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          k=0;
   int *popage;          for(i=1; i<=(nlstate); i++){
   double calagedatem, agelim, kk1, kk2;            for(j=1; j<=(nlstate+ndeath);j++){
   double *popeffectif,*popcount;              k=k+1;
   double ***p3mat,***tabpop,***tabpopprev;              mu[k][(int) age]=pmmij[i][j];
   double ***mobaverage;            }
   char filerespop[FILENAMELENGTH];          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              varpij[i][j][(int)age] = doldm[i][j];
   agelim=AGESUP;  
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          /*printf("\n%d ",(int)age);
              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              }*/
   strcpy(filerespop,"pop");  
   strcat(filerespop,fileres);          fprintf(ficresprob,"\n%d ",(int)age);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          fprintf(ficresprobcov,"\n%d ",(int)age);
     printf("Problem with forecast resultfile: %s\n", filerespop);          fprintf(ficresprobcor,"\n%d ",(int)age);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  
   }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   printf("Computing forecasting: result on file '%s' \n", filerespop);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
   if (mobilav!=0) {          i=0;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (k=1; k<=(nlstate);k++){
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){            for (l=1; l<=(nlstate+ndeath);l++){ 
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);              i++;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   }              for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
   stepsize=(int) (stepm+YEARM-1)/YEARM;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   if (stepm<=12) stepsize=1;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                }
   agelim=AGESUP;            }
            }/* end of loop for state */
   hstepm=1;        } /* end of loop for age */
   hstepm=hstepm/stepm;        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   if (popforecast==1) {        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     if((ficpop=fopen(popfile,"r"))==NULL) {        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       printf("Problem with population file : %s\n",popfile);exit(0);        
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);        /* Confidence intervalle of pij  */
     }        /*
     popage=ivector(0,AGESUP);          fprintf(ficgp,"\nunset parametric;unset label");
     popeffectif=vector(0,AGESUP);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     popcount=vector(0,AGESUP);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
              fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     i=1;            fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
              fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     imx=i;        */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){        for (k2=1; k2<=(nlstate);k2++){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       k=k+1;            if(l2==k2) continue;
       fprintf(ficrespop,"\n#******");            j=(k2-1)*(nlstate+ndeath)+l2;
       for(j=1;j<=cptcoveff;j++) {            for (k1=1; k1<=(nlstate);k1++){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       }                if(l1==k1) continue;
       fprintf(ficrespop,"******\n");                i=(k1-1)*(nlstate+ndeath)+l1;
       fprintf(ficrespop,"# Age");                if(i<=j) continue;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);                for (age=bage; age<=fage; age ++){ 
       if (popforecast==1)  fprintf(ficrespop," [Population]");                  if ((int)age %5==0){
                          v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       for (cpt=0; cpt<=0;cpt++) {                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                      cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                            mu1=mu[i][(int) age]/stepm*YEARM ;
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){                    mu2=mu[j][(int) age]/stepm*YEARM;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                    c12=cv12/sqrt(v1*v2);
           nhstepm = nhstepm/hstepm;                    /* Computing eigen value of matrix of covariance */
                              lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           oldm=oldms;savm=savms;                    if ((lc2 <0) || (lc1 <0) ){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                        if(first2==1){
                                first1=0;
           for (h=0; h<=nhstepm; h++){                      printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
             if (h==(int) (calagedatem+YEARM*cpt)) {                      }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
             }                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
             for(j=1; j<=nlstate+ndeath;j++) {                      /* lc2=fabs(lc2); */
               kk1=0.;kk2=0;                    }
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)                    /* Eigen vectors */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                 else {                    /*v21=sqrt(1.-v11*v11); *//* error */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                    v21=(lc1-v1)/cv12*v11;
                 }                    v12=-v21;
               }                    v22=v11;
               if (h==(int)(calagedatem+12*cpt)){                    tnalp=v21/v11;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                    if(first1==1){
                   /*fprintf(ficrespop," %.3f", kk1);                      first1=0;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
               }                    }
             }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             for(i=1; i<=nlstate;i++){                    /*printf(fignu*/
               kk1=0.;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                 for(j=1; j<=nlstate;j++){                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                    if(first==1){
                 }                      first=0;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];                      fprintf(ficgp,"\nset parametric;unset label");
             }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
         }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   /******/                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                        fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           nhstepm = nhstepm/hstepm;                    }else{
                                first=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
           oldm=oldms;savm=savms;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           for (h=0; h<=nhstepm; h++){                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
             if (h==(int) (calagedatem+YEARM*cpt)) {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
             }                    }/* if first */
             for(j=1; j<=nlstate+ndeath;j++) {                  } /* age mod 5 */
               kk1=0.;kk2=0;                } /* end loop age */
               for(i=1; i<=nlstate;i++) {                              fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                    first=1;
               }              } /*l12 */
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                    } /* k12 */
             }          } /*l1 */
           }        }/* k1 */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* } */ /* loop covariates */
         }    }
       }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
    }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_vector(xp,1,npar);
     fclose(ficresprob);
   if (popforecast==1) {    fclose(ficresprobcov);
     free_ivector(popage,0,AGESUP);    fclose(ficresprobcor);
     free_vector(popeffectif,0,AGESUP);    fflush(ficgp);
     free_vector(popcount,0,AGESUP);    fflush(fichtmcov);
   }  }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficrespop);  /******************* Printing html file ***********/
 } /* End of popforecast */  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
 int fileappend(FILE *fichier, char *optionfich)                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 {                    int popforecast, int estepm ,\
   if((fichier=fopen(optionfich,"a"))==NULL) {                    double jprev1, double mprev1,double anprev1, \
     printf("Problem with file: %s\n", optionfich);                    double jprev2, double mprev2,double anprev2){
     fprintf(ficlog,"Problem with file: %s\n", optionfich);    int jj1, k1, i1, cpt;
     return (0);  
   }     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   fflush(fichier);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   return (1);  </ul>");
 }     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 /**************** function prwizard **********************/     fprintf(fichtm,"\
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 {             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
   /* Wizard to print covariance matrix template */   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   char ca[32], cb[32], cc[32];     fprintf(fichtm,"\
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   int numlinepar;     <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");     fprintf(fichtm,"\
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   - Population projections by age and states: \
   for(i=1; i <=nlstate; i++){     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
     jj=0;  
     for(j=1; j <=nlstate+ndeath; j++){  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       if(j==i) continue;  
       jj++;   m=pow(2,cptcoveff);
       /*ca[0]= k+'a'-1;ca[1]='\0';*/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i,j);   jj1=0;
       for(k=1; k<=ncovmodel;k++){   for(k1=1; k1<=m;k1++){
         /*        printf(" %lf",param[i][j][k]); */     for(i1=1; i1<=ncodemax[k1];i1++){
         /*        fprintf(ficparo," %lf",param[i][j][k]); */       jj1++;
         printf(" 0.");       if (cptcovn > 0) {
         fprintf(ficparo," 0.");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       }         for (cpt=1; cpt<=cptcoveff;cpt++) 
       printf("\n");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fprintf(ficparo,"\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     }       }
   }       /* Pij */
   printf("# Scales (for hessian or gradient estimation)\n");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");  <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/       /* Quasi-incidences */
   for(i=1; i <=nlstate; i++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     jj=0;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
     for(j=1; j <=nlstate+ndeath; j++){  <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
       if(j==i) continue;         /* Period (stable) prevalence in each health state */
       jj++;         for(cpt=1; cpt<=nlstate;cpt++){
       fprintf(ficparo,"%1d%1d",i,j);           fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
       printf("%1d%1d",i,j);  <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       fflush(stdout);         }
       for(k=1; k<=ncovmodel;k++){       for(cpt=1; cpt<=nlstate;cpt++) {
         /*      printf(" %le",delti3[i][j][k]); */          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */  <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         printf(" 0.");       }
         fprintf(ficparo," 0.");     } /* end i1 */
       }   }/* End k1 */
       numlinepar++;   fprintf(fichtm,"</ul>");
       printf("\n");  
       fprintf(ficparo,"\n");  
     }   fprintf(fichtm,"\
   }  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   printf("# Covariance matrix\n");   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 /* # 121 Var(a12)\n\ */  
 /* # 122 Cov(b12,a12) Var(b12)\n\ */   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */   fprintf(fichtm,"\
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */  
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */   fprintf(fichtm,"\
   fflush(stdout);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   fprintf(ficparo,"# Covariance matrix\n");           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   /* # 121 Var(a12)\n\ */   fprintf(fichtm,"\
   /* # 122 Cov(b12,a12) Var(b12)\n\ */   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   /* #   ...\n\ */     <a href=\"%s\">%s</a> <br>\n</li>",
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
     fprintf(fichtm,"\
   for(itimes=1;itimes<=2;itimes++){   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
     jj=0;     <a href=\"%s\">%s</a> <br>\n</li>",
     for(i=1; i <=nlstate; i++){             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
       for(j=1; j <=nlstate+ndeath; j++){   fprintf(fichtm,"\
         if(j==i) continue;   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
         for(k=1; k<=ncovmodel;k++){           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
           jj++;   fprintf(fichtm,"\
           ca[0]= k+'a'-1;ca[1]='\0';   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
           if(itimes==1){           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
             printf("#%1d%1d%d",i,j,k);   fprintf(fichtm,"\
             fprintf(ficparo,"#%1d%1d%d",i,j,k);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
           }else{           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
             printf("%1d%1d%d",i,j,k);  
             fprintf(ficparo,"%1d%1d%d",i,j,k);  /*  if(popforecast==1) fprintf(fichtm,"\n */
             /*  printf(" %.5le",matcov[i][j]); */  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
           }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
           ll=0;  /*      <br>",fileres,fileres,fileres,fileres); */
           for(li=1;li <=nlstate; li++){  /*  else  */
             for(lj=1;lj <=nlstate+ndeath; lj++){  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
               if(lj==li) continue;   fflush(fichtm);
               for(lk=1;lk<=ncovmodel;lk++){   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
                 ll++;  
                 if(ll<=jj){   m=pow(2,cptcoveff);
                   cb[0]= lk +'a'-1;cb[1]='\0';   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
                   if(ll<jj){  
                     if(itimes==1){   jj1=0;
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);   for(k1=1; k1<=m;k1++){
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);     for(i1=1; i1<=ncodemax[k1];i1++){
                     }else{       jj1++;
                       printf(" 0.");       if (cptcovn > 0) {
                       fprintf(ficparo," 0.");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                     }         for (cpt=1; cpt<=cptcoveff;cpt++) 
                   }else{           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
                     if(itimes==1){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                       printf(" Var(%s%1d%1d)",ca,i,j);       }
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);       for(cpt=1; cpt<=nlstate;cpt++) {
                     }else{         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
                       printf(" 0.");  prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
                       fprintf(ficparo," 0.");  <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
                     }       }
                   }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
                 }  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
               } /* end lk */  true period expectancies (those weighted with period prevalences are also\
             } /* end lj */   drawn in addition to the population based expectancies computed using\
           } /* end li */   observed and cahotic prevalences: %s%d.png<br>\
           printf("\n");  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
           fprintf(ficparo,"\n");     } /* end i1 */
           numlinepar++;   }/* End k1 */
         } /* end k*/   fprintf(fichtm,"</ul>");
       } /*end j */   fflush(fichtm);
     } /* end i */  }
   } /* end itimes */  
   /******************* Gnuplot file **************/
 } /* end of prwizard */  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 /******************* Gompertz Likelihood ******************************/  
 double gompertz(double x[])    char dirfileres[132],optfileres[132];
 {    int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
   double A,B,L=0.0,sump=0.,num=0.;    int ng=0;
   int i,n=0; /* n is the size of the sample */  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   for (i=0;i<=imx-1 ; i++) {  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     sump=sump+weight[i];  /*   } */
     /*    sump=sump+1;*/  
     num=num+1;    /*#ifdef windows */
   }    fprintf(ficgp,"cd \"%s\" \n",pathc);
        /*#endif */
      m=pow(2,cptcoveff);
   /* for (i=0; i<=imx; i++)  
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
   for (i=1;i<=imx ; i++)   /* 1eme*/
     {    fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
       if (cens[i] == 1 && wav[i]>1)    for (cpt=1; cpt<= nlstate ; cpt ++) {
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));      for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
             fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
       if (cens[i] == 0 && wav[i]>1)       fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))       fprintf(ficgp,"set xlabel \"Age\" \n\
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);    set ylabel \"Probability\" \n\
        set ter png small size 320, 240\n\
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
       if (wav[i] > 1 ) { /* ??? */  
         L=L+A*weight[i];       for (i=1; i<= nlstate ; i ++) {
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/         if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
       }         else        fprintf(ficgp," %%*lf (%%*lf)");
     }       }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
   return -2*L*num/sump;         else fprintf(ficgp," %%*lf (%%*lf)");
 }       } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 /******************* Printing html file ***********/       for (i=1; i<= nlstate ; i ++) {
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \         if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   int lastpass, int stepm, int weightopt, char model[],\         else fprintf(ficgp," %%*lf (%%*lf)");
                   int imx,  double p[],double **matcov,double agemortsup){       }  
   int i,k;       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");    }
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);    /*2 eme*/
   for (i=1;i<=2;i++)    fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));    for (k1=1; k1<= m ; k1 ++) { 
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   fprintf(fichtm,"</ul>");      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");      for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
  for (k=agegomp;k<(agemortsup-2);k++)          if (j==i) fprintf(ficgp," %%lf (%%lf)");
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);          else fprintf(ficgp," %%*lf (%%*lf)");
         }   
          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   fflush(fichtm);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
 /******************* Gnuplot file **************/          if (j==i) fprintf(ficgp," %%lf (%%lf)");
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          else fprintf(ficgp," %%*lf (%%*lf)");
         }   
   char dirfileres[132],optfileres[132];        fprintf(ficgp,"\" t\"\" w l lt 0,");
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   int ng;        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
   /*#ifdef windows */        }   
   fprintf(ficgp,"cd \"%s\" \n",pathc);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
     /*#endif */        else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
   strcpy(dirfileres,optionfilefiname);    
   strcpy(optfileres,"vpl");    /*3eme*/
   fprintf(ficgp,"set out \"graphmort.png\"\n ");    
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");    for (k1=1; k1<= m ; k1 ++) { 
   fprintf(ficgp, "set ter png small\n set log y\n");      for (cpt=1; cpt<= nlstate ; cpt ++) {
   fprintf(ficgp, "set size 0.65,0.65\n");        /*       k=2+nlstate*(2*cpt-2); */
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);        k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 }        fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 /***********************************************/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 /**************** Main Program *****************/          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 /***********************************************/          
         */
 int main(int argc, char *argv[])        for (i=1; i< nlstate ; i ++) {
 {          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;          
   int linei, month, year,iout;        } 
   int jj, ll, li, lj, lk, imk;        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
   int numlinepar=0; /* Current linenumber of parameter file */      }
   int itimes;    }
   int NDIM=2;    
     /* CV preval stable (period) */
   char ca[32], cb[32], cc[32];    for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
   char dummy[]="                         ";      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
   /*  FILE *fichtm; *//* Html File */        k=3;
   /* FILE *ficgp;*/ /*Gnuplot File */        fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
   struct stat info;        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   double agedeb, agefin,hf;        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  set ter png small size 320, 240\n\
   unset log y\n\
   double fret;  plot [%.f:%.f]  ", ageminpar, agemaxpar);
   double **xi,tmp,delta;        for (i=1; i<= nlstate ; i ++){
           if(i==1)
   double dum; /* Dummy variable */            fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
   double ***p3mat;          else
   double ***mobaverage;            fprintf(ficgp,", '' ");
   int *indx;          l=(nlstate+ndeath)*(i-1)+1;
   char line[MAXLINE], linepar[MAXLINE];          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];          for (j=1; j<= (nlstate-1) ; j ++)
   char pathr[MAXLINE], pathimach[MAXLINE];            fprintf(ficgp,"+$%d",k+l+j);
   char **bp, *tok, *val; /* pathtot */          fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
   int firstobs=1, lastobs=10;        } /* nlstate */
   int sdeb, sfin; /* Status at beginning and end */        fprintf(ficgp,"\n");
   int c,  h , cpt,l;      } /* end cpt state*/ 
   int ju,jl, mi;    } /* end covariate */  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;    /* proba elementaires */
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
   int mobilav=0,popforecast=0;    for(i=1,jk=1; i <=nlstate; i++){
   int hstepm, nhstepm;      fprintf(ficgp,"# initial state %d\n",i);
   int agemortsup;      for(k=1; k <=(nlstate+ndeath); k++){
   float  sumlpop=0.;        if (k != i) {
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;          fprintf(ficgp,"#   current state %d\n",k);
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;          for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
   double bage, fage, age, agelim, agebase;            jk++; 
   double ftolpl=FTOL;          }
   double **prlim;          fprintf(ficgp,"\n");
   double *severity;        }
   double ***param; /* Matrix of parameters */      }
   double  *p;     }
   double **matcov; /* Matrix of covariance */    fprintf(ficgp,"##############\n#\n");
   double ***delti3; /* Scale */  
   double *delti; /* Scale */    /*goto avoid;*/
   double ***eij, ***vareij;    fprintf(ficgp,"\n##############\n#Graphics of of probabilities or incidences\n#############\n");
   double **varpl; /* Variances of prevalence limits by age */    fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
   double *epj, vepp;    fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
   double kk1, kk2;    fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
   double **ximort;    fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
   char *alph[]={"a","a","b","c","d","e"}, str[4];    fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
   int *dcwave;    fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
   char z[1]="c", occ;    fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
   char  *strt, strtend[80];    fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
   char *stratrunc;    fprintf(ficgp,"#\n");
   int lstra;     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
   long total_usecs;       fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
         for(jk=1; jk <=m; jk++) {
 /*   setlocale (LC_ALL, ""); */         fprintf(ficgp,"#    jk=%d\n",jk);
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 /*   textdomain (PACKAGE); */         if (ng==2)
 /*   setlocale (LC_CTYPE, ""); */           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 /*   setlocale (LC_MESSAGES, ""); */         else
            fprintf(ficgp,"\nset title \"Probability\"\n");
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */         fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   (void) gettimeofday(&start_time,&tzp);         i=1;
   curr_time=start_time;         for(k2=1; k2<=nlstate; k2++) {
   tm = *localtime(&start_time.tv_sec);           k3=i;
   tmg = *gmtime(&start_time.tv_sec);           for(k=1; k<=(nlstate+ndeath); k++) {
   strcpy(strstart,asctime(&tm));             if (k != k2){
                if(ng==2)
 /*  printf("Localtime (at start)=%s",strstart); */                 if(nagesqr==0)
 /*  tp.tv_sec = tp.tv_sec +86400; */                   fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 /*  tm = *localtime(&start_time.tv_sec); */                 else /* nagesqr =1 */
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */                   fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */               else
 /*   tmg.tm_hour=tmg.tm_hour + 1; */                 if(nagesqr==0)
 /*   tp.tv_sec = mktime(&tmg); */                   fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 /*   strt=asctime(&tmg); */                 else /* nagesqr =1 */
 /*   printf("Time(after) =%s",strstart);  */                   fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
 /*  (void) time (&time_value);               ij=1;/* To be checked else nbcode[0][0] wrong */
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);               for(j=3; j <=ncovmodel-nagesqr; j++) {
 *  tm = *localtime(&time_value);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
 *  strstart=asctime(&tm);                   fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);                   ij++;
 */                 }
                  else
   nberr=0; /* Number of errors and warnings */                   fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   nbwarn=0;               }
   getcwd(pathcd, size);               fprintf(ficgp,")/(1");
                
   printf("\n%s\n%s",version,fullversion);               for(k1=1; k1 <=nlstate; k1++){ 
   if(argc <=1){                 if(nagesqr==0)
     printf("\nEnter the parameter file name: ");                   fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     fgets(pathr,FILENAMELENGTH,stdin);                 else /* nagesqr =1 */
     i=strlen(pathr);                   fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
     if(pathr[i-1]=='\n')    
       pathr[i-1]='\0';                 ij=1;
    for (tok = pathr; tok != NULL; ){                 for(j=3; j <=ncovmodel-nagesqr; j++){
       printf("Pathr |%s|\n",pathr);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       printf("val= |%s| pathr=%s\n",val,pathr);                     ij++;
       strcpy (pathtot, val);                   }
       if(pathr[0] == '\0') break; /* Dirty */                   else
     }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   }                 }
   else{                 fprintf(ficgp,")");
     strcpy(pathtot,argv[1]);               }
   }               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   /*cygwin_split_path(pathtot,path,optionfile);               i=i+ncovmodel;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/             }
   /* cutv(path,optionfile,pathtot,'\\');*/           } /* end k */
          } /* end k2 */
   /* Split argv[0], imach program to get pathimach */       } /* end jk */
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);     } /* end ng */
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);   /* avoid: */
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);     fflush(ficgp); 
  /*   strcpy(pathimach,argv[0]); */  }  /* end gnuplot */
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */  
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  /*************** Moving average **************/
   chdir(path); /* Can be a relative path */  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */  
     printf("Current directory %s!\n",pathcd);    int i, cpt, cptcod;
   strcpy(command,"mkdir ");    int modcovmax =1;
   strcat(command,optionfilefiname);    int mobilavrange, mob;
   if((outcmd=system(command)) != 0){    double age;
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);  
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
     /* fclose(ficlog); */                             a covariate has 2 modalities */
 /*     exit(1); */    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   }  
 /*   if((imk=mkdir(optionfilefiname))<0){ */    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 /*     perror("mkdir"); */      if(mobilav==1) mobilavrange=5; /* default */
 /*   } */      else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
   /*-------- arguments in the command line --------*/        for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
   /* Log file */            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   strcat(filelog, optionfilefiname);      /* We keep the original values on the extreme ages bage, fage and for 
   strcat(filelog,".log");    /* */         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   if((ficlog=fopen(filelog,"w"))==NULL)    {         we use a 5 terms etc. until the borders are no more concerned. 
     printf("Problem with logfile %s\n",filelog);      */ 
     goto end;      for (mob=3;mob <=mobilavrange;mob=mob+2){
   }        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   fprintf(ficlog,"Log filename:%s\n",filelog);          for (i=1; i<=nlstate;i++){
   fprintf(ficlog,"\n%s\n%s",version,fullversion);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   fprintf(ficlog,"\nEnter the parameter file name: \n");              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\                for (cpt=1;cpt<=(mob-1)/2;cpt++){
  path=%s \n\                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
  optionfile=%s\n\                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
  optionfilext=%s\n\                }
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
   printf("Local time (at start):%s",strstart);          }
   fprintf(ficlog,"Local time (at start): %s",strstart);        }/* end age */
   fflush(ficlog);      }/* end mob */
 /*   (void) gettimeofday(&curr_time,&tzp); */    }else return -1;
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */    return 0;
   }/* End movingaverage */
   /* */  
   strcpy(fileres,"r");  
   strcat(fileres, optionfilefiname);  /************** Forecasting ******************/
   strcat(fileres,".txt");    /* Other files have txt extension */  void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
   /*---------arguments file --------*/       agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
   if((ficpar=fopen(optionfile,"r"))==NULL)    {       anproj2 year of en of projection (same day and month as proj1).
     printf("Problem with optionfile %s\n",optionfile);    */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     fflush(ficlog);    double agec; /* generic age */
     goto end;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   }    double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   strcpy(filereso,"o");  
   strcat(filereso,fileres);    agelim=AGESUP;
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     printf("Problem with Output resultfile: %s\n", filereso);   
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    strcpy(fileresf,"f"); 
     fflush(ficlog);    strcat(fileresf,fileres);
     goto end;    if((ficresf=fopen(fileresf,"w"))==NULL) {
   }      printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   /* Reads comments: lines beginning with '#' */    }
   numlinepar=0;    printf("Computing forecasting: result on file '%s' \n", fileresf);
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     numlinepar++;  
     puts(line);    if (mobilav!=0) {
     fputs(line,ficparo);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fputs(line,ficlog);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   ungetc(c,ficpar);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    }
   numlinepar++;  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    if (stepm<=12) stepsize=1;
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    if(estepm < stepm){
   fflush(ficlog);      printf ("Problem %d lower than %d\n",estepm, stepm);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    else  hstepm=estepm;   
     fgets(line, MAXLINE, ficpar);  
     numlinepar++;    hstepm=hstepm/stepm; 
     puts(line);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     fputs(line,ficparo);                                 fractional in yp1 */
     fputs(line,ficlog);    anprojmean=yp;
   }    yp2=modf((yp1*12),&yp);
   ungetc(c,ficpar);    mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
        jprojmean=yp;
   covar=matrix(0,NCOVMAX,1,n);    if(jprojmean==0) jprojmean=1;
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/    if(mprojmean==0) jprojmean=1;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
     i1=cptcoveff;
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */    if (cptcovn < 1){i1=1;}
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficresf,"#****** Routine prevforecast **\n");
   delti=delti3[1][1];  
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/  /*            if (h==(int)(YEARM*yearp)){ */
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);        k=k+1;
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);        fprintf(ficresf,"\n#******");
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        for(j=1;j<=cptcoveff;j++) {
     fclose (ficparo);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     fclose (ficlog);        }
     goto end;        fprintf(ficresf,"******\n");
     exit(0);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   }        for(j=1; j<=nlstate+ndeath;j++){ 
   else if(mle==-3) {          for(i=1; i<=nlstate;i++)              
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);            fprintf(ficresf," p%d%d",i,j);
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);          fprintf(ficresf," p.%d",j);
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);        }
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
     matcov=matrix(1,npar,1,npar);          fprintf(ficresf,"\n");
   }          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   else{  
     /* Read guess parameters */          for (agec=fage; agec>=(ageminpar-1); agec--){ 
     /* Reads comments: lines beginning with '#' */            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
     while((c=getc(ficpar))=='#' && c!= EOF){            nhstepm = nhstepm/hstepm; 
       ungetc(c,ficpar);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fgets(line, MAXLINE, ficpar);            oldm=oldms;savm=savms;
       numlinepar++;            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
       puts(line);          
       fputs(line,ficparo);            for (h=0; h<=nhstepm; h++){
       fputs(line,ficlog);              if (h*hstepm/YEARM*stepm ==yearp) {
     }                fprintf(ficresf,"\n");
     ungetc(c,ficpar);                for(j=1;j<=cptcoveff;j++) 
                      fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
     for(i=1; i <=nlstate; i++){              } 
       j=0;              for(j=1; j<=nlstate+ndeath;j++) {
       for(jj=1; jj <=nlstate+ndeath; jj++){                ppij=0.;
         if(jj==i) continue;                for(i=1; i<=nlstate;i++) {
         j++;                  if (mobilav==1) 
         fscanf(ficpar,"%1d%1d",&i1,&j1);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
         if ((i1 != i) && (j1 != j)){                  else {
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 It might be a problem of design; if ncovcol and the model are correct\n \                  }
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);                  if (h*hstepm/YEARM*stepm== yearp) {
           exit(1);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
         }                  }
         fprintf(ficparo,"%1d%1d",i1,j1);                } /* end i */
         if(mle==1)                if (h*hstepm/YEARM*stepm==yearp) {
           printf("%1d%1d",i,j);                  fprintf(ficresf," %.3f", ppij);
         fprintf(ficlog,"%1d%1d",i,j);                }
         for(k=1; k<=ncovmodel;k++){              }/* end j */
           fscanf(ficpar," %lf",&param[i][j][k]);            } /* end h */
           if(mle==1){            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             printf(" %lf",param[i][j][k]);          } /* end agec */
             fprintf(ficlog," %lf",param[i][j][k]);        } /* end yearp */
           }      } /* end cptcod */
           else    } /* end  cptcov */
             fprintf(ficlog," %lf",param[i][j][k]);         
           fprintf(ficparo," %lf",param[i][j][k]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         }  
         fscanf(ficpar,"\n");    fclose(ficresf);
         numlinepar++;  }
         if(mle==1)  
           printf("\n");  /************** Forecasting *****not tested NB*************/
         fprintf(ficlog,"\n");  void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
         fprintf(ficparo,"\n");    
       }    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     }      int *popage;
     fflush(ficlog);    double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     p=param[1][1];    double ***p3mat,***tabpop,***tabpopprev;
        double ***mobaverage;
     /* Reads comments: lines beginning with '#' */    char filerespop[FILENAMELENGTH];
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fgets(line, MAXLINE, ficpar);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       numlinepar++;    agelim=AGESUP;
       puts(line);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
       fputs(line,ficparo);    
       fputs(line,ficlog);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     }    
     ungetc(c,ficpar);    
     strcpy(filerespop,"pop"); 
     for(i=1; i <=nlstate; i++){    strcat(filerespop,fileres);
       for(j=1; j <=nlstate+ndeath-1; j++){    if((ficrespop=fopen(filerespop,"w"))==NULL) {
         fscanf(ficpar,"%1d%1d",&i1,&j1);      printf("Problem with forecast resultfile: %s\n", filerespop);
         if ((i1-i)*(j1-j)!=0){      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    }
           exit(1);    printf("Computing forecasting: result on file '%s' \n", filerespop);
         }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
         printf("%1d%1d",i,j);  
         fprintf(ficparo,"%1d%1d",i1,j1);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
         fprintf(ficlog,"%1d%1d",i1,j1);  
         for(k=1; k<=ncovmodel;k++){    if (mobilav!=0) {
           fscanf(ficpar,"%le",&delti3[i][j][k]);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           printf(" %le",delti3[i][j][k]);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           fprintf(ficparo," %le",delti3[i][j][k]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           fprintf(ficlog," %le",delti3[i][j][k]);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }      }
         fscanf(ficpar,"\n");    }
         numlinepar++;  
         printf("\n");    stepsize=(int) (stepm+YEARM-1)/YEARM;
         fprintf(ficparo,"\n");    if (stepm<=12) stepsize=1;
         fprintf(ficlog,"\n");    
       }    agelim=AGESUP;
     }    
     fflush(ficlog);    hstepm=1;
     hstepm=hstepm/stepm; 
     delti=delti3[1][1];    
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */        printf("Problem with population file : %s\n",popfile);exit(0);
          fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
     /* Reads comments: lines beginning with '#' */      } 
     while((c=getc(ficpar))=='#' && c!= EOF){      popage=ivector(0,AGESUP);
       ungetc(c,ficpar);      popeffectif=vector(0,AGESUP);
       fgets(line, MAXLINE, ficpar);      popcount=vector(0,AGESUP);
       numlinepar++;      
       puts(line);      i=1;   
       fputs(line,ficparo);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       fputs(line,ficlog);     
     }      imx=i;
     ungetc(c,ficpar);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
      }
     matcov=matrix(1,npar,1,npar);  
     for(i=1; i <=npar; i++){    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       fscanf(ficpar,"%s",&str);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       if(mle==1)        k=k+1;
         printf("%s",str);        fprintf(ficrespop,"\n#******");
       fprintf(ficlog,"%s",str);        for(j=1;j<=cptcoveff;j++) {
       fprintf(ficparo,"%s",str);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       for(j=1; j <=i; j++){        }
         fscanf(ficpar," %le",&matcov[i][j]);        fprintf(ficrespop,"******\n");
         if(mle==1){        fprintf(ficrespop,"# Age");
           printf(" %.5le",matcov[i][j]);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         }        if (popforecast==1)  fprintf(ficrespop," [Population]");
         fprintf(ficlog," %.5le",matcov[i][j]);        
         fprintf(ficparo," %.5le",matcov[i][j]);        for (cpt=0; cpt<=0;cpt++) { 
       }          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
       fscanf(ficpar,"\n");          
       numlinepar++;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
       if(mle==1)            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
         printf("\n");            nhstepm = nhstepm/hstepm; 
       fprintf(ficlog,"\n");            
       fprintf(ficparo,"\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }            oldm=oldms;savm=savms;
     for(i=1; i <=npar; i++)            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       for(j=i+1;j<=npar;j++)          
         matcov[i][j]=matcov[j][i];            for (h=0; h<=nhstepm; h++){
                  if (h==(int) (calagedatem+YEARM*cpt)) {
     if(mle==1)                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
       printf("\n");              } 
     fprintf(ficlog,"\n");              for(j=1; j<=nlstate+ndeath;j++) {
                    kk1=0.;kk2=0;
     fflush(ficlog);                for(i=1; i<=nlstate;i++) {              
                      if (mobilav==1) 
     /*-------- Rewriting parameter file ----------*/                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     strcpy(rfileres,"r");    /* "Rparameterfile */                  else {
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     strcat(rfileres,".");    /* */                  }
     strcat(rfileres,optionfilext);    /* Other files have txt extension */                }
     if((ficres =fopen(rfileres,"w"))==NULL) {                if (h==(int)(calagedatem+12*cpt)){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;                    /*fprintf(ficrespop," %.3f", kk1);
     }                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
     fprintf(ficres,"#%s\n",version);                }
   }    /* End of mle != -3 */              }
               for(i=1; i<=nlstate;i++){
   /*-------- data file ----------*/                kk1=0.;
   if((fic=fopen(datafile,"r"))==NULL)    {                  for(j=1; j<=nlstate;j++){
     printf("Problem while opening datafile: %s\n", datafile);goto end;                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;                  }
   }                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   n= lastobs;  
   severity = vector(1,maxwav);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   outcome=imatrix(1,maxwav+1,1,n);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   num=lvector(1,n);            }
   moisnais=vector(1,n);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   annais=vector(1,n);          }
   moisdc=vector(1,n);        }
   andc=vector(1,n);   
   agedc=vector(1,n);    /******/
   cod=ivector(1,n);  
   weight=vector(1,n);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   mint=matrix(1,maxwav,1,n);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   anint=matrix(1,maxwav,1,n);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   s=imatrix(1,maxwav+1,1,n);            nhstepm = nhstepm/hstepm; 
   tab=ivector(1,NCOVMAX);            
   ncodemax=ivector(1,8);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
   i=1;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   linei=0;            for (h=0; h<=nhstepm; h++){
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {              if (h==(int) (calagedatem+YEARM*cpt)) {
     linei=linei+1;                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */              } 
       if(line[j] == '\t')              for(j=1; j<=nlstate+ndeath;j++) {
         line[j] = ' ';                kk1=0.;kk2=0;
     }                for(i=1; i<=nlstate;i++) {              
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
       ;                }
     };                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     line[j+1]=0;  /* Trims blanks at end of line */              }
     if(line[0]=='#'){            }
       fprintf(ficlog,"Comment line\n%s\n",line);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("Comment line\n%s\n",line);          }
       continue;        }
     }     } 
     }
     for (j=maxwav;j>=1;j--){   
       cutv(stra, strb,line,' ');    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       errno=0;  
       lval=strtol(strb,&endptr,10);    if (popforecast==1) {
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/      free_ivector(popage,0,AGESUP);
       if( strb[0]=='\0' || (*endptr != '\0')){      free_vector(popeffectif,0,AGESUP);
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);      free_vector(popcount,0,AGESUP);
         exit(1);    }
       }    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       s[j][i]=lval;    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
          fclose(ficrespop);
       strcpy(line,stra);  } /* End of popforecast */
       cutv(stra, strb,line,' ');  
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){  int fileappend(FILE *fichier, char *optionfich)
       }  {
       else  if(iout=sscanf(strb,"%s.") != 0){    if((fichier=fopen(optionfich,"a"))==NULL) {
         month=99;      printf("Problem with file: %s\n", optionfich);
         year=9999;      fprintf(ficlog,"Problem with file: %s\n", optionfich);
       }else{      return (0);
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);    }
         exit(1);    fflush(fichier);
       }    return (1);
       anint[j][i]= (double) year;  }
       mint[j][i]= (double)month;  
       strcpy(line,stra);  
     } /* ENd Waves */  /**************** function prwizard **********************/
      void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
     cutv(stra, strb,line,' ');  {
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){  
     }    /* Wizard to print covariance matrix template */
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){  
       month=99;    char ca[32], cb[32];
       year=9999;    int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     }else{    int numlinepar;
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);  
       exit(1);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     }    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     andc[i]=(double) year;    for(i=1; i <=nlstate; i++){
     moisdc[i]=(double) month;      jj=0;
     strcpy(line,stra);      for(j=1; j <=nlstate+ndeath; j++){
            if(j==i) continue;
     cutv(stra, strb,line,' ');        jj++;
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){        /*ca[0]= k+'a'-1;ca[1]='\0';*/
     }        printf("%1d%1d",i,j);
     else  if(iout=sscanf(strb,"%s.") != 0){        fprintf(ficparo,"%1d%1d",i,j);
       month=99;        for(k=1; k<=ncovmodel;k++){
       year=9999;          /*        printf(" %lf",param[i][j][k]); */
     }else{          /*        fprintf(ficparo," %lf",param[i][j][k]); */
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);          printf(" 0.");
       exit(1);          fprintf(ficparo," 0.");
     }        }
     annais[i]=(double)(year);        printf("\n");
     moisnais[i]=(double)(month);        fprintf(ficparo,"\n");
     strcpy(line,stra);      }
        }
     cutv(stra, strb,line,' ');    printf("# Scales (for hessian or gradient estimation)\n");
     errno=0;    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     dval=strtod(strb,&endptr);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     if( strb[0]=='\0' || (*endptr != '\0')){    for(i=1; i <=nlstate; i++){
       printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);      jj=0;
       exit(1);      for(j=1; j <=nlstate+ndeath; j++){
     }        if(j==i) continue;
     weight[i]=dval;        jj++;
     strcpy(line,stra);        fprintf(ficparo,"%1d%1d",i,j);
            printf("%1d%1d",i,j);
     for (j=ncovcol;j>=1;j--){        fflush(stdout);
       cutv(stra, strb,line,' ');        for(k=1; k<=ncovmodel;k++){
       errno=0;          /*      printf(" %le",delti3[i][j][k]); */
       lval=strtol(strb,&endptr,10);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
       if( strb[0]=='\0' || (*endptr != '\0')){          printf(" 0.");
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);          fprintf(ficparo," 0.");
         exit(1);        }
       }        numlinepar++;
       if(lval <-1 || lval >1){        printf("\n");
         printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \        fprintf(ficparo,"\n");
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \      }
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \    }
  For example, for multinomial values like 1, 2 and 3,\n \    printf("# Covariance matrix\n");
  build V1=0 V2=0 for the reference value (1),\n \  /* # 121 Var(a12)\n\ */
         V1=1 V2=0 for (2) \n \  /* # 122 Cov(b12,a12) Var(b12)\n\ */
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
  output of IMaCh is often meaningless.\n \  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
  Exiting.\n",lval,linei, i,line,j);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
         exit(1);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       }  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       covar[j][i]=(double)(lval);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       strcpy(line,stra);    fflush(stdout);
     }    fprintf(ficparo,"# Covariance matrix\n");
     lstra=strlen(stra);    /* # 121 Var(a12)\n\ */
        /* # 122 Cov(b12,a12) Var(b12)\n\ */
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */    /* #   ...\n\ */
       stratrunc = &(stra[lstra-9]);    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
       num[i]=atol(stratrunc);    
     }    for(itimes=1;itimes<=2;itimes++){
     else      jj=0;
       num[i]=atol(stra);      for(i=1; i <=nlstate; i++){
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        for(j=1; j <=nlstate+ndeath; j++){
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          if(j==i) continue;
              for(k=1; k<=ncovmodel;k++){
     i=i+1;            jj++;
   } /* End loop reading  data */            ca[0]= k+'a'-1;ca[1]='\0';
   fclose(fic);            if(itimes==1){
   /* printf("ii=%d", ij);              printf("#%1d%1d%d",i,j,k);
      scanf("%d",i);*/              fprintf(ficparo,"#%1d%1d%d",i,j,k);
   imx=i-1; /* Number of individuals */            }else{
               printf("%1d%1d%d",i,j,k);
   /* for (i=1; i<=imx; i++){              fprintf(ficparo,"%1d%1d%d",i,j,k);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;              /*  printf(" %.5le",matcov[i][j]); */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            ll=0;
     }*/            for(li=1;li <=nlstate; li++){
    /*  for (i=1; i<=imx; i++){              for(lj=1;lj <=nlstate+ndeath; lj++){
      if (s[4][i]==9)  s[4][i]=-1;                if(lj==li) continue;
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                for(lk=1;lk<=ncovmodel;lk++){
                    ll++;
   /* for (i=1; i<=imx; i++) */                  if(ll<=jj){
                      cb[0]= lk +'a'-1;cb[1]='\0';
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;                    if(ll<jj){
      else weight[i]=1;*/                      if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   /* Calculation of the number of parameters from char model */                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */                      }else{
   Tprod=ivector(1,15);                        printf(" 0.");
   Tvaraff=ivector(1,15);                        fprintf(ficparo," 0.");
   Tvard=imatrix(1,15,1,2);                      }
   Tage=ivector(1,15);                          }else{
                          if(itimes==1){
   if (strlen(model) >1){ /* If there is at least 1 covariate */                        printf(" Var(%s%1d%1d)",ca,i,j);
     j=0, j1=0, k1=1, k2=1;                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
     j=nbocc(model,'+'); /* j=Number of '+' */                      }else{
     j1=nbocc(model,'*'); /* j1=Number of '*' */                        printf(" 0.");
     cptcovn=j+1;                        fprintf(ficparo," 0.");
     cptcovprod=j1; /*Number of products */                      }
                        }
     strcpy(modelsav,model);                  }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                } /* end lk */
       printf("Error. Non available option model=%s ",model);              } /* end lj */
       fprintf(ficlog,"Error. Non available option model=%s ",model);            } /* end li */
       goto end;            printf("\n");
     }            fprintf(ficparo,"\n");
                numlinepar++;
     /* This loop fills the array Tvar from the string 'model'.*/          } /* end k*/
         } /*end j */
     for(i=(j+1); i>=1;i--){      } /* end i */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    } /* end itimes */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  } /* end of prwizard */
       /*scanf("%d",i);*/  /******************* Gompertz Likelihood ******************************/
       if (strchr(strb,'*')) {  /* Model includes a product */  double gompertz(double x[])
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/  { 
         if (strcmp(strc,"age")==0) { /* Vn*age */    double A,B,L=0.0,sump=0.,num=0.;
           cptcovprod--;    int i,n=0; /* n is the size of the sample */
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    for (i=0;i<=imx-1 ; i++) {
           cptcovage++;      sump=sump+weight[i];
             Tage[cptcovage]=i;      /*    sump=sump+1;*/
             /*printf("stre=%s ", stre);*/      num=num+1;
         }    }
         else if (strcmp(strd,"age")==0) { /* or age*Vn */   
           cptcovprod--;   
           cutv(strb,stre,strc,'V');    /* for (i=0; i<=imx; i++) 
           Tvar[i]=atoi(stre);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
           cptcovage++;  
           Tage[cptcovage]=i;    for (i=1;i<=imx ; i++)
         }      {
         else {  /* Age is not in the model */        if (cens[i] == 1 && wav[i]>1)
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
           Tvar[i]=ncovcol+k1;        
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */        if (cens[i] == 0 && wav[i]>1)
           Tprod[k1]=i;          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
           Tvard[k1][1]=atoi(strc); /* m*/               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
           Tvard[k1][2]=atoi(stre); /* n */        
           Tvar[cptcovn+k2]=Tvard[k1][1];        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        if (wav[i] > 1 ) { /* ??? */
           for (k=1; k<=lastobs;k++)          L=L+A*weight[i];
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
           k1++;        }
           k2=k2+2;      }
         }  
       }   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
       else { /* no more sum */   
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    return -2*L*num/sump;
        /*  scanf("%d",i);*/  }
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);  #ifdef GSL
       }  /******************* Gompertz_f Likelihood ******************************/
       strcpy(modelsav,stra);    double gompertz_f(const gsl_vector *v, void *params)
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  { 
         scanf("%d",i);*/    double A,B,LL=0.0,sump=0.,num=0.;
     } /* end of loop + */    double *x= (double *) v->data;
   } /* end model */    int i,n=0; /* n is the size of the sample */
    
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    for (i=0;i<=imx-1 ; i++) {
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/      sump=sump+weight[i];
       /*    sump=sump+1;*/
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      num=num+1;
   printf("cptcovprod=%d ", cptcovprod);    }
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);   
    
   scanf("%d ",i);*/    /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     /*  if(mle==1){*/    printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
   if (weightopt != 1) { /* Maximisation without weights*/    for (i=1;i<=imx ; i++)
     for(i=1;i<=n;i++) weight[i]=1.0;      {
   }        if (cens[i] == 1 && wav[i]>1)
     /*-calculation of age at interview from date of interview and age at death -*/          A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
   agev=matrix(1,maxwav,1,imx);        
         if (cens[i] == 0 && wav[i]>1)
   for (i=1; i<=imx; i++) {          A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
     for(m=2; (m<= maxwav); m++) {               +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){        
         anint[m][i]=9999;        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         s[m][i]=-1;        if (wav[i] > 1 ) { /* ??? */
       }          LL=LL+A*weight[i];
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         nberr++;        }
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      }
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  
         s[m][i]=-1;   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
       }    printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){   
         nberr++;    return -2*LL*num/sump;
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);  }
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);  #endif
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */  
       }  /******************* Printing html file ***********/
     }  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   }                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
   for (i=1; i<=imx; i++)  {    int i,k;
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
     for(m=firstpass; (m<= lastpass); m++){    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
         if (s[m][i] >= nlstate+1) {    for (i=1;i<=2;i++) 
           if(agedc[i]>0)      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
               agev[m][i]=agedc[i];    fprintf(fichtm,"</ul>");
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
             else {  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
               if ((int)andc[i]!=9999){  
                 nbwarn++;   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);  
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);   for (k=agegomp;k<(agemortsup-2);k++) 
                 agev[m][i]=-1;     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
               }  
             }   
         }    fflush(fichtm);
         else if(s[m][i] !=9){ /* Standard case, age in fractional  }
                                  years but with the precision of a month */  
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  /******************* Gnuplot file **************/
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
             agev[m][i]=1;  
           else if(agev[m][i] <agemin){    char dirfileres[132],optfileres[132];
             agemin=agev[m][i];  
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    int ng;
           }  
           else if(agev[m][i] >agemax){  
             agemax=agev[m][i];    /*#ifdef windows */
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    fprintf(ficgp,"cd \"%s\" \n",pathc);
           }      /*#endif */
           /*agev[m][i]=anint[m][i]-annais[i];*/  
           /*     agev[m][i] = age[i]+2*m;*/  
         }    strcpy(dirfileres,optionfilefiname);
         else { /* =9 */    strcpy(optfileres,"vpl");
           agev[m][i]=1;    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
           s[m][i]=-1;    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
         }    fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
       }    /* fprintf(ficgp, "set size 0.65,0.65\n"); */
       else /*= 0 Unknown */    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
         agev[m][i]=1;  
     }  } 
      
   }  int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   for (i=1; i<=imx; i++)  {  {
     for(m=firstpass; (m<=lastpass); m++){  
       if (s[m][i] > (nlstate+ndeath)) {    /*-------- data file ----------*/
         nberr++;    FILE *fic;
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        char dummy[]="                         ";
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        int i=0, j=0, n=0;
         goto end;    int linei, month, year,iout;
       }    char line[MAXLINE], linetmp[MAXLINE];
     }    char stra[MAXLINE], strb[MAXLINE];
   }    char *stratrunc;
     int lstra;
   /*for (i=1; i<=imx; i++){  
   for (m=firstpass; (m<lastpass); m++){  
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);    if((fic=fopen(datafile,"r"))==NULL)    {
 }      printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
 }*/    }
   
     i=1;
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    linei=0;
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
   agegomp=(int)agemin;      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
   free_vector(severity,1,maxwav);        if(line[j] == '\t')
   free_imatrix(outcome,1,maxwav+1,1,n);          line[j] = ' ';
   free_vector(moisnais,1,n);      }
   free_vector(annais,1,n);      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
   /* free_matrix(mint,1,maxwav,1,n);        ;
      free_matrix(anint,1,maxwav,1,n);*/      };
   free_vector(moisdc,1,n);      line[j+1]=0;  /* Trims blanks at end of line */
   free_vector(andc,1,n);      if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
            printf("Comment line\n%s\n",line);
   wav=ivector(1,imx);        continue;
   dh=imatrix(1,lastpass-firstpass+1,1,imx);      }
   bh=imatrix(1,lastpass-firstpass+1,1,imx);      trimbb(linetmp,line); /* Trims multiple blanks in line */
   mw=imatrix(1,lastpass-firstpass+1,1,imx);      strcpy(line, linetmp);
        
   /* Concatenates waves */  
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */        if(strb[0]=='.') { /* Missing status */
           lval=-1;
   Tcode=ivector(1,100);        }else{
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          errno=0;
   ncodemax[1]=1;          lval=strtol(strb,&endptr,10); 
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
                if( strb[0]=='\0' || (*endptr != '\0')){
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
                                  the estimations*/            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
   h=0;            return 1;
   m=pow(2,cptcoveff);          }
          }
   for(k=1;k<=cptcoveff; k++){        s[j][i]=lval;
     for(i=1; i <=(m/pow(2,k));i++){        
       for(j=1; j <= ncodemax[k]; j++){        strcpy(line,stra);
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        cutv(stra, strb,line,' ');
           h++;        if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        }
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         }          month=99;
       }          year=9999;
     }        }else{
   }          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
      codtab[1][2]=1;codtab[2][2]=2; */          return 1;
   /* for(i=1; i <=m ;i++){        }
      for(k=1; k <=cptcovn; k++){        anint[j][i]= (double) year; 
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        mint[j][i]= (double)month; 
      }        strcpy(line,stra);
      printf("\n");      } /* ENd Waves */
      }      
      scanf("%d",i);*/      cutv(stra, strb,line,' '); 
          if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
   /*------------ gnuplot -------------*/      }
   strcpy(optionfilegnuplot,optionfilefiname);      else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
   if(mle==-3)        month=99;
     strcat(optionfilegnuplot,"-mort");        year=9999;
   strcat(optionfilegnuplot,".gp");      }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
     printf("Problem with file %s",optionfilegnuplot);          return 1;
   }      }
   else{      andc[i]=(double) year; 
     fprintf(ficgp,"\n# %s\n", version);      moisdc[i]=(double) month; 
     fprintf(ficgp,"# %s\n", optionfilegnuplot);      strcpy(line,stra);
     fprintf(ficgp,"set missing 'NaNq'\n");      
   }      cutv(stra, strb,line,' '); 
   /*  fclose(ficgp);*/      if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
   /*--------- index.htm --------*/      }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */        month=99;
   if(mle==-3)        year=9999;
     strcat(optionfilehtm,"-mort");      }else{
   strcat(optionfilehtm,".htm");        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
     printf("Problem with %s \n",optionfilehtm), exit(0);          return 1;
   }      }
       if (year==9999) {
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
   strcat(optionfilehtmcov,"-cov.htm");        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {          return 1;
     printf("Problem with %s \n",optionfilehtmcov), exit(0);  
   }      }
   else{      annais[i]=(double)(year);
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \      moisnais[i]=(double)(month); 
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      strcpy(line,stra);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\      
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);      cutv(stra, strb,line,' '); 
   }      errno=0;
       dval=strtod(strb,&endptr); 
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \      if( strb[0]=='\0' || (*endptr != '\0')){
 <hr size=\"2\" color=\"#EC5E5E\"> \n\        printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\        fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 \n\        fflush(ficlog);
 <hr  size=\"2\" color=\"#EC5E5E\">\        return 1;
  <ul><li><h4>Parameter files</h4>\n\      }
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\      weight[i]=dval; 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\      strcpy(line,stra);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\      
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\      for (j=ncovcol;j>=1;j--){
  - Date and time at start: %s</ul>\n",\        cutv(stra, strb,line,' '); 
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\        if(strb[0]=='.') { /* Missing status */
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\          lval=-1;
           fileres,fileres,\        }else{
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);          errno=0;
   fflush(fichtm);          lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
   strcpy(pathr,path);            printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
   strcat(pathr,optionfilefiname);            fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
   chdir(optionfilefiname); /* Move to directory named optionfile */            return 1;
            }
   /* Calculates basic frequencies. Computes observed prevalence at single age        }
      and prints on file fileres'p'. */        if(lval <-1 || lval >1){
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
   fprintf(fichtm,"\n");   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\   For example, for multinomial values like 1, 2 and 3,\n \
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\   build V1=0 V2=0 for the reference value (1),\n \
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\          V1=1 V2=0 for (2) \n \
           imx,agemin,agemax,jmin,jmax,jmean);   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   output of IMaCh is often meaningless.\n \
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   Exiting.\n",lval,linei, i,line,j);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
       For example, for multinomial values like 1, 2 and 3,\n \
       build V1=0 V2=0 for the reference value (1),\n \
   /* For Powell, parameters are in a vector p[] starting at p[1]          V1=1 V2=0 for (2) \n \
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */   output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/          return 1;
         }
   if (mle==-3){        covar[j][i]=(double)(lval);
     ximort=matrix(1,NDIM,1,NDIM);        strcpy(line,stra);
     cens=ivector(1,n);      }  
     ageexmed=vector(1,n);      lstra=strlen(stra);
     agecens=vector(1,n);       
     dcwave=ivector(1,n);      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
          stratrunc = &(stra[lstra-9]);
     for (i=1; i<=imx; i++){        num[i]=atol(stratrunc);
       dcwave[i]=-1;      }
       for (m=firstpass; m<=lastpass; m++)      else
         if (s[m][i]>nlstate) {        num[i]=atol(stra);
           dcwave[i]=m;      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
           break;      
         }      i=i+1;
     }    } /* End loop reading  data */
   
     for (i=1; i<=imx; i++) {    *imax=i-1; /* Number of individuals */
       if (wav[i]>0){    fclose(fic);
         ageexmed[i]=agev[mw[1][i]][i];   
         j=wav[i];    return (0);
         agecens[i]=1.;    /* endread: */
       printf("Exiting readdata: ");
         if (ageexmed[i]> 1 && wav[i] > 0){      fclose(fic);
           agecens[i]=agev[mw[j][i]][i];      return (1);
           cens[i]= 1;  
         }else if (ageexmed[i]< 1)  
           cens[i]= -1;  
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)  }
           cens[i]=0 ;  void removespace(char *str) {
       }    char *p1 = str, *p2 = str;
       else cens[i]=-1;    do
     }      while (*p2 == ' ')
            p2++;
     for (i=1;i<=NDIM;i++) {    while (*p1++ == *p2++);
       for (j=1;j<=NDIM;j++)  }
         ximort[i][j]=(i == j ? 1.0 : 0.0);  
     }  int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
         * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
     p[1]=0.0268; p[NDIM]=0.083;     * - nagesqr = 1 if age*age in the model, otherwise 0.
     /*printf("%lf %lf", p[1], p[2]);*/     * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
         * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
         * - cptcovage number of covariates with age*products =2
     printf("Powell\n");  fprintf(ficlog,"Powell\n");     * - cptcovs number of simple covariates
     strcpy(filerespow,"pow-mort");     * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
     strcat(filerespow,fileres);     *     which is a new column after the 9 (ncovcol) variables. 
     if((ficrespow=fopen(filerespow,"w"))==NULL) {     * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
       printf("Problem with resultfile: %s\n", filerespow);     * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);     *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
     }     * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
     fprintf(ficrespow,"# Powell\n# iter -2*LL");   */
     /*  for (i=1;i<=nlstate;i++)  {
         for(j=1;j<=nlstate+ndeath;j++)    int i, j, k, ks;
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);    int  j1, k1, k2;
     */    char modelsav[80];
     fprintf(ficrespow,"\n");    char stra[80], strb[80], strc[80], strd[80],stre[80];
        char *strpt;
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);  
     fclose(ficrespow);    /*removespace(model);*/
        if (strlen(model) >1){ /* If there is at least 1 covariate */
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);      j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
     for(i=1; i <=NDIM; i++)        printf("Error. AGE must be in lower case 'age' model=1+age+%s ",model);
       for(j=i+1;j<=NDIM;j++)        fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s ",model);fflush(ficlog);
         matcov[i][j]=matcov[j][i];        return 1;
          }
     printf("\nCovariance matrix\n ");      if (strstr(model,"v") !=0){
     for(i=1; i <=NDIM; i++) {        printf("Error. 'v' must be in upper case 'V' model=%s ",model);
       for(j=1;j<=NDIM;j++){        fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         printf("%f ",matcov[i][j]);        return 1;
       }      }
       printf("\n ");      strcpy(modelsav,model); 
     }      if ((strpt=strstr(model,"age*age")) !=0){
            printf(" strpt=%s, model=%s\n",strpt, model);
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);        if(strpt != model){
     for (i=1;i<=NDIM;i++)        printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));   'model=1+age+age*age+V1' or 'model=1+age+age*age+V1+V1*age', please swap as well as \n \
    corresponding column of parameters.\n",model);
     lsurv=vector(1,AGESUP);        fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
     lpop=vector(1,AGESUP);   'model=1+age+age*age+V1' or 'model=1+age+age*age+V1+V1*age', please swap as well as \n \
     tpop=vector(1,AGESUP);   corresponding column of parameters.\n",model); fflush(ficlog);
     lsurv[agegomp]=100000;        return 1;
          }
     for (k=agegomp;k<=AGESUP;k++) {  
       agemortsup=k;        nagesqr=1;
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;        if (strstr(model,"+age*age") !=0)
     }          substrchaine(modelsav, model, "+age*age");
            else if (strstr(model,"age*age+") !=0)
     for (k=agegomp;k<agemortsup;k++)          substrchaine(modelsav, model, "age*age+");
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));        else 
              substrchaine(modelsav, model, "age*age");
     for (k=agegomp;k<agemortsup;k++){      }else
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;        nagesqr=0;
       sumlpop=sumlpop+lpop[k];      if (strlen(modelsav) >1){
     }        j=nbocc(modelsav,'+'); /**< j=Number of '+' */
            j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
     tpop[agegomp]=sumlpop;        cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
     for (k=agegomp;k<(agemortsup-3);k++){        cptcovt= j+1; /* Number of total covariates in the model, not including
       /*  tpop[k+1]=2;*/                     * cst, age and age*age 
       tpop[k+1]=tpop[k]-lpop[k];                     * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
     }                    /* including age products which are counted in cptcovage.
                        * but the covariates which are products must be treated 
                        * separately: ncovn=4- 2=2 (V1+V3). */
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");        cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
     for (k=agegomp;k<(agemortsup-2);k++)        cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);  
          
            /*   Design
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */         *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);         *  <          ncovcol=8                >
             * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \         *   k=  1    2      3       4     5       6      7        8
                      stepm, weightopt,\         *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
                      model,imx,p,matcov,agemortsup);         *  covar[k,i], value of kth covariate if not including age for individual i:
             *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
     free_vector(lsurv,1,AGESUP);         *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
     free_vector(lpop,1,AGESUP);         *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
     free_vector(tpop,1,AGESUP);         *  Tage[++cptcovage]=k
   } /* Endof if mle==-3 */         *       if products, new covar are created after ncovcol with k1
           *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
   else{ /* For mle >=1 */         *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
           *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */         *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);         *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
     for (k=1; k<=npar;k++)         *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
       printf(" %d %8.5f",k,p[k]);         *  <          ncovcol=8                >
     printf("\n");         *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
     globpr=1; /* to print the contributions */         *          k=  1    2      3       4     5       6      7        8    9   10   11  12
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */         *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);         * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
     for (k=1; k<=npar;k++)         * p Tprod[1]@2={                         6, 5}
       printf(" %d %8.5f",k,p[k]);         *p Tvard[1][1]@4= {7, 8, 5, 6}
     printf("\n");         * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
     if(mle>=1){ /* Could be 1 or 2 */         *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);         *How to reorganize?
     }         * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
             * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
     /*--------- results files --------------*/         *       {2,   1,     4,      8,    5,      6,     3,       7}
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);         * Struct []
             */
      
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        /* This loop fills the array Tvar from the string 'model'.*/
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
     for(i=1,jk=1; i <=nlstate; i++){        /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       for(k=1; k <=(nlstate+ndeath); k++){        /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         if (k != i) {        /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
           printf("%d%d ",i,k);        /*        k=1 Tvar[1]=2 (from V2) */
           fprintf(ficlog,"%d%d ",i,k);        /*        k=5 Tvar[5] */
           fprintf(ficres,"%1d%1d ",i,k);        /* for (k=1; k<=cptcovn;k++) { */
           for(j=1; j <=ncovmodel; j++){        /*        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
             printf("%lf ",p[jk]);        /*        } */
             fprintf(ficlog,"%lf ",p[jk]);        /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2]; */
             fprintf(ficres,"%lf ",p[jk]);        /*
             jk++;         * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
           }        for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           printf("\n");          Tvar[k]=0;
           fprintf(ficlog,"\n");        cptcovage=0;
           fprintf(ficres,"\n");        for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         }          cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
       }                                           modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
     }          if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
     if(mle!=0){          /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
       /* Computing hessian and covariance matrix */          /*scanf("%d",i);*/
       ftolhess=ftol; /* Usually correct */          if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
       hesscov(matcov, p, npar, delti, ftolhess, func);            cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
     }            if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");              /* covar is not filled and then is empty */
     printf("# Scales (for hessian or gradient estimation)\n");              cptcovprod--;
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");              cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
     for(i=1,jk=1; i <=nlstate; i++){              Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
       for(j=1; j <=nlstate+ndeath; j++){              cptcovage++; /* Sums the number of covariates which include age as a product */
         if (j!=i) {              Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
           fprintf(ficres,"%1d%1d",i,j);              /*printf("stre=%s ", stre);*/
           printf("%1d%1d",i,j);            } else if (strcmp(strd,"age")==0) { /* or age*Vn */
           fprintf(ficlog,"%1d%1d",i,j);              cptcovprod--;
           for(k=1; k<=ncovmodel;k++){              cutl(stre,strb,strc,'V');
             printf(" %.5e",delti[jk]);              Tvar[k]=atoi(stre);
             fprintf(ficlog," %.5e",delti[jk]);              cptcovage++;
             fprintf(ficres," %.5e",delti[jk]);              Tage[cptcovage]=k;
             jk++;            } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
           }              /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
           printf("\n");              cptcovn++;
           fprintf(ficlog,"\n");              cptcovprodnoage++;k1++;
           fprintf(ficres,"\n");              cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
         }              Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
       }                                     because this model-covariate is a construction we invent a new column
     }                                     ncovcol + k1
                                         If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
     if(mle>=1)              cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
     /* # 121 Var(a12)\n\ */              Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
     /* # 122 Cov(b12,a12) Var(b12)\n\ */              k2=k2+2;
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */              Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */              Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */              for (i=1; i<=lastobs;i++){
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */                /* Computes the new covariate which is a product of
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */                   covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */                covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
                  }
                } /* End age is not in the model */
     /* Just to have a covariance matrix which will be more understandable          } /* End if model includes a product */
        even is we still don't want to manage dictionary of variables          else { /* no more sum */
     */            /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
     for(itimes=1;itimes<=2;itimes++){            /*  scanf("%d",i);*/
       jj=0;            cutl(strd,strc,strb,'V');
       for(i=1; i <=nlstate; i++){            ks++; /**< Number of simple covariates */
         for(j=1; j <=nlstate+ndeath; j++){            cptcovn++;
           if(j==i) continue;            Tvar[k]=atoi(strd);
           for(k=1; k<=ncovmodel;k++){          }
             jj++;          strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
             ca[0]= k+'a'-1;ca[1]='\0';          /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             if(itimes==1){            scanf("%d",i);*/
               if(mle>=1)        } /* end of loop + on total covariates */
                 printf("#%1d%1d%d",i,j,k);      } /* end if strlen(modelsave == 0) age*age might exist */
               fprintf(ficlog,"#%1d%1d%d",i,j,k);    } /* end if strlen(model == 0) */
               fprintf(ficres,"#%1d%1d%d",i,j,k);    
             }else{    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
               if(mle>=1)      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
                 printf("%1d%1d%d",i,j,k);  
               fprintf(ficlog,"%1d%1d%d",i,j,k);    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
               fprintf(ficres,"%1d%1d%d",i,j,k);    printf("cptcovprod=%d ", cptcovprod);
             }    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
             ll=0;  
             for(li=1;li <=nlstate; li++){    scanf("%d ",i);*/
               for(lj=1;lj <=nlstate+ndeath; lj++){  
                 if(lj==li) continue;  
                 for(lk=1;lk<=ncovmodel;lk++){    return (0); /* with covar[new additional covariate if product] and Tage if age */ 
                   ll++;    /*endread:*/
                   if(ll<=jj){      printf("Exiting decodemodel: ");
                     cb[0]= lk +'a'-1;cb[1]='\0';      return (1);
                     if(ll<jj){  }
                       if(itimes==1){  
                         if(mle>=1)  int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  {
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    int i, m;
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  
                       }else{    for (i=1; i<=imx; i++) {
                         if(mle>=1)      for(m=2; (m<= maxwav); m++) {
                           printf(" %.5e",matcov[jj][ll]);        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
                         fprintf(ficlog," %.5e",matcov[jj][ll]);          anint[m][i]=9999;
                         fprintf(ficres," %.5e",matcov[jj][ll]);          s[m][i]=-1;
                       }        }
                     }else{        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
                       if(itimes==1){          *nberr = *nberr + 1;
                         if(mle>=1)          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
                           printf(" Var(%s%1d%1d)",ca,i,j);          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);          s[m][i]=-1;
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);        }
                       }else{        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
                         if(mle>=1)          (*nberr)++;
                           printf(" %.5e",matcov[jj][ll]);          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]);          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]);          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
                       }        }
                     }      }
                   }    }
                 } /* end lk */  
               } /* end lj */    for (i=1; i<=imx; i++)  {
             } /* end li */      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
             if(mle>=1)      for(m=firstpass; (m<= lastpass); m++){
               printf("\n");        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
             fprintf(ficlog,"\n");          if (s[m][i] >= nlstate+1) {
             fprintf(ficres,"\n");            if(agedc[i]>0){
             numlinepar++;              if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
           } /* end k*/                agev[m][i]=agedc[i];
         } /*end j */            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
       } /* end i */              }else {
     } /* end itimes */                if ((int)andc[i]!=9999){
                      nbwarn++;
     fflush(ficlog);                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
     fflush(ficres);                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                      agev[m][i]=-1;
     while((c=getc(ficpar))=='#' && c!= EOF){                }
       ungetc(c,ficpar);              }
       fgets(line, MAXLINE, ficpar);            } /* agedc > 0 */
       puts(line);          }
       fputs(line,ficparo);          else if(s[m][i] !=9){ /* Standard case, age in fractional
     }                                   years but with the precision of a month */
     ungetc(c,ficpar);            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
                if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
     estepm=0;              agev[m][i]=1;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            else if(agev[m][i] < *agemin){ 
     if (estepm==0 || estepm < stepm) estepm=stepm;              *agemin=agev[m][i];
     if (fage <= 2) {              printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
       bage = ageminpar;            }
       fage = agemaxpar;            else if(agev[m][i] >*agemax){
     }              *agemax=agev[m][i];
                  /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            /*agev[m][i]=anint[m][i]-annais[i];*/
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            /*     agev[m][i] = age[i]+2*m;*/
              }
     while((c=getc(ficpar))=='#' && c!= EOF){          else { /* =9 */
       ungetc(c,ficpar);            agev[m][i]=1;
       fgets(line, MAXLINE, ficpar);            s[m][i]=-1;
       puts(line);          }
       fputs(line,ficparo);        }
     }        else /*= 0 Unknown */
     ungetc(c,ficpar);          agev[m][i]=1;
          }
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);      
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    }
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    for (i=1; i<=imx; i++)  {
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      for(m=firstpass; (m<=lastpass); m++){
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        if (s[m][i] > (nlstate+ndeath)) {
              (*nberr)++;
     while((c=getc(ficpar))=='#' && c!= EOF){          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
       ungetc(c,ficpar);          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
       fgets(line, MAXLINE, ficpar);          return 1;
       puts(line);        }
       fputs(line,ficparo);      }
     }    }
     ungetc(c,ficpar);  
        /*for (i=1; i<=imx; i++){
        for (m=firstpass; (m<lastpass); m++){
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;  }
      
     fscanf(ficpar,"pop_based=%d\n",&popbased);  }*/
     fprintf(ficparo,"pop_based=%d\n",popbased);    
     fprintf(ficres,"pop_based=%d\n",popbased);    
        printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);    return (0);
       puts(line);   /* endread:*/
       fputs(line,ficparo);      printf("Exiting calandcheckages: ");
     }      return (1);
     ungetc(c,ficpar);  }
      
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);  #if defined(_MSC_VER)
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);  /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);  /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);  //#include "stdafx.h"
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);  //#include <stdio.h>
     /* day and month of proj2 are not used but only year anproj2.*/  //#include <tchar.h>
      //#include <windows.h>
      //#include <iostream>
      typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/  
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/  LPFN_ISWOW64PROCESS fnIsWow64Process;
      
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */  BOOL IsWow64()
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);  {
              BOOL bIsWow64 = FALSE;
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\  
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\          //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);          //  (HANDLE, PBOOL);
        
    /*------------ free_vector  -------------*/          //LPFN_ISWOW64PROCESS fnIsWow64Process;
    /*  chdir(path); */  
            HMODULE module = GetModuleHandle(_T("kernel32"));
     free_ivector(wav,1,imx);          const char funcName[] = "IsWow64Process";
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          fnIsWow64Process = (LPFN_ISWOW64PROCESS)
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);                  GetProcAddress(module, funcName);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
     free_lvector(num,1,n);          if (NULL != fnIsWow64Process)
     free_vector(agedc,1,n);          {
     /*free_matrix(covar,0,NCOVMAX,1,n);*/                  if (!fnIsWow64Process(GetCurrentProcess(),
     /*free_matrix(covar,1,NCOVMAX,1,n);*/                          &bIsWow64))
     fclose(ficparo);                          //throw std::exception("Unknown error");
     fclose(ficres);                          printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/  }
    #endif
     strcpy(filerespl,"pl");  
     strcat(filerespl,fileres);  void syscompilerinfo()
     if((ficrespl=fopen(filerespl,"w"))==NULL) {   {
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;     /* #include "syscompilerinfo.h"*/
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;     /* command line Intel compiler 32bit windows, XP compatible:*/
     }     /* /GS /W3 /Gy
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);        /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);        "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
     pstamp(ficrespl);        "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
     fprintf(ficrespl,"# Period (stable) prevalence \n");        /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
     fprintf(ficrespl,"#Age ");     */ 
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);     /* 64 bits */
     fprintf(ficrespl,"\n");     /*
         /GS /W3 /Gy
     prlim=matrix(1,nlstate,1,nlstate);       /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
     agebase=ageminpar;       /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
     agelim=agemaxpar;       "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
     ftolpl=1.e-10;     /* Optimization are useless and O3 is slower than O2 */
     i1=cptcoveff;     /*
     if (cptcovn < 1){i1=1;}       /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){       /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
         k=k+1;     */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/     /* Link is */ /* /OUT:"visual studio
         fprintf(ficrespl,"\n#******");        2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         printf("\n#******");        /PDB:"visual studio
         fprintf(ficlog,"\n#******");        2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         for(j=1;j<=cptcoveff;j++) {        "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         }        /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         fprintf(ficrespl,"******\n");        uiAccess='false'"
         printf("******\n");        /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         fprintf(ficlog,"******\n");        /NOLOGO /TLBID:1
             */
         for (age=agebase; age<=agelim; age++){  #if defined __INTEL_COMPILER
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  #if defined(__GNUC__)
           fprintf(ficrespl,"%.0f ",age );          struct utsname sysInfo;  /* For Intel on Linux and OS/X */
           for(j=1;j<=cptcoveff;j++)  #endif
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  #elif defined(__GNUC__) 
           for(i=1; i<=nlstate;i++)  #ifndef  __APPLE__
             fprintf(ficrespl," %.5f", prlim[i][i]);  #include <gnu/libc-version.h>  /* Only on gnu */
           fprintf(ficrespl,"\n");  #endif
         }     struct utsname sysInfo;
       }     int cross = CROSS;
     }     if (cross){
     fclose(ficrespl);             printf("Cross-");
              fprintf(ficlog, "Cross-");
     /*------------- h Pij x at various ages ------------*/     }
    #endif
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
     if((ficrespij=fopen(filerespij,"w"))==NULL) {  #include <stdint.h>
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;     printf("Compiled with:");fprintf(ficlog,"Compiled with:");
     }  #if defined(__clang__)
     printf("Computing pij: result on file '%s' \n", filerespij);     printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);  #endif
    #if defined(__ICC) || defined(__INTEL_COMPILER)
     stepsize=(int) (stepm+YEARM-1)/YEARM;     printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
     /*if (stepm<=24) stepsize=2;*/  #endif
   #if defined(__GNUC__) || defined(__GNUG__)
     agelim=AGESUP;     printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
     hstepm=stepsize*YEARM; /* Every year of age */  #endif
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
     /* hstepm=1;   aff par mois*/  #endif
     pstamp(ficrespij);  #if defined(__IBMC__) || defined(__IBMCPP__)
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");     printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){  #endif
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  #if defined(_MSC_VER)
         k=k+1;     printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
         fprintf(ficrespij,"\n#****** ");  #endif
         for(j=1;j<=cptcoveff;j++)  #if defined(__PGI)
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
         fprintf(ficrespij,"******\n");  #endif
          #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */     printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  #endif
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */     printf(" for ");fprintf(ficlog," for ");
      
           /*      nhstepm=nhstepm*YEARM; aff par mois*/  // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      // Windows (x64 and x86)
           oldm=oldms;savm=savms;     printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    #elif __unix__ // all unices, not all compilers
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");      // Unix
           for(i=1; i<=nlstate;i++)     printf("Unix ");fprintf(ficlog,"Unix ");
             for(j=1; j<=nlstate+ndeath;j++)  #elif __linux__
               fprintf(ficrespij," %1d-%1d",i,j);      // linux
           fprintf(ficrespij,"\n");     printf("linux ");fprintf(ficlog,"linux ");
           for (h=0; h<=nhstepm; h++){  #elif __APPLE__
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
             for(i=1; i<=nlstate;i++)     printf("Mac OS ");fprintf(ficlog,"Mac OS ");
               for(j=1; j<=nlstate+ndeath;j++)  #endif
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");  /*  __MINGW32__   */
           }  /*  __CYGWIN__   */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /* __MINGW64__  */
           fprintf(ficrespij,"\n");  // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
         }  /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
       }  /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
     }  /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);  /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
     fclose(ficrespij);  #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  #elif UINTPTR_MAX == 0xffffffffffffffff
     for(i=1;i<=AGESUP;i++)     printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
       for(j=1;j<=NCOVMAX;j++)  #else
         for(k=1;k<=NCOVMAX;k++)     printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
           probs[i][j][k]=0.;  #endif
   
     /*---------- Forecasting ------------------*/  #if defined(__GNUC__)
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/  # if defined(__GNUC_PATCHLEVEL__)
     if(prevfcast==1){  #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
       /*    if(stepm ==1){*/                              + __GNUC_MINOR__ * 100 \
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);                              + __GNUC_PATCHLEVEL__)
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/  # else
       /*      }  */  #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
       /*      else{ */                              + __GNUC_MINOR__ * 100)
       /*        erreur=108; */  # endif
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */     printf(" using GNU C version %d.\n", __GNUC_VERSION__);
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */     fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
       /*      } */  
     }     if (uname(&sysInfo) != -1) {
         printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
     /*---------- Health expectancies and variances ------------*/     }
      else
     strcpy(filerest,"t");        perror("uname() error");
     strcat(filerest,fileres);     //#ifndef __INTEL_COMPILER 
     if((ficrest=fopen(filerest,"w"))==NULL) {  #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;     printf("GNU libc version: %s\n", gnu_get_libc_version()); 
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;     fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
     }  #endif
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);  #endif
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);  
      //   void main()
      //   {
     strcpy(filerese,"e");  #if defined(_MSC_VER)
     strcat(filerese,fileres);     if (IsWow64()){
     if((ficreseij=fopen(filerese,"w"))==NULL) {             printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);             fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);     }
     }     else{
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);             printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);             fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
     strcpy(fileresstde,"stde");     //      printf("\nPress Enter to continue...");
     strcat(fileresstde,fileres);     //      getchar();
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {     //   }
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);  
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);  #endif
     }     
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);  
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);   }
   
     strcpy(filerescve,"cve");  int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     strcat(filerescve,fileres);    /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {    int i, j, k, i1 ;
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);    double ftolpl = 1.e-10;
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);    double age, agebase, agelim;
     }  
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);      strcpy(filerespl,"pl");
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);      strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
     strcpy(fileresv,"v");        printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     strcat(fileresv,fileres);        fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     if((ficresvij=fopen(fileresv,"w"))==NULL) {      }
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     }      pstamp(ficrespl);
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      fprintf(ficrespl,"# Period (stable) prevalence \n");
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */      fprintf(ficrespl,"\n");
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\      /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);  
     */      agebase=ageminpar;
       agelim=agemaxpar;
     if (mobilav!=0) {  
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      i1=pow(2,cptcoveff);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      if (cptcovn < 1){i1=1;}
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
         printf(" Error in movingaverage mobilav=%d\n",mobilav);      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       }      /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
     }        //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){          /* to clean */
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
         k=k+1;          fprintf(ficrespl,"\n#******");
         fprintf(ficrest,"\n#****** ");          printf("\n#******");
         for(j=1;j<=cptcoveff;j++)          fprintf(ficlog,"\n#******");
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(j=1;j<=cptcoveff;j++) {
         fprintf(ficrest,"******\n");            fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"\n#****** ");            fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresstdeij,"\n#****** ");          }
         fprintf(ficrescveij,"\n#****** ");          fprintf(ficrespl,"******\n");
         for(j=1;j<=cptcoveff;j++) {          printf("******\n");
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficlog,"******\n");
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficrespl,"#Age ");
         }          for(j=1;j<=cptcoveff;j++) {
         fprintf(ficreseij,"******\n");            fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresstdeij,"******\n");          }
         fprintf(ficrescveij,"******\n");          for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
         fprintf(ficresvij,"\n#****** ");          
         for(j=1;j<=cptcoveff;j++)          for (age=agebase; age<=agelim; age++){
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          /* for (age=agebase; age<=agebase; age++){ */
         fprintf(ficresvij,"******\n");            prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            for(j=1;j<=cptcoveff;j++)
         oldm=oldms;savm=savms;              fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);              for(i=1; i<=nlstate;i++)
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);                fprintf(ficrespl," %.5f", prlim[i][i]);
              fprintf(ficrespl,"\n");
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          } /* Age */
         oldm=oldms;savm=savms;          /* was end of cptcod */
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);      } /* cptcov */
         if(popbased==1){          return 0;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);  }
         }  
   int hPijx(double *p, int bage, int fage){
         pstamp(ficrest);      /*------------- h Pij x at various ages ------------*/
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");  
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    int stepsize;
         fprintf(ficrest,"\n");    int agelim;
     int hstepm;
         epj=vector(1,nlstate+1);    int nhstepm;
         for(age=bage; age <=fage ;age++){    int h, i, i1, j, k;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           if (popbased==1) {    double agedeb;
             if(mobilav ==0){    double ***p3mat;
               for(i=1; i<=nlstate;i++)  
                 prlim[i][i]=probs[(int)age][i][k];      strcpy(filerespij,"pij");  strcat(filerespij,fileres);
             }else{ /* mobilav */      if((ficrespij=fopen(filerespij,"w"))==NULL) {
               for(i=1; i<=nlstate;i++)        printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
                 prlim[i][i]=mobaverage[(int)age][i][k];        fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
             }      }
           }      printf("Computing pij: result on file '%s' \n", filerespij);
              fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
           fprintf(ficrest," %4.0f",age);    
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      stepsize=(int) (stepm+YEARM-1)/YEARM;
             for(i=1, epj[j]=0.;i <=nlstate;i++) {      /*if (stepm<=24) stepsize=2;*/
               epj[j] += prlim[i][i]*eij[i][j][(int)age];  
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      agelim=AGESUP;
             }      hstepm=stepsize*YEARM; /* Every year of age */
             epj[nlstate+1] +=epj[j];      hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
           }  
       /* hstepm=1;   aff par mois*/
           for(i=1, vepp=0.;i <=nlstate;i++)      pstamp(ficrespij);
             for(j=1;j <=nlstate;j++)      fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
               vepp += vareij[i][j][(int)age];      i1= pow(2,cptcoveff);
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));     /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
           for(j=1;j <=nlstate;j++){     /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));     /*   k=k+1;  */
           }      for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n");        fprintf(ficrespij,"\n#****** ");
         }        for(j=1;j<=cptcoveff;j++) 
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficrespij,"******\n");
         free_vector(epj,1,nlstate+1);        
       }        for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
     }          nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     free_vector(weight,1,n);          nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     free_imatrix(Tvard,1,15,1,2);          
     free_imatrix(s,1,maxwav+1,1,n);          /*        nhstepm=nhstepm*YEARM; aff par mois*/
     free_matrix(anint,1,maxwav,1,n);          
     free_matrix(mint,1,maxwav,1,n);          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ivector(cod,1,n);          oldm=oldms;savm=savms;
     free_ivector(tab,1,NCOVMAX);          hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     fclose(ficreseij);          fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
     fclose(ficresstdeij);          for(i=1; i<=nlstate;i++)
     fclose(ficrescveij);            for(j=1; j<=nlstate+ndeath;j++)
     fclose(ficresvij);              fprintf(ficrespij," %1d-%1d",i,j);
     fclose(ficrest);          fprintf(ficrespij,"\n");
     fclose(ficpar);          for (h=0; h<=nhstepm; h++){
              /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
     /*------- Variance of period (stable) prevalence------*/              fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
     strcpy(fileresvpl,"vpl");              for(j=1; j<=nlstate+ndeath;j++)
     strcat(fileresvpl,fileres);                fprintf(ficrespij," %.5f", p3mat[i][j][h]);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            fprintf(ficrespij,"\n");
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);          }
       exit(0);          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }          fprintf(ficrespij,"\n");
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);        }
         /*}*/
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      }
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          return 0;
         k=k+1;  }
         fprintf(ficresvpl,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /***********************************************/
         fprintf(ficresvpl,"******\n");  /**************** Main Program *****************/
        /***********************************************/
         varpl=matrix(1,nlstate,(int) bage, (int) fage);  
         oldm=oldms;savm=savms;  int main(int argc, char *argv[])
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);  {
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  #ifdef GSL
       }    const gsl_multimin_fminimizer_type *T;
     }    size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     fclose(ficresvpl);    int status = GSL_SUCCESS;
     double ssval;
     /*---------- End : free ----------------*/  #endif
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
   }  /* mle==-3 arrives here for freeing */    int jj, ll, li, lj, lk;
   free_matrix(prlim,1,nlstate,1,nlstate);    int numlinepar=0; /* Current linenumber of parameter file */
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    int itimes;
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    int NDIM=2;
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    int vpopbased=0;
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
     free_matrix(covar,0,NCOVMAX,1,n);    char ca[32], cb[32];
     free_matrix(matcov,1,npar,1,npar);    /*  FILE *fichtm; *//* Html File */
     /*free_vector(delti,1,npar);*/    /* FILE *ficgp;*/ /*Gnuplot File */
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    struct stat info;
     free_matrix(agev,1,maxwav,1,imx);    double agedeb;
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     free_ivector(ncodemax,1,8);    double fret;
     free_ivector(Tvar,1,15);    double dum; /* Dummy variable */
     free_ivector(Tprod,1,15);    double ***p3mat;
     free_ivector(Tvaraff,1,15);    double ***mobaverage;
     free_ivector(Tage,1,15);  
     free_ivector(Tcode,1,100);    char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);    char pathr[MAXLINE], pathimach[MAXLINE]; 
     free_imatrix(codtab,1,100,1,10);    char *tok, *val; /* pathtot */
   fflush(fichtm);    int firstobs=1, lastobs=10;
   fflush(ficgp);    int c,  h , cpt;
      int jl;
     int i1, j1, jk, stepsize;
   if((nberr >0) || (nbwarn>0)){    int *tab; 
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);    int mobilav=0,popforecast=0;
   }else{    int hstepm, nhstepm;
     printf("End of Imach\n");    int agemortsup;
     fprintf(ficlog,"End of Imach\n");    float  sumlpop=0.;
   }    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   printf("See log file on %s\n",filelog);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
   (void) gettimeofday(&end_time,&tzp);    double bage=0, fage=110, age, agelim, agebase;
   tm = *localtime(&end_time.tv_sec);    double ftolpl=FTOL;
   tmg = *gmtime(&end_time.tv_sec);    double **prlim;
   strcpy(strtend,asctime(&tm));    double ***param; /* Matrix of parameters */
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);    double  *p;
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);    double **matcov; /* Matrix of covariance */
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));    double ***delti3; /* Scale */
     double *delti; /* Scale */
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);    double ***eij, ***vareij;
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));    double **varpl; /* Variances of prevalence limits by age */
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);    double *epj, vepp;
   /*  printf("Total time was %d uSec.\n", total_usecs);*/  
 /*   if(fileappend(fichtm,optionfilehtm)){ */    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);    double **ximort;
   fclose(fichtm);    char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);    int *dcwave;
   fclose(fichtmcov);  
   fclose(ficgp);    char z[1]="c";
   fclose(ficlog);  
   /*------ End -----------*/    /*char  *strt;*/
     char strtend[80];
   
    printf("Before Current directory %s!\n",pathcd);  
    if(chdir(pathcd) != 0)  /*   setlocale (LC_ALL, ""); */
     printf("Can't move to directory %s!\n",path);  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   if(getcwd(pathcd,MAXLINE) > 0)  /*   textdomain (PACKAGE); */
     printf("Current directory %s!\n",pathcd);  /*   setlocale (LC_CTYPE, ""); */
   /*strcat(plotcmd,CHARSEPARATOR);*/  /*   setlocale (LC_MESSAGES, ""); */
   sprintf(plotcmd,"gnuplot");  
 #ifndef UNIX    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);    rstart_time = time(NULL);  
 #endif    /*  (void) gettimeofday(&start_time,&tzp);*/
   if(!stat(plotcmd,&info)){    start_time = *localtime(&rstart_time);
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);    curr_time=start_time;
     if(!stat(getenv("GNUPLOTBIN"),&info)){    /*tml = *localtime(&start_time.tm_sec);*/
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);    /* strcpy(strstart,asctime(&tml)); */
     }else    strcpy(strstart,asctime(&start_time));
       strcpy(pplotcmd,plotcmd);  
 #ifdef UNIX  /*  printf("Localtime (at start)=%s",strstart); */
     strcpy(plotcmd,GNUPLOTPROGRAM);  /*  tp.tm_sec = tp.tm_sec +86400; */
     if(!stat(plotcmd,&info)){  /*  tm = *localtime(&start_time.tm_sec); */
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
     }else  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
       strcpy(pplotcmd,plotcmd);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
 #endif  /*   tp.tm_sec = mktime(&tmg); */
   }else  /*   strt=asctime(&tmg); */
     strcpy(pplotcmd,plotcmd);  /*   printf("Time(after) =%s",strstart);  */
    /*  (void) time (&time_value);
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);  *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   if((outcmd=system(plotcmd)) != 0){  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
     printf("\n Problem with gnuplot\n");  */
   }  
   printf(" Wait...");    nberr=0; /* Number of errors and warnings */
   while (z[0] != 'q') {    nbwarn=0;
     /* chdir(path); */  #ifdef WIN32
     printf("\nType e to edit output files, g to graph again and q for exiting: ");    _getcwd(pathcd, size);
     scanf("%s",z);  #else
 /*     if (z[0] == 'c') system("./imach"); */    getcwd(pathcd, size);
     if (z[0] == 'e') {  #endif
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);  
       system(optionfilehtm);    printf("\n%s\n%s",version,fullversion);
     }    if(argc <=1){
     else if (z[0] == 'g') system(plotcmd);      printf("\nEnter the parameter file name: ");
     else if (z[0] == 'q') exit(0);      fgets(pathr,FILENAMELENGTH,stdin);
   }      i=strlen(pathr);
   end:      if(pathr[i-1]=='\n')
   while (z[0] != 'q') {        pathr[i-1]='\0';
     printf("\nType  q for exiting: ");      i=strlen(pathr);
     scanf("%s",z);      if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
   }        pathr[i-1]='\0';
 }     for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     if(model[strlen(model)-1]=='.') /* Suppressing leading dot in the model */
       model[strlen(model)-1]='\0';
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     if(model[0]=='#'|| model[0]== '\0'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /* codtab[12][3]=1; */
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard maximisation */
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       /* Computes likelihood for initial parameters */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* again, to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.125  
changed lines
  Added in v.1.189


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>