Diff for /imach/src/imach.c between versions 1.51 and 1.189

version 1.51, 2002/07/19 12:22:25 version 1.189, 2015/04/30 14:45:16
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.189  2015/04/30 14:45:16  brouard
      Summary: 0.98q2
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.188  2015/04/30 08:27:53  brouard
   first survey ("cross") where individuals from different ages are    *** empty log message ***
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.187  2015/04/29 09:11:15  brouard
   second wave of interviews ("longitudinal") which measure each change    *** empty log message ***
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.186  2015/04/23 12:01:52  brouard
   model. More health states you consider, more time is necessary to reach the    Summary: V1*age is working now, version 0.98q1
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Some codes had been disabled in order to simplify and Vn*age was
   probability to be observed in state j at the second wave    working in the optimization phase, ie, giving correct MLE parameters,
   conditional to be observed in state i at the first wave. Therefore    but, as usual, outputs were not correct and program core dumped.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.185  2015/03/11 13:26:42  brouard
   complex model than "constant and age", you should modify the program    Summary: Inclusion of compile and links command line for Intel Compiler
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.184  2015/03/11 11:52:39  brouard
   convergence.    Summary: Back from Windows 8. Intel Compiler
   
   The advantage of this computer programme, compared to a simple    Revision 1.183  2015/03/10 20:34:32  brouard
   multinomial logistic model, is clear when the delay between waves is not    Summary: 0.98q0, trying with directest, mnbrak fixed
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    We use directest instead of original Powell test; probably no
   account using an interpolation or extrapolation.      incidence on the results, but better justifications;
     We fixed Numerical Recipes mnbrak routine which was wrong and gave
   hPijx is the probability to be observed in state i at age x+h    wrong results.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.182  2015/02/12 08:19:57  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: Trying to keep directest which seems simpler and more general
   semester or year) is model as a multinomial logistic.  The hPx    Author: Nicolas Brouard
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.181  2015/02/11 23:22:24  brouard
   hPijx.    Summary: Comments on Powell added
   
   Also this programme outputs the covariance matrix of the parameters but also    Author:
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.180  2015/02/11 17:33:45  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Summary: Finishing move from main to function (hpijx and prevalence_limit)
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.179  2015/01/04 09:57:06  brouard
   from the European Union.    Summary: back to OS/X
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.178  2015/01/04 09:35:48  brouard
   can be accessed at http://euroreves.ined.fr/imach .    *** empty log message ***
   **********************************************************************/  
      Revision 1.177  2015/01/03 18:40:56  brouard
 #include <math.h>    Summary: Still testing ilc32 on OSX
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.176  2015/01/03 16:45:04  brouard
 #include <unistd.h>    *** empty log message ***
   
 #define MAXLINE 256    Revision 1.175  2015/01/03 16:33:42  brouard
 #define GNUPLOTPROGRAM "gnuplot"    *** empty log message ***
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.174  2015/01/03 16:15:49  brouard
 /*#define DEBUG*/    Summary: Still in cross-compilation
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.173  2015/01/03 12:06:26  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: trying to detect cross-compilation
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.172  2014/12/27 12:07:47  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   
 #define NINTERVMAX 8    Revision 1.171  2014/12/23 13:26:59  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Summary: Back from Visual C
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Still problem with utsname.h on Windows
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.170  2014/12/23 11:17:12  brouard
 #define AGESUP 130    Summary: Cleaning some \%% back to %%
 #define AGEBASE 40  
 #ifdef windows    The escape was mandatory for a specific compiler (which one?), but too many warnings.
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.169  2014/12/22 23:08:31  brouard
 #else    Summary: 0.98p
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 #endif  
     Revision 1.168  2014/12/22 15:17:42  brouard
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Summary: update
 int erreur; /* Error number */  
 int nvar;    Revision 1.167  2014/12/22 13:50:56  brouard
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Summary: Testing uname and compiler version and if compiled 32 or 64
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Testing on Linux 64
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.166  2014/12/22 11:40:47  brouard
 int popbased=0;    *** empty log message ***
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.165  2014/12/16 11:20:36  brouard
 int maxwav; /* Maxim number of waves */    Summary: After compiling on Visual C
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    * imach.c (Module): Merging 1.61 to 1.162
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.164  2014/12/16 10:52:11  brouard
 double jmean; /* Mean space between 2 waves */    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    * imach.c (Module): Merging 1.61 to 1.162
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog;    Revision 1.163  2014/12/16 10:30:11  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    * imach.c (Module): Merging 1.61 to 1.162
 FILE *ficresprobmorprev;  
 FILE *fichtm; /* Html File */    Revision 1.162  2014/09/25 11:43:39  brouard
 FILE *ficreseij;    Summary: temporary backup 0.99!
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.1  2014/09/16 11:06:58  brouard
 char fileresv[FILENAMELENGTH];    Summary: With some code (wrong) for nlopt
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Author:
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.161  2014/09/15 20:41:41  brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Summary: Problem with macro SQR on Intel compiler
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.160  2014/09/02 09:24:05  brouard
 char filelog[FILENAMELENGTH]; /* Log file */    *** empty log message ***
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.159  2014/09/01 10:34:10  brouard
 char popfile[FILENAMELENGTH];    Summary: WIN32
     Author: Brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.158  2014/08/27 17:11:51  brouard
 #define NR_END 1    *** empty log message ***
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.157  2014/08/27 16:26:55  brouard
     Summary: Preparing windows Visual studio version
 #define NRANSI    Author: Brouard
 #define ITMAX 200  
     In order to compile on Visual studio, time.h is now correct and time_t
 #define TOL 2.0e-4    and tm struct should be used. difftime should be used but sometimes I
     just make the differences in raw time format (time(&now).
 #define CGOLD 0.3819660    Trying to suppress #ifdef LINUX
 #define ZEPS 1.0e-10    Add xdg-open for __linux in order to open default browser.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.156  2014/08/25 20:10:10  brouard
 #define GOLD 1.618034    *** empty log message ***
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
 static double maxarg1,maxarg2;    Author: Brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.154  2014/06/20 17:32:08  brouard
      Summary: Outputs now all graphs of convergence to period prevalence
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
 static double sqrarg;    Author: Brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.152  2014/06/18 17:54:09  brouard
     Summary: open browser, use gnuplot on same dir than imach if not found in the path
 int imx;  
 int stepm;    Revision 1.151  2014/06/18 16:43:30  brouard
 /* Stepm, step in month: minimum step interpolation*/    *** empty log message ***
   
 int estepm;    Revision 1.150  2014/06/18 16:42:35  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
     Author: brouard
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.149  2014/06/18 15:51:14  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Summary: Some fixes in parameter files errors
 double **pmmij, ***probs, ***mobaverage;    Author: Nicolas Brouard
 double dateintmean=0;  
     Revision 1.148  2014/06/17 17:38:48  brouard
 double *weight;    Summary: Nothing new
 int **s; /* Status */    Author: Brouard
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Just a new packaging for OS/X version 0.98nS
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.147  2014/06/16 10:33:11  brouard
 double ftolhess; /* Tolerance for computing hessian */    *** empty log message ***
   
 /**************** split *************************/    Revision 1.146  2014/06/16 10:20:28  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Summary: Merge
 {    Author: Brouard
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Merge, before building revised version.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.145  2014/06/10 21:23:15  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Summary: Debugging with valgrind
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    Author: Nicolas Brouard
    if ( s == NULL ) {                   /* no directory, so use current */  
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Lot of changes in order to output the results with some covariates
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    After the Edimburgh REVES conference 2014, it seems mandatory to
 #if     defined(__bsd__)                /* get current working directory */    improve the code.
       extern char       *getwd( );    No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
       if ( getwd( dirc ) == NULL ) {    Also, decodemodel has been improved. Tricode is still not
 #else    optimal. nbcode should be improved. Documentation has been added in
       extern char       *getcwd( );    the source code.
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.143  2014/01/26 09:45:38  brouard
 #endif    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
          return( GLOCK_ERROR_GETCWD );  
       }    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
       strcpy( name, path );             /* we've got it */    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.142  2014/01/26 03:57:36  brouard
       l2 = strlen( s );                 /* length of filename */    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.141  2014/01/26 02:42:01  brouard
    }    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.140  2011/09/02 10:37:54  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Summary: times.h is ok with mingw32 now.
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.139  2010/06/14 07:50:17  brouard
 #endif    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
    s = strrchr( name, '.' );            /* find last / */    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.138  2010/04/30 18:19:40  brouard
    l1= strlen( name);    *** empty log message ***
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.137  2010/04/29 18:11:38  brouard
    finame[l1-l2]= 0;    (Module): Checking covariates for more complex models
    return( 0 );                         /* we're done */    than V1+V2. A lot of change to be done. Unstable.
 }  
     Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
 /******************************************/    of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
 void replace(char *s, char*t)    Some cleaning of code and comments added.
 {  
   int i;    Revision 1.135  2009/10/29 15:33:14  brouard
   int lg=20;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   i=0;  
   lg=strlen(t);    Revision 1.134  2009/10/29 13:18:53  brouard
   for(i=0; i<= lg; i++) {    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.133  2009/07/06 10:21:25  brouard
   }    just nforces
 }  
     Revision 1.132  2009/07/06 08:22:05  brouard
 int nbocc(char *s, char occ)    Many tings
 {  
   int i,j=0;    Revision 1.131  2009/06/20 16:22:47  brouard
   int lg=20;    Some dimensions resccaled
   i=0;  
   lg=strlen(s);    Revision 1.130  2009/05/26 06:44:34  brouard
   for(i=0; i<= lg; i++) {    (Module): Max Covariate is now set to 20 instead of 8. A
   if  (s[i] == occ ) j++;    lot of cleaning with variables initialized to 0. Trying to make
   }    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   return j;  
 }    Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.128  2006/06/30 13:02:05  brouard
   /* cuts string t into u and v where u is ended by char occ excluding it    (Module): Clarifications on computing e.j
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */    Revision 1.127  2006/04/28 18:11:50  brouard
   int i,lg,j,p=0;    (Module): Yes the sum of survivors was wrong since
   i=0;    imach-114 because nhstepm was no more computed in the age
   for(j=0; j<=strlen(t)-1; j++) {    loop. Now we define nhstepma in the age loop.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Module): In order to speed up (in case of numerous covariates) we
   }    compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
   lg=strlen(t);    deviation (needs data from the Hessian matrices) which slows the
   for(j=0; j<p; j++) {    computation.
     (u[j] = t[j]);    In the future we should be able to stop the program is only health
   }    expectancies and graph are needed without standard deviations.
      u[p]='\0';  
     Revision 1.126  2006/04/28 17:23:28  brouard
    for(j=0; j<= lg; j++) {    (Module): Yes the sum of survivors was wrong since
     if (j>=(p+1))(v[j-p-1] = t[j]);    imach-114 because nhstepm was no more computed in the age
   }    loop. Now we define nhstepma in the age loop.
 }    Version 0.98h
   
 /********************** nrerror ********************/    Revision 1.125  2006/04/04 15:20:31  lievre
     Errors in calculation of health expectancies. Age was not initialized.
 void nrerror(char error_text[])    Forecasting file added.
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.124  2006/03/22 17:13:53  lievre
   fprintf(stderr,"%s\n",error_text);    Parameters are printed with %lf instead of %f (more numbers after the comma).
   exit(1);    The log-likelihood is printed in the log file
 }  
 /*********************** vector *******************/    Revision 1.123  2006/03/20 10:52:43  brouard
 double *vector(int nl, int nh)    * imach.c (Module): <title> changed, corresponds to .htm file
 {    name. <head> headers where missing.
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    * imach.c (Module): Weights can have a decimal point as for
   if (!v) nrerror("allocation failure in vector");    English (a comma might work with a correct LC_NUMERIC environment,
   return v-nl+NR_END;    otherwise the weight is truncated).
 }    Modification of warning when the covariates values are not 0 or
     1.
 /************************ free vector ******************/    Version 0.98g
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.122  2006/03/20 09:45:41  brouard
   free((FREE_ARG)(v+nl-NR_END));    (Module): Weights can have a decimal point as for
 }    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 /************************ivector *******************************/    Modification of warning when the covariates values are not 0 or
 int *ivector(long nl,long nh)    1.
 {    Version 0.98g
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.121  2006/03/16 17:45:01  lievre
   if (!v) nrerror("allocation failure in ivector");    * imach.c (Module): Comments concerning covariates added
   return v-nl+NR_END;  
 }    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 /******************free ivector **************************/    not 1 month. Version 0.98f
 void free_ivector(int *v, long nl, long nh)  
 {    Revision 1.120  2006/03/16 15:10:38  lievre
   free((FREE_ARG)(v+nl-NR_END));    (Module): refinements in the computation of lli if
 }    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.119  2006/03/15 17:42:26  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    (Module): Bug if status = -2, the loglikelihood was
 {    computed as likelihood omitting the logarithm. Version O.98e
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.118  2006/03/14 18:20:07  brouard
      (Module): varevsij Comments added explaining the second
   /* allocate pointers to rows */    table of variances if popbased=1 .
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): Function pstamp added
   m += NR_END;    (Module): Version 0.98d
   m -= nrl;  
      Revision 1.117  2006/03/14 17:16:22  brouard
      (Module): varevsij Comments added explaining the second
   /* allocate rows and set pointers to them */    table of variances if popbased=1 .
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Module): Function pstamp added
   m[nrl] += NR_END;    (Module): Version 0.98d
   m[nrl] -= ncl;  
      Revision 1.116  2006/03/06 10:29:27  brouard
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    (Module): Variance-covariance wrong links and
      varian-covariance of ej. is needed (Saito).
   /* return pointer to array of pointers to rows */  
   return m;    Revision 1.115  2006/02/27 12:17:45  brouard
 }    (Module): One freematrix added in mlikeli! 0.98c
   
 /****************** free_imatrix *************************/    Revision 1.114  2006/02/26 12:57:58  brouard
 void free_imatrix(m,nrl,nrh,ncl,nch)    (Module): Some improvements in processing parameter
       int **m;    filename with strsep.
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Revision 1.113  2006/02/24 14:20:24  brouard
 {    (Module): Memory leaks checks with valgrind and:
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    datafile was not closed, some imatrix were not freed and on matrix
   free((FREE_ARG) (m+nrl-NR_END));    allocation too.
 }  
     Revision 1.112  2006/01/30 09:55:26  brouard
 /******************* matrix *******************************/    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.111  2006/01/25 20:38:18  brouard
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    (Module): Lots of cleaning and bugs added (Gompertz)
   double **m;    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.110  2006/01/25 00:51:50  brouard
   m += NR_END;    (Module): Lots of cleaning and bugs added (Gompertz)
   m -= nrl;  
     Revision 1.109  2006/01/24 19:37:15  brouard
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Module): Comments (lines starting with a #) are allowed in data.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.108  2006/01/19 18:05:42  lievre
   m[nrl] -= ncl;    Gnuplot problem appeared...
     To be fixed
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    Revision 1.107  2006/01/19 16:20:37  brouard
 }    Test existence of gnuplot in imach path
   
 /*************************free matrix ************************/    Revision 1.106  2006/01/19 13:24:36  brouard
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Some cleaning and links added in html output
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.105  2006/01/05 20:23:19  lievre
   free((FREE_ARG)(m+nrl-NR_END));    *** empty log message ***
 }  
     Revision 1.104  2005/09/30 16:11:43  lievre
 /******************* ma3x *******************************/    (Module): sump fixed, loop imx fixed, and simplifications.
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    (Module): If the status is missing at the last wave but we know
 {    that the person is alive, then we can code his/her status as -2
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    (instead of missing=-1 in earlier versions) and his/her
   double ***m;    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    the healthy state at last known wave). Version is 0.98
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.103  2005/09/30 15:54:49  lievre
   m -= nrl;    (Module): sump fixed, loop imx fixed, and simplifications.
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.102  2004/09/15 17:31:30  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Add the possibility to read data file including tab characters.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     Revision 1.100  2004/07/12 18:29:06  brouard
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Add version for Mac OS X. Just define UNIX in Makefile
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    Revision 1.99  2004/06/05 08:57:40  brouard
   m[nrl][ncl] -= nll;    *** empty log message ***
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    Revision 1.98  2004/05/16 15:05:56  brouard
      New version 0.97 . First attempt to estimate force of mortality
   for (i=nrl+1; i<=nrh; i++) {    directly from the data i.e. without the need of knowing the health
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    state at each age, but using a Gompertz model: log u =a + b*age .
     for (j=ncl+1; j<=nch; j++)    This is the basic analysis of mortality and should be done before any
       m[i][j]=m[i][j-1]+nlay;    other analysis, in order to test if the mortality estimated from the
   }    cross-longitudinal survey is different from the mortality estimated
   return m;    from other sources like vital statistic data.
 }  
     The same imach parameter file can be used but the option for mle should be -3.
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    Agnès, who wrote this part of the code, tried to keep most of the
 {    former routines in order to include the new code within the former code.
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    The output is very simple: only an estimate of the intercept and of
   free((FREE_ARG)(m+nrl-NR_END));    the slope with 95% confident intervals.
 }  
     Current limitations:
 /***************** f1dim *************************/    A) Even if you enter covariates, i.e. with the
 extern int ncom;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 extern double *pcom,*xicom;    B) There is no computation of Life Expectancy nor Life Table.
 extern double (*nrfunc)(double []);  
      Revision 1.97  2004/02/20 13:25:42  lievre
 double f1dim(double x)    Version 0.96d. Population forecasting command line is (temporarily)
 {    suppressed.
   int j;  
   double f;    Revision 1.96  2003/07/15 15:38:55  brouard
   double *xt;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
      rewritten within the same printf. Workaround: many printfs.
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    Revision 1.95  2003/07/08 07:54:34  brouard
   f=(*nrfunc)(xt);    * imach.c (Repository):
   free_vector(xt,1,ncom);    (Repository): Using imachwizard code to output a more meaningful covariance
   return f;    matrix (cov(a12,c31) instead of numbers.
 }  
     Revision 1.94  2003/06/27 13:00:02  brouard
 /*****************brent *************************/    Just cleaning
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    Revision 1.93  2003/06/25 16:33:55  brouard
   int iter;    (Module): On windows (cygwin) function asctime_r doesn't
   double a,b,d,etemp;    exist so I changed back to asctime which exists.
   double fu,fv,fw,fx;    (Module): Version 0.96b
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    Revision 1.92  2003/06/25 16:30:45  brouard
   double e=0.0;    (Module): On windows (cygwin) function asctime_r doesn't
      exist so I changed back to asctime which exists.
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);    Revision 1.91  2003/06/25 15:30:29  brouard
   x=w=v=bx;    * imach.c (Repository): Duplicated warning errors corrected.
   fw=fv=fx=(*f)(x);    (Repository): Elapsed time after each iteration is now output. It
   for (iter=1;iter<=ITMAX;iter++) {    helps to forecast when convergence will be reached. Elapsed time
     xm=0.5*(a+b);    is stamped in powell.  We created a new html file for the graphs
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    concerning matrix of covariance. It has extension -cov.htm.
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);    Revision 1.90  2003/06/24 12:34:15  brouard
     fprintf(ficlog,".");fflush(ficlog);    (Module): Some bugs corrected for windows. Also, when
 #ifdef DEBUG    mle=-1 a template is output in file "or"mypar.txt with the design
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    of the covariance matrix to be input.
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    Revision 1.89  2003/06/24 12:30:52  brouard
 #endif    (Module): Some bugs corrected for windows. Also, when
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    mle=-1 a template is output in file "or"mypar.txt with the design
       *xmin=x;    of the covariance matrix to be input.
       return fx;  
     }    Revision 1.88  2003/06/23 17:54:56  brouard
     ftemp=fu;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);    Revision 1.87  2003/06/18 12:26:01  brouard
       q=(x-v)*(fx-fw);    Version 0.96
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);    Revision 1.86  2003/06/17 20:04:08  brouard
       if (q > 0.0) p = -p;    (Module): Change position of html and gnuplot routines and added
       q=fabs(q);    routine fileappend.
       etemp=e;  
       e=d;    Revision 1.85  2003/06/17 13:12:43  brouard
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    * imach.c (Repository): Check when date of death was earlier that
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    current date of interview. It may happen when the death was just
       else {    prior to the death. In this case, dh was negative and likelihood
         d=p/q;    was wrong (infinity). We still send an "Error" but patch by
         u=x+d;    assuming that the date of death was just one stepm after the
         if (u-a < tol2 || b-u < tol2)    interview.
           d=SIGN(tol1,xm-x);    (Repository): Because some people have very long ID (first column)
       }    we changed int to long in num[] and we added a new lvector for
     } else {    memory allocation. But we also truncated to 8 characters (left
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    truncation)
     }    (Repository): No more line truncation errors.
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);    Revision 1.84  2003/06/13 21:44:43  brouard
     if (fu <= fx) {    * imach.c (Repository): Replace "freqsummary" at a correct
       if (u >= x) a=x; else b=x;    place. It differs from routine "prevalence" which may be called
       SHFT(v,w,x,u)    many times. Probs is memory consuming and must be used with
         SHFT(fv,fw,fx,fu)    parcimony.
         } else {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {    Revision 1.83  2003/06/10 13:39:11  lievre
             v=w;    *** empty log message ***
             w=u;  
             fv=fw;    Revision 1.82  2003/06/05 15:57:20  brouard
             fw=fu;    Add log in  imach.c and  fullversion number is now printed.
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  */
             fv=fu;  /*
           }     Interpolated Markov Chain
         }  
   }    Short summary of the programme:
   nrerror("Too many iterations in brent");    
   *xmin=x;    This program computes Healthy Life Expectancies from
   return fx;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 }    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 /****************** mnbrak ***********************/    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    (if any) in individual health status.  Health expectancies are
             double (*func)(double))    computed from the time spent in each health state according to a
 {    model. More health states you consider, more time is necessary to reach the
   double ulim,u,r,q, dum;    Maximum Likelihood of the parameters involved in the model.  The
   double fu;    simplest model is the multinomial logistic model where pij is the
      probability to be observed in state j at the second wave
   *fa=(*func)(*ax);    conditional to be observed in state i at the first wave. Therefore
   *fb=(*func)(*bx);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   if (*fb > *fa) {    'age' is age and 'sex' is a covariate. If you want to have a more
     SHFT(dum,*ax,*bx,dum)    complex model than "constant and age", you should modify the program
       SHFT(dum,*fb,*fa,dum)    where the markup *Covariates have to be included here again* invites
       }    you to do it.  More covariates you add, slower the
   *cx=(*bx)+GOLD*(*bx-*ax);    convergence.
   *fc=(*func)(*cx);  
   while (*fb > *fc) {    The advantage of this computer programme, compared to a simple
     r=(*bx-*ax)*(*fb-*fc);    multinomial logistic model, is clear when the delay between waves is not
     q=(*bx-*cx)*(*fb-*fa);    identical for each individual. Also, if a individual missed an
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    intermediate interview, the information is lost, but taken into
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    account using an interpolation or extrapolation.  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {    hPijx is the probability to be observed in state i at age x+h
       fu=(*func)(u);    conditional to the observed state i at age x. The delay 'h' can be
     } else if ((*cx-u)*(u-ulim) > 0.0) {    split into an exact number (nh*stepm) of unobserved intermediate
       fu=(*func)(u);    states. This elementary transition (by month, quarter,
       if (fu < *fc) {    semester or year) is modelled as a multinomial logistic.  The hPx
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    matrix is simply the matrix product of nh*stepm elementary matrices
           SHFT(*fb,*fc,fu,(*func)(u))    and the contribution of each individual to the likelihood is simply
           }    hPijx.
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;    Also this programme outputs the covariance matrix of the parameters but also
       fu=(*func)(u);    of the life expectancies. It also computes the period (stable) prevalence. 
     } else {    
       u=(*cx)+GOLD*(*cx-*bx);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       fu=(*func)(u);             Institut national d'études démographiques, Paris.
     }    This software have been partly granted by Euro-REVES, a concerted action
     SHFT(*ax,*bx,*cx,u)    from the European Union.
       SHFT(*fa,*fb,*fc,fu)    It is copyrighted identically to a GNU software product, ie programme and
       }    software can be distributed freely for non commercial use. Latest version
 }    can be accessed at http://euroreves.ined.fr/imach .
   
 /*************** linmin ************************/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int ncom;    
 double *pcom,*xicom;    **********************************************************************/
 double (*nrfunc)(double []);  /*
      main
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    read parameterfile
 {    read datafile
   double brent(double ax, double bx, double cx,    concatwav
                double (*f)(double), double tol, double *xmin);    freqsummary
   double f1dim(double x);    if (mle >= 1)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      mlikeli
               double *fc, double (*func)(double));    print results files
   int j;    if mle==1 
   double xx,xmin,bx,ax;       computes hessian
   double fx,fb,fa;    read end of parameter file: agemin, agemax, bage, fage, estepm
          begin-prev-date,...
   ncom=n;    open gnuplot file
   pcom=vector(1,n);    open html file
   xicom=vector(1,n);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   nrfunc=func;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   for (j=1;j<=n;j++) {                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
     pcom[j]=p[j];      freexexit2 possible for memory heap.
     xicom[j]=xi[j];  
   }    h Pij x                         | pij_nom  ficrestpij
   ax=0.0;     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   xx=1.0;         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
 #endif     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   for (j=1;j<=n;j++) {     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
     xi[j] *= xmin;  
     p[j] += xi[j];    forecasting if prevfcast==1 prevforecast call prevalence()
   }    health expectancies
   free_vector(xicom,1,n);    Variance-covariance of DFLE
   free_vector(pcom,1,n);    prevalence()
 }     movingaverage()
     varevsij() 
 /*************** powell ************************/    if popbased==1 varevsij(,popbased)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    total life expectancies
             double (*func)(double []))    Variance of period (stable) prevalence
 {   end
   void linmin(double p[], double xi[], int n, double *fret,  */
               double (*func)(double []));  
   int i,ibig,j;  /* #define DEBUG */
   double del,t,*pt,*ptt,*xit;  /* #define DEBUGBRENT */
   double fp,fptt;  #define POWELL /* Instead of NLOPT */
   double *xits;  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
   pt=vector(1,n);  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
   ptt=vector(1,n);  
   xit=vector(1,n);  #include <math.h>
   xits=vector(1,n);  #include <stdio.h>
   *fret=(*func)(p);  #include <stdlib.h>
   for (j=1;j<=n;j++) pt[j]=p[j];  #include <string.h>
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  #ifdef _WIN32
     ibig=0;  #include <io.h>
     del=0.0;  #include <windows.h>
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  #include <tchar.h>
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  #else
     for (i=1;i<=n;i++)  #include <unistd.h>
       printf(" %d %.12f",i, p[i]);  #endif
     fprintf(ficlog," %d %.12f",i, p[i]);  
     printf("\n");  #include <limits.h>
     fprintf(ficlog,"\n");  #include <sys/types.h>
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  #if defined(__GNUC__)
       fptt=(*fret);  #include <sys/utsname.h> /* Doesn't work on Windows */
 #ifdef DEBUG  #endif
       printf("fret=%lf \n",*fret);  
       fprintf(ficlog,"fret=%lf \n",*fret);  #include <sys/stat.h>
 #endif  #include <errno.h>
       printf("%d",i);fflush(stdout);  /* extern int errno; */
       fprintf(ficlog,"%d",i);fflush(ficlog);  
       linmin(p,xit,n,fret,func);  /* #ifdef LINUX */
       if (fabs(fptt-(*fret)) > del) {  /* #include <time.h> */
         del=fabs(fptt-(*fret));  /* #include "timeval.h" */
         ibig=i;  /* #else */
       }  /* #include <sys/time.h> */
 #ifdef DEBUG  /* #endif */
       printf("%d %.12e",i,(*fret));  
       fprintf(ficlog,"%d %.12e",i,(*fret));  #include <time.h>
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #ifdef GSL
         printf(" x(%d)=%.12e",j,xit[j]);  #include <gsl/gsl_errno.h>
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  #include <gsl/gsl_multimin.h>
       }  #endif
       for(j=1;j<=n;j++) {  
         printf(" p=%.12e",p[j]);  
         fprintf(ficlog," p=%.12e",p[j]);  #ifdef NLOPT
       }  #include <nlopt.h>
       printf("\n");  typedef struct {
       fprintf(ficlog,"\n");    double (* function)(double [] );
 #endif  } myfunc_data ;
     }  #endif
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /* #include <libintl.h> */
       int k[2],l;  /* #define _(String) gettext (String) */
       k[0]=1;  
       k[1]=-1;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       printf("Max: %.12e",(*func)(p));  
       fprintf(ficlog,"Max: %.12e",(*func)(p));  #define GNUPLOTPROGRAM "gnuplot"
       for (j=1;j<=n;j++) {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
         printf(" %.12e",p[j]);  #define FILENAMELENGTH 132
         fprintf(ficlog," %.12e",p[j]);  
       }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       printf("\n");  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       fprintf(ficlog,"\n");  
       for(l=0;l<=1;l++) {  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
         for (j=1;j<=n;j++) {  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #define NINTERVMAX 8
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
         }  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       }  #define MAXN 20000
 #endif  #define YEARM 12. /**< Number of months per year */
   #define AGESUP 130
   #define AGEBASE 40
       free_vector(xit,1,n);  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
       free_vector(xits,1,n);  #ifdef _WIN32
       free_vector(ptt,1,n);  #define DIRSEPARATOR '\\'
       free_vector(pt,1,n);  #define CHARSEPARATOR "\\"
       return;  #define ODIRSEPARATOR '/'
     }  #else
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #define DIRSEPARATOR '/'
     for (j=1;j<=n;j++) {  #define CHARSEPARATOR "/"
       ptt[j]=2.0*p[j]-pt[j];  #define ODIRSEPARATOR '\\'
       xit[j]=p[j]-pt[j];  #endif
       pt[j]=p[j];  
     }  /* $Id$ */
     fptt=(*func)(ptt);  /* $State$ */
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  char version[]="Imach version 0.98q2, April 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
       if (t < 0.0) {  char fullversion[]="$Revision$ $Date$"; 
         linmin(p,xit,n,fret,func);  char strstart[80];
         for (j=1;j<=n;j++) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
           xi[j][ibig]=xi[j][n];  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
           xi[j][n]=xit[j];  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
         }  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
 #ifdef DEBUG  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
         for(j=1;j<=n;j++){  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
           printf(" %.12e",xit[j]);  int cptcovprodnoage=0; /**< Number of covariate products without age */   
           fprintf(ficlog," %.12e",xit[j]);  int cptcoveff=0; /* Total number of covariates to vary for printing results */
         }  int cptcov=0; /* Working variable */
         printf("\n");  int npar=NPARMAX;
         fprintf(ficlog,"\n");  int nlstate=2; /* Number of live states */
 #endif  int ndeath=1; /* Number of dead states */
       }  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     }  int popbased=0;
   }  
 }  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav=0; /* Maxim number of waves */
 /**** Prevalence limit ****************/  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  int mle=1, weightopt=0;
      matrix by transitions matrix until convergence is reached */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int i, ii,j,k;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   double min, max, maxmin, maxmax,sumnew=0.;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double **matprod2();  int countcallfunc=0;  /* Count the number of calls to func */
   double **out, cov[NCOVMAX], **pmij();  double jmean=1; /* Mean space between 2 waves */
   double **newm;  double **matprod2(); /* test */
   double agefin, delaymax=50 ; /* Max number of years to converge */  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   for (ii=1;ii<=nlstate+ndeath;ii++)  /*FILE *fic ; */ /* Used in readdata only */
     for (j=1;j<=nlstate+ndeath;j++){  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  FILE *ficlog, *ficrespow;
     }  int globpr=0; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
    cov[1]=1.;  long ipmx=0; /* Number of contributions */
    double sw; /* Sum of weights */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  char filerespow[FILENAMELENGTH];
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     newm=savm;  FILE *ficresilk;
     /* Covariates have to be included here again */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
      cov[2]=agefin;  FILE *ficresprobmorprev;
    FILE *fichtm, *fichtmcov; /* Html File */
       for (k=1; k<=cptcovn;k++) {  FILE *ficreseij;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  char filerese[FILENAMELENGTH];
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  FILE *ficresstdeij;
       }  char fileresstde[FILENAMELENGTH];
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  FILE *ficrescveij;
       for (k=1; k<=cptcovprod;k++)  char filerescve[FILENAMELENGTH];
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  FILE  *ficresvpl;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  char fileresvpl[FILENAMELENGTH];
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  char title[MAXLINE];
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     savm=oldm;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     oldm=newm;  char command[FILENAMELENGTH];
     maxmax=0.;  int  outcmd=0;
     for(j=1;j<=nlstate;j++){  
       min=1.;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       max=0.;  
       for(i=1; i<=nlstate; i++) {  char filelog[FILENAMELENGTH]; /* Log file */
         sumnew=0;  char filerest[FILENAMELENGTH];
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  char fileregp[FILENAMELENGTH];
         prlim[i][j]= newm[i][j]/(1-sumnew);  char popfile[FILENAMELENGTH];
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       }  
       maxmin=max-min;  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
       maxmax=FMAX(maxmax,maxmin);  /* struct timezone tzp; */
     }  /* extern int gettimeofday(); */
     if(maxmax < ftolpl){  struct tm tml, *gmtime(), *localtime();
       return prlim;  
     }  extern time_t time();
   }  
 }  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
 /*************** transition probabilities ***************/  struct tm tm;
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  char strcurr[80], strfor[80];
 {  
   double s1, s2;  char *endptr;
   /*double t34;*/  long lval;
   int i,j,j1, nc, ii, jj;  double dval;
   
     for(i=1; i<= nlstate; i++){  #define NR_END 1
     for(j=1; j<i;j++){  #define FREE_ARG char*
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #define FTOL 1.0e-10
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #define NRANSI 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  #define ITMAX 200 
       }  
       ps[i][j]=s2;  #define TOL 2.0e-4 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  #define CGOLD 0.3819660 
     for(j=i+1; j<=nlstate+ndeath;j++){  #define ZEPS 1.0e-10 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  #define GOLD 1.618034 
       }  #define GLIMIT 100.0 
       ps[i][j]=s2;  #define TINY 1.0e-20 
     }  
   }  static double maxarg1,maxarg2;
     /*ps[3][2]=1;*/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   for(i=1; i<= nlstate; i++){    
      s1=0;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     for(j=1; j<i; j++)  #define rint(a) floor(a+0.5)
       s1+=exp(ps[i][j]);  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
     for(j=i+1; j<=nlstate+ndeath; j++)  #define mytinydouble 1.0e-16
       s1+=exp(ps[i][j]);  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
     ps[i][i]=1./(s1+1.);  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
     for(j=1; j<i; j++)  /* static double dsqrarg; */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
     for(j=i+1; j<=nlstate+ndeath; j++)  static double sqrarg;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   } /* end i */  int agegomp= AGEGOMP;
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  int imx; 
     for(jj=1; jj<= nlstate+ndeath; jj++){  int stepm=1;
       ps[ii][jj]=0;  /* Stepm, step in month: minimum step interpolation*/
       ps[ii][ii]=1;  
     }  int estepm;
   }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
   int m,nb;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  long *num;
     for(jj=1; jj<= nlstate+ndeath; jj++){  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
      printf("%lf ",ps[ii][jj]);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
    }  double **pmmij, ***probs;
     printf("\n ");  double *ageexmed,*agecens;
     }  double dateintmean=0;
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  double *weight;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  int **s; /* Status */
   goto end;*/  double *agedc;
     return ps;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
 }                    * covar=matrix(0,NCOVMAX,1,n); 
                     * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
 /**************** Product of 2 matrices ******************/  double  idx; 
   int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  int *Ndum; /** Freq of modality (tricode */
 {  int **codtab; /**< codtab=imatrix(1,100,1,10); */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  double *lsurv, *lpop, *tpop;
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
      a pointer to pointers identical to out */  double ftolhess; /**< Tolerance for computing hessian */
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  /**************** split *************************/
     for(k=ncolol; k<=ncoloh; k++)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  {
         out[i][k] +=in[i][j]*b[j][k];    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
   return out;    */ 
 }    char  *ss;                            /* pointer */
     int   l1=0, l2=0;                             /* length counters */
   
 /************* Higher Matrix Product ***************/    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      strcpy( name, path );               /* we got the fullname name because no directory */
      duration (i.e. until      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      /* get current working directory */
      (typically every 2 years instead of every month which is too big).      /*    extern  char* getcwd ( char *buf , int len);*/
      Model is determined by parameters x and covariates have to be  #ifdef WIN32
      included manually here.      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
   #else
      */          if (getcwd(dirc, FILENAME_MAX) == NULL) {
   #endif
   int i, j, d, h, k;        return( GLOCK_ERROR_GETCWD );
   double **out, cov[NCOVMAX];      }
   double **newm;      /* got dirc from getcwd*/
       printf(" DIRC = %s \n",dirc);
   /* Hstepm could be zero and should return the unit matrix */    } else {                              /* strip direcotry from path */
   for (i=1;i<=nlstate+ndeath;i++)      ss++;                               /* after this, the filename */
     for (j=1;j<=nlstate+ndeath;j++){      l2 = strlen( ss );                  /* length of filename */
       oldm[i][j]=(i==j ? 1.0 : 0.0);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       po[i][j][0]=(i==j ? 1.0 : 0.0);      strcpy( name, ss );         /* save file name */
     }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      dirc[l1-l2] = '\0';                 /* add zero */
   for(h=1; h <=nhstepm; h++){      printf(" DIRC2 = %s \n",dirc);
     for(d=1; d <=hstepm; d++){    }
       newm=savm;    /* We add a separator at the end of dirc if not exists */
       /* Covariates have to be included here again */    l1 = strlen( dirc );                  /* length of directory */
       cov[1]=1.;    if( dirc[l1-1] != DIRSEPARATOR ){
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      dirc[l1] =  DIRSEPARATOR;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      dirc[l1+1] = 0; 
       for (k=1; k<=cptcovage;k++)      printf(" DIRC3 = %s \n",dirc);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    }
       for (k=1; k<=cptcovprod;k++)    ss = strrchr( name, '.' );            /* find last / */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    if (ss >0){
       ss++;
       strcpy(ext,ss);                     /* save extension */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      l1= strlen( name);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      l2= strlen(ss)+1;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      strncpy( finame, name, l1-l2);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      finame[l1-l2]= 0;
       savm=oldm;    }
       oldm=newm;  
     }    return( 0 );                          /* we're done */
     for(i=1; i<=nlstate+ndeath; i++)  }
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /******************************************/
          */  
       }  void replace_back_to_slash(char *s, char*t)
   } /* end h */  {
   return po;    int i;
 }    int lg=0;
     i=0;
     lg=strlen(t);
 /*************** log-likelihood *************/    for(i=0; i<= lg; i++) {
 double func( double *x)      (s[i] = t[i]);
 {      if (t[i]== '\\') s[i]='/';
   int i, ii, j, k, mi, d, kk;    }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  }
   double **out;  
   double sw; /* Sum of weights */  char *trimbb(char *out, char *in)
   double lli; /* Individual log likelihood */  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   long ipmx;    char *s;
   /*extern weight */    s=out;
   /* We are differentiating ll according to initial status */    while (*in != '\0'){
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   /*for(i=1;i<imx;i++)        in++;
     printf(" %d\n",s[4][i]);      }
   */      *out++ = *in++;
   cov[1]=1.;    }
     *out='\0';
   for(k=1; k<=nlstate; k++) ll[k]=0.;    return s;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  /* char *substrchaine(char *out, char *in, char *chain) */
       for (ii=1;ii<=nlstate+ndeath;ii++)  /* { */
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
       for(d=0; d<dh[mi][i]; d++){  /*   char *s, *t; */
         newm=savm;  /*   t=in;s=out; */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*   while ((*in != *chain) && (*in != '\0')){ */
         for (kk=1; kk<=cptcovage;kk++) {  /*     *out++ = *in++; */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*   } */
         }  
          /*   /\* *in matches *chain *\/ */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
         savm=oldm;  /*   } */
         oldm=newm;  /*   in--; chain--; */
          /*   while ( (*in != '\0')){ */
          /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
       } /* end mult */  /*     *out++ = *in++; */
        /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  /*   } */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  /*   *out='\0'; */
       ipmx +=1;  /*   out=s; */
       sw += weight[i];  /*   return out; */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /* } */
     } /* end of wave */  char *substrchaine(char *out, char *in, char *chain)
   } /* end of individual */  {
     /* Substract chain 'chain' from 'in', return and output 'out' */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    /* in="V1+V1*age+age*age+V2", chain="age*age" */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    char *strloc;
   return -l;  
 }    strcpy (out, in); 
     strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
     printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
 /*********** Maximum Likelihood Estimation ***************/    if(strloc != NULL){ 
       /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
 {      /* strcpy (strloc, strloc +strlen(chain));*/
   int i,j, iter;    }
   double **xi,*delti;    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
   double fret;    return out;
   xi=matrix(1,npar,1,npar);  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);  char *cutl(char *blocc, char *alocc, char *in, char occ)
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  {
   powell(p,xi,npar,ftol,&iter,&fret,func);    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
        and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));       gives blocc="abcdef" and alocc="ghi2j".
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    */
     char *s, *t;
 }    t=in;s=in;
     while ((*in != occ) && (*in != '\0')){
 /**** Computes Hessian and covariance matrix ***/      *alocc++ = *in++;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    }
 {    if( *in == occ){
   double  **a,**y,*x,pd;      *(alocc)='\0';
   double **hess;      s=++in;
   int i, j,jk;    }
   int *indx;   
     if (s == t) {/* occ not found */
   double hessii(double p[], double delta, int theta, double delti[]);      *(alocc-(in-s))='\0';
   double hessij(double p[], double delti[], int i, int j);      in=s;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    }
   void ludcmp(double **a, int npar, int *indx, double *d) ;    while ( *in != '\0'){
       *blocc++ = *in++;
   hess=matrix(1,npar,1,npar);    }
   
   printf("\nCalculation of the hessian matrix. Wait...\n");    *blocc='\0';
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    return t;
   for (i=1;i<=npar;i++){  }
     printf("%d",i);fflush(stdout);  char *cutv(char *blocc, char *alocc, char *in, char occ)
     fprintf(ficlog,"%d",i);fflush(ficlog);  {
     hess[i][i]=hessii(p,ftolhess,i,delti);    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
     /*printf(" %f ",p[i]);*/       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     /*printf(" %lf ",hess[i][i]);*/       gives blocc="abcdef2ghi" and alocc="j".
   }       If occ is not found blocc is null and alocc is equal to in. Returns alocc
      */
   for (i=1;i<=npar;i++) {    char *s, *t;
     for (j=1;j<=npar;j++)  {    t=in;s=in;
       if (j>i) {    while (*in != '\0'){
         printf(".%d%d",i,j);fflush(stdout);      while( *in == occ){
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);        *blocc++ = *in++;
         hess[i][j]=hessij(p,delti,i,j);        s=in;
         hess[j][i]=hess[i][j];          }
         /*printf(" %lf ",hess[i][j]);*/      *blocc++ = *in++;
       }    }
     }    if (s == t) /* occ not found */
   }      *(blocc-(in-s))='\0';
   printf("\n");    else
   fprintf(ficlog,"\n");      *(blocc-(in-s)-1)='\0';
     in=s;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    while ( *in != '\0'){
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");      *alocc++ = *in++;
      }
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);    *alocc='\0';
   x=vector(1,npar);    return s;
   indx=ivector(1,npar);  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  int nbocc(char *s, char occ)
   ludcmp(a,npar,indx,&pd);  {
     int i,j=0;
   for (j=1;j<=npar;j++) {    int lg=20;
     for (i=1;i<=npar;i++) x[i]=0;    i=0;
     x[j]=1;    lg=strlen(s);
     lubksb(a,npar,indx,x);    for(i=0; i<= lg; i++) {
     for (i=1;i<=npar;i++){    if  (s[i] == occ ) j++;
       matcov[i][j]=x[i];    }
     }    return j;
   }  }
   
   printf("\n#Hessian matrix#\n");  /* void cutv(char *u,char *v, char*t, char occ) */
   fprintf(ficlog,"\n#Hessian matrix#\n");  /* { */
   for (i=1;i<=npar;i++) {  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     for (j=1;j<=npar;j++) {  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       printf("%.3e ",hess[i][j]);  /*      gives u="abcdef2ghi" and v="j" *\/ */
       fprintf(ficlog,"%.3e ",hess[i][j]);  /*   int i,lg,j,p=0; */
     }  /*   i=0; */
     printf("\n");  /*   lg=strlen(t); */
     fprintf(ficlog,"\n");  /*   for(j=0; j<=lg-1; j++) { */
   }  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /*   } */
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  /*   for(j=0; j<p; j++) { */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  /*     (u[j] = t[j]); */
   ludcmp(a,npar,indx,&pd);  /*   } */
   /*      u[p]='\0'; */
   /*  printf("\n#Hessian matrix recomputed#\n");  
   /*    for(j=0; j<= lg; j++) { */
   for (j=1;j<=npar;j++) {  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
     for (i=1;i<=npar;i++) x[i]=0;  /*   } */
     x[j]=1;  /* } */
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  #ifdef _WIN32
       y[i][j]=x[i];  char * strsep(char **pp, const char *delim)
       printf("%.3e ",y[i][j]);  {
       fprintf(ficlog,"%.3e ",y[i][j]);    char *p, *q;
     }           
     printf("\n");    if ((p = *pp) == NULL)
     fprintf(ficlog,"\n");      return 0;
   }    if ((q = strpbrk (p, delim)) != NULL)
   */    {
       *pp = q + 1;
   free_matrix(a,1,npar,1,npar);      *q = '\0';
   free_matrix(y,1,npar,1,npar);    }
   free_vector(x,1,npar);    else
   free_ivector(indx,1,npar);      *pp = 0;
   free_matrix(hess,1,npar,1,npar);    return p;
   }
   #endif
 }  
   /********************** nrerror ********************/
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])  void nrerror(char error_text[])
 {  {
   int i;    fprintf(stderr,"ERREUR ...\n");
   int l=1, lmax=20;    fprintf(stderr,"%s\n",error_text);
   double k1,k2;    exit(EXIT_FAILURE);
   double p2[NPARMAX+1];  }
   double res;  /*********************** vector *******************/
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  double *vector(int nl, int nh)
   double fx;  {
   int k=0,kmax=10;    double *v;
   double l1;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
   fx=func(x);    return v-nl+NR_END;
   for (i=1;i<=npar;i++) p2[i]=x[i];  }
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  /************************ free vector ******************/
     delts=delt;  void free_vector(double*v, int nl, int nh)
     for(k=1 ; k <kmax; k=k+1){  {
       delt = delta*(l1*k);    free((FREE_ARG)(v+nl-NR_END));
       p2[theta]=x[theta] +delt;  }
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;  /************************ivector *******************************/
       k2=func(p2)-fx;  int *ivector(long nl,long nh)
       /*res= (k1-2.0*fx+k2)/delt/delt; */  {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    int *v;
          v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 #ifdef DEBUG    if (!v) nrerror("allocation failure in ivector");
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    return v-nl+NR_END;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  }
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  /******************free ivector **************************/
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  void free_ivector(int *v, long nl, long nh)
         k=kmax;  {
       }    free((FREE_ARG)(v+nl-NR_END));
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  }
         k=kmax; l=lmax*10.;  
       }  /************************lvector *******************************/
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  long *lvector(long nl,long nh)
         delts=delt;  {
       }    long *v;
     }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   }    if (!v) nrerror("allocation failure in ivector");
   delti[theta]=delts;    return v-nl+NR_END;
   return res;  }
    
 }  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
 double hessij( double x[], double delti[], int thetai,int thetaj)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   int i;  }
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  /******************* imatrix *******************************/
   double p2[NPARMAX+1];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   int k;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
   fx=func(x);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   for (k=1; k<=2; k++) {    int **m; 
     for (i=1;i<=npar;i++) p2[i]=x[i];    
     p2[thetai]=x[thetai]+delti[thetai]/k;    /* allocate pointers to rows */ 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     k1=func(p2)-fx;    if (!m) nrerror("allocation failure 1 in matrix()"); 
      m += NR_END; 
     p2[thetai]=x[thetai]+delti[thetai]/k;    m -= nrl; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    
     k2=func(p2)-fx;    
      /* allocate rows and set pointers to them */ 
     p2[thetai]=x[thetai]-delti[thetai]/k;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     k3=func(p2)-fx;    m[nrl] += NR_END; 
      m[nrl] -= ncl; 
     p2[thetai]=x[thetai]-delti[thetai]/k;    
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     k4=func(p2)-fx;    
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    /* return pointer to array of pointers to rows */ 
 #ifdef DEBUG    return m; 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  } 
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif  /****************** free_imatrix *************************/
   }  void free_imatrix(m,nrl,nrh,ncl,nch)
   return res;        int **m;
 }        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
 /************** Inverse of matrix **************/  { 
 void ludcmp(double **a, int n, int *indx, double *d)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 {    free((FREE_ARG) (m+nrl-NR_END)); 
   int i,imax,j,k;  } 
   double big,dum,sum,temp;  
   double *vv;  /******************* matrix *******************************/
    double **matrix(long nrl, long nrh, long ncl, long nch)
   vv=vector(1,n);  {
   *d=1.0;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   for (i=1;i<=n;i++) {    double **m;
     big=0.0;  
     for (j=1;j<=n;j++)    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       if ((temp=fabs(a[i][j])) > big) big=temp;    if (!m) nrerror("allocation failure 1 in matrix()");
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    m += NR_END;
     vv[i]=1.0/big;    m -= nrl;
   }  
   for (j=1;j<=n;j++) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (i=1;i<j;i++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       sum=a[i][j];    m[nrl] += NR_END;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    m[nrl] -= ncl;
       a[i][j]=sum;  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     big=0.0;    return m;
     for (i=j;i<=n;i++) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
       sum=a[i][j];  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
       for (k=1;k<j;k++)  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
         sum -= a[i][k]*a[k][j];     */
       a[i][j]=sum;  }
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;  /*************************free matrix ************************/
         imax=i;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       }  {
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     if (j != imax) {    free((FREE_ARG)(m+nrl-NR_END));
       for (k=1;k<=n;k++) {  }
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  /******************* ma3x *******************************/
         a[j][k]=dum;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       }  {
       *d = -(*d);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       vv[imax]=vv[j];    double ***m;
     }  
     indx[j]=imax;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (a[j][j] == 0.0) a[j][j]=TINY;    if (!m) nrerror("allocation failure 1 in matrix()");
     if (j != n) {    m += NR_END;
       dum=1.0/(a[j][j]);    m -= nrl;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  
     }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   free_vector(vv,1,n);  /* Doesn't work */    m[nrl] += NR_END;
 ;    m[nrl] -= ncl;
 }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 void lubksb(double **a, int n, int *indx, double b[])  
 {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   int i,ii=0,ip,j;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double sum;    m[nrl][ncl] += NR_END;
      m[nrl][ncl] -= nll;
   for (i=1;i<=n;i++) {    for (j=ncl+1; j<=nch; j++) 
     ip=indx[i];      m[nrl][j]=m[nrl][j-1]+nlay;
     sum=b[ip];    
     b[ip]=b[i];    for (i=nrl+1; i<=nrh; i++) {
     if (ii)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      for (j=ncl+1; j<=nch; j++) 
     else if (sum) ii=i;        m[i][j]=m[i][j-1]+nlay;
     b[i]=sum;    }
   }    return m; 
   for (i=n;i>=1;i--) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     sum=b[i];             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    */
     b[i]=sum/a[i][i];  }
   }  
 }  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 /************ Frequencies ********************/  {
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 {  /* Some frequencies */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      free((FREE_ARG)(m+nrl-NR_END));
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  }
   int first;  
   double ***freq; /* Frequencies */  /*************** function subdirf ***********/
   double *pp;  char *subdirf(char fileres[])
   double pos, k2, dateintsum=0,k2cpt=0;  {
   FILE *ficresp;    /* Caution optionfilefiname is hidden */
   char fileresp[FILENAMELENGTH];    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/"); /* Add to the right */
   pp=vector(1,nlstate);    strcat(tmpout,fileres);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    return tmpout;
   strcpy(fileresp,"p");  }
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {  /*************** function subdirf2 ***********/
     printf("Problem with prevalence resultfile: %s\n", fileresp);  char *subdirf2(char fileres[], char *preop)
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);  {
     exit(0);    
   }    /* Caution optionfilefiname is hidden */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    strcpy(tmpout,optionfilefiname);
   j1=0;    strcat(tmpout,"/");
      strcat(tmpout,preop);
   j=cptcoveff;    strcat(tmpout,fileres);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    return tmpout;
   }
   first=1;  
   /*************** function subdirf3 ***********/
   for(k1=1; k1<=j;k1++){  char *subdirf3(char fileres[], char *preop, char *preop2)
     for(i1=1; i1<=ncodemax[k1];i1++){  {
       j1++;    
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    /* Caution optionfilefiname is hidden */
         scanf("%d", i);*/    strcpy(tmpout,optionfilefiname);
       for (i=-1; i<=nlstate+ndeath; i++)      strcat(tmpout,"/");
         for (jk=-1; jk<=nlstate+ndeath; jk++)      strcat(tmpout,preop);
           for(m=agemin; m <= agemax+3; m++)    strcat(tmpout,preop2);
             freq[i][jk][m]=0;    strcat(tmpout,fileres);
          return tmpout;
       dateintsum=0;  }
       k2cpt=0;  
       for (i=1; i<=imx; i++) {  char *asc_diff_time(long time_sec, char ascdiff[])
         bool=1;  {
         if  (cptcovn>0) {    long sec_left, days, hours, minutes;
           for (z1=1; z1<=cptcoveff; z1++)    days = (time_sec) / (60*60*24);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    sec_left = (time_sec) % (60*60*24);
               bool=0;    hours = (sec_left) / (60*60) ;
         }    sec_left = (sec_left) %(60*60);
         if (bool==1) {    minutes = (sec_left) /60;
           for(m=firstpass; m<=lastpass; m++){    sec_left = (sec_left) % (60);
             k2=anint[m][i]+(mint[m][i]/12.);    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    return ascdiff;
               if(agev[m][i]==0) agev[m][i]=agemax+1;  }
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {  /***************** f1dim *************************/
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  extern int ncom; 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  extern double *pcom,*xicom;
               }  extern double (*nrfunc)(double []); 
                 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  double f1dim(double x) 
                 dateintsum=dateintsum+k2;  { 
                 k2cpt++;    int j; 
               }    double f;
             }    double *xt; 
           }   
         }    xt=vector(1,ncom); 
       }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
            f=(*nrfunc)(xt); 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    free_vector(xt,1,ncom); 
     return f; 
       if  (cptcovn>0) {  } 
         fprintf(ficresp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*****************brent *************************/
         fprintf(ficresp, "**********\n#");  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       }  {
       for(i=1; i<=nlstate;i++)    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
       fprintf(ficresp, "\n");     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
           * the minimum is returned as xmin, and the minimum function value is returned as brent , the
       for(i=(int)agemin; i <= (int)agemax+3; i++){     * returned function value. 
         if(i==(int)agemax+3){    */
           fprintf(ficlog,"Total");    int iter; 
         }else{    double a,b,d,etemp;
           if(first==1){    double fu=0,fv,fw,fx;
             first=0;    double ftemp=0.;
             printf("See log file for details...\n");    double p,q,r,tol1,tol2,u,v,w,x,xm; 
           }    double e=0.0; 
           fprintf(ficlog,"Age %d", i);   
         }    a=(ax < cx ? ax : cx); 
         for(jk=1; jk <=nlstate ; jk++){    b=(ax > cx ? ax : cx); 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    x=w=v=bx; 
             pp[jk] += freq[jk][m][i];    fw=fv=fx=(*f)(x); 
         }    for (iter=1;iter<=ITMAX;iter++) { 
         for(jk=1; jk <=nlstate ; jk++){      xm=0.5*(a+b); 
           for(m=-1, pos=0; m <=0 ; m++)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
             pos += freq[jk][m][i];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
           if(pp[jk]>=1.e-10){      printf(".");fflush(stdout);
             if(first==1){      fprintf(ficlog,".");fflush(ficlog);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  #ifdef DEBUGBRENT
             }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
           }else{      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
             if(first==1)  #endif
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        *xmin=x; 
           }        return fx; 
         }      } 
       ftemp=fu;
         for(jk=1; jk <=nlstate ; jk++){      if (fabs(e) > tol1) { 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        r=(x-w)*(fx-fv); 
             pp[jk] += freq[jk][m][i];        q=(x-v)*(fx-fw); 
         }        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
         for(jk=1,pos=0; jk <=nlstate ; jk++)        if (q > 0.0) p = -p; 
           pos += pp[jk];        q=fabs(q); 
         for(jk=1; jk <=nlstate ; jk++){        etemp=e; 
           if(pos>=1.e-5){        e=d; 
             if(first==1)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        else { 
           }else{          d=p/q; 
             if(first==1)          u=x+d; 
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          if (u-a < tol2 || b-u < tol2) 
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            d=SIGN(tol1,xm-x); 
           }        } 
           if( i <= (int) agemax){      } else { 
             if(pos>=1.e-5){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      } 
               probs[i][jk][j1]= pp[jk]/pos;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      fu=(*f)(u); 
             }      if (fu <= fx) { 
             else        if (u >= x) a=x; else b=x; 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        SHFT(v,w,x,u) 
           }        SHFT(fv,fw,fx,fu) 
         }      } else { 
                if (u < x) a=u; else b=u; 
         for(jk=-1; jk <=nlstate+ndeath; jk++)        if (fu <= fw || w == x) { 
           for(m=-1; m <=nlstate+ndeath; m++)          v=w; 
             if(freq[jk][m][i] !=0 ) {          w=u; 
             if(first==1)          fv=fw; 
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          fw=fu; 
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        } else if (fu <= fv || v == x || v == w) { 
             }          v=u; 
         if(i <= (int) agemax)          fv=fu; 
           fprintf(ficresp,"\n");        } 
         if(first==1)      } 
           printf("Others in log...\n");    } 
         fprintf(ficlog,"\n");    nrerror("Too many iterations in brent"); 
       }    *xmin=x; 
     }    return fx; 
   }  } 
   dateintmean=dateintsum/k2cpt;  
    /****************** mnbrak ***********************/
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   free_vector(pp,1,nlstate);              double (*func)(double)) 
    { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
   /* End of Freq */  the downhill direction (defined by the function as evaluated at the initial points) and returns
 }  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
   values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
 /************ Prevalence ********************/     */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    double ulim,u,r,q, dum;
 {  /* Some frequencies */    double fu; 
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    double scale=10.;
   double ***freq; /* Frequencies */    int iterscale=0;
   double *pp;  
   double pos, k2;    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
     *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
      /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
   j1=0;    /*   *bx = *ax - (*ax - *bx)/scale; */
      /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
   j=cptcoveff;    /* } */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
      if (*fb > *fa) { 
   for(k1=1; k1<=j;k1++){      SHFT(dum,*ax,*bx,dum) 
     for(i1=1; i1<=ncodemax[k1];i1++){      SHFT(dum,*fb,*fa,dum) 
       j1++;    } 
          *cx=(*bx)+GOLD*(*bx-*ax); 
       for (i=-1; i<=nlstate+ndeath; i++)      *fc=(*func)(*cx); 
         for (jk=-1; jk<=nlstate+ndeath; jk++)    #ifdef DEBUG
           for(m=agemin; m <= agemax+3; m++)    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
             freq[i][jk][m]=0;    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
        #endif
       for (i=1; i<=imx; i++) {    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
         bool=1;      r=(*bx-*ax)*(*fb-*fc); 
         if  (cptcovn>0) {      q=(*bx-*cx)*(*fb-*fa); 
           for (z1=1; z1<=cptcoveff; z1++)      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
               bool=0;      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
         }      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
         if (bool==1) {        fu=(*func)(u); 
           for(m=firstpass; m<=lastpass; m++){  #ifdef DEBUG
             k2=anint[m][i]+(mint[m][i]/12.);        /* f(x)=A(x-u)**2+f(u) */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        double A, fparabu; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
               if(agev[m][i]==1) agev[m][i]=agemax+2;        fparabu= *fa - A*(*ax-u)*(*ax-u);
               if (m<lastpass) {        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
                 if (calagedate>0)        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        /* And thus,it can be that fu > *fc even if fparabu < *fc */
                 else        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
               }  #endif 
             }  #ifdef MNBRAKORIGINAL
           }  #else
         }        if (fu > *fc) {
       }  #ifdef DEBUG
       for(i=(int)agemin; i <= (int)agemax+3; i++){        printf("mnbrak4  fu > fc \n");
         for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog, "mnbrak4 fu > fc\n");
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  #endif
             pp[jk] += freq[jk][m][i];          /* SHFT(u,*cx,*cx,u) /\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\/  */
         }          /* SHFT(*fa,*fc,fu,*fc) /\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\/ */
         for(jk=1; jk <=nlstate ; jk++){          dum=u; /* Shifting c and u */
           for(m=-1, pos=0; m <=0 ; m++)          u = *cx;
             pos += freq[jk][m][i];          *cx = dum;
         }          dum = fu;
                  fu = *fc;
         for(jk=1; jk <=nlstate ; jk++){          *fc =dum;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        } else { /* end */
             pp[jk] += freq[jk][m][i];  #ifdef DEBUG
         }        printf("mnbrak3  fu < fc \n");
                fprintf(ficlog, "mnbrak3 fu < fc\n");
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  #endif
                  dum=u; /* Shifting c and u */
         for(jk=1; jk <=nlstate ; jk++){              u = *cx;
           if( i <= (int) agemax){          *cx = dum;
             if(pos>=1.e-5){          dum = fu;
               probs[i][jk][j1]= pp[jk]/pos;          fu = *fc;
             }          *fc =dum;
           }        }
         }/* end jk */  #endif
       }/* end i */      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
     } /* end i1 */  #ifdef DEBUG
   } /* end k1 */        printf("mnbrak2  u after c but before ulim\n");
         fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
    #endif
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        fu=(*func)(u); 
   free_vector(pp,1,nlstate);        if (fu < *fc) { 
    #ifdef DEBUG
 }  /* End of Freq */        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
         fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
 /************* Waves Concatenation ***************/  #endif
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          SHFT(*fb,*fc,fu,(*func)(u)) 
 {        } 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
      Death is a valid wave (if date is known).  #ifdef DEBUG
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
      and mw[mi+1][i]. dh depends on stepm.  #endif
      */        u=ulim; 
         fu=(*func)(u); 
   int i, mi, m;      } else { /* u could be left to b (if r > q parabola has a maximum) */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  #ifdef DEBUG
      double sum=0., jmean=0.;*/        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
   int first;        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
   int j, k=0,jk, ju, jl;  #endif
   double sum=0.;        u=(*cx)+GOLD*(*cx-*bx); 
   first=0;        fu=(*func)(u); 
   jmin=1e+5;      } /* end tests */
   jmax=-1;      SHFT(*ax,*bx,*cx,u) 
   jmean=0.;      SHFT(*fa,*fb,*fc,fu) 
   for(i=1; i<=imx; i++){  #ifdef DEBUG
     mi=0;        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
     m=firstpass;        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
     while(s[m][i] <= nlstate){  #endif
       if(s[m][i]>=1)    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
         mw[++mi][i]=m;  } 
       if(m >=lastpass)  
         break;  /*************** linmin ************************/
       else  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
         m++;  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
     }/* end while */  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
     if (s[m][i] > nlstate){  the value of func at the returned location p . This is actually all accomplished by calling the
       mi++;     /* Death is another wave */  routines mnbrak and brent .*/
       /* if(mi==0)  never been interviewed correctly before death */  int ncom; 
          /* Only death is a correct wave */  double *pcom,*xicom;
       mw[mi][i]=m;  double (*nrfunc)(double []); 
     }   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     wav[i]=mi;  { 
     if(mi==0){    double brent(double ax, double bx, double cx, 
       if(first==0){                 double (*f)(double), double tol, double *xmin); 
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);    double f1dim(double x); 
         first=1;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       }                double *fc, double (*func)(double)); 
       if(first==1){    int j; 
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);    double xx,xmin,bx,ax; 
       }    double fx,fb,fa;
     } /* end mi==0 */  
   }    double scale=10., axs, xxs, xxss; /* Scale added for infinity */
    
   for(i=1; i<=imx; i++){    ncom=n; 
     for(mi=1; mi<wav[i];mi++){    pcom=vector(1,n); 
       if (stepm <=0)    xicom=vector(1,n); 
         dh[mi][i]=1;    nrfunc=func; 
       else{    for (j=1;j<=n;j++) { 
         if (s[mw[mi+1][i]][i] > nlstate) {      pcom[j]=p[j]; 
           if (agedc[i] < 2*AGESUP) {      xicom[j]=xi[j]; 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    } 
           if(j==0) j=1;  /* Survives at least one month after exam */  
           k=k+1;    axs=0.0;
           if (j >= jmax) jmax=j;    xxss=1; /* 1 and using scale */
           if (j <= jmin) jmin=j;    xxs=1;
           sum=sum+j;    do{
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      ax=0.;
           }      xx= xxs;
         }      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
         else{      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
           k=k+1;      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
           if (j >= jmax) jmax=j;      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
           else if (j <= jmin)jmin=j;      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
           sum=sum+j;      if (fx != fx){
         }          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
         jk= j/stepm;          printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
         jl= j -jk*stepm;      }
         ju= j -(jk+1)*stepm;    }while(fx != fx);
         if(jl <= -ju)  
           dh[mi][i]=jk;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
         else    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
           dh[mi][i]=jk+1;    /* fmin = f(p[j] + xmin * xi[j]) */
         if(dh[mi][i]==0)    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
           dh[mi][i]=1; /* At least one step */    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
       }  #ifdef DEBUG
     }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   jmean=sum/k;  #endif
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    /* printf("linmin end "); */
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    for (j=1;j<=n;j++) { 
  }      /* printf(" before xi[%d]=%12.8f", j,xi[j]); */
       xi[j] *= xmin; /* xi rescaled by xmin: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
 /*********** Tricode ****************************/      /* if(xxs <1.0) */
 void tricode(int *Tvar, int **nbcode, int imx)      /*   printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs ); */
 {      p[j] += xi[j]; /* Parameters values are updated accordingly */
   int Ndum[20],ij=1, k, j, i;    } 
   int cptcode=0;    /* printf("\n"); */
   cptcoveff=0;    /* printf("Comparing last *frec(xmin)=%12.8f from Brent and frec(0.)=%12.8f \n", *fret, (*func)(p)); */
      free_vector(xicom,1,n); 
   for (k=0; k<19; k++) Ndum[k]=0;    free_vector(pcom,1,n); 
   for (k=1; k<=7; k++) ncodemax[k]=0;  } 
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {  /*************** powell ************************/
       ij=(int)(covar[Tvar[j]][i]);  /*
       Ndum[ij]++;  Minimization of a function func of n variables. Input consists of an initial starting point
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
       if (ij > cptcode) cptcode=ij;  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
     }  such that failure to decrease by more than this amount on one iteration signals doneness. On
   output, p is set to the best point found, xi is the then-current direction set, fret is the returned
     for (i=0; i<=cptcode; i++) {  function value at p , and iter is the number of iterations taken. The routine linmin is used.
       if(Ndum[i]!=0) ncodemax[j]++;   */
     }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     ij=1;              double (*func)(double [])) 
   { 
     void linmin(double p[], double xi[], int n, double *fret, 
     for (i=1; i<=ncodemax[j]; i++) {                double (*func)(double [])); 
       for (k=0; k<=19; k++) {    int i,ibig,j; 
         if (Ndum[k] != 0) {    double del,t,*pt,*ptt,*xit;
           nbcode[Tvar[j]][ij]=k;    double directest;
              double fp,fptt;
           ij++;    double *xits;
         }    int niterf, itmp;
         if (ij > ncodemax[j]) break;  
       }      pt=vector(1,n); 
     }    ptt=vector(1,n); 
   }      xit=vector(1,n); 
     xits=vector(1,n); 
  for (k=0; k<19; k++) Ndum[k]=0;    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
  for (i=1; i<=ncovmodel-2; i++) {      rcurr_time = time(NULL);  
    ij=Tvar[i];    for (*iter=1;;++(*iter)) { 
    Ndum[ij]++;      fp=(*fret); /* From former iteration or initial value */
  }      ibig=0; 
       del=0.0; 
  ij=1;      rlast_time=rcurr_time;
  for (i=1; i<=10; i++) {      /* (void) gettimeofday(&curr_time,&tzp); */
    if((Ndum[i]!=0) && (i<=ncovcol)){      rcurr_time = time(NULL);  
      Tvaraff[ij]=i;      curr_time = *localtime(&rcurr_time);
      ij++;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
    }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
  }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
       for (i=1;i<=n;i++) {
  cptcoveff=ij-1;        printf(" %d %.12f",i, p[i]);
 }        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
 /*********** Health Expectancies ****************/      }
       printf("\n");
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
 {      if(*iter <=3){
   /* Health expectancies */        tml = *localtime(&rcurr_time);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        strcpy(strcurr,asctime(&tml));
   double age, agelim, hf;        rforecast_time=rcurr_time; 
   double ***p3mat,***varhe;        itmp = strlen(strcurr);
   double **dnewm,**doldm;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   double *xp;          strcurr[itmp-1]='\0';
   double **gp, **gm;        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   double ***gradg, ***trgradg;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   int theta;        for(niterf=10;niterf<=30;niterf+=10){
           rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          forecast_time = *localtime(&rforecast_time);
   xp=vector(1,npar);          strcpy(strfor,asctime(&forecast_time));
   dnewm=matrix(1,nlstate*2,1,npar);          itmp = strlen(strfor);
   doldm=matrix(1,nlstate*2,1,nlstate*2);          if(strfor[itmp-1]=='\n')
            strfor[itmp-1]='\0';
   fprintf(ficreseij,"# Health expectancies\n");          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   fprintf(ficreseij,"# Age");          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   for(i=1; i<=nlstate;i++)        }
     for(j=1; j<=nlstate;j++)      }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      for (i=1;i<=n;i++) { /* For each direction i */
   fprintf(ficreseij,"\n");        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
         fptt=(*fret); 
   if(estepm < stepm){  #ifdef DEBUG
     printf ("Problem %d lower than %d\n",estepm, stepm);            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   }            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   else  hstepm=estepm;    #endif
   /* We compute the life expectancy from trapezoids spaced every estepm months            printf("%d",i);fflush(stdout); /* print direction (parameter) i */
    * This is mainly to measure the difference between two models: for example        fprintf(ficlog,"%d",i);fflush(ficlog);
    * if stepm=24 months pijx are given only every 2 years and by summing them        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
    * we are calculating an estimate of the Life Expectancy assuming a linear                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
    * progression inbetween and thus overestimating or underestimating according        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
    * to the curvature of the survival function. If, for the same date, we          /* because that direction will be replaced unless the gain del is small */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
    * to compare the new estimate of Life expectancy with the same linear          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
    * hypothesis. A more precise result, taking into account a more precise          /* with the new direction. */
    * curvature will be obtained if estepm is as small as stepm. */          del=fabs(fptt-(*fret)); 
           ibig=i; 
   /* For example we decided to compute the life expectancy with the smallest unit */        } 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  #ifdef DEBUG
      nhstepm is the number of hstepm from age to agelim        printf("%d %.12e",i,(*fret));
      nstepm is the number of stepm from age to agelin.        fprintf(ficlog,"%d %.12e",i,(*fret));
      Look at hpijx to understand the reason of that which relies in memory size        for (j=1;j<=n;j++) {
      and note for a fixed period like estepm months */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          printf(" x(%d)=%.12e",j,xit[j]);
      survival function given by stepm (the optimization length). Unfortunately it          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
      means that if the survival funtion is printed only each two years of age and if        }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        for(j=1;j<=n;j++) {
      results. So we changed our mind and took the option of the best precision.          printf(" p(%d)=%.12e",j,p[j]);
   */          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        }
         printf("\n");
   agelim=AGESUP;        fprintf(ficlog,"\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  #endif
     /* nhstepm age range expressed in number of stepm */      } /* end loop on each direction i */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
     /* if (stepm >= YEARM) hstepm=1;*/      /* New value of last point Pn is not computed, P(n-1) */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
     gp=matrix(0,nhstepm,1,nlstate*2);        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
     gm=matrix(0,nhstepm,1,nlstate*2);        /* decreased of more than 3.84  */
         /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        /* By adding 10 parameters more the gain should be 18.31 */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
          /* Starting the program with initial values given by a former maximization will simply change */
         /* the scales of the directions and the directions, because the are reset to canonical directions */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
         /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
     /* Computing Variances of health expectancies */  #ifdef DEBUG
         int k[2],l;
      for(theta=1; theta <=npar; theta++){        k[0]=1;
       for(i=1; i<=npar; i++){        k[1]=-1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        printf("Max: %.12e",(*func)(p));
       }        fprintf(ficlog,"Max: %.12e",(*func)(p));
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (j=1;j<=n;j++) {
            printf(" %.12e",p[j]);
       cptj=0;          fprintf(ficlog," %.12e",p[j]);
       for(j=1; j<= nlstate; j++){        }
         for(i=1; i<=nlstate; i++){        printf("\n");
           cptj=cptj+1;        fprintf(ficlog,"\n");
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        for(l=0;l<=1;l++) {
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          for (j=1;j<=n;j++) {
           }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                }
                printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       for(i=1; i<=npar; i++)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    #endif
        
       cptj=0;  
       for(j=1; j<= nlstate; j++){        free_vector(xit,1,n); 
         for(i=1;i<=nlstate;i++){        free_vector(xits,1,n); 
           cptj=cptj+1;        free_vector(ptt,1,n); 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        free_vector(pt,1,n); 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        return; 
           }      } 
         }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       }      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
       for(j=1; j<= nlstate*2; j++)        ptt[j]=2.0*p[j]-pt[j]; 
         for(h=0; h<=nhstepm-1; h++){        xit[j]=p[j]-pt[j]; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        pt[j]=p[j]; 
         }      } 
      }      fptt=(*func)(ptt); /* f_3 */
          if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
 /* End theta */        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
         /* From x1 (P0) distance of x2 is at h and x3 is 2h */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
      for(h=0; h<=nhstepm-1; h++)        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
       for(j=1; j<=nlstate*2;j++)        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
         for(theta=1; theta <=npar; theta++)        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
           trgradg[h][j][theta]=gradg[h][theta][j];  #ifdef NRCORIGINAL
              t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
   #else
      for(i=1;i<=nlstate*2;i++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
       for(j=1;j<=nlstate*2;j++)        t= t- del*SQR(fp-fptt);
         varhe[i][j][(int)age] =0.;  #endif
         directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
      printf("%d|",(int)age);fflush(stdout);  #ifdef DEBUG
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
      for(h=0;h<=nhstepm-1;h++){        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
       for(k=0;k<=nhstepm-1;k++){        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
         for(i=1;i<=nlstate*2;i++)               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
           for(j=1;j<=nlstate*2;j++)        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
       }  #endif
     }  #ifdef POWELLORIGINAL
     /* Computing expectancies */        if (t < 0.0) { /* Then we use it for new direction */
     for(i=1; i<=nlstate;i++)  #else
       for(j=1; j<=nlstate;j++)        if (directest*t < 0.0) { /* Contradiction between both tests */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
                  fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
       } 
         }        if (directest < 0.0) { /* Then we use it for new direction */
   #endif
     fprintf(ficreseij,"%3.0f",age );          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
     cptj=0;          for (j=1;j<=n;j++) { 
     for(i=1; i<=nlstate;i++)            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
       for(j=1; j<=nlstate;j++){            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
         cptj++;          }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       }          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
     fprintf(ficreseij,"\n");  
      #ifdef DEBUG
     free_matrix(gm,0,nhstepm,1,nlstate*2);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     free_matrix(gp,0,nhstepm,1,nlstate*2);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          for(j=1;j<=n;j++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);            printf(" %.12e",xit[j]);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficlog," %.12e",xit[j]);
   }          }
   printf("\n");          printf("\n");
   fprintf(ficlog,"\n");          fprintf(ficlog,"\n");
   #endif
   free_vector(xp,1,npar);        } /* end of t negative */
   free_matrix(dnewm,1,nlstate*2,1,npar);      } /* end if (fptt < fp)  */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    } 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  } 
 }  
   /**** Prevalence limit (stable or period prevalence)  ****************/
 /************ Variance ******************/  
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 {  {
   /* Variance of health expectancies */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/       matrix by transitions matrix until convergence is reached */
   /* double **newm;*/    
   double **dnewm,**doldm;    int i, ii,j,k;
   double **dnewmp,**doldmp;    double min, max, maxmin, maxmax,sumnew=0.;
   int i, j, nhstepm, hstepm, h, nstepm ;    /* double **matprod2(); */ /* test */
   int k, cptcode;    double **out, cov[NCOVMAX+1], **pmij();
   double *xp;    double **newm;
   double **gp, **gm;  /* for var eij */    double agefin, delaymax=50 ; /* Max number of years to converge */
   double ***gradg, ***trgradg; /*for var eij */    
   double **gradgp, **trgradgp; /* for var p point j */    for (ii=1;ii<=nlstate+ndeath;ii++)
   double *gpp, *gmp; /* for var p point j */      for (j=1;j<=nlstate+ndeath;j++){
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***p3mat;      }
   double age,agelim, hf;    
   int theta;    cov[1]=1.;
   char digit[4];    
   char digitp[16];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   char fileresprobmorprev[FILENAMELENGTH];      newm=savm;
       /* Covariates have to be included here again */
   if(popbased==1)      cov[2]=agefin;
     strcpy(digitp,"-populbased-");      if(nagesqr==1)
   else        cov[3]= agefin*agefin;;
     strcpy(digitp,"-stablbased-");      for (k=1; k<=cptcovn;k++) {
         cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   strcpy(fileresprobmorprev,"prmorprev");        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
   sprintf(digit,"%-d",ij);      }
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   strcat(fileresprobmorprev,digit); /* Tvar to be done */      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]*cov[2];
   strcat(fileresprobmorprev,digitp); /* Popbased or not */      for (k=1; k<=cptcovprod;k++) /* Useless */
   strcat(fileresprobmorprev,fileres);        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      
     printf("Problem with resultfile: %s\n", fileresprobmorprev);      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   }      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);      
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      savm=oldm;
     fprintf(ficresprobmorprev," p.%-d SE",j);      oldm=newm;
     for(i=1; i<=nlstate;i++)      maxmax=0.;
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);      for(j=1;j<=nlstate;j++){
   }          min=1.;
   fprintf(ficresprobmorprev,"\n");        max=0.;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        for(i=1; i<=nlstate; i++) {
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          sumnew=0;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     exit(0);          prlim[i][j]= newm[i][j]/(1-sumnew);
   }          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
   else{          max=FMAX(max,prlim[i][j]);
     fprintf(ficgp,"\n# Routine varevsij");          min=FMIN(min,prlim[i][j]);
   }        }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        maxmin=max-min;
     printf("Problem with html file: %s\n", optionfilehtm);        maxmax=FMAX(maxmax,maxmin);
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);      } /* j loop */
     exit(0);      if(maxmax < ftolpl){
   }        return prlim;
   else{      }
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    } /* age loop */
   }    return prlim; /* should not reach here */
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  }
   
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  /*************** transition probabilities ***************/ 
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     for(j=1; j<=nlstate;j++)  {
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    /* According to parameters values stored in x and the covariate's values stored in cov,
   fprintf(ficresvij,"\n");       computes the probability to be observed in state j being in state i by appying the
        model to the ncovmodel covariates (including constant and age).
   xp=vector(1,npar);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   dnewm=matrix(1,nlstate,1,npar);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   doldm=matrix(1,nlstate,1,nlstate);       ncth covariate in the global vector x is given by the formula:
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
        Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   gpp=vector(nlstate+1,nlstate+ndeath);       Outputs ps[i][j] the probability to be observed in j being in j according to
   gmp=vector(nlstate+1,nlstate+ndeath);       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    */
      double s1, lnpijopii;
   if(estepm < stepm){    /*double t34;*/
     printf ("Problem %d lower than %d\n",estepm, stepm);    int i,j, nc, ii, jj;
   }  
   else  hstepm=estepm;        for(i=1; i<= nlstate; i++){
   /* For example we decided to compute the life expectancy with the smallest unit */        for(j=1; j<i;j++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
      nhstepm is the number of hstepm from age to agelim            /*lnpijopii += param[i][j][nc]*cov[nc];*/
      nstepm is the number of stepm from age to agelin.            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
      Look at hpijx to understand the reason of that which relies in memory size  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
      and note for a fixed period like k years */          }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
      survival function given by stepm (the optimization length). Unfortunately it  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
      means that if the survival funtion is printed only each two years of age and if        }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        for(j=i+1; j<=nlstate+ndeath;j++){
      results. So we changed our mind and took the option of the best precision.          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   */            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   agelim = AGESUP;  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          }
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      
     gp=matrix(0,nhstepm,1,nlstate);      for(i=1; i<= nlstate; i++){
     gm=matrix(0,nhstepm,1,nlstate);        s1=0;
         for(j=1; j<i; j++){
           s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     for(theta=1; theta <=npar; theta++){          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       for(i=1; i<=npar; i++){ /* Computes gradient */        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(j=i+1; j<=nlstate+ndeath; j++){
       }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
         /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
       if (popbased==1) {        ps[i][i]=1./(s1+1.);
         for(i=1; i<=nlstate;i++)        /* Computing other pijs */
           prlim[i][i]=probs[(int)age][i][ij];        for(j=1; j<i; j++)
       }          ps[i][j]= exp(ps[i][j])*ps[i][i];
          for(j=i+1; j<=nlstate+ndeath; j++)
       for(j=1; j<= nlstate; j++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(h=0; h<=nhstepm; h++){        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      } /* end i */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      
         }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       }        for(jj=1; jj<= nlstate+ndeath; jj++){
       /* This for computing forces of mortality (h=1)as a weighted average */          ps[ii][jj]=0;
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){          ps[ii][ii]=1;
         for(i=1; i<= nlstate; i++)        }
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      }
       }          
       /* end force of mortality */      
       /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
       for(i=1; i<=npar; i++) /* Computes gradient */      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        /*   } */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /*   printf("\n "); */
        /* } */
       if (popbased==1) {      /* printf("\n ");printf("%lf ",cov[2]);*/
         for(i=1; i<=nlstate;i++)      /*
           prlim[i][i]=probs[(int)age][i][ij];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       }        goto end;*/
       return ps;
       for(j=1; j<= nlstate; j++){  }
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  /**************** Product of 2 matrices ******************/
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
       }  {
       /* This for computing force of mortality (h=1)as a weighted average */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         for(i=1; i<= nlstate; i++)    /* in, b, out are matrice of pointers which should have been initialized 
           gmp[j] += prlim[i][i]*p3mat[i][j][1];       before: only the contents of out is modified. The function returns
       }           a pointer to pointers identical to out */
       /* end force of mortality */    int i, j, k;
     for(i=nrl; i<= nrh; i++)
       for(j=1; j<= nlstate; j++) /* vareij */      for(k=ncolol; k<=ncoloh; k++){
         for(h=0; h<=nhstepm; h++){        out[i][k]=0.;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        for(j=ncl; j<=nch; j++)
         }          out[i][k] +=in[i][j]*b[j][k];
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */      }
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    return out;
       }  }
   
     } /* End theta */  
   /************* Higher Matrix Product ***************/
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     for(h=0; h<=nhstepm; h++) /* veij */  {
       for(j=1; j<=nlstate;j++)    /* Computes the transition matrix starting at age 'age' over 
         for(theta=1; theta <=npar; theta++)       'nhstepm*hstepm*stepm' months (i.e. until
           trgradg[h][j][theta]=gradg[h][theta][j];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       for(theta=1; theta <=npar; theta++)       (typically every 2 years instead of every month which is too big 
         trgradgp[j][theta]=gradgp[theta][j];       for the memory).
        Model is determined by parameters x and covariates have to be 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */       included manually here. 
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)       */
         vareij[i][j][(int)age] =0.;  
     int i, j, d, h, k;
     for(h=0;h<=nhstepm;h++){    double **out, cov[NCOVMAX+1];
       for(k=0;k<=nhstepm;k++){    double **newm;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    double agexact;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)    /* Hstepm could be zero and should return the unit matrix */
           for(j=1;j<=nlstate;j++)    for (i=1;i<=nlstate+ndeath;i++)
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      for (j=1;j<=nlstate+ndeath;j++){
       }        oldm[i][j]=(i==j ? 1.0 : 0.0);
     }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
     /* pptj */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    for(h=1; h <=nhstepm; h++){
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);      for(d=1; d <=hstepm; d++){
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        newm=savm;
       for(i=nlstate+1;i<=nlstate+ndeath;i++)        /* Covariates have to be included here again */
         varppt[j][i]=doldmp[j][i];        cov[1]=1.;
     /* end ppptj */        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          cov[2]=agexact;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);        if(nagesqr==1)
            cov[3]= agexact*agexact;
     if (popbased==1) {        for (k=1; k<=cptcovn;k++) 
       for(i=1; i<=nlstate;i++)          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         prlim[i][i]=probs[(int)age][i][ij];        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
     }          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
              cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
     /* This for computing force of mortality (h=1)as a weighted average */        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for(i=1; i<= nlstate; i++)  
         gmp[j] += prlim[i][i]*p3mat[i][j][1];  
     }            /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     /* end force of mortality */        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        savm=oldm;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        oldm=newm;
       for(i=1; i<=nlstate;i++){      }
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);      for(i=1; i<=nlstate+ndeath; i++)
       }        for(j=1;j<=nlstate+ndeath;j++) {
     }          po[i][j][h]=newm[i][j];
     fprintf(ficresprobmorprev,"\n");          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }
     fprintf(ficresvij,"%.0f ",age );      /*printf("h=%d ",h);*/
     for(i=1; i<=nlstate;i++)    } /* end h */
       for(j=1; j<=nlstate;j++){  /*     printf("\n H=%d \n",h); */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    return po;
       }  }
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);  #ifdef NLOPT
     free_matrix(gm,0,nhstepm,1,nlstate);    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    double fret;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    double *xt;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int j;
   } /* End age */    myfunc_data *d2 = (myfunc_data *) pd;
   free_vector(gpp,nlstate+1,nlstate+ndeath);  /* xt = (p1-1); */
   free_vector(gmp,nlstate+1,nlstate+ndeath);    xt=vector(1,n); 
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    printf("Function = %.12lf ",fret);
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);    printf("\n");
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);   free_vector(xt,1,n);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    return fret;
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  }
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);  #endif
   
   free_vector(xp,1,npar);  /*************** log-likelihood *************/
   free_matrix(doldm,1,nlstate,1,nlstate);  double func( double *x)
   free_matrix(dnewm,1,nlstate,1,npar);  {
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    int i, ii, j, k, mi, d, kk;
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    double **out;
   fclose(ficresprobmorprev);    double sw; /* Sum of weights */
   fclose(ficgp);    double lli; /* Individual log likelihood */
   fclose(fichtm);    int s1, s2;
     double bbh, survp;
 }    long ipmx;
     double agexact;
 /************ Variance of prevlim ******************/    /*extern weight */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    /* We are differentiating ll according to initial status */
 {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   /* Variance of prevalence limit */    /*for(i=1;i<imx;i++) 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      printf(" %d\n",s[4][i]);
   double **newm;    */
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;    ++countcallfunc;
   int k, cptcode;  
   double *xp;    cov[1]=1.;
   double *gp, *gm;  
   double **gradg, **trgradg;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double age,agelim;  
   int theta;    if(mle==1){
          for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        /* Computes the values of the ncovmodel covariates of the model
   fprintf(ficresvpl,"# Age");           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
   for(i=1; i<=nlstate;i++)           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
       fprintf(ficresvpl," %1d-%1d",i,i);           to be observed in j being in i according to the model.
   fprintf(ficresvpl,"\n");         */
         for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   xp=vector(1,npar);            cov[2+nagesqr+k]=covar[Tvar[k]][i];
   dnewm=matrix(1,nlstate,1,npar);        }
   doldm=matrix(1,nlstate,1,nlstate);        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
             is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   hstepm=1*YEARM; /* Every year of age */           has been calculated etc */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        for(mi=1; mi<= wav[i]-1; mi++){
   agelim = AGESUP;          for (ii=1;ii<=nlstate+ndeath;ii++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for (j=1;j<=nlstate+ndeath;j++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (stepm >= YEARM) hstepm=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            }
     gradg=matrix(1,npar,1,nlstate);          for(d=0; d<dh[mi][i]; d++){
     gp=vector(1,nlstate);            newm=savm;
     gm=vector(1,nlstate);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
             cov[2]=agexact;
     for(theta=1; theta <=npar; theta++){            if(nagesqr==1)
       for(i=1; i<=npar; i++){ /* Computes gradient */              cov[3]= agexact*agexact;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
       for(i=1;i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         gp[i] = prlim[i][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                savm=oldm;
       for(i=1; i<=npar; i++) /* Computes gradient */            oldm=newm;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          } /* end mult */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        
       for(i=1;i<=nlstate;i++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         gm[i] = prlim[i][i];          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
       for(i=1;i<=nlstate;i++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];           * the nearest (and in case of equal distance, to the lowest) interval but now
     } /* End theta */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     trgradg =matrix(1,nlstate,1,npar);           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     for(j=1; j<=nlstate;j++)           * -stepm/2 to stepm/2 .
       for(theta=1; theta <=npar; theta++)           * For stepm=1 the results are the same as for previous versions of Imach.
         trgradg[j][theta]=gradg[theta][j];           * For stepm > 1 the results are less biased than in previous versions. 
            */
     for(i=1;i<=nlstate;i++)          s1=s[mw[mi][i]][i];
       varpl[i][(int)age] =0.;          s2=s[mw[mi+1][i]][i];
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          bbh=(double)bh[mi][i]/(double)stepm; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          /* bias bh is positive if real duration
     for(i=1;i<=nlstate;i++)           * is higher than the multiple of stepm and negative otherwise.
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     fprintf(ficresvpl,"%.0f ",age );          if( s2 > nlstate){ 
     for(i=1; i<=nlstate;i++)            /* i.e. if s2 is a death state and if the date of death is known 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));               then the contribution to the likelihood is the probability to 
     fprintf(ficresvpl,"\n");               die between last step unit time and current  step unit time, 
     free_vector(gp,1,nlstate);               which is also equal to probability to die before dh 
     free_vector(gm,1,nlstate);               minus probability to die before dh-stepm . 
     free_matrix(gradg,1,npar,1,nlstate);               In version up to 0.92 likelihood was computed
     free_matrix(trgradg,1,nlstate,1,npar);          as if date of death was unknown. Death was treated as any other
   } /* End age */          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   free_vector(xp,1,npar);          to consider that at each interview the state was recorded
   free_matrix(doldm,1,nlstate,1,npar);          (healthy, disable or death) and IMaCh was corrected; but when we
   free_matrix(dnewm,1,nlstate,1,nlstate);          introduced the exact date of death then we should have modified
           the contribution of an exact death to the likelihood. This new
 }          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
 /************ Variance of one-step probabilities  ******************/          and month of death but the probability to survive from last
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          interview up to one month before death multiplied by the
 {          probability to die within a month. Thanks to Chris
   int i, j=0,  i1, k1, l1, t, tj;          Jackson for correcting this bug.  Former versions increased
   int k2, l2, j1,  z1;          mortality artificially. The bad side is that we add another loop
   int k=0,l, cptcode;          which slows down the processing. The difference can be up to 10%
   int first=1, first1;          lower mortality.
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;            */
   double **dnewm,**doldm;          /* If, at the beginning of the maximization mostly, the
   double *xp;             cumulative probability or probability to be dead is
   double *gp, *gm;             constant (ie = 1) over time d, the difference is equal to
   double **gradg, **trgradg;             0.  out[s1][3] = savm[s1][3]: probability, being at state
   double **mu;             s1 at precedent wave, to be dead a month before current
   double age,agelim, cov[NCOVMAX];             wave is equal to probability, being at state s1 at
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */             precedent wave, to be dead at mont of the current
   int theta;             wave. Then the observed probability (that this person died)
   char fileresprob[FILENAMELENGTH];             is null according to current estimated parameter. In fact,
   char fileresprobcov[FILENAMELENGTH];             it should be very low but not zero otherwise the log go to
   char fileresprobcor[FILENAMELENGTH];             infinity.
           */
   double ***varpij;  /* #ifdef INFINITYORIGINAL */
   /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   strcpy(fileresprob,"prob");  /* #else */
   strcat(fileresprob,fileres);  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  /*          lli=log(mytinydouble); */
     printf("Problem with resultfile: %s\n", fileresprob);  /*        else */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   }  /* #endif */
   strcpy(fileresprobcov,"probcov");              lli=log(out[s1][s2] - savm[s1][s2]);
   strcat(fileresprobcov,fileres);  
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          } else if  (s2==-2) {
     printf("Problem with resultfile: %s\n", fileresprobcov);            for (j=1,survp=0. ; j<=nlstate; j++) 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   }            /*survp += out[s1][j]; */
   strcpy(fileresprobcor,"probcor");            lli= log(survp);
   strcat(fileresprobcor,fileres);          }
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          
     printf("Problem with resultfile: %s\n", fileresprobcor);          else if  (s2==-4) { 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);            for (j=3,survp=0. ; j<=nlstate; j++)  
   }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            lli= log(survp); 
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          } 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          else if  (s2==-5) { 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            for (j=1,survp=0. ; j<=2; j++)  
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              lli= log(survp); 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");          } 
   fprintf(ficresprob,"# Age");          
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          else{
   fprintf(ficresprobcov,"# Age");            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   fprintf(ficresprobcov,"# Age");          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
   for(i=1; i<=nlstate;i++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for(j=1; j<=(nlstate+ndeath);j++){          ipmx +=1;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          sw += weight[i];
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);          /* if (lli < log(mytinydouble)){ */
     }            /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
   fprintf(ficresprob,"\n");          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
   fprintf(ficresprobcov,"\n");          /* } */
   fprintf(ficresprobcor,"\n");        } /* end of wave */
   xp=vector(1,npar);      } /* end of individual */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    }  else if(mle==2){
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        for(mi=1; mi<= wav[i]-1; mi++){
   first=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            for (j=1;j<=nlstate+ndeath;j++){
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     exit(0);            }
   }          for(d=0; d<=dh[mi][i]; d++){
   else{            newm=savm;
     fprintf(ficgp,"\n# Routine varprob");            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            cov[2]=agexact;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {            if(nagesqr==1)
     printf("Problem with html file: %s\n", optionfilehtm);              cov[3]= agexact*agexact;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);            for (kk=1; kk<=cptcovage;kk++) {
     exit(0);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   }            }
   else{            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(fichtm,"\n");            savm=oldm;
             oldm=newm;
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");          } /* end mult */
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
            ipmx +=1;
   cov[1]=1;          sw += weight[i];
   tj=cptcoveff;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        } /* end of wave */
   j1=0;      } /* end of individual */
   for(t=1; t<=tj;t++){    }  else if(mle==3){  /* exponential inter-extrapolation */
     for(i1=1; i1<=ncodemax[t];i1++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       j1++;        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
       if  (cptcovn>0) {          for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(ficresprob, "\n#********** Variable ");            for (j=1;j<=nlstate+ndeath;j++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficresprob, "**********\n#");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficresprobcov, "\n#********** Variable ");            }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(d=0; d<dh[mi][i]; d++){
         fprintf(ficresprobcov, "**********\n#");            newm=savm;
                    agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficgp, "\n#********** Variable ");            cov[2]=agexact;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            if(nagesqr==1)
         fprintf(ficgp, "**********\n#");              cov[3]= agexact*agexact;
                    for (kk=1; kk<=cptcovage;kk++) {
                      cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");            }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                    savm=oldm;
         fprintf(ficresprobcor, "\n#********** Variable ");                oldm=newm;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          } /* end mult */
         fprintf(ficgp, "**********\n#");            
       }          s1=s[mw[mi][i]][i];
                s2=s[mw[mi+1][i]][i];
       for (age=bage; age<=fage; age ++){          bbh=(double)bh[mi][i]/(double)stepm; 
         cov[2]=age;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for (k=1; k<=cptcovn;k++) {          ipmx +=1;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        } /* end of wave */
         for (k=1; k<=cptcovprod;k++)      } /* end of individual */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    }else if (mle==4){  /* ml=4 no inter-extrapolation */
              for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
         gp=vector(1,(nlstate)*(nlstate+ndeath));          for (ii=1;ii<=nlstate+ndeath;ii++)
         gm=vector(1,(nlstate)*(nlstate+ndeath));            for (j=1;j<=nlstate+ndeath;j++){
                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(theta=1; theta <=npar; theta++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(i=1; i<=npar; i++)            }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          for(d=0; d<dh[mi][i]; d++){
                      newm=savm;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                      cov[2]=agexact;
           k=0;            if(nagesqr==1)
           for(i=1; i<= (nlstate); i++){              cov[3]= agexact*agexact;
             for(j=1; j<=(nlstate+ndeath);j++){            for (kk=1; kk<=cptcovage;kk++) {
               k=k+1;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
               gp[k]=pmmij[i][j];            }
             }          
           }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                   1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(i=1; i<=npar; i++)            savm=oldm;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            oldm=newm;
              } /* end mult */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        
           k=0;          s1=s[mw[mi][i]][i];
           for(i=1; i<=(nlstate); i++){          s2=s[mw[mi+1][i]][i];
             for(j=1; j<=(nlstate+ndeath);j++){          if( s2 > nlstate){ 
               k=k+1;            lli=log(out[s1][s2] - savm[s1][s2]);
               gm[k]=pmmij[i][j];          }else{
             }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }          }
                ipmx +=1;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          sw += weight[i];
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      } /* end of individual */
           for(theta=1; theta <=npar; theta++)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             trgradg[j][theta]=gradg[theta][j];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);        for(mi=1; mi<= wav[i]-1; mi++){
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);          for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
         pmij(pmmij,cov,ncovmodel,x,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
         k=0;            }
         for(i=1; i<=(nlstate); i++){          for(d=0; d<dh[mi][i]; d++){
           for(j=1; j<=(nlstate+ndeath);j++){            newm=savm;
             k=k+1;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
             mu[k][(int) age]=pmmij[i][j];            cov[2]=agexact;
           }            if(nagesqr==1)
         }              cov[3]= agexact*agexact;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)            for (kk=1; kk<=cptcovage;kk++) {
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             varpij[i][j][(int)age] = doldm[i][j];            }
           
         /*printf("\n%d ",(int)age);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            savm=oldm;
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            oldm=newm;
      }*/          } /* end mult */
         
         fprintf(ficresprob,"\n%d ",(int)age);          s1=s[mw[mi][i]][i];
         fprintf(ficresprobcov,"\n%d ",(int)age);          s2=s[mw[mi+1][i]][i];
         fprintf(ficresprobcor,"\n%d ",(int)age);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          sw += weight[i];
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        } /* end of wave */
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      } /* end of individual */
         }    } /* End of if */
         i=0;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         for (k=1; k<=(nlstate);k++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           for (l=1; l<=(nlstate+ndeath);l++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             i=i++;    return -l;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  }
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  
             for (j=1; j<=i;j++){  /*************** log-likelihood *************/
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  double funcone( double *x)
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  {
             }    /* Same as likeli but slower because of a lot of printf and if */
           }    int i, ii, j, k, mi, d, kk;
         }/* end of loop for state */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       } /* end of loop for age */    double **out;
     double lli; /* Individual log likelihood */
       /* Confidence intervalle of pij  */    double llt;
       /*    int s1, s2;
       fprintf(ficgp,"\nset noparametric;unset label");    double bbh, survp;
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    double agexact;
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    /*extern weight */
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    /* We are differentiating ll according to initial status */
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    /*for(i=1;i<imx;i++) 
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);      printf(" %d\n",s[4][i]);
       */    */
     cov[1]=1.;
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  
       first1=1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for (k2=1; k2<=(nlstate);k2++){  
         for (l2=1; l2<=(nlstate+ndeath);l2++){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if(l2==k2) continue;      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
           j=(k2-1)*(nlstate+ndeath)+l2;      for(mi=1; mi<= wav[i]-1; mi++){
           for (k1=1; k1<=(nlstate);k1++){        for (ii=1;ii<=nlstate+ndeath;ii++)
             for (l1=1; l1<=(nlstate+ndeath);l1++){          for (j=1;j<=nlstate+ndeath;j++){
               if(l1==k1) continue;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               i=(k1-1)*(nlstate+ndeath)+l1;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(i<=j) continue;          }
               for (age=bage; age<=fage; age ++){        for(d=0; d<dh[mi][i]; d++){
                 if ((int)age %5==0){          newm=savm;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          cov[2]=agexact;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          if(nagesqr==1)
                   mu1=mu[i][(int) age]/stepm*YEARM ;            cov[3]= agexact*agexact;
                   mu2=mu[j][(int) age]/stepm*YEARM;          for (kk=1; kk<=cptcovage;kk++) {
                   c12=cv12/sqrt(v1*v2);            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   /* Computing eigen value of matrix of covariance */          }
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                   /* Eigen vectors */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   /*v21=sqrt(1.-v11*v11); *//* error */          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
                   v21=(lc1-v1)/cv12*v11;          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
                   v12=-v21;          savm=oldm;
                   v22=v11;          oldm=newm;
                   tnalp=v21/v11;        } /* end mult */
                   if(first1==1){        
                     first1=0;        s1=s[mw[mi][i]][i];
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        s2=s[mw[mi+1][i]][i];
                   }        bbh=(double)bh[mi][i]/(double)stepm; 
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        /* bias is positive if real duration
                   /*printf(fignu*/         * is higher than the multiple of stepm and negative otherwise.
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */         */
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
                   if(first==1){          lli=log(out[s1][s2] - savm[s1][s2]);
                     first=0;        } else if  (s2==-2) {
                     fprintf(ficgp,"\nset parametric;unset label");          for (j=1,survp=0. ; j<=nlstate; j++) 
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          lli= log(survp);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);        }else if (mle==1){
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);        } else if(mle==2){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        } else if(mle==3){  /* exponential inter-extrapolation */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        } else if (mle==4){  /* mle=4 no inter-extrapolation */
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          lli=log(out[s1][s2]); /* Original formula */
                   }else{        } else{  /* mle=0 back to 1 */
                     first=0;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          /*lli=log(out[s1][s2]); */ /* Original formula */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        } /* End of if */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        ipmx +=1;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        sw += weight[i];
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   }/* if first */        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                 } /* age mod 5 */        if(globpr){
               } /* end loop age */          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);   %11.6f %11.6f %11.6f ", \
               first=1;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
             } /*l12 */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           } /* k12 */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         } /*l1 */            llt +=ll[k]*gipmx/gsw;
       }/* k1 */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     } /* loop covariates */          }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          fprintf(ficresilk," %10.6f\n", -llt);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      } /* end of wave */
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    } /* end of individual */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   free_vector(xp,1,npar);    if(globpr==0){ /* First time we count the contributions and weights */
   fclose(ficresprob);      gipmx=ipmx;
   fclose(ficresprobcov);      gsw=sw;
   fclose(ficresprobcor);    }
   fclose(ficgp);    return -l;
   fclose(fichtm);  }
 }  
   
   /*************** function likelione ***********/
 /******************* Printing html file ***********/  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  {
                   int lastpass, int stepm, int weightopt, char model[],\    /* This routine should help understanding what is done with 
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\       the selection of individuals/waves and
                   int popforecast, int estepm ,\       to check the exact contribution to the likelihood.
                   double jprev1, double mprev1,double anprev1, \       Plotting could be done.
                   double jprev2, double mprev2,double anprev2){     */
   int jj1, k1, i1, cpt;    int k;
   /*char optionfilehtm[FILENAMELENGTH];*/  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    if(*globpri !=0){ /* Just counts and sums, no printings */
     printf("Problem with %s \n",optionfilehtm), exit(0);      strcpy(fileresilk,"ilk"); 
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);      strcat(fileresilk,fileres);
   }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n      }
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
  - Life expectancies by age and initial health status (estepm=%2d months):      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      for(k=1; k<=nlstate; k++) 
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    }
   
  m=cptcoveff;    *fretone=(*funcone)(p);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    if(*globpri !=0){
       fclose(ficresilk);
  jj1=0;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
  for(k1=1; k1<=m;k1++){      fflush(fichtm); 
    for(i1=1; i1<=ncodemax[k1];i1++){    } 
      jj1++;    return;
      if (cptcovn > 0) {  }
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)  
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  /*********** Maximum Likelihood Estimation ***************/
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      /* Pij */  {
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    int i,j, iter=0;
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        double **xi;
      /* Quasi-incidences */    double fret;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    double fretone; /* Only one call to likelihood */
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    /*  char filerespow[FILENAMELENGTH];*/
        /* Stable prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){  #ifdef NLOPT
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    int creturn;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    nlopt_opt opt;
        }    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
      for(cpt=1; cpt<=nlstate;cpt++) {    double *lb;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    double minf; /* the minimum objective value, upon return */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double * p1; /* Shifted parameters from 0 instead of 1 */
      }    myfunc_data dinst, *d = &dinst;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  #endif
 health expectancies in states (1) and (2): e%s%d.png<br>  
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
    } /* end i1 */    xi=matrix(1,npar,1,npar);
  }/* End k1 */    for (i=1;i<=npar;i++)
  fprintf(fichtm,"</ul>");      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    strcpy(filerespow,"pow"); 
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    strcat(filerespow,fileres);
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    if((ficrespow=fopen(filerespow,"w"))==NULL) {
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      printf("Problem with resultfile: %s\n", filerespow);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    }
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    fprintf(ficrespow,"# Powell\n# iter -2*LL");
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
  if(popforecast==1) fprintf(fichtm,"\n        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    fprintf(ficrespow,"\n");
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  #ifdef POWELL
         <br>",fileres,fileres,fileres,fileres);    powell(p,xi,npar,ftol,&iter,&fret,func);
  else  #endif
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");  #ifdef NLOPT
   #ifdef NEWUOA
  m=cptcoveff;    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  #else
     opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
  jj1=0;  #endif
  for(k1=1; k1<=m;k1++){    lb=vector(0,npar-1);
    for(i1=1; i1<=ncodemax[k1];i1++){    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
      jj1++;    nlopt_set_lower_bounds(opt, lb);
      if (cptcovn > 0) {    nlopt_set_initial_step1(opt, 0.1);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    
        for (cpt=1; cpt<=cptcoveff;cpt++)    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    d->function = func;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
      }    nlopt_set_min_objective(opt, myfunc, d);
      for(cpt=1; cpt<=nlstate;cpt++) {    nlopt_set_xtol_rel(opt, ftol);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
 interval) in state (%d): v%s%d%d.png <br>      printf("nlopt failed! %d\n",creturn); 
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      }
      }    else {
    } /* end i1 */      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
  }/* End k1 */      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
  fprintf(fichtm,"</ul>");      iter=1; /* not equal */
 fclose(fichtm);    }
 }    nlopt_destroy(opt);
   #endif
 /******************* Gnuplot file **************/    free_matrix(xi,1,npar,1,npar);
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    fclose(ficrespow);
     printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   int ng;    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);  }
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);  
   }  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 #ifdef windows  {
     fprintf(ficgp,"cd \"%s\" \n",pathc);    double  **a,**y,*x,pd;
 #endif    double **hess;
 m=pow(2,cptcoveff);    int i, j;
      int *indx;
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
    for (k1=1; k1<= m ; k1 ++) {    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
 #ifdef windows    void ludcmp(double **a, int npar, int *indx, double *d) ;
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    double gompertz(double p[]);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    hess=matrix(1,npar,1,npar);
 #endif  
 #ifdef unix    printf("\nCalculation of the hessian matrix. Wait...\n");
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    for (i=1;i<=npar;i++){
 #endif      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
 for (i=1; i<= nlstate ; i ++) {     
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      
 }      /*  printf(" %f ",p[i]);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     for (i=1; i<= nlstate ; i ++) {    }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for (i=1;i<=npar;i++) {
 }      for (j=1;j<=npar;j++)  {
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        if (j>i) { 
      for (i=1; i<= nlstate ; i ++) {          printf(".%d%d",i,j);fflush(stdout);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          hess[i][j]=hessij(p,delti,i,j,func,npar);
 }            
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          hess[j][i]=hess[i][j];    
 #ifdef unix          /*printf(" %lf ",hess[i][j]);*/
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        }
 #endif      }
    }    }
   }    printf("\n");
   /*2 eme*/    fprintf(ficlog,"\n");
   
   for (k1=1; k1<= m ; k1 ++) {    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    
        a=matrix(1,npar,1,npar);
     for (i=1; i<= nlstate+1 ; i ++) {    y=matrix(1,npar,1,npar);
       k=2*i;    x=vector(1,npar);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    indx=ivector(1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {    for (i=1;i<=npar;i++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   else fprintf(ficgp," \%%*lf (\%%*lf)");    ludcmp(a,npar,indx,&pd);
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    for (j=1;j<=npar;j++) {
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      for (i=1;i<=npar;i++) x[i]=0;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      x[j]=1;
       for (j=1; j<= nlstate+1 ; j ++) {      lubksb(a,npar,indx,x);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for (i=1;i<=npar;i++){ 
         else fprintf(ficgp," \%%*lf (\%%*lf)");        matcov[i][j]=x[i];
 }        }
       fprintf(ficgp,"\" t\"\" w l 0,");    }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    printf("\n#Hessian matrix#\n");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficlog,"\n#Hessian matrix#\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for (i=1;i<=npar;i++) { 
 }        for (j=1;j<=npar;j++) { 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        printf("%.3e ",hess[i][j]);
       else fprintf(ficgp,"\" t\"\" w l 0,");        fprintf(ficlog,"%.3e ",hess[i][j]);
     }      }
   }      printf("\n");
        fprintf(ficlog,"\n");
   /*3eme*/    }
   
   for (k1=1; k1<= m ; k1 ++) {    /* Recompute Inverse */
     for (cpt=1; cpt<= nlstate ; cpt ++) {    for (i=1;i<=npar;i++)
       k=2+nlstate*(2*cpt-2);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    ludcmp(a,npar,indx,&pd);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    /*  printf("\n#Hessian matrix recomputed#\n");
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    for (j=1;j<=npar;j++) {
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      for (i=1;i<=npar;i++) x[i]=0;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      x[j]=1;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
 */        y[i][j]=x[i];
       for (i=1; i< nlstate ; i ++) {        printf("%.3e ",y[i][j]);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        fprintf(ficlog,"%.3e ",y[i][j]);
       }
       }      printf("\n");
     }      fprintf(ficlog,"\n");
   }    }
      */
   /* CV preval stat */  
     for (k1=1; k1<= m ; k1 ++) {    free_matrix(a,1,npar,1,npar);
     for (cpt=1; cpt<nlstate ; cpt ++) {    free_matrix(y,1,npar,1,npar);
       k=3;    free_vector(x,1,npar);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    free_ivector(indx,1,npar);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    free_matrix(hess,1,npar,1,npar);
   
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);  }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  
        /*************** hessian matrix ****************/
       l=3+(nlstate+ndeath)*cpt;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  {
       for (i=1; i< nlstate ; i ++) {    int i;
         l=3+(nlstate+ndeath)*cpt;    int l=1, lmax=20;
         fprintf(ficgp,"+$%d",l+i+1);    double k1,k2;
       }    double p2[MAXPARM+1]; /* identical to x */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      double res;
     }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   }      double fx;
      int k=0,kmax=10;
   /* proba elementaires */    double l1;
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){    fx=func(x);
       if (k != i) {    for (i=1;i<=npar;i++) p2[i]=x[i];
         for(j=1; j <=ncovmodel; j++){    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      l1=pow(10,l);
           jk++;      delts=delt;
           fprintf(ficgp,"\n");      for(k=1 ; k <kmax; k=k+1){
         }        delt = delta*(l1*k);
       }        p2[theta]=x[theta] +delt;
     }        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
    }        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        /*res= (k1-2.0*fx+k2)/delt/delt; */
      for(jk=1; jk <=m; jk++) {        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);        
        if (ng==2)  #ifdef DEBUGHESS
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
        else        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
          fprintf(ficgp,"\nset title \"Probability\"\n");  #endif
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
        i=1;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
        for(k2=1; k2<=nlstate; k2++) {          k=kmax;
          k3=i;        }
          for(k=1; k<=(nlstate+ndeath); k++) {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
            if (k != k2){          k=kmax; l=lmax*10;
              if(ng==2)        }
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
              else          delts=delt;
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        }
              ij=1;      }
              for(j=3; j <=ncovmodel; j++) {    }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    delti[theta]=delts;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    return res; 
                  ij++;    
                }  }
                else  
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
              }  {
              fprintf(ficgp,")/(1");    int i;
                  int l=1, lmax=20;
              for(k1=1; k1 <=nlstate; k1++){      double k1,k2,k3,k4,res,fx;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    double p2[MAXPARM+1];
                ij=1;    int k;
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fx=func(x);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for (k=1; k<=2; k++) {
                    ij++;      for (i=1;i<=npar;i++) p2[i]=x[i];
                  }      p2[thetai]=x[thetai]+delti[thetai]/k;
                  else      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      k1=func(p2)-fx;
                }    
                fprintf(ficgp,")");      p2[thetai]=x[thetai]+delti[thetai]/k;
              }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);      k2=func(p2)-fx;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    
              i=i+ncovmodel;      p2[thetai]=x[thetai]-delti[thetai]/k;
            }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
          } /* end k */      k3=func(p2)-fx;
        } /* end k2 */    
      } /* end jk */      p2[thetai]=x[thetai]-delti[thetai]/k;
    } /* end ng */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
    fclose(ficgp);      k4=func(p2)-fx;
 }  /* end gnuplot */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 /*************** Moving average **************/      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  #endif
     }
   int i, cpt, cptcod;    return res;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  }
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  /************** Inverse of matrix **************/
           mobaverage[(int)agedeb][i][cptcod]=0.;  void ludcmp(double **a, int n, int *indx, double *d) 
      { 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    int i,imax,j,k; 
       for (i=1; i<=nlstate;i++){    double big,dum,sum,temp; 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double *vv; 
           for (cpt=0;cpt<=4;cpt++){   
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    vv=vector(1,n); 
           }    *d=1.0; 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    for (i=1;i<=n;i++) { 
         }      big=0.0; 
       }      for (j=1;j<=n;j++) 
     }        if ((temp=fabs(a[i][j])) > big) big=temp; 
          if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 }      vv[i]=1.0/big; 
     } 
     for (j=1;j<=n;j++) { 
 /************** Forecasting ******************/      for (i=1;i<j;i++) { 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        sum=a[i][j]; 
          for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        a[i][j]=sum; 
   int *popage;      } 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      big=0.0; 
   double *popeffectif,*popcount;      for (i=j;i<=n;i++) { 
   double ***p3mat;        sum=a[i][j]; 
   char fileresf[FILENAMELENGTH];        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
  agelim=AGESUP;        a[i][j]=sum; 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          imax=i; 
          } 
        } 
   strcpy(fileresf,"f");      if (j != imax) { 
   strcat(fileresf,fileres);        for (k=1;k<=n;k++) { 
   if((ficresf=fopen(fileresf,"w"))==NULL) {          dum=a[imax][k]; 
     printf("Problem with forecast resultfile: %s\n", fileresf);          a[imax][k]=a[j][k]; 
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);          a[j][k]=dum; 
   }        } 
   printf("Computing forecasting: result on file '%s' \n", fileresf);        *d = -(*d); 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);        vv[imax]=vv[j]; 
       } 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
   if (mobilav==1) {      if (j != n) { 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        dum=1.0/(a[j][j]); 
     movingaverage(agedeb, fage, ageminpar, mobaverage);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   }      } 
     } 
   stepsize=(int) (stepm+YEARM-1)/YEARM;    free_vector(vv,1,n);  /* Doesn't work */
   if (stepm<=12) stepsize=1;  ;
    } 
   agelim=AGESUP;  
    void lubksb(double **a, int n, int *indx, double b[]) 
   hstepm=1;  { 
   hstepm=hstepm/stepm;    int i,ii=0,ip,j; 
   yp1=modf(dateintmean,&yp);    double sum; 
   anprojmean=yp;   
   yp2=modf((yp1*12),&yp);    for (i=1;i<=n;i++) { 
   mprojmean=yp;      ip=indx[i]; 
   yp1=modf((yp2*30.5),&yp);      sum=b[ip]; 
   jprojmean=yp;      b[ip]=b[i]; 
   if(jprojmean==0) jprojmean=1;      if (ii) 
   if(mprojmean==0) jprojmean=1;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
        else if (sum) ii=i; 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      b[i]=sum; 
      } 
   for(cptcov=1;cptcov<=i2;cptcov++){    for (i=n;i>=1;i--) { 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      sum=b[i]; 
       k=k+1;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       fprintf(ficresf,"\n#******");      b[i]=sum/a[i][i]; 
       for(j=1;j<=cptcoveff;j++) {    } 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  } 
       }  
       fprintf(ficresf,"******\n");  void pstamp(FILE *fichier)
       fprintf(ficresf,"# StartingAge FinalAge");  {
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
        }
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  /************ Frequencies ********************/
         fprintf(ficresf,"\n");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    {  /* Some frequencies */
     
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    int i, m, jk, j1, bool, z1,j;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    int first;
           nhstepm = nhstepm/hstepm;    double ***freq; /* Frequencies */
              double *pp, **prop;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           oldm=oldms;savm=savms;    char fileresp[FILENAMELENGTH];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      
            pp=vector(1,nlstate);
           for (h=0; h<=nhstepm; h++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
             if (h==(int) (calagedate+YEARM*cpt)) {    strcpy(fileresp,"p");
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    strcat(fileresp,fileres);
             }    if((ficresp=fopen(fileresp,"w"))==NULL) {
             for(j=1; j<=nlstate+ndeath;j++) {      printf("Problem with prevalence resultfile: %s\n", fileresp);
               kk1=0.;kk2=0;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
               for(i=1; i<=nlstate;i++) {                    exit(0);
                 if (mobilav==1)    }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
                 else {    j1=0;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    
                 }    j=cptcoveff;
                    if (cptcovn<1) {j=1;ncodemax[1]=1;}
               }  
               if (h==(int)(calagedate+12*cpt)){    first=1;
                 fprintf(ficresf," %.3f", kk1);  
                            /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
               }    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
             }    /*    j1++; */
           }    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         }          scanf("%d", i);*/
       }        for (i=-5; i<=nlstate+ndeath; i++)  
     }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   }            for(m=iagemin; m <= iagemax+3; m++)
                      freq[i][jk][m]=0;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        
         for (i=1; i<=nlstate; i++)  
   fclose(ficresf);          for(m=iagemin; m <= iagemax+3; m++)
 }            prop[i][m]=0;
 /************** Forecasting ******************/        
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        dateintsum=0;
          k2cpt=0;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for (i=1; i<=imx; i++) {
   int *popage;          bool=1;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
   double *popeffectif,*popcount;            for (z1=1; z1<=cptcoveff; z1++)       
   double ***p3mat,***tabpop,***tabpopprev;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
   char filerespop[FILENAMELENGTH];                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
                 bool=0;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
   agelim=AGESUP;                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
                } 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          }
     
            if (bool==1){
   strcpy(filerespop,"pop");            for(m=firstpass; m<=lastpass; m++){
   strcat(filerespop,fileres);              k2=anint[m][i]+(mint[m][i]/12.);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     printf("Problem with forecast resultfile: %s\n", filerespop);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   printf("Computing forecasting: result on file '%s' \n", filerespop);                if (m<lastpass) {
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                }
                 
   if (mobilav==1) {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  dateintsum=dateintsum+k2;
     movingaverage(agedeb, fage, ageminpar, mobaverage);                  k2cpt++;
   }                }
                 /*}*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;            }
   if (stepm<=12) stepsize=1;          }
          } /* end i */
   agelim=AGESUP;         
          /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   hstepm=1;        pstamp(ficresp);
   hstepm=hstepm/stepm;        if  (cptcovn>0) {
            fprintf(ficresp, "\n#********** Variable "); 
   if (popforecast==1) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if((ficpop=fopen(popfile,"r"))==NULL) {          fprintf(ficresp, "**********\n#");
       printf("Problem with population file : %s\n",popfile);exit(0);          fprintf(ficlog, "\n#********** Variable "); 
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficlog, "**********\n#");
     popage=ivector(0,AGESUP);        }
     popeffectif=vector(0,AGESUP);        for(i=1; i<=nlstate;i++) 
     popcount=vector(0,AGESUP);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
            fprintf(ficresp, "\n");
     i=1;          
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        for(i=iagemin; i <= iagemax+3; i++){
              if(i==iagemax+3){
     imx=i;            fprintf(ficlog,"Total");
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          }else{
   }            if(first==1){
               first=0;
   for(cptcov=1;cptcov<=i2;cptcov++){              printf("See log file for details...\n");
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            }
       k=k+1;            fprintf(ficlog,"Age %d", i);
       fprintf(ficrespop,"\n#******");          }
       for(j=1;j<=cptcoveff;j++) {          for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       }              pp[jk] += freq[jk][m][i]; 
       fprintf(ficrespop,"******\n");          }
       fprintf(ficrespop,"# Age");          for(jk=1; jk <=nlstate ; jk++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            for(m=-1, pos=0; m <=0 ; m++)
       if (popforecast==1)  fprintf(ficrespop," [Population]");              pos += freq[jk][m][i];
                  if(pp[jk]>=1.e-10){
       for (cpt=0; cpt<=0;cpt++) {              if(first==1){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                  printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                      }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            }else{
           nhstepm = nhstepm/hstepm;              if(first==1)
                          printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           oldm=oldms;savm=savms;            }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
          
           for (h=0; h<=nhstepm; h++){          for(jk=1; jk <=nlstate ; jk++){
             if (h==(int) (calagedate+YEARM*cpt)) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              pp[jk] += freq[jk][m][i];
             }          }       
             for(j=1; j<=nlstate+ndeath;j++) {          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
               kk1=0.;kk2=0;            pos += pp[jk];
               for(i=1; i<=nlstate;i++) {                          posprop += prop[jk][i];
                 if (mobilav==1)          }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          for(jk=1; jk <=nlstate ; jk++){
                 else {            if(pos>=1.e-5){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              if(first==1)
                 }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               if (h==(int)(calagedate+12*cpt)){            }else{
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              if(first==1)
                   /*fprintf(ficrespop," %.3f", kk1);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               }            }
             }            if( i <= iagemax){
             for(i=1; i<=nlstate;i++){              if(pos>=1.e-5){
               kk1=0.;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 for(j=1; j<=nlstate;j++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                 }              }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];              else
             }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          
           }          for(jk=-1; jk <=nlstate+ndeath; jk++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(m=-1; m <=nlstate+ndeath; m++)
         }              if(freq[jk][m][i] !=0 ) {
       }              if(first==1)
                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   /******/                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          if(i <= iagemax)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              fprintf(ficresp,"\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          if(first==1)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            printf("Others in log...\n");
           nhstepm = nhstepm/hstepm;          fprintf(ficlog,"\n");
                  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*}*/
           oldm=oldms;savm=savms;    }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      dateintmean=dateintsum/k2cpt; 
           for (h=0; h<=nhstepm; h++){   
             if (h==(int) (calagedate+YEARM*cpt)) {    fclose(ficresp);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
             }    free_vector(pp,1,nlstate);
             for(j=1; j<=nlstate+ndeath;j++) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
               kk1=0.;kk2=0;    /* End of Freq */
               for(i=1; i<=nlstate;i++) {                }
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }  /************ Prevalence ********************/
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
             }  {  
           }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       in each health status at the date of interview (if between dateprev1 and dateprev2).
         }       We still use firstpass and lastpass as another selection.
       }    */
    }   
   }    int i, m, jk, j1, bool, z1,j;
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **prop;
     double posprop; 
   if (popforecast==1) {    double  y2; /* in fractional years */
     free_ivector(popage,0,AGESUP);    int iagemin, iagemax;
     free_vector(popeffectif,0,AGESUP);    int first; /** to stop verbosity which is redirected to log file */
     free_vector(popcount,0,AGESUP);  
   }    iagemin= (int) agemin;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    iagemax= (int) agemax;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*pp=vector(1,nlstate);*/
   fclose(ficrespop);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
 }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
 /***********************************************/    
 /**************** Main Program *****************/    /*j=cptcoveff;*/
 /***********************************************/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
 int main(int argc, char *argv[])    first=1;
 {    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
       /*for(i1=1; i1<=ncodemax[k1];i1++){
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        j1++;*/
   double agedeb, agefin,hf;        
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
   double fret;            prop[i][m]=0.0;
   double **xi,tmp,delta;       
         for (i=1; i<=imx; i++) { /* Each individual */
   double dum; /* Dummy variable */          bool=1;
   double ***p3mat;          if  (cptcovn>0) {
   int *indx;            for (z1=1; z1<=cptcoveff; z1++) 
   char line[MAXLINE], linepar[MAXLINE];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];                bool=0;
   int firstobs=1, lastobs=10;          } 
   int sdeb, sfin; /* Status at beginning and end */          if (bool==1) { 
   int c,  h , cpt,l;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   int ju,jl, mi;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int mobilav=0,popforecast=0;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   int hstepm, nhstepm;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   double bage, fage, age, agelim, agebase;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   double ftolpl=FTOL;                  prop[s[m][i]][iagemax+3] += weight[i]; 
   double **prlim;                } 
   double *severity;              }
   double ***param; /* Matrix of parameters */            } /* end selection of waves */
   double  *p;          }
   double **matcov; /* Matrix of covariance */        }
   double ***delti3; /* Scale */        for(i=iagemin; i <= iagemax+3; i++){  
   double *delti; /* Scale */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   double ***eij, ***vareij;            posprop += prop[jk][i]; 
   double **varpl; /* Variances of prevalence limits by age */          } 
   double *epj, vepp;          
   double kk1, kk2;          for(jk=1; jk <=nlstate ; jk++){     
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            if( i <=  iagemax){ 
                if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
   char *alph[]={"a","a","b","c","d","e"}, str[4];              } else{
                 if(first==1){
                   first=0;
   char z[1]="c", occ;                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 #include <sys/time.h>                }
 #include <time.h>              }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            } 
            }/* end jk */ 
   /* long total_usecs;        }/* end i */ 
   struct timeval start_time, end_time;      /*} *//* end i1 */
      } /* end j1 */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    
   getcwd(pathcd, size);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
   printf("\n%s",version);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   if(argc <=1){  }  /* End of prevalence */
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);  /************* Waves Concatenation ***************/
   }  
   else{  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     strcpy(pathtot,argv[1]);  {
   }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/       Death is a valid wave (if date is known).
   /*cygwin_split_path(pathtot,path,optionfile);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   /* cutv(path,optionfile,pathtot,'\\');*/       and mw[mi+1][i]. dh depends on stepm.
        */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    int i, mi, m;
   chdir(path);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   replace(pathc,path);       double sum=0., jmean=0.;*/
     int first;
 /*-------- arguments in the command line --------*/    int j, k=0,jk, ju, jl;
     double sum=0.;
   /* Log file */    first=0;
   strcat(filelog, optionfilefiname);    jmin=100000;
   strcat(filelog,".log");    /* */    jmax=-1;
   if((ficlog=fopen(filelog,"w"))==NULL)    {    jmean=0.;
     printf("Problem with logfile %s\n",filelog);    for(i=1; i<=imx; i++){
     goto end;      mi=0;
   }      m=firstpass;
   fprintf(ficlog,"Log filename:%s\n",filelog);      while(s[m][i] <= nlstate){
   fprintf(ficlog,"\n%s",version);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   fprintf(ficlog,"\nEnter the parameter file name: ");          mw[++mi][i]=m;
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        if(m >=lastpass)
   fflush(ficlog);          break;
         else
   /* */          m++;
   strcpy(fileres,"r");      }/* end while */
   strcat(fileres, optionfilefiname);      if (s[m][i] > nlstate){
   strcat(fileres,".txt");    /* Other files have txt extension */        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
   /*---------arguments file --------*/           /* Only death is a correct wave */
         mw[mi][i]=m;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      }
     printf("Problem with optionfile %s\n",optionfile);  
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);      wav[i]=mi;
     goto end;      if(mi==0){
   }        nbwarn++;
         if(first==0){
   strcpy(filereso,"o");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   strcat(filereso,fileres);          first=1;
   if((ficparo=fopen(filereso,"w"))==NULL) {        }
     printf("Problem with Output resultfile: %s\n", filereso);        if(first==1){
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     goto end;        }
   }      } /* end mi==0 */
     } /* End individuals */
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1; i<=imx; i++){
     ungetc(c,ficpar);      for(mi=1; mi<wav[i];mi++){
     fgets(line, MAXLINE, ficpar);        if (stepm <=0)
     puts(line);          dh[mi][i]=1;
     fputs(line,ficparo);        else{
   }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   ungetc(c,ficpar);            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);              if(j==0) j=1;  /* Survives at least one month after exam */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);              else if(j<0){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                nberr++;
 while((c=getc(ficpar))=='#' && c!= EOF){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     ungetc(c,ficpar);                j=1; /* Temporary Dangerous patch */
     fgets(line, MAXLINE, ficpar);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     puts(line);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fputs(line,ficparo);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   }              }
   ungetc(c,ficpar);              k=k+1;
                if (j >= jmax){
                    jmax=j;
   covar=matrix(0,NCOVMAX,1,n);                ijmax=i;
   cptcovn=0;              }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;              if (j <= jmin){
                 jmin=j;
   ncovmodel=2+cptcovn;                ijmin=i;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */              }
                sum=sum+j;
   /* Read guess parameters */              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   /* Reads comments: lines beginning with '#' */              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);          else{
     puts(line);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     fputs(line,ficparo);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   }  
   ungetc(c,ficpar);            k=k+1;
              if (j >= jmax) {
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              jmax=j;
     for(i=1; i <=nlstate; i++)              ijmax=i;
     for(j=1; j <=nlstate+ndeath-1; j++){            }
       fscanf(ficpar,"%1d%1d",&i1,&j1);            else if (j <= jmin){
       fprintf(ficparo,"%1d%1d",i1,j1);              jmin=j;
       if(mle==1)              ijmin=i;
         printf("%1d%1d",i,j);            }
       fprintf(ficlog,"%1d%1d",i,j);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       for(k=1; k<=ncovmodel;k++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         fscanf(ficpar," %lf",&param[i][j][k]);            if(j<0){
         if(mle==1){              nberr++;
           printf(" %lf",param[i][j][k]);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficlog," %lf",param[i][j][k]);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }            }
         else            sum=sum+j;
           fprintf(ficlog," %lf",param[i][j][k]);          }
         fprintf(ficparo," %lf",param[i][j][k]);          jk= j/stepm;
       }          jl= j -jk*stepm;
       fscanf(ficpar,"\n");          ju= j -(jk+1)*stepm;
       if(mle==1)          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         printf("\n");            if(jl==0){
       fprintf(ficlog,"\n");              dh[mi][i]=jk;
       fprintf(ficparo,"\n");              bh[mi][i]=0;
     }            }else{ /* We want a negative bias in order to only have interpolation ie
                      * to avoid the price of an extra matrix product in likelihood */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   p=param[1][1];            }
            }else{
   /* Reads comments: lines beginning with '#' */            if(jl <= -ju){
   while((c=getc(ficpar))=='#' && c!= EOF){              dh[mi][i]=jk;
     ungetc(c,ficpar);              bh[mi][i]=jl;       /* bias is positive if real duration
     fgets(line, MAXLINE, ficpar);                                   * is higher than the multiple of stepm and negative otherwise.
     puts(line);                                   */
     fputs(line,ficparo);            }
   }            else{
   ungetc(c,ficpar);              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */            if(dh[mi][i]==0){
   for(i=1; i <=nlstate; i++){              dh[mi][i]=1; /* At least one step */
     for(j=1; j <=nlstate+ndeath-1; j++){              bh[mi][i]=ju; /* At least one step */
       fscanf(ficpar,"%1d%1d",&i1,&j1);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       printf("%1d%1d",i,j);            }
       fprintf(ficparo,"%1d%1d",i1,j1);          } /* end if mle */
       for(k=1; k<=ncovmodel;k++){        }
         fscanf(ficpar,"%le",&delti3[i][j][k]);      } /* end wave */
         printf(" %le",delti3[i][j][k]);    }
         fprintf(ficparo," %le",delti3[i][j][k]);    jmean=sum/k;
       }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       fscanf(ficpar,"\n");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       printf("\n");   }
       fprintf(ficparo,"\n");  
     }  /*********** Tricode ****************************/
   }  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   delti=delti3[1][1];  {
      /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   /* Reads comments: lines beginning with '#' */    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   while((c=getc(ficpar))=='#' && c!= EOF){     * Boring subroutine which should only output nbcode[Tvar[j]][k]
     ungetc(c,ficpar);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     fgets(line, MAXLINE, ficpar);     * nbcode[Tvar[j]][1]= 
     puts(line);    */
     fputs(line,ficparo);  
   }    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   ungetc(c,ficpar);    int modmaxcovj=0; /* Modality max of covariates j */
      int cptcode=0; /* Modality max of covariates j */
   matcov=matrix(1,npar,1,npar);    int modmincovj=0; /* Modality min of covariates j */
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);  
     if(mle==1)    cptcoveff=0; 
       printf("%s",str);   
     fprintf(ficlog,"%s",str);    for (k=-1; k < maxncov; k++) Ndum[k]=0;
     fprintf(ficparo,"%s",str);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);    /* Loop on covariates without age and products */
       if(mle==1){    for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
         printf(" %.5le",matcov[i][j]);      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
         fprintf(ficlog," %.5le",matcov[i][j]);                                 modality of this covariate Vj*/ 
       }        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
       else                                      * If product of Vn*Vm, still boolean *:
         fprintf(ficlog," %.5le",matcov[i][j]);                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
       fprintf(ficparo," %.5le",matcov[i][j]);                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
     }        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
     fscanf(ficpar,"\n");                                        modality of the nth covariate of individual i. */
     if(mle==1)        if (ij > modmaxcovj)
       printf("\n");          modmaxcovj=ij; 
     fprintf(ficlog,"\n");        else if (ij < modmincovj) 
     fprintf(ficparo,"\n");          modmincovj=ij; 
   }        if ((ij < -1) && (ij > NCOVMAX)){
   for(i=1; i <=npar; i++)          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
     for(j=i+1;j<=npar;j++)          exit(1);
       matcov[i][j]=matcov[j][i];        }else
            Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   if(mle==1)        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
     printf("\n");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   fprintf(ficlog,"\n");        /* getting the maximum value of the modality of the covariate
            (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
            female is 1, then modmaxcovj=1.*/
     /*-------- Rewriting paramater file ----------*/      } /* end for loop on individuals */
      strcpy(rfileres,"r");    /* "Rparameterfile */      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      cptcode=modmaxcovj;
      strcat(rfileres,".");    /* */      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */     /*for (i=0; i<=cptcode; i++) {*/
     if((ficres =fopen(rfileres,"w"))==NULL) {      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], i, Ndum[i]);
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
     }          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
     fprintf(ficres,"#%s\n",version);        }
            /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
     /*-------- data file ----------*/           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
     if((fic=fopen(datafile,"r"))==NULL)    {      } /* Ndum[-1] number of undefined modalities */
       printf("Problem with datafile: %s\n", datafile);goto end;  
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     }      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
          If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
     n= lastobs;         modmincovj=3; modmaxcovj = 7;
     severity = vector(1,maxwav);         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
     outcome=imatrix(1,maxwav+1,1,n);         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
     num=ivector(1,n);         defining two dummy variables: variables V1_1 and V1_2.
     moisnais=vector(1,n);         nbcode[Tvar[j]][ij]=k;
     annais=vector(1,n);         nbcode[Tvar[j]][1]=0;
     moisdc=vector(1,n);         nbcode[Tvar[j]][2]=1;
     andc=vector(1,n);         nbcode[Tvar[j]][3]=2;
     agedc=vector(1,n);      */
     cod=ivector(1,n);      ij=1; /* ij is similar to i but can jumps over null modalities */
     weight=vector(1,n);      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
     mint=matrix(1,maxwav,1,n);          /*recode from 0 */
     anint=matrix(1,maxwav,1,n);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
     s=imatrix(1,maxwav+1,1,n);            nbcode[Tvar[j]][ij]=k;  /* stores the modality k in an array nbcode. 
     adl=imatrix(1,maxwav+1,1,n);                                           k is a modality. If we have model=V1+V1*sex 
     tab=ivector(1,NCOVMAX);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     ncodemax=ivector(1,8);            ij++;
           }
     i=1;          if (ij > ncodemax[j]) break; 
     while (fgets(line, MAXLINE, fic) != NULL)    {        }  /* end of loop on */
       if ((i >= firstobs) && (i <=lastobs)) {      } /* end of loop on modality */ 
            } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
         for (j=maxwav;j>=1;j--){    
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
           strcpy(line,stra);    
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
         }     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
             Ndum[ij]++; /* Might be supersed V1 + V1*age */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);   } 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
    ij=1;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
      if((Ndum[i]!=0) && (i<=ncovcol)){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
         for (j=ncovcol;j>=1;j--){       Tvaraff[ij]=i; /*For printing (unclear) */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);       ij++;
         }     }else
         num[i]=atol(stra);         Tvaraff[ij]=0;
           }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){   ij--;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/   cptcoveff=ij; /*Number of total covariates*/
   
         i=i+1;  }
       }  
     }  
     /* printf("ii=%d", ij);  /*********** Health Expectancies ****************/
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   /* for (i=1; i<=imx; i++){  {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    /* Health expectancies, no variances */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    int i, j, nhstepm, hstepm, h, nstepm;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    int nhstepma, nstepma; /* Decreasing with age */
     }*/    double age, agelim, hf;
    /*  for (i=1; i<=imx; i++){    double ***p3mat;
      if (s[4][i]==9)  s[4][i]=-1;    double eip;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  
      pstamp(ficreseij);
      fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   /* Calculation of the number of parameter from char model*/    fprintf(ficreseij,"# Age");
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    for(i=1; i<=nlstate;i++){
   Tprod=ivector(1,15);      for(j=1; j<=nlstate;j++){
   Tvaraff=ivector(1,15);        fprintf(ficreseij," e%1d%1d ",i,j);
   Tvard=imatrix(1,15,1,2);      }
   Tage=ivector(1,15);            fprintf(ficreseij," e%1d. ",i);
        }
   if (strlen(model) >1){    fprintf(ficreseij,"\n");
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+');    
     j1=nbocc(model,'*');    if(estepm < stepm){
     cptcovn=j+1;      printf ("Problem %d lower than %d\n",estepm, stepm);
     cptcovprod=j1;    }
        else  hstepm=estepm;   
     strcpy(modelsav,model);    /* We compute the life expectancy from trapezoids spaced every estepm months
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){     * This is mainly to measure the difference between two models: for example
       printf("Error. Non available option model=%s ",model);     * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(ficlog,"Error. Non available option model=%s ",model);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       goto end;     * progression in between and thus overestimating or underestimating according
     }     * to the curvature of the survival function. If, for the same date, we 
         * estimate the model with stepm=1 month, we can keep estepm to 24 months
     for(i=(j+1); i>=1;i--){     * to compare the new estimate of Life expectancy with the same linear 
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */     * hypothesis. A more precise result, taking into account a more precise
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */     * curvature will be obtained if estepm is as small as stepm. */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/    /* For example we decided to compute the life expectancy with the smallest unit */
       if (strchr(strb,'*')) {  /* Model includes a product */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/       nhstepm is the number of hstepm from age to agelim 
         if (strcmp(strc,"age")==0) { /* Vn*age */       nstepm is the number of stepm from age to agelin. 
           cptcovprod--;       Look at hpijx to understand the reason of that which relies in memory size
           cutv(strb,stre,strd,'V');       and note for a fixed period like estepm months */
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           cptcovage++;       survival function given by stepm (the optimization length). Unfortunately it
             Tage[cptcovage]=i;       means that if the survival funtion is printed only each two years of age and if
             /*printf("stre=%s ", stre);*/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         }       results. So we changed our mind and took the option of the best precision.
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    */
           cptcovprod--;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);    agelim=AGESUP;
           cptcovage++;    /* If stepm=6 months */
           Tage[cptcovage]=i;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         else {  /* Age is not in the model */      
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/  /* nhstepm age range expressed in number of stepm */
           Tvar[i]=ncovcol+k1;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           Tprod[k1]=i;    /* if (stepm >= YEARM) hstepm=1;*/
           Tvard[k1][1]=atoi(strc); /* m*/    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           Tvard[k1][2]=atoi(stre); /* n */    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    for (age=bage; age<=fage; age ++){ 
           for (k=1; k<=lastobs;k++)      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           k1++;      /* if (stepm >= YEARM) hstepm=1;*/
           k2=k2+2;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         }  
       }      /* If stepm=6 months */
       else { /* no more sum */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
        /*  scanf("%d",i);*/      
       cutv(strd,strc,strb,'V');      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       Tvar[i]=atoi(strc);      
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       strcpy(modelsav,stra);        
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      printf("%d|",(int)age);fflush(stdout);
         scanf("%d",i);*/      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     } /* end of loop + */      
   } /* end model */      /* Computing expectancies */
        for(i=1; i<=nlstate;i++)
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        for(j=1; j<=nlstate;j++)
   printf("cptcovprod=%d ", cptcovprod);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   scanf("%d ",i);*/            
     fclose(fic);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
     /*  if(mle==1){*/          }
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;      fprintf(ficreseij,"%3.0f",age );
     }      for(i=1; i<=nlstate;i++){
     /*-calculation of age at interview from date of interview and age at death -*/        eip=0;
     agev=matrix(1,maxwav,1,imx);        for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
     for (i=1; i<=imx; i++) {          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
       for(m=2; (m<= maxwav); m++) {        }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        fprintf(ficreseij,"%9.4f", eip );
          anint[m][i]=9999;      }
          s[m][i]=-1;      fprintf(ficreseij,"\n");
        }      
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    }
       }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    printf("\n");
     fprintf(ficlog,"\n");
     for (i=1; i<=imx; i++)  {    
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  }
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)  {
               if(moisdc[i]!=99 && andc[i]!=9999)    /* Covariances of health expectancies eij and of total life expectancies according
                 agev[m][i]=agedc[i];     to initial status i, ei. .
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    */
            else {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
               if (andc[i]!=9999){    int nhstepma, nstepma; /* Decreasing with age */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    double age, agelim, hf;
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    double ***p3matp, ***p3matm, ***varhe;
               agev[m][i]=-1;    double **dnewm,**doldm;
               }    double *xp, *xm;
             }    double **gp, **gm;
           }    double ***gradg, ***trgradg;
           else if(s[m][i] !=9){ /* Should no more exist */    int theta;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)    double eip, vip;
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
               agemin=agev[m][i];    xp=vector(1,npar);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    xm=vector(1,npar);
             }    dnewm=matrix(1,nlstate*nlstate,1,npar);
             else if(agev[m][i] >agemax){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
               agemax=agev[m][i];    
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    pstamp(ficresstdeij);
             }    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
             /*agev[m][i]=anint[m][i]-annais[i];*/    fprintf(ficresstdeij,"# Age");
             /*   agev[m][i] = age[i]+2*m;*/    for(i=1; i<=nlstate;i++){
           }      for(j=1; j<=nlstate;j++)
           else { /* =9 */        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
             agev[m][i]=1;      fprintf(ficresstdeij," e%1d. ",i);
             s[m][i]=-1;    }
           }    fprintf(ficresstdeij,"\n");
         }  
         else /*= 0 Unknown */    pstamp(ficrescveij);
           agev[m][i]=1;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       }    fprintf(ficrescveij,"# Age");
        for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=nlstate;j++){
     for (i=1; i<=imx; i++)  {        cptj= (j-1)*nlstate+i;
       for(m=1; (m<= maxwav); m++){        for(i2=1; i2<=nlstate;i2++)
         if (s[m][i] > (nlstate+ndeath)) {          for(j2=1; j2<=nlstate;j2++){
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);              cptj2= (j2-1)*nlstate+i2;
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);              if(cptj2 <= cptj)
           goto end;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         }          }
       }      }
     }    fprintf(ficrescveij,"\n");
     
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    if(estepm < stepm){
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     free_vector(severity,1,maxwav);    else  hstepm=estepm;   
     free_imatrix(outcome,1,maxwav+1,1,n);    /* We compute the life expectancy from trapezoids spaced every estepm months
     free_vector(moisnais,1,n);     * This is mainly to measure the difference between two models: for example
     free_vector(annais,1,n);     * if stepm=24 months pijx are given only every 2 years and by summing them
     /* free_matrix(mint,1,maxwav,1,n);     * we are calculating an estimate of the Life Expectancy assuming a linear 
        free_matrix(anint,1,maxwav,1,n);*/     * progression in between and thus overestimating or underestimating according
     free_vector(moisdc,1,n);     * to the curvature of the survival function. If, for the same date, we 
     free_vector(andc,1,n);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
         * hypothesis. A more precise result, taking into account a more precise
     wav=ivector(1,imx);     * curvature will be obtained if estepm is as small as stepm. */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    /* For example we decided to compute the life expectancy with the smallest unit */
        /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     /* Concatenates waves */       nhstepm is the number of hstepm from age to agelim 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
       Tcode=ivector(1,100);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);       survival function given by stepm (the optimization length). Unfortunately it
       ncodemax[1]=1;       means that if the survival funtion is printed only each two years of age and if
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             results. So we changed our mind and took the option of the best precision.
    codtab=imatrix(1,100,1,10);    */
    h=0;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    m=pow(2,cptcoveff);  
      /* If stepm=6 months */
    for(k=1;k<=cptcoveff; k++){    /* nhstepm age range expressed in number of stepm */
      for(i=1; i <=(m/pow(2,k));i++){    agelim=AGESUP;
        for(j=1; j <= ncodemax[k]; j++){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
            h++;    /* if (stepm >= YEARM) hstepm=1;*/
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    
          }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
    }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       codtab[1][2]=1;codtab[2][2]=2; */    gm=matrix(0,nhstepm,1,nlstate*nlstate);
    /* for(i=1; i <=m ;i++){  
       for(k=1; k <=cptcovn; k++){    for (age=bage; age<=fage; age ++){ 
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       printf("\n");      /* if (stepm >= YEARM) hstepm=1;*/
       }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       scanf("%d",i);*/  
          /* If stepm=6 months */
    /* Calculates basic frequencies. Computes observed prevalence at single age      /* Computed by stepm unit matrices, product of hstepma matrices, stored
        and prints on file fileres'p'. */         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* Computing  Variances of health expectancies */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         decrease memory allocation */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(theta=1; theta <=npar; theta++){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(i=1; i<=npar; i++){ 
                xp[i] = x[i] + (i==theta ?delti[theta]:0);
     /* For Powell, parameters are in a vector p[] starting at p[1]          xm[i] = x[i] - (i==theta ?delti[theta]:0);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     if(mle==1){    
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        for(j=1; j<= nlstate; j++){
     }          for(i=1; i<=nlstate; i++){
                for(h=0; h<=nhstepm-1; h++){
     /*--------- results files --------------*/              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
              }
           }
    jk=1;        }
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for(ij=1; ij<= nlstate*nlstate; ij++)
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          for(h=0; h<=nhstepm-1; h++){
    for(i=1,jk=1; i <=nlstate; i++){            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
      for(k=1; k <=(nlstate+ndeath); k++){          }
        if (k != i)      }/* End theta */
          {      
            printf("%d%d ",i,k);      
            fprintf(ficlog,"%d%d ",i,k);      for(h=0; h<=nhstepm-1; h++)
            fprintf(ficres,"%1d%1d ",i,k);        for(j=1; j<=nlstate*nlstate;j++)
            for(j=1; j <=ncovmodel; j++){          for(theta=1; theta <=npar; theta++)
              printf("%f ",p[jk]);            trgradg[h][j][theta]=gradg[h][theta][j];
              fprintf(ficlog,"%f ",p[jk]);      
              fprintf(ficres,"%f ",p[jk]);  
              jk++;       for(ij=1;ij<=nlstate*nlstate;ij++)
            }        for(ji=1;ji<=nlstate*nlstate;ji++)
            printf("\n");          varhe[ij][ji][(int)age] =0.;
            fprintf(ficlog,"\n");  
            fprintf(ficres,"\n");       printf("%d|",(int)age);fflush(stdout);
          }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      }       for(h=0;h<=nhstepm-1;h++){
    }        for(k=0;k<=nhstepm-1;k++){
    if(mle==1){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
      /* Computing hessian and covariance matrix */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
      ftolhess=ftol; /* Usually correct */          for(ij=1;ij<=nlstate*nlstate;ij++)
      hesscov(matcov, p, npar, delti, ftolhess, func);            for(ji=1;ji<=nlstate*nlstate;ji++)
    }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        }
    printf("# Scales (for hessian or gradient estimation)\n");      }
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");  
    for(i=1,jk=1; i <=nlstate; i++){      /* Computing expectancies */
      for(j=1; j <=nlstate+ndeath; j++){      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
        if (j!=i) {      for(i=1; i<=nlstate;i++)
          fprintf(ficres,"%1d%1d",i,j);        for(j=1; j<=nlstate;j++)
          printf("%1d%1d",i,j);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
          fprintf(ficlog,"%1d%1d",i,j);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
          for(k=1; k<=ncovmodel;k++){            
            printf(" %.5e",delti[jk]);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
            fprintf(ficlog," %.5e",delti[jk]);  
            fprintf(ficres," %.5e",delti[jk]);          }
            jk++;  
          }      fprintf(ficresstdeij,"%3.0f",age );
          printf("\n");      for(i=1; i<=nlstate;i++){
          fprintf(ficlog,"\n");        eip=0.;
          fprintf(ficres,"\n");        vip=0.;
        }        for(j=1; j<=nlstate;j++){
      }          eip += eij[i][j][(int)age];
    }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
    k=1;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        }
    if(mle==1)        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      }
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      fprintf(ficresstdeij,"\n");
    for(i=1;i<=npar;i++){  
      /*  if (k>nlstate) k=1;      fprintf(ficrescveij,"%3.0f",age );
          i1=(i-1)/(ncovmodel*nlstate)+1;      for(i=1; i<=nlstate;i++)
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        for(j=1; j<=nlstate;j++){
          printf("%s%d%d",alph[k],i1,tab[i]);*/          cptj= (j-1)*nlstate+i;
      fprintf(ficres,"%3d",i);          for(i2=1; i2<=nlstate;i2++)
      if(mle==1)            for(j2=1; j2<=nlstate;j2++){
        printf("%3d",i);              cptj2= (j2-1)*nlstate+i2;
      fprintf(ficlog,"%3d",i);              if(cptj2 <= cptj)
      for(j=1; j<=i;j++){                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
        fprintf(ficres," %.5e",matcov[i][j]);            }
        if(mle==1)        }
          printf(" %.5e",matcov[i][j]);      fprintf(ficrescveij,"\n");
        fprintf(ficlog," %.5e",matcov[i][j]);     
      }    }
      fprintf(ficres,"\n");    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
      if(mle==1)    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
        printf("\n");    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      fprintf(ficlog,"\n");    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
      k++;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    }    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        printf("\n");
    while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"\n");
      ungetc(c,ficpar);  
      fgets(line, MAXLINE, ficpar);    free_vector(xm,1,npar);
      puts(line);    free_vector(xp,1,npar);
      fputs(line,ficparo);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
    }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
    ungetc(c,ficpar);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
    estepm=0;  }
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
    if (estepm==0 || estepm < stepm) estepm=stepm;  /************ Variance ******************/
    if (fage <= 2) {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
      bage = ageminpar;  {
      fage = agemaxpar;    /* Variance of health expectancies */
    }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
        /* double **newm;*/
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    int movingaverage();
        double **dnewm,**doldm;
    while((c=getc(ficpar))=='#' && c!= EOF){    double **dnewmp,**doldmp;
      ungetc(c,ficpar);    int i, j, nhstepm, hstepm, h, nstepm ;
      fgets(line, MAXLINE, ficpar);    int k;
      puts(line);    double *xp;
      fputs(line,ficparo);    double **gp, **gm;  /* for var eij */
    }    double ***gradg, ***trgradg; /*for var eij */
    ungetc(c,ficpar);    double **gradgp, **trgradgp; /* for var p point j */
      double *gpp, *gmp; /* for var p point j */
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double ***p3mat;
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double age,agelim, hf;
        double ***mobaverage;
    while((c=getc(ficpar))=='#' && c!= EOF){    int theta;
      ungetc(c,ficpar);    char digit[4];
      fgets(line, MAXLINE, ficpar);    char digitp[25];
      puts(line);  
      fputs(line,ficparo);    char fileresprobmorprev[FILENAMELENGTH];
    }  
    ungetc(c,ficpar);    if(popbased==1){
        if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      else strcpy(digitp,"-populbased-nomobil-");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    }
     else 
   fscanf(ficpar,"pop_based=%d\n",&popbased);      strcpy(digitp,"-stablbased-");
   fprintf(ficparo,"pop_based=%d\n",popbased);    
   fprintf(ficres,"pop_based=%d\n",popbased);      if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   while((c=getc(ficpar))=='#' && c!= EOF){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     ungetc(c,ficpar);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     fgets(line, MAXLINE, ficpar);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     puts(line);      }
     fputs(line,ficparo);    }
   }  
   ungetc(c,ficpar);    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 while((c=getc(ficpar))=='#' && c!= EOF){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fputs(line,ficparo);   
   }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   ungetc(c,ficpar);    pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
 /*------------ gnuplot -------------*/    fprintf(ficresprobmorprev,"\n");
   strcpy(optionfilegnuplot,optionfilefiname);    fprintf(ficgp,"\n# Routine varevsij");
   strcat(optionfilegnuplot,".gp");    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     printf("Problem with file %s",optionfilegnuplot);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   }  /*   } */
   fclose(ficgp);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    pstamp(ficresvij);
 /*--------- index.htm --------*/    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
   strcpy(optionfilehtm,optionfile);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   strcat(optionfilehtm,".htm");    else
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     printf("Problem with %s \n",optionfilehtm), exit(0);    fprintf(ficresvij,"# Age");
   }    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    fprintf(ficresvij,"\n");
 \n  
 Total number of observations=%d <br>\n    xp=vector(1,npar);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    dnewm=matrix(1,nlstate,1,npar);
 <hr  size=\"2\" color=\"#EC5E5E\">    doldm=matrix(1,nlstate,1,nlstate);
  <ul><li><h4>Parameter files</h4>\n    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n  
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   fclose(fichtm);    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      
 /*------------ free_vector  -------------*/    if(estepm < stepm){
  chdir(path);      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
  free_ivector(wav,1,imx);    else  hstepm=estepm;   
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    /* For example we decided to compute the life expectancy with the smallest unit */
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  free_ivector(num,1,n);       nhstepm is the number of hstepm from age to agelim 
  free_vector(agedc,1,n);       nstepm is the number of stepm from age to agelin. 
  /*free_matrix(covar,1,NCOVMAX,1,n);*/       Look at function hpijx to understand why (it is linked to memory size questions) */
  fclose(ficparo);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  fclose(ficres);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /*--------------- Prevalence limit --------------*/       results. So we changed our mind and took the option of the best precision.
      */
   strcpy(filerespl,"pl");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   strcat(filerespl,fileres);    agelim = AGESUP;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);      gp=matrix(0,nhstepm,1,nlstate);
   fprintf(ficrespl,"#Prevalence limit\n");      gm=matrix(0,nhstepm,1,nlstate);
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   prlim=matrix(1,nlstate,1,nlstate);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        if (popbased==1) {
   k=0;          if(mobilav ==0){
   agebase=ageminpar;            for(i=1; i<=nlstate;i++)
   agelim=agemaxpar;              prlim[i][i]=probs[(int)age][i][ij];
   ftolpl=1.e-10;          }else{ /* mobilav */ 
   i1=cptcoveff;            for(i=1; i<=nlstate;i++)
   if (cptcovn < 1){i1=1;}              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
         k=k+1;        for(j=1; j<= nlstate; j++){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          for(h=0; h<=nhstepm; h++){
         fprintf(ficrespl,"\n#******");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         printf("\n#******");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         fprintf(ficlog,"\n#******");          }
         for(j=1;j<=cptcoveff;j++) {        }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /* This for computing probability of death (h=1 means
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           computed over hstepm matrices product = hstepm*stepm months) 
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           as a weighted average of prlim.
         }        */
         fprintf(ficrespl,"******\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         printf("******\n");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         fprintf(ficlog,"******\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
                }    
         for (age=agebase; age<=agelim; age++){        /* end probability of death */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           for(i=1; i<=nlstate;i++)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           fprintf(ficrespl," %.5f", prlim[i][i]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           fprintf(ficrespl,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         }   
       }        if (popbased==1) {
     }          if(mobilav ==0){
   fclose(ficrespl);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   /*------------- h Pij x at various ages ------------*/          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);              prlim[i][i]=mobaverage[(int)age][i][ij];
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        }
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   printf("Computing pij: result on file '%s' \n", filerespij);          for(h=0; h<=nhstepm; h++){
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   /*if (stepm<=24) stepsize=2;*/        }
         /* This for computing probability of death (h=1 means
   agelim=AGESUP;           computed over hstepm matrices product = hstepm*stepm months) 
   hstepm=stepsize*YEARM; /* Every year of age */           as a weighted average of prlim.
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   /* hstepm=1;   aff par mois*/          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
   k=0;        }    
   for(cptcov=1;cptcov<=i1;cptcov++){        /* end probability of death */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;        for(j=1; j<= nlstate; j++) /* vareij */
         fprintf(ficrespij,"\n#****** ");          for(h=0; h<=nhstepm; h++){
         for(j=1;j<=cptcoveff;j++)            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
         fprintf(ficrespij,"******\n");  
                for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
       } /* End theta */
           /*      nhstepm=nhstepm*YEARM; aff par mois*/  
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      for(h=0; h<=nhstepm; h++) /* veij */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(j=1; j<=nlstate;j++)
           fprintf(ficrespij,"# Age");          for(theta=1; theta <=npar; theta++)
           for(i=1; i<=nlstate;i++)            trgradg[h][j][theta]=gradg[h][theta][j];
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           fprintf(ficrespij,"\n");        for(theta=1; theta <=npar; theta++)
            for (h=0; h<=nhstepm; h++){          trgradgp[j][theta]=gradgp[theta][j];
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      for(i=1;i<=nlstate;i++)
             fprintf(ficrespij,"\n");        for(j=1;j<=nlstate;j++)
              }          vareij[i][j][(int)age] =0.;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");      for(h=0;h<=nhstepm;h++){
         }        for(k=0;k<=nhstepm;k++){
     }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   fclose(ficrespij);        }
       }
     
   /*---------- Forecasting ------------------*/      /* pptj */
   if((stepm == 1) && (strcmp(model,".")==0)){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   else{          varppt[j][i]=doldmp[j][i];
     erreur=108;      /* end ppptj */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      /*  x centered again */
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     
       if (popbased==1) {
   /*---------- Health expectancies and variances ------------*/        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
   strcpy(filerest,"t");            prlim[i][i]=probs[(int)age][i][ij];
   strcat(filerest,fileres);        }else{ /* mobilav */ 
   if((ficrest=fopen(filerest,"w"))==NULL) {          for(i=1; i<=nlstate;i++)
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            prlim[i][i]=mobaverage[(int)age][i][ij];
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;        }
   }      }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);               
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
   strcpy(filerese,"e");      */
   strcat(filerese,fileres);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if((ficreseij=fopen(filerese,"w"))==NULL) {        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      }    
   }      /* end probability of death */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   strcpy(fileresv,"v");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   strcat(fileresv,fileres);        for(i=1; i<=nlstate;i++){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        }
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      } 
   }      fprintf(ficresprobmorprev,"\n");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      fprintf(ficresvij,"%.0f ",age );
   calagedate=-1;      for(i=1; i<=nlstate;i++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   k=0;        }
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficresvij,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      free_matrix(gp,0,nhstepm,1,nlstate);
       k=k+1;      free_matrix(gm,0,nhstepm,1,nlstate);
       fprintf(ficrest,"\n#****** ");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       for(j=1;j<=cptcoveff;j++)      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficrest,"******\n");    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
       fprintf(ficreseij,"\n#****** ");    free_vector(gmp,nlstate+1,nlstate+ndeath);
       for(j=1;j<=cptcoveff;j++)    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficreseij,"******\n");    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       fprintf(ficresvij,"\n#****** ");    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       for(j=1;j<=cptcoveff;j++)  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficresvij,"******\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
       oldm=oldms;savm=savms;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       oldm=oldms;savm=savms;  */
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       if(popbased==1){    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);  
        }    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
      free_matrix(dnewm,1,nlstate,1,npar);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       fprintf(ficrest,"\n");    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       epj=vector(1,nlstate+1);    fclose(ficresprobmorprev);
       for(age=bage; age <=fage ;age++){    fflush(ficgp);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fflush(fichtm); 
         if (popbased==1) {  }  /* end varevsij */
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];  /************ Variance of prevlim ******************/
         }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
          {
         fprintf(ficrest," %4.0f",age);    /* Variance of prevalence limit */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    double **dnewm,**doldm;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    int i, j, nhstepm, hstepm;
           }    double *xp;
           epj[nlstate+1] +=epj[j];    double *gp, *gm;
         }    double **gradg, **trgradg;
     double age,agelim;
         for(i=1, vepp=0.;i <=nlstate;i++)    int theta;
           for(j=1;j <=nlstate;j++)    
             vepp += vareij[i][j][(int)age];    pstamp(ficresvpl);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
         for(j=1;j <=nlstate;j++){    fprintf(ficresvpl,"# Age");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    for(i=1; i<=nlstate;i++)
         }        fprintf(ficresvpl," %1d-%1d",i,i);
         fprintf(ficrest,"\n");    fprintf(ficresvpl,"\n");
       }  
     }    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate,1,npar);
 free_matrix(mint,1,maxwav,1,n);    doldm=matrix(1,nlstate,1,nlstate);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    
     free_vector(weight,1,n);    hstepm=1*YEARM; /* Every year of age */
   fclose(ficreseij);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   fclose(ficresvij);    agelim = AGESUP;
   fclose(ficrest);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fclose(ficpar);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   free_vector(epj,1,nlstate+1);      if (stepm >= YEARM) hstepm=1;
        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   /*------- Variance limit prevalence------*/        gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
   strcpy(fileresvpl,"vpl");      gm=vector(1,nlstate);
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      for(theta=1; theta <=npar; theta++){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        for(i=1; i<=npar; i++){ /* Computes gradient */
     exit(0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   k=0;          gp[i] = prlim[i][i];
   for(cptcov=1;cptcov<=i1;cptcov++){      
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(i=1; i<=npar; i++) /* Computes gradient */
       k=k+1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficresvpl,"\n#****** ");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(j=1;j<=cptcoveff;j++)        for(i=1;i<=nlstate;i++)
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          gm[i] = prlim[i][i];
       fprintf(ficresvpl,"******\n");  
              for(i=1;i<=nlstate;i++)
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       oldm=oldms;savm=savms;      } /* End theta */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }      trgradg =matrix(1,nlstate,1,npar);
  }  
       for(j=1; j<=nlstate;j++)
   fclose(ficresvpl);        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] =0.;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
        for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficresvpl,"%.0f ",age );
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      for(i=1; i<=nlstate;i++)
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        fprintf(ficresvpl,"\n");
   free_matrix(matcov,1,npar,1,npar);      free_vector(gp,1,nlstate);
   free_vector(delti,1,npar);      free_vector(gm,1,nlstate);
   free_matrix(agev,1,maxwav,1,imx);      free_matrix(gradg,1,npar,1,nlstate);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   fprintf(fichtm,"\n</body>");  
   fclose(fichtm);    free_vector(xp,1,npar);
   fclose(ficgp);    free_matrix(doldm,1,nlstate,1,npar);
      free_matrix(dnewm,1,nlstate,1,nlstate);
   
   if(erreur >0){  }
     printf("End of Imach with error or warning %d\n",erreur);  
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);  /************ Variance of one-step probabilities  ******************/
   }else{  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
    printf("End of Imach\n");  {
    fprintf(ficlog,"End of Imach\n");    int i, j=0,  k1, l1, tj;
   }    int k2, l2, j1,  z1;
   printf("See log file on %s\n",filelog);    int k=0, l;
   fclose(ficlog);    int first=1, first1, first2;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      double **dnewm,**doldm;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    double *xp;
   /*printf("Total time was %d uSec.\n", total_usecs);*/    double *gp, *gm;
   /*------ End -----------*/    double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
  end:    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 #ifdef windows    int theta;
   /* chdir(pathcd);*/    char fileresprob[FILENAMELENGTH];
 #endif    char fileresprobcov[FILENAMELENGTH];
  /*system("wgnuplot graph.plt");*/    char fileresprobcor[FILENAMELENGTH];
  /*system("../gp37mgw/wgnuplot graph.plt");*/    double ***varpij;
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    strcpy(fileresprob,"prob"); 
  strcpy(plotcmd,GNUPLOTPROGRAM);    strcat(fileresprob,fileres);
  strcat(plotcmd," ");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
  strcat(plotcmd,optionfilegnuplot);      printf("Problem with resultfile: %s\n", fileresprob);
  system(plotcmd);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
 #ifdef windows    strcpy(fileresprobcov,"probcov"); 
   while (z[0] != 'q') {    strcat(fileresprobcov,fileres);
     /* chdir(path); */    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      printf("Problem with resultfile: %s\n", fileresprobcov);
     scanf("%s",z);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     if (z[0] == 'c') system("./imach");    }
     else if (z[0] == 'e') system(optionfilehtm);    strcpy(fileresprobcor,"probcor"); 
     else if (z[0] == 'g') system(plotcmd);    strcat(fileresprobcor,fileres);
     else if (z[0] == 'q') exit(0);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcor);
 #endif      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 }    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                else
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
                    fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){ 
                  if(nagesqr==0)
                    fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
     
                  ij=1;
                  for(j=3; j <=ncovmodel-nagesqr; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1' or 'model=1+age+age*age+V1+V1*age', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1' or 'model=1+age+age*age+V1+V1*age', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for ");fprintf(ficlog," for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
     double age, agebase, agelim;
   
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     if(model[strlen(model)-1]=='.') /* Suppressing leading dot in the model */
       model[strlen(model)-1]='\0';
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     if(model[0]=='#'|| model[0]== '\0'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /* codtab[12][3]=1; */
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard maximisation */
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       /* Computes likelihood for initial parameters */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* again, to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.51  
changed lines
  Added in v.1.189


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>