Diff for /imach/src/imach.c between versions 1.18 and 1.83

version 1.18, 2002/02/20 17:17:09 version 1.83, 2003/06/10 13:39:11
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.83  2003/06/10 13:39:11  lievre
   individuals from different ages are interviewed on their health status    *** empty log message ***
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.82  2003/06/05 15:57:20  brouard
   Health expectancies are computed from the transistions observed between    Add log in  imach.c and  fullversion number is now printed.
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to  */
   reach the Maximum Likelihood of the parameters involved in the model.  /*
   The simplest model is the multinomial logistic model where pij is     Interpolated Markov Chain
   the probabibility to be observed in state j at the second wave conditional  
   to be observed in state i at the first wave. Therefore the model is:    Short summary of the programme:
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    
   is a covariate. If you want to have a more complex model than "constant and    This program computes Healthy Life Expectancies from
   age", you should modify the program where the markup    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     *Covariates have to be included here again* invites you to do it.    first survey ("cross") where individuals from different ages are
   More covariates you add, less is the speed of the convergence.    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
   The advantage that this computer programme claims, comes from that if the    second wave of interviews ("longitudinal") which measure each change
   delay between waves is not identical for each individual, or if some    (if any) in individual health status.  Health expectancies are
   individual missed an interview, the information is not rounded or lost, but    computed from the time spent in each health state according to a
   taken into account using an interpolation or extrapolation.    model. More health states you consider, more time is necessary to reach the
   hPijx is the probability to be    Maximum Likelihood of the parameters involved in the model.  The
   observed in state i at age x+h conditional to the observed state i at age    simplest model is the multinomial logistic model where pij is the
   x. The delay 'h' can be split into an exact number (nh*stepm) of    probability to be observed in state j at the second wave
   unobserved intermediate  states. This elementary transition (by month or    conditional to be observed in state i at the first wave. Therefore
   quarter trimester, semester or year) is model as a multinomial logistic.    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    'age' is age and 'sex' is a covariate. If you want to have a more
   and the contribution of each individual to the likelihood is simply hPijx.    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
   Also this programme outputs the covariance matrix of the parameters but also    you to do it.  More covariates you add, slower the
   of the life expectancies. It also computes the prevalence limits.    convergence.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    The advantage of this computer programme, compared to a simple
            Institut national d'études démographiques, Paris.    multinomial logistic model, is clear when the delay between waves is not
   This software have been partly granted by Euro-REVES, a concerted action    identical for each individual. Also, if a individual missed an
   from the European Union.    intermediate interview, the information is lost, but taken into
   It is copyrighted identically to a GNU software product, ie programme and    account using an interpolation or extrapolation.  
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    hPijx is the probability to be observed in state i at age x+h
   **********************************************************************/    conditional to the observed state i at age x. The delay 'h' can be
      split into an exact number (nh*stepm) of unobserved intermediate
 #include <math.h>    states. This elementary transition (by month, quarter,
 #include <stdio.h>    semester or year) is modelled as a multinomial logistic.  The hPx
 #include <stdlib.h>    matrix is simply the matrix product of nh*stepm elementary matrices
 #include <unistd.h>    and the contribution of each individual to the likelihood is simply
     hPijx.
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    Also this programme outputs the covariance matrix of the parameters but also
 /*#define DEBUG*/    of the life expectancies. It also computes the stable prevalence. 
 #define windows    
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    from the European Union.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 #define NINTERVMAX 8    can be accessed at http://euroreves.ined.fr/imach .
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define NCOVMAX 8 /* Maximum number of covariates */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define MAXN 20000    
 #define YEARM 12. /* Number of months per year */    **********************************************************************/
 #define AGESUP 130  /*
 #define AGEBASE 40    main
     read parameterfile
     read datafile
 int nvar;    concatwav
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    if (mle >= 1)
 int npar=NPARMAX;      mlikeli
 int nlstate=2; /* Number of live states */    print results files
 int ndeath=1; /* Number of dead states */    if mle==1 
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */       computes hessian
 int popbased=0;    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 int *wav; /* Number of waves for this individuual 0 is possible */    open gnuplot file
 int maxwav; /* Maxim number of waves */    open html file
 int jmin, jmax; /* min, max spacing between 2 waves */    stable prevalence
 int mle, weightopt;     for age prevalim()
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    h Pij x
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    variance of p varprob
 double jmean; /* Mean space between 2 waves */    forecasting if prevfcast==1 prevforecast call prevalence()
 double **oldm, **newm, **savm; /* Working pointers to matrices */    health expectancies
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Variance-covariance of DFLE
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    prevalence()
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;     movingaverage()
 FILE *ficreseij;    varevsij() 
   char filerese[FILENAMELENGTH];    if popbased==1 varevsij(,popbased)
  FILE  *ficresvij;    total life expectancies
   char fileresv[FILENAMELENGTH];    Variance of stable prevalence
  FILE  *ficresvpl;   end
   char fileresvpl[FILENAMELENGTH];  */
   
 #define NR_END 1  
 #define FREE_ARG char*  
 #define FTOL 1.0e-10   
   #include <math.h>
 #define NRANSI  #include <stdio.h>
 #define ITMAX 200  #include <stdlib.h>
   #include <unistd.h>
 #define TOL 2.0e-4  
   #define MAXLINE 256
 #define CGOLD 0.3819660  #define GNUPLOTPROGRAM "gnuplot"
 #define ZEPS 1.0e-10  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define FILENAMELENGTH 80
   /*#define DEBUG*/
 #define GOLD 1.618034  #define windows
 #define GLIMIT 100.0  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define TINY 1.0e-20  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 static double maxarg1,maxarg2;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
    #define NINTERVMAX 8
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define rint(a) floor(a+0.5)  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 static double sqrarg;  #define MAXN 20000
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define YEARM 12. /* Number of months per year */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define AGESUP 130
   #define AGEBASE 40
 int imx;  #ifdef windows
 int stepm;  #define DIRSEPARATOR '\\'
 /* Stepm, step in month: minimum step interpolation*/  #define ODIRSEPARATOR '/'
   #else
 int m,nb;  #define DIRSEPARATOR '/'
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #define ODIRSEPARATOR '\\'
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #endif
 double **pmmij, ***probs, ***mobaverage;  
   /* $Id$ */
 double *weight;  /* $State$ */
 int **s; /* Status */  
 double *agedc, **covar, idx;  char version[]="Imach version 0.95a1, June 2003, INED-EUROREVES ";
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  char fullversion[]="$Revision$ $Date$"; 
   int erreur; /* Error number */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  int nvar;
 double ftolhess; /* Tolerance for computing hessian */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 /**************** split *************************/  int nlstate=2; /* Number of live states */
 static  int split( char *path, char *dirc, char *name )  int ndeath=1; /* Number of dead states */
 {  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    char *s;                             /* pointer */  int popbased=0;
    int  l1, l2;                         /* length counters */  
   int *wav; /* Number of waves for this individuual 0 is possible */
    l1 = strlen( path );                 /* length of path */  int maxwav; /* Maxim number of waves */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  int jmin, jmax; /* min, max spacing between 2 waves */
    s = strrchr( path, '\\' );           /* find last / */  int mle, weightopt;
    if ( s == NULL ) {                   /* no directory, so use current */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 #if     defined(__bsd__)                /* get current working directory */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       extern char       *getwd( );  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
       if ( getwd( dirc ) == NULL ) {  double jmean; /* Mean space between 2 waves */
 #else  double **oldm, **newm, **savm; /* Working pointers to matrices */
       extern char       *getcwd( );  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  FILE *ficlog, *ficrespow;
 #endif  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
          return( GLOCK_ERROR_GETCWD );  FILE *ficresprobmorprev;
       }  FILE *fichtm; /* Html File */
       strcpy( name, path );             /* we've got it */  FILE *ficreseij;
    } else {                             /* strip direcotry from path */  char filerese[FILENAMELENGTH];
       s++;                              /* after this, the filename */  FILE  *ficresvij;
       l2 = strlen( s );                 /* length of filename */  char fileresv[FILENAMELENGTH];
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  FILE  *ficresvpl;
       strcpy( name, s );                /* save file name */  char fileresvpl[FILENAMELENGTH];
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  char title[MAXLINE];
       dirc[l1-l2] = 0;                  /* add zero */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
    l1 = strlen( dirc );                 /* length of directory */  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    return( 0 );                         /* we're done */  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 /******************************************/  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 void replace(char *s, char*t)  
 {  #define NR_END 1
   int i;  #define FREE_ARG char*
   int lg=20;  #define FTOL 1.0e-10
   i=0;  
   lg=strlen(t);  #define NRANSI 
   for(i=0; i<= lg; i++) {  #define ITMAX 200 
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  #define TOL 2.0e-4 
   }  
 }  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 int nbocc(char *s, char occ)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   int i,j=0;  #define GOLD 1.618034 
   int lg=20;  #define GLIMIT 100.0 
   i=0;  #define TINY 1.0e-20 
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  static double maxarg1,maxarg2;
   if  (s[i] == occ ) j++;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   return j;    
 }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 void cutv(char *u,char *v, char*t, char occ)  
 {  static double sqrarg;
   int i,lg,j,p=0;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   i=0;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  int imx; 
   }  int stepm;
   /* Stepm, step in month: minimum step interpolation*/
   lg=strlen(t);  
   for(j=0; j<p; j++) {  int estepm;
     (u[j] = t[j]);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   }  
      u[p]='\0';  int m,nb;
   int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
    for(j=0; j<= lg; j++) {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     if (j>=(p+1))(v[j-p-1] = t[j]);  double **pmmij, ***probs;
   }  double dateintmean=0;
 }  
   double *weight;
 /********************** nrerror ********************/  int **s; /* Status */
   double *agedc, **covar, idx;
 void nrerror(char error_text[])  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 {  
   fprintf(stderr,"ERREUR ...\n");  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   fprintf(stderr,"%s\n",error_text);  double ftolhess; /* Tolerance for computing hessian */
   exit(1);  
 }  /**************** split *************************/
 /*********************** vector *******************/  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 double *vector(int nl, int nh)  {
 {    char  *ss;                            /* pointer */
   double *v;    int   l1, l2;                         /* length counters */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    l1 = strlen(path );                   /* length of path */
   return v-nl+NR_END;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
 /************************ free vector ******************/      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 void free_vector(double*v, int nl, int nh)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   free((FREE_ARG)(v+nl-NR_END));      /*    extern  char* getcwd ( char *buf , int len);*/
 }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 /************************ivector *******************************/      }
 int *ivector(long nl,long nh)      strcpy( name, path );               /* we've got it */
 {    } else {                              /* strip direcotry from path */
   int *v;      ss++;                               /* after this, the filename */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));      l2 = strlen( ss );                  /* length of filename */
   if (!v) nrerror("allocation failure in ivector");      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   return v-nl+NR_END;      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 /******************free ivector **************************/    }
 void free_ivector(int *v, long nl, long nh)    l1 = strlen( dirc );                  /* length of directory */
 {  #ifdef windows
   free((FREE_ARG)(v+nl-NR_END));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 }  #else
     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 /******************* imatrix *******************************/  #endif
 int **imatrix(long nrl, long nrh, long ncl, long nch)    ss = strrchr( name, '.' );            /* find last / */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    ss++;
 {    strcpy(ext,ss);                       /* save extension */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    l1= strlen( name);
   int **m;    l2= strlen(ss)+1;
      strncpy( finame, name, l1-l2);
   /* allocate pointers to rows */    finame[l1-l2]= 0;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    return( 0 );                          /* we're done */
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  
    /******************************************/
    
   /* allocate rows and set pointers to them */  void replace(char *s, char*t)
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    int i;
   m[nrl] += NR_END;    int lg=20;
   m[nrl] -= ncl;    i=0;
      lg=strlen(t);
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    for(i=0; i<= lg; i++) {
        (s[i] = t[i]);
   /* return pointer to array of pointers to rows */      if (t[i]== '\\') s[i]='/';
   return m;    }
 }  }
   
 /****************** free_imatrix *************************/  int nbocc(char *s, char occ)
 void free_imatrix(m,nrl,nrh,ncl,nch)  {
       int **m;    int i,j=0;
       long nch,ncl,nrh,nrl;    int lg=20;
      /* free an int matrix allocated by imatrix() */    i=0;
 {    lg=strlen(s);
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    for(i=0; i<= lg; i++) {
   free((FREE_ARG) (m+nrl-NR_END));    if  (s[i] == occ ) j++;
 }    }
     return j;
 /******************* matrix *******************************/  }
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  void cutv(char *u,char *v, char*t, char occ)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  {
   double **m;    /* cuts string t into u and v where u is ended by char occ excluding it
        and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));       gives u="abcedf" and v="ghi2j" */
   if (!m) nrerror("allocation failure 1 in matrix()");    int i,lg,j,p=0;
   m += NR_END;    i=0;
   m -= nrl;    for(j=0; j<=strlen(t)-1; j++) {
       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    lg=strlen(t);
   m[nrl] -= ncl;    for(j=0; j<p; j++) {
       (u[j] = t[j]);
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    }
   return m;       u[p]='\0';
 }  
      for(j=0; j<= lg; j++) {
 /*************************free matrix ************************/      if (j>=(p+1))(v[j-p-1] = t[j]);
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    }
 {  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /********************** nrerror ********************/
 }  
   void nrerror(char error_text[])
 /******************* ma3x *******************************/  {
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    fprintf(stderr,"ERREUR ...\n");
 {    fprintf(stderr,"%s\n",error_text);
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    exit(EXIT_FAILURE);
   double ***m;  }
   /*********************** vector *******************/
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double *vector(int nl, int nh)
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    double *v;
   m -= nrl;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    return v-nl+NR_END;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
     free((FREE_ARG)(v+nl-NR_END));
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  /************************ivector *******************************/
   m[nrl][ncl] -= nll;  char *cvector(long nl,long nh)
   for (j=ncl+1; j<=nch; j++)  {
     m[nrl][j]=m[nrl][j-1]+nlay;    char *v;
      v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
   for (i=nrl+1; i<=nrh; i++) {    if (!v) nrerror("allocation failure in cvector");
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    return v-nl+NR_END;
     for (j=ncl+1; j<=nch; j++)  }
       m[i][j]=m[i][j-1]+nlay;  
   }  /******************free ivector **************************/
   return m;  void free_cvector(char *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /*************************free ma3x ************************/  }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  /************************ivector *******************************/
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int *ivector(long nl,long nh)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  {
   free((FREE_ARG)(m+nrl-NR_END));    int *v;
 }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
 /***************** f1dim *************************/    return v-nl+NR_END;
 extern int ncom;  }
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  /******************free ivector **************************/
    void free_ivector(int *v, long nl, long nh)
 double f1dim(double x)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   int j;  }
   double f;  
   double *xt;  /******************* imatrix *******************************/
    int **imatrix(long nrl, long nrh, long ncl, long nch) 
   xt=vector(1,ncom);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  { 
   f=(*nrfunc)(xt);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   free_vector(xt,1,ncom);    int **m; 
   return f;    
 }    /* allocate pointers to rows */ 
     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 /*****************brent *************************/    if (!m) nrerror("allocation failure 1 in matrix()"); 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    m += NR_END; 
 {    m -= nrl; 
   int iter;    
   double a,b,d,etemp;    
   double fu,fv,fw,fx;    /* allocate rows and set pointers to them */ 
   double ftemp;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double p,q,r,tol1,tol2,u,v,w,x,xm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double e=0.0;    m[nrl] += NR_END; 
      m[nrl] -= ncl; 
   a=(ax < cx ? ax : cx);    
   b=(ax > cx ? ax : cx);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   x=w=v=bx;    
   fw=fv=fx=(*f)(x);    /* return pointer to array of pointers to rows */ 
   for (iter=1;iter<=ITMAX;iter++) {    return m; 
     xm=0.5*(a+b);  } 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /****************** free_imatrix *************************/
     printf(".");fflush(stdout);  void free_imatrix(m,nrl,nrh,ncl,nch)
 #ifdef DEBUG        int **m;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);        long nch,ncl,nrh,nrl; 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */       /* free an int matrix allocated by imatrix() */ 
 #endif  { 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       *xmin=x;    free((FREE_ARG) (m+nrl-NR_END)); 
       return fx;  } 
     }  
     ftemp=fu;  /******************* matrix *******************************/
     if (fabs(e) > tol1) {  double **matrix(long nrl, long nrh, long ncl, long nch)
       r=(x-w)*(fx-fv);  {
       q=(x-v)*(fx-fw);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       p=(x-v)*q-(x-w)*r;    double **m;
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       q=fabs(q);    if (!m) nrerror("allocation failure 1 in matrix()");
       etemp=e;    m += NR_END;
       e=d;    m -= nrl;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       else {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         d=p/q;    m[nrl] += NR_END;
         u=x+d;    m[nrl] -= ncl;
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       }    return m;
     } else {    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     */
     }  }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  /*************************free matrix ************************/
     if (fu <= fx) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       if (u >= x) a=x; else b=x;  {
       SHFT(v,w,x,u)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         SHFT(fv,fw,fx,fu)    free((FREE_ARG)(m+nrl-NR_END));
         } else {  }
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  /******************* ma3x *******************************/
             v=w;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
             w=u;  {
             fv=fw;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
             fw=fu;    double ***m;
           } else if (fu <= fv || v == x || v == w) {  
             v=u;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             fv=fu;    if (!m) nrerror("allocation failure 1 in matrix()");
           }    m += NR_END;
         }    m -= nrl;
   }  
   nrerror("Too many iterations in brent");    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   *xmin=x;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   return fx;    m[nrl] += NR_END;
 }    m[nrl] -= ncl;
   
 /****************** mnbrak ***********************/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
             double (*func)(double))    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 {    m[nrl][ncl] += NR_END;
   double ulim,u,r,q, dum;    m[nrl][ncl] -= nll;
   double fu;    for (j=ncl+1; j<=nch; j++) 
        m[nrl][j]=m[nrl][j-1]+nlay;
   *fa=(*func)(*ax);    
   *fb=(*func)(*bx);    for (i=nrl+1; i<=nrh; i++) {
   if (*fb > *fa) {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     SHFT(dum,*ax,*bx,dum)      for (j=ncl+1; j<=nch; j++) 
       SHFT(dum,*fb,*fa,dum)        m[i][j]=m[i][j-1]+nlay;
       }    }
   *cx=(*bx)+GOLD*(*bx-*ax);    return m; 
   *fc=(*func)(*cx);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   while (*fb > *fc) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     r=(*bx-*ax)*(*fb-*fc);    */
     q=(*bx-*cx)*(*fb-*fa);  }
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  /*************************free ma3x ************************/
     ulim=(*bx)+GLIMIT*(*cx-*bx);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     if ((*bx-u)*(u-*cx) > 0.0) {  {
       fu=(*func)(u);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     } else if ((*cx-u)*(u-ulim) > 0.0) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       fu=(*func)(u);    free((FREE_ARG)(m+nrl-NR_END));
       if (fu < *fc) {  }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  /***************** f1dim *************************/
           }  extern int ncom; 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  extern double *pcom,*xicom;
       u=ulim;  extern double (*nrfunc)(double []); 
       fu=(*func)(u);   
     } else {  double f1dim(double x) 
       u=(*cx)+GOLD*(*cx-*bx);  { 
       fu=(*func)(u);    int j; 
     }    double f;
     SHFT(*ax,*bx,*cx,u)    double *xt; 
       SHFT(*fa,*fb,*fc,fu)   
       }    xt=vector(1,ncom); 
 }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
 /*************** linmin ************************/    free_vector(xt,1,ncom); 
     return f; 
 int ncom;  } 
 double *pcom,*xicom;  
 double (*nrfunc)(double []);  /*****************brent *************************/
    double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  { 
 {    int iter; 
   double brent(double ax, double bx, double cx,    double a,b,d,etemp;
                double (*f)(double), double tol, double *xmin);    double fu,fv,fw,fx;
   double f1dim(double x);    double ftemp;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    double p,q,r,tol1,tol2,u,v,w,x,xm; 
               double *fc, double (*func)(double));    double e=0.0; 
   int j;   
   double xx,xmin,bx,ax;    a=(ax < cx ? ax : cx); 
   double fx,fb,fa;    b=(ax > cx ? ax : cx); 
      x=w=v=bx; 
   ncom=n;    fw=fv=fx=(*f)(x); 
   pcom=vector(1,n);    for (iter=1;iter<=ITMAX;iter++) { 
   xicom=vector(1,n);      xm=0.5*(a+b); 
   nrfunc=func;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for (j=1;j<=n;j++) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     pcom[j]=p[j];      printf(".");fflush(stdout);
     xicom[j]=xi[j];      fprintf(ficlog,".");fflush(ficlog);
   }  #ifdef DEBUG
   ax=0.0;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   xx=1.0;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #endif
 #ifdef DEBUG      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        *xmin=x; 
 #endif        return fx; 
   for (j=1;j<=n;j++) {      } 
     xi[j] *= xmin;      ftemp=fu;
     p[j] += xi[j];      if (fabs(e) > tol1) { 
   }        r=(x-w)*(fx-fv); 
   free_vector(xicom,1,n);        q=(x-v)*(fx-fw); 
   free_vector(pcom,1,n);        p=(x-v)*q-(x-w)*r; 
 }        q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
 /*************** powell ************************/        q=fabs(q); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        etemp=e; 
             double (*func)(double []))        e=d; 
 {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   void linmin(double p[], double xi[], int n, double *fret,          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
               double (*func)(double []));        else { 
   int i,ibig,j;          d=p/q; 
   double del,t,*pt,*ptt,*xit;          u=x+d; 
   double fp,fptt;          if (u-a < tol2 || b-u < tol2) 
   double *xits;            d=SIGN(tol1,xm-x); 
   pt=vector(1,n);        } 
   ptt=vector(1,n);      } else { 
   xit=vector(1,n);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   xits=vector(1,n);      } 
   *fret=(*func)(p);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   for (j=1;j<=n;j++) pt[j]=p[j];      fu=(*f)(u); 
   for (*iter=1;;++(*iter)) {      if (fu <= fx) { 
     fp=(*fret);        if (u >= x) a=x; else b=x; 
     ibig=0;        SHFT(v,w,x,u) 
     del=0.0;          SHFT(fv,fw,fx,fu) 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);          } else { 
     for (i=1;i<=n;i++)            if (u < x) a=u; else b=u; 
       printf(" %d %.12f",i, p[i]);            if (fu <= fw || w == x) { 
     printf("\n");              v=w; 
     for (i=1;i<=n;i++) {              w=u; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];              fv=fw; 
       fptt=(*fret);              fw=fu; 
 #ifdef DEBUG            } else if (fu <= fv || v == x || v == w) { 
       printf("fret=%lf \n",*fret);              v=u; 
 #endif              fv=fu; 
       printf("%d",i);fflush(stdout);            } 
       linmin(p,xit,n,fret,func);          } 
       if (fabs(fptt-(*fret)) > del) {    } 
         del=fabs(fptt-(*fret));    nrerror("Too many iterations in brent"); 
         ibig=i;    *xmin=x; 
       }    return fx; 
 #ifdef DEBUG  } 
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  /****************** mnbrak ***********************/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       }              double (*func)(double)) 
       for(j=1;j<=n;j++)  { 
         printf(" p=%.12e",p[j]);    double ulim,u,r,q, dum;
       printf("\n");    double fu; 
 #endif   
     }    *fa=(*func)(*ax); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    *fb=(*func)(*bx); 
 #ifdef DEBUG    if (*fb > *fa) { 
       int k[2],l;      SHFT(dum,*ax,*bx,dum) 
       k[0]=1;        SHFT(dum,*fb,*fa,dum) 
       k[1]=-1;        } 
       printf("Max: %.12e",(*func)(p));    *cx=(*bx)+GOLD*(*bx-*ax); 
       for (j=1;j<=n;j++)    *fc=(*func)(*cx); 
         printf(" %.12e",p[j]);    while (*fb > *fc) { 
       printf("\n");      r=(*bx-*ax)*(*fb-*fc); 
       for(l=0;l<=1;l++) {      q=(*bx-*cx)*(*fb-*fa); 
         for (j=1;j<=n;j++) {      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         }      if ((*bx-u)*(u-*cx) > 0.0) { 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        fu=(*func)(u); 
       }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
 #endif        fu=(*func)(u); 
         if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       free_vector(xit,1,n);            SHFT(*fb,*fc,fu,(*func)(u)) 
       free_vector(xits,1,n);            } 
       free_vector(ptt,1,n);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       free_vector(pt,1,n);        u=ulim; 
       return;        fu=(*func)(u); 
     }      } else { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");        u=(*cx)+GOLD*(*cx-*bx); 
     for (j=1;j<=n;j++) {        fu=(*func)(u); 
       ptt[j]=2.0*p[j]-pt[j];      } 
       xit[j]=p[j]-pt[j];      SHFT(*ax,*bx,*cx,u) 
       pt[j]=p[j];        SHFT(*fa,*fb,*fc,fu) 
     }        } 
     fptt=(*func)(ptt);  } 
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /*************** linmin ************************/
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  int ncom; 
         for (j=1;j<=n;j++) {  double *pcom,*xicom;
           xi[j][ibig]=xi[j][n];  double (*nrfunc)(double []); 
           xi[j][n]=xit[j];   
         }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 #ifdef DEBUG  { 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double brent(double ax, double bx, double cx, 
         for(j=1;j<=n;j++)                 double (*f)(double), double tol, double *xmin); 
           printf(" %.12e",xit[j]);    double f1dim(double x); 
         printf("\n");    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 #endif                double *fc, double (*func)(double)); 
       }    int j; 
     }    double xx,xmin,bx,ax; 
   }    double fx,fb,fa;
 }   
     ncom=n; 
 /**** Prevalence limit ****************/    pcom=vector(1,n); 
     xicom=vector(1,n); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    nrfunc=func; 
 {    for (j=1;j<=n;j++) { 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      pcom[j]=p[j]; 
      matrix by transitions matrix until convergence is reached */      xicom[j]=xi[j]; 
     } 
   int i, ii,j,k;    ax=0.0; 
   double min, max, maxmin, maxmax,sumnew=0.;    xx=1.0; 
   double **matprod2();    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double **out, cov[NCOVMAX], **pmij();    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   double **newm;  #ifdef DEBUG
   double agefin, delaymax=50 ; /* Max number of years to converge */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (ii=1;ii<=nlstate+ndeath;ii++)  #endif
     for (j=1;j<=nlstate+ndeath;j++){    for (j=1;j<=n;j++) { 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      xi[j] *= xmin; 
     }      p[j] += xi[j]; 
     } 
    cov[1]=1.;    free_vector(xicom,1,n); 
      free_vector(pcom,1,n); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  } 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;  /*************** powell ************************/
     /* Covariates have to be included here again */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
      cov[2]=agefin;              double (*func)(double [])) 
    { 
       for (k=1; k<=cptcovn;k++) {    void linmin(double p[], double xi[], int n, double *fret, 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];                double (*func)(double [])); 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    int i,ibig,j; 
       }    double del,t,*pt,*ptt,*xit;
       for (k=1; k<=cptcovage;k++)    double fp,fptt;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double *xits;
       for (k=1; k<=cptcovprod;k++)    pt=vector(1,n); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    ptt=vector(1,n); 
     xit=vector(1,n); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    xits=vector(1,n); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
     savm=oldm;      ibig=0; 
     oldm=newm;      del=0.0; 
     maxmax=0.;      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     for(j=1;j<=nlstate;j++){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       min=1.;      fprintf(ficrespow,"%d %.12f",*iter,*fret);
       max=0.;      for (i=1;i<=n;i++) {
       for(i=1; i<=nlstate; i++) {        printf(" %d %.12f",i, p[i]);
         sumnew=0;        fprintf(ficlog," %d %.12lf",i, p[i]);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        fprintf(ficrespow," %.12lf", p[i]);
         prlim[i][j]= newm[i][j]/(1-sumnew);      }
         max=FMAX(max,prlim[i][j]);      printf("\n");
         min=FMIN(min,prlim[i][j]);      fprintf(ficlog,"\n");
       }      fprintf(ficrespow,"\n");
       maxmin=max-min;      for (i=1;i<=n;i++) { 
       maxmax=FMAX(maxmax,maxmin);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     }        fptt=(*fret); 
     if(maxmax < ftolpl){  #ifdef DEBUG
       return prlim;        printf("fret=%lf \n",*fret);
     }        fprintf(ficlog,"fret=%lf \n",*fret);
   }  #endif
 }        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 /*************** transition probabilities ***************/        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          del=fabs(fptt-(*fret)); 
 {          ibig=i; 
   double s1, s2;        } 
   /*double t34;*/  #ifdef DEBUG
   int i,j,j1, nc, ii, jj;        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
     for(i=1; i<= nlstate; i++){        for (j=1;j<=n;j++) {
     for(j=1; j<i;j++){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          printf(" x(%d)=%.12e",j,xit[j]);
         /*s2 += param[i][j][nc]*cov[nc];*/          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        for(j=1;j<=n;j++) {
       }          printf(" p=%.12e",p[j]);
       ps[i][j]=s2;          fprintf(ficlog," p=%.12e",p[j]);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        }
     }        printf("\n");
     for(j=i+1; j<=nlstate+ndeath;j++){        fprintf(ficlog,"\n");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #endif
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      } 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       }  #ifdef DEBUG
       ps[i][j]=(s2);        int k[2],l;
     }        k[0]=1;
   }        k[1]=-1;
     /*ps[3][2]=1;*/        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
   for(i=1; i<= nlstate; i++){        for (j=1;j<=n;j++) {
      s1=0;          printf(" %.12e",p[j]);
     for(j=1; j<i; j++)          fprintf(ficlog," %.12e",p[j]);
       s1+=exp(ps[i][j]);        }
     for(j=i+1; j<=nlstate+ndeath; j++)        printf("\n");
       s1+=exp(ps[i][j]);        fprintf(ficlog,"\n");
     ps[i][i]=1./(s1+1.);        for(l=0;l<=1;l++) {
     for(j=1; j<i; j++)          for (j=1;j<=n;j++) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     for(j=i+1; j<=nlstate+ndeath; j++)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       ps[i][j]= exp(ps[i][j])*ps[i][i];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          }
   } /* end i */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        }
     for(jj=1; jj<= nlstate+ndeath; jj++){  #endif
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  
     }        free_vector(xit,1,n); 
   }        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        return; 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } 
      printf("%lf ",ps[ii][jj]);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
    }      for (j=1;j<=n;j++) { 
     printf("\n ");        ptt[j]=2.0*p[j]-pt[j]; 
     }        xit[j]=p[j]-pt[j]; 
     printf("\n ");printf("%lf ",cov[2]);*/        pt[j]=p[j]; 
 /*      } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      fptt=(*func)(ptt); 
   goto end;*/      if (fptt < fp) { 
     return ps;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 }        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
 /**************** Product of 2 matrices ******************/          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)            xi[j][n]=xit[j]; 
 {          }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  #ifdef DEBUG
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   /* in, b, out are matrice of pointers which should have been initialized          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
      before: only the contents of out is modified. The function returns          for(j=1;j<=n;j++){
      a pointer to pointers identical to out */            printf(" %.12e",xit[j]);
   long i, j, k;            fprintf(ficlog," %.12e",xit[j]);
   for(i=nrl; i<= nrh; i++)          }
     for(k=ncolol; k<=ncoloh; k++)          printf("\n");
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          fprintf(ficlog,"\n");
         out[i][k] +=in[i][j]*b[j][k];  #endif
         }
   return out;      } 
 }    } 
   } 
   
 /************* Higher Matrix Product ***************/  /**** Prevalence limit (stable prevalence)  ****************/
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 {  {
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
      duration (i.e. until       matrix by transitions matrix until convergence is reached */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    int i, ii,j,k;
      (typically every 2 years instead of every month which is too big).    double min, max, maxmin, maxmax,sumnew=0.;
      Model is determined by parameters x and covariates have to be    double **matprod2();
      included manually here.    double **out, cov[NCOVMAX], **pmij();
     double **newm;
      */    double agefin, delaymax=50 ; /* Max number of years to converge */
   
   int i, j, d, h, k;    for (ii=1;ii<=nlstate+ndeath;ii++)
   double **out, cov[NCOVMAX];      for (j=1;j<=nlstate+ndeath;j++){
   double **newm;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)     cov[1]=1.;
     for (j=1;j<=nlstate+ndeath;j++){   
       oldm[i][j]=(i==j ? 1.0 : 0.0);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       po[i][j][0]=(i==j ? 1.0 : 0.0);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     }      newm=savm;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      /* Covariates have to be included here again */
   for(h=1; h <=nhstepm; h++){       cov[2]=agefin;
     for(d=1; d <=hstepm; d++){    
       newm=savm;        for (k=1; k<=cptcovn;k++) {
       /* Covariates have to be included here again */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       cov[1]=1.;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (k=1; k<=cptcovage;k++)        for (k=1; k<=cptcovprod;k++)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      savm=oldm;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      oldm=newm;
       savm=oldm;      maxmax=0.;
       oldm=newm;      for(j=1;j<=nlstate;j++){
     }        min=1.;
     for(i=1; i<=nlstate+ndeath; i++)        max=0.;
       for(j=1;j<=nlstate+ndeath;j++) {        for(i=1; i<=nlstate; i++) {
         po[i][j][h]=newm[i][j];          sumnew=0;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
          */          prlim[i][j]= newm[i][j]/(1-sumnew);
       }          max=FMAX(max,prlim[i][j]);
   } /* end h */          min=FMIN(min,prlim[i][j]);
   return po;        }
 }        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
       }
 /*************** log-likelihood *************/      if(maxmax < ftolpl){
 double func( double *x)        return prlim;
 {      }
   int i, ii, j, k, mi, d, kk;    }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  }
   double **out;  
   double sw; /* Sum of weights */  /*************** transition probabilities ***************/ 
   double lli; /* Individual log likelihood */  
   long ipmx;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   /*extern weight */  {
   /* We are differentiating ll according to initial status */    double s1, s2;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /*double t34;*/
   /*for(i=1;i<imx;i++)    int i,j,j1, nc, ii, jj;
     printf(" %d\n",s[4][i]);  
   */      for(i=1; i<= nlstate; i++){
   cov[1]=1.;      for(j=1; j<i;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for(k=1; k<=nlstate; k++) ll[k]=0.;          /*s2 += param[i][j][nc]*cov[nc];*/
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
     for(mi=1; mi<= wav[i]-1; mi++){        }
       for (ii=1;ii<=nlstate+ndeath;ii++)        ps[i][j]=s2;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       for(d=0; d<dh[mi][i]; d++){      }
         newm=savm;      for(j=i+1; j<=nlstate+ndeath;j++){
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         for (kk=1; kk<=cptcovage;kk++) {          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }        }
                ps[i][j]=s2;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    }
         savm=oldm;      /*ps[3][2]=1;*/
         oldm=newm;  
            for(i=1; i<= nlstate; i++){
               s1=0;
       } /* end mult */      for(j=1; j<i; j++)
              s1+=exp(ps[i][j]);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      for(j=i+1; j<=nlstate+ndeath; j++)
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        s1+=exp(ps[i][j]);
       ipmx +=1;      ps[i][i]=1./(s1+1.);
       sw += weight[i];      for(j=1; j<i; j++)
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        ps[i][j]= exp(ps[i][j])*ps[i][i];
     } /* end of wave */      for(j=i+1; j<=nlstate+ndeath; j++)
   } /* end of individual */        ps[i][j]= exp(ps[i][j])*ps[i][i];
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    } /* end i */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   return -l;      for(jj=1; jj<= nlstate+ndeath; jj++){
 }        ps[ii][jj]=0;
         ps[ii][ii]=1;
       }
 /*********** Maximum Likelihood Estimation ***************/    }
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   int i,j, iter;      for(jj=1; jj<= nlstate+ndeath; jj++){
   double **xi,*delti;       printf("%lf ",ps[ii][jj]);
   double fret;     }
   xi=matrix(1,npar,1,npar);      printf("\n ");
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++)      printf("\n ");printf("%lf ",cov[2]);*/
       xi[i][j]=(i==j ? 1.0 : 0.0);  /*
   printf("Powell\n");    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   powell(p,xi,npar,ftol,&iter,&fret,func);    goto end;*/
       return ps;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));  
   /**************** Product of 2 matrices ******************/
 }  
   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 /**** Computes Hessian and covariance matrix ***/  {
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 {       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   double  **a,**y,*x,pd;    /* in, b, out are matrice of pointers which should have been initialized 
   double **hess;       before: only the contents of out is modified. The function returns
   int i, j,jk;       a pointer to pointers identical to out */
   int *indx;    long i, j, k;
     for(i=nrl; i<= nrh; i++)
   double hessii(double p[], double delta, int theta, double delti[]);      for(k=ncolol; k<=ncoloh; k++)
   double hessij(double p[], double delti[], int i, int j);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   void lubksb(double **a, int npar, int *indx, double b[]) ;          out[i][k] +=in[i][j]*b[j][k];
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
     return out;
   hess=matrix(1,npar,1,npar);  }
   
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  /************* Higher Matrix Product ***************/
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     /*printf(" %f ",p[i]);*/  {
     /*printf(" %lf ",hess[i][i]);*/    /* Computes the transition matrix starting at age 'age' over 
   }       'nhstepm*hstepm*stepm' months (i.e. until
         age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   for (i=1;i<=npar;i++) {       nhstepm*hstepm matrices. 
     for (j=1;j<=npar;j++)  {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       if (j>i) {       (typically every 2 years instead of every month which is too big 
         printf(".%d%d",i,j);fflush(stdout);       for the memory).
         hess[i][j]=hessij(p,delti,i,j);       Model is determined by parameters x and covariates have to be 
         hess[j][i]=hess[i][j];           included manually here. 
         /*printf(" %lf ",hess[i][j]);*/  
       }       */
     }  
   }    int i, j, d, h, k;
   printf("\n");    double **out, cov[NCOVMAX];
     double **newm;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
      /* Hstepm could be zero and should return the unit matrix */
   a=matrix(1,npar,1,npar);    for (i=1;i<=nlstate+ndeath;i++)
   y=matrix(1,npar,1,npar);      for (j=1;j<=nlstate+ndeath;j++){
   x=vector(1,npar);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   indx=ivector(1,npar);        po[i][j][0]=(i==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   ludcmp(a,npar,indx,&pd);    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
   for (j=1;j<=npar;j++) {        newm=savm;
     for (i=1;i<=npar;i++) x[i]=0;        /* Covariates have to be included here again */
     x[j]=1;        cov[1]=1.;
     lubksb(a,npar,indx,x);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     for (i=1;i<=npar;i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       matcov[i][j]=x[i];        for (k=1; k<=cptcovage;k++)
     }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       printf("%.3e ",hess[i][j]);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     printf("\n");                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   }        savm=oldm;
         oldm=newm;
   /* Recompute Inverse */      }
   for (i=1;i<=npar;i++)      for(i=1; i<=nlstate+ndeath; i++)
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        for(j=1;j<=nlstate+ndeath;j++) {
   ludcmp(a,npar,indx,&pd);          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   /*  printf("\n#Hessian matrix recomputed#\n");           */
         }
   for (j=1;j<=npar;j++) {    } /* end h */
     for (i=1;i<=npar;i++) x[i]=0;    return po;
     x[j]=1;  }
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];  /*************** log-likelihood *************/
       printf("%.3e ",y[i][j]);  double func( double *x)
     }  {
     printf("\n");    int i, ii, j, k, mi, d, kk;
   }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   */    double **out;
     double sw; /* Sum of weights */
   free_matrix(a,1,npar,1,npar);    double lli; /* Individual log likelihood */
   free_matrix(y,1,npar,1,npar);    int s1, s2;
   free_vector(x,1,npar);    double bbh, survp;
   free_ivector(indx,1,npar);    long ipmx;
   free_matrix(hess,1,npar,1,npar);    /*extern weight */
     /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 }    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
 /*************** hessian matrix ****************/    */
 double hessii( double x[], double delta, int theta, double delti[])    cov[1]=1.;
 {  
   int i;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   int l=1, lmax=20;  
   double k1,k2;    if(mle==1){
   double p2[NPARMAX+1];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double res;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        for(mi=1; mi<= wav[i]-1; mi++){
   double fx;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int k=0,kmax=10;            for (j=1;j<=nlstate+ndeath;j++){
   double l1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fx=func(x);            }
   for (i=1;i<=npar;i++) p2[i]=x[i];          for(d=0; d<dh[mi][i]; d++){
   for(l=0 ; l <=lmax; l++){            newm=savm;
     l1=pow(10,l);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     delts=delt;            for (kk=1; kk<=cptcovage;kk++) {
     for(k=1 ; k <kmax; k=k+1){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       delt = delta*(l1*k);            }
       p2[theta]=x[theta] +delt;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       k1=func(p2)-fx;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       p2[theta]=x[theta]-delt;            savm=oldm;
       k2=func(p2)-fx;            oldm=newm;
       /*res= (k1-2.0*fx+k2)/delt/delt; */          } /* end mult */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        
                /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 #ifdef DEBUG          /* But now since version 0.9 we anticipate for bias and large stepm.
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 #endif           * (in months) between two waves is not a multiple of stepm, we rounded to 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */           * the nearest (and in case of equal distance, to the lowest) interval but now
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         k=kmax;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       }           * probability in order to take into account the bias as a fraction of the way
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         k=kmax; l=lmax*10.;           * -stepm/2 to stepm/2 .
       }           * For stepm=1 the results are the same as for previous versions of Imach.
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){           * For stepm > 1 the results are less biased than in previous versions. 
         delts=delt;           */
       }          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
   delti[theta]=delts;          /* bias is positive if real duration
   return res;           * is higher than the multiple of stepm and negative otherwise.
             */
 }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
 double hessij( double x[], double delti[], int thetai,int thetaj)            /* i.e. if s2 is a death state and if the date of death is known then the contribution
 {               to the likelihood is the probability to die between last step unit time and current 
   int i;               step unit time, which is also the differences between probability to die before dh 
   int l=1, l1, lmax=20;               and probability to die before dh-stepm . 
   double k1,k2,k3,k4,res,fx;               In version up to 0.92 likelihood was computed
   double p2[NPARMAX+1];          as if date of death was unknown. Death was treated as any other
   int k;          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   fx=func(x);          to consider that at each interview the state was recorded
   for (k=1; k<=2; k++) {          (healthy, disable or death) and IMaCh was corrected; but when we
     for (i=1;i<=npar;i++) p2[i]=x[i];          introduced the exact date of death then we should have modified
     p2[thetai]=x[thetai]+delti[thetai]/k;          the contribution of an exact death to the likelihood. This new
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          contribution is smaller and very dependent of the step unit
     k1=func(p2)-fx;          stepm. It is no more the probability to die between last interview
            and month of death but the probability to survive from last
     p2[thetai]=x[thetai]+delti[thetai]/k;          interview up to one month before death multiplied by the
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          probability to die within a month. Thanks to Chris
     k2=func(p2)-fx;          Jackson for correcting this bug.  Former versions increased
            mortality artificially. The bad side is that we add another loop
     p2[thetai]=x[thetai]-delti[thetai]/k;          which slows down the processing. The difference can be up to 10%
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          lower mortality.
     k3=func(p2)-fx;            */
              lli=log(out[s1][s2] - savm[s1][s2]);
     p2[thetai]=x[thetai]-delti[thetai]/k;          }else{
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     k4=func(p2)-fx;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          } 
 #ifdef DEBUG          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          /*if(lli ==000.0)*/
 #endif          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   }          ipmx +=1;
   return res;          sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 /************** Inverse of matrix **************/      } /* end of individual */
 void ludcmp(double **a, int n, int *indx, double *d)    }  else if(mle==2){
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int i,imax,j,k;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double big,dum,sum,temp;        for(mi=1; mi<= wav[i]-1; mi++){
   double *vv;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   vv=vector(1,n);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   *d=1.0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=n;i++) {            }
     big=0.0;          for(d=0; d<=dh[mi][i]; d++){
     for (j=1;j<=n;j++)            newm=savm;
       if ((temp=fabs(a[i][j])) > big) big=temp;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            for (kk=1; kk<=cptcovage;kk++) {
     vv[i]=1.0/big;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
   for (j=1;j<=n;j++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=1;i<j;i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       sum=a[i][j];            savm=oldm;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            oldm=newm;
       a[i][j]=sum;          } /* end mult */
     }        
     big=0.0;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     for (i=j;i<=n;i++) {          /* But now since version 0.9 we anticipate for bias and large stepm.
       sum=a[i][j];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       for (k=1;k<j;k++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
         sum -= a[i][k]*a[k][j];           * the nearest (and in case of equal distance, to the lowest) interval but now
       a[i][j]=sum;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       if ( (dum=vv[i]*fabs(sum)) >= big) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
         big=dum;           * probability in order to take into account the bias as a fraction of the way
         imax=i;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       }           * -stepm/2 to stepm/2 .
     }           * For stepm=1 the results are the same as for previous versions of Imach.
     if (j != imax) {           * For stepm > 1 the results are less biased than in previous versions. 
       for (k=1;k<=n;k++) {           */
         dum=a[imax][k];          s1=s[mw[mi][i]][i];
         a[imax][k]=a[j][k];          s2=s[mw[mi+1][i]][i];
         a[j][k]=dum;          bbh=(double)bh[mi][i]/(double)stepm; 
       }          /* bias is positive if real duration
       *d = -(*d);           * is higher than the multiple of stepm and negative otherwise.
       vv[imax]=vv[j];           */
     }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     indx[j]=imax;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     if (a[j][j] == 0.0) a[j][j]=TINY;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     if (j != n) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       dum=1.0/(a[j][j]);          /*if(lli ==000.0)*/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     }          ipmx +=1;
   }          sw += weight[i];
   free_vector(vv,1,n);  /* Doesn't work */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 ;        } /* end of wave */
 }      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
 void lubksb(double **a, int n, int *indx, double b[])      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i,ii=0,ip,j;        for(mi=1; mi<= wav[i]-1; mi++){
   double sum;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   for (i=1;i<=n;i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     ip=indx[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     sum=b[ip];            }
     b[ip]=b[i];          for(d=0; d<dh[mi][i]; d++){
     if (ii)            newm=savm;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     else if (sum) ii=i;            for (kk=1; kk<=cptcovage;kk++) {
     b[i]=sum;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
   for (i=n;i>=1;i--) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     sum=b[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            savm=oldm;
     b[i]=sum/a[i][i];            oldm=newm;
   }          } /* end mult */
 }        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 /************ Frequencies ********************/          /* But now since version 0.9 we anticipate for bias and large stepm.
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1,double **mint,double **anint, int boolprev, double dateprev1,double dateprev2)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 {  /* Some frequencies */           * (in months) between two waves is not a multiple of stepm, we rounded to 
             * the nearest (and in case of equal distance, to the lowest) interval but now
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double ***freq; /* Frequencies */           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   double *pp;           * probability in order to take into account the bias as a fraction of the way
   double pos, k2;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   FILE *ficresp;           * -stepm/2 to stepm/2 .
   char fileresp[FILENAMELENGTH];           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
   pp=vector(1,nlstate);           */
   probs= ma3x(1,130 ,1,8, 1,8);          s1=s[mw[mi][i]][i];
   strcpy(fileresp,"p");          s2=s[mw[mi+1][i]][i];
   strcat(fileresp,fileres);          bbh=(double)bh[mi][i]/(double)stepm; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {          /* bias is positive if real duration
     printf("Problem with prevalence resultfile: %s\n", fileresp);           * is higher than the multiple of stepm and negative otherwise.
     exit(0);           */
   }          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   j1=0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
   j=cptcoveff;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          ipmx +=1;
           sw += weight[i];
   for(k1=1; k1<=j;k1++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    for(i1=1; i1<=ncodemax[k1];i1++){        } /* end of wave */
        j1++;      } /* end of individual */
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    }else{  /* ml=4 no inter-extrapolation */
          scanf("%d", i);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (i=-1; i<=nlstate+ndeath; i++)          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for (jk=-1; jk<=nlstate+ndeath; jk++)          for(mi=1; mi<= wav[i]-1; mi++){
            for(m=agemin; m <= agemax+3; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
              freq[i][jk][m]=0;            for (j=1;j<=nlstate+ndeath;j++){
                      oldm[ii][j]=(ii==j ? 1.0 : 0.0);
        for (i=1; i<=imx; i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
          bool=1;            }
          if  (cptcovn>0) {          for(d=0; d<dh[mi][i]; d++){
            for (z1=1; z1<=cptcoveff; z1++)            newm=savm;
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                bool=0;            for (kk=1; kk<=cptcovage;kk++) {
          }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          if (bool==1) {            }
            if (boolprev==1){          
              for(m=fprev1; m<=lprev1; m++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                if(agev[m][i]==0) agev[m][i]=agemax+1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                if(agev[m][i]==1) agev[m][i]=agemax+2;            savm=oldm;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            oldm=newm;
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          } /* end mult */
              }        
            }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            else {          ipmx +=1;
             for(m=firstpass; m<=lastpass; m++){          sw += weight[i];
              k2=anint[m][i]+(mint[m][i]/12.);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              if ((k2>=dateprev1) && (k2<=dateprev2)) {        } /* end of wave */
              if(agev[m][i]==0) agev[m][i]=agemax+1;      } /* end of individual */
              if(agev[m][i]==1) agev[m][i]=agemax+2;    } /* End of if */
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
              }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             }    return -l;
            }  }
           }  
        }  
         if  (cptcovn>0) {  /*********** Maximum Likelihood Estimation ***************/
          fprintf(ficresp, "\n#********** Variable ");  
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
        fprintf(ficresp, "**********\n#");  {
         }    int i,j, iter;
        for(i=1; i<=nlstate;i++)    double **xi;
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    double fret;
        fprintf(ficresp, "\n");    char filerespow[FILENAMELENGTH];
            xi=matrix(1,npar,1,npar);
   for(i=(int)agemin; i <= (int)agemax+3; i++){    for (i=1;i<=npar;i++)
     if(i==(int)agemax+3)      for (j=1;j<=npar;j++)
       printf("Total");        xi[i][j]=(i==j ? 1.0 : 0.0);
     else    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       printf("Age %d", i);    strcpy(filerespow,"pow"); 
     for(jk=1; jk <=nlstate ; jk++){    strcat(filerespow,fileres);
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         pp[jk] += freq[jk][m][i];      printf("Problem with resultfile: %s\n", filerespow);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     for(jk=1; jk <=nlstate ; jk++){    }
       for(m=-1, pos=0; m <=0 ; m++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         pos += freq[jk][m][i];    for (i=1;i<=nlstate;i++)
       if(pp[jk]>=1.e-10)      for(j=1;j<=nlstate+ndeath;j++)
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       else    fprintf(ficrespow,"\n");
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    powell(p,xi,npar,ftol,&iter,&fret,func);
     }  
     fclose(ficrespow);
      for(jk=1; jk <=nlstate ; jk++){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         pp[jk] += freq[jk][m][i];    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      }  
   }
     for(jk=1,pos=0; jk <=nlstate ; jk++)  
       pos += pp[jk];  /**** Computes Hessian and covariance matrix ***/
     for(jk=1; jk <=nlstate ; jk++){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       if(pos>=1.e-5)  {
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    double  **a,**y,*x,pd;
       else    double **hess;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    int i, j,jk;
       if( i <= (int) agemax){    int *indx;
         if(pos>=1.e-5){  
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    double hessii(double p[], double delta, int theta, double delti[]);
           probs[i][jk][j1]= pp[jk]/pos;    double hessij(double p[], double delti[], int i, int j);
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    void lubksb(double **a, int npar, int *indx, double b[]) ;
         }    void ludcmp(double **a, int npar, int *indx, double *d) ;
       else  
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    hess=matrix(1,npar,1,npar);
       }  
     }    printf("\nCalculation of the hessian matrix. Wait...\n");
     for(jk=-1; jk <=nlstate+ndeath; jk++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       for(m=-1; m <=nlstate+ndeath; m++)    for (i=1;i<=npar;i++){
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      printf("%d",i);fflush(stdout);
     if(i <= (int) agemax)      fprintf(ficlog,"%d",i);fflush(ficlog);
       fprintf(ficresp,"\n");      hess[i][i]=hessii(p,ftolhess,i,delti);
     printf("\n");      /*printf(" %f ",p[i]);*/
     }      /*printf(" %lf ",hess[i][i]);*/
     }    }
  }    
      for (i=1;i<=npar;i++) {
   fclose(ficresp);      for (j=1;j<=npar;j++)  {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        if (j>i) { 
   free_vector(pp,1,nlstate);          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 }  /* End of Freq */          hess[i][j]=hessij(p,delti,i,j);
           hess[j][i]=hess[i][j];    
 /************ Prevalence ********************/          /*printf(" %lf ",hess[i][j]);*/
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1, double **mint,double **anint,int boolprev, double dateprev1, double dateprev2)        }
 {  /* Some frequencies */      }
      }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    printf("\n");
   double ***freq; /* Frequencies */    fprintf(ficlog,"\n");
   double *pp;  
   double pos, k2;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   pp=vector(1,nlstate);    
   probs= ma3x(1,130 ,1,8, 1,8);    a=matrix(1,npar,1,npar);
      y=matrix(1,npar,1,npar);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    x=vector(1,npar);
   j1=0;    indx=ivector(1,npar);
      for (i=1;i<=npar;i++)
   j=cptcoveff;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    ludcmp(a,npar,indx,&pd);
    
  for(k1=1; k1<=j;k1++){    for (j=1;j<=npar;j++) {
     for(i1=1; i1<=ncodemax[k1];i1++){      for (i=1;i<=npar;i++) x[i]=0;
       j1++;      x[j]=1;
        lubksb(a,npar,indx,x);
       for (i=-1; i<=nlstate+ndeath; i++)        for (i=1;i<=npar;i++){ 
         for (jk=-1; jk<=nlstate+ndeath; jk++)          matcov[i][j]=x[i];
           for(m=agemin; m <= agemax+3; m++)      }
           freq[i][jk][m]=0;    }
        
       for (i=1; i<=imx; i++) {    printf("\n#Hessian matrix#\n");
         bool=1;    fprintf(ficlog,"\n#Hessian matrix#\n");
         if  (cptcovn>0) {    for (i=1;i<=npar;i++) { 
           for (z1=1; z1<=cptcoveff; z1++)      for (j=1;j<=npar;j++) { 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        printf("%.3e ",hess[i][j]);
               bool=0;        fprintf(ficlog,"%.3e ",hess[i][j]);
               }      }
         if (bool==1) {      printf("\n");
           if (boolprev==1){      fprintf(ficlog,"\n");
             for(m=fprev1; m<=lprev1; m++){    }
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;    /* Recompute Inverse */
               freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    for (i=1;i<=npar;i++)
               freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
             }    ludcmp(a,npar,indx,&pd);
           }  
           else {    /*  printf("\n#Hessian matrix recomputed#\n");
             for(m=firstpass; m<=lastpass; m++){  
               k2=anint[m][i]+(mint[m][i]/12.);    for (j=1;j<=npar;j++) {
               if ((k2>=dateprev1) && (k2<=dateprev2)) {      for (i=1;i<=npar;i++) x[i]=0;
                 if(agev[m][i]==0) agev[m][i]=agemax+1;      x[j]=1;
                 if(agev[m][i]==1) agev[m][i]=agemax+2;      lubksb(a,npar,indx,x);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for (i=1;i<=npar;i++){ 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        y[i][j]=x[i];
               }        printf("%.3e ",y[i][j]);
             }        fprintf(ficlog,"%.3e ",y[i][j]);
           }      }
         }      printf("\n");
       }      fprintf(ficlog,"\n");
         for(i=(int)agemin; i <= (int)agemax+3; i++){    }
           for(jk=1; jk <=nlstate ; jk++){    */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
               pp[jk] += freq[jk][m][i];    free_matrix(a,1,npar,1,npar);
           }    free_matrix(y,1,npar,1,npar);
           for(jk=1; jk <=nlstate ; jk++){    free_vector(x,1,npar);
             for(m=-1, pos=0; m <=0 ; m++)    free_ivector(indx,1,npar);
             pos += freq[jk][m][i];    free_matrix(hess,1,npar,1,npar);
         }  
          
          for(jk=1; jk <=nlstate ; jk++){  }
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
              pp[jk] += freq[jk][m][i];  /*************** hessian matrix ****************/
          }  double hessii( double x[], double delta, int theta, double delti[])
            {
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    int i;
     int l=1, lmax=20;
          for(jk=1; jk <=nlstate ; jk++){              double k1,k2;
            if( i <= (int) agemax){    double p2[NPARMAX+1];
              if(pos>=1.e-5){    double res;
                probs[i][jk][j1]= pp[jk]/pos;    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
              }    double fx;
            }    int k=0,kmax=10;
          }    double l1;
            
         }    fx=func(x);
     }    for (i=1;i<=npar;i++) p2[i]=x[i];
   }    for(l=0 ; l <=lmax; l++){
        l1=pow(10,l);
        delts=delt;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      for(k=1 ; k <kmax; k=k+1){
   free_vector(pp,1,nlstate);        delt = delta*(l1*k);
          p2[theta]=x[theta] +delt;
 }  /* End of Freq */        k1=func(p2)-fx;
 /************* Waves Concatenation ***************/        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        /*res= (k1-2.0*fx+k2)/delt/delt; */
 {        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        
      Death is a valid wave (if date is known).  #ifdef DEBUG
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      and mw[mi+1][i]. dh depends on stepm.  #endif
      */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   int i, mi, m;          k=kmax;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        }
      double sum=0., jmean=0.;*/        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
   int j, k=0,jk, ju, jl;        }
   double sum=0.;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   jmin=1e+5;          delts=delt;
   jmax=-1;        }
   jmean=0.;      }
   for(i=1; i<=imx; i++){    }
     mi=0;    delti[theta]=delts;
     m=firstpass;    return res; 
     while(s[m][i] <= nlstate){    
       if(s[m][i]>=1)  }
         mw[++mi][i]=m;  
       if(m >=lastpass)  double hessij( double x[], double delti[], int thetai,int thetaj)
         break;  {
       else    int i;
         m++;    int l=1, l1, lmax=20;
     }/* end while */    double k1,k2,k3,k4,res,fx;
     if (s[m][i] > nlstate){    double p2[NPARMAX+1];
       mi++;     /* Death is another wave */    int k;
       /* if(mi==0)  never been interviewed correctly before death */  
          /* Only death is a correct wave */    fx=func(x);
       mw[mi][i]=m;    for (k=1; k<=2; k++) {
     }      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
     wav[i]=mi;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     if(mi==0)      k1=func(p2)-fx;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    
   }      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   for(i=1; i<=imx; i++){      k2=func(p2)-fx;
     for(mi=1; mi<wav[i];mi++){    
       if (stepm <=0)      p2[thetai]=x[thetai]-delti[thetai]/k;
         dh[mi][i]=1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       else{      k3=func(p2)-fx;
         if (s[mw[mi+1][i]][i] > nlstate) {    
           if (agedc[i] < 2*AGESUP) {      p2[thetai]=x[thetai]-delti[thetai]/k;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           if(j==0) j=1;  /* Survives at least one month after exam */      k4=func(p2)-fx;
           k=k+1;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           if (j >= jmax) jmax=j;  #ifdef DEBUG
           if (j <= jmin) jmin=j;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           sum=sum+j;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           /* if (j<10) printf("j=%d num=%d ",j,i); */  #endif
           }    }
         }    return res;
         else{  }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;  /************** Inverse of matrix **************/
           if (j >= jmax) jmax=j;  void ludcmp(double **a, int n, int *indx, double *d) 
           else if (j <= jmin)jmin=j;  { 
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    int i,imax,j,k; 
           sum=sum+j;    double big,dum,sum,temp; 
         }    double *vv; 
         jk= j/stepm;   
         jl= j -jk*stepm;    vv=vector(1,n); 
         ju= j -(jk+1)*stepm;    *d=1.0; 
         if(jl <= -ju)    for (i=1;i<=n;i++) { 
           dh[mi][i]=jk;      big=0.0; 
         else      for (j=1;j<=n;j++) 
           dh[mi][i]=jk+1;        if ((temp=fabs(a[i][j])) > big) big=temp; 
         if(dh[mi][i]==0)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           dh[mi][i]=1; /* At least one step */      vv[i]=1.0/big; 
       }    } 
     }    for (j=1;j<=n;j++) { 
   }      for (i=1;i<j;i++) { 
   jmean=sum/k;        sum=a[i][j]; 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
  }        a[i][j]=sum; 
 /*********** Tricode ****************************/      } 
 void tricode(int *Tvar, int **nbcode, int imx)      big=0.0; 
 {      for (i=j;i<=n;i++) { 
   int Ndum[20],ij=1, k, j, i;        sum=a[i][j]; 
   int cptcode=0;        for (k=1;k<j;k++) 
   cptcoveff=0;          sum -= a[i][k]*a[k][j]; 
          a[i][j]=sum; 
   for (k=0; k<19; k++) Ndum[k]=0;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   for (k=1; k<=7; k++) ncodemax[k]=0;          big=dum; 
           imax=i; 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        } 
     for (i=1; i<=imx; i++) {      } 
       ij=(int)(covar[Tvar[j]][i]);      if (j != imax) { 
       Ndum[ij]++;        for (k=1;k<=n;k++) { 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          dum=a[imax][k]; 
       if (ij > cptcode) cptcode=ij;          a[imax][k]=a[j][k]; 
     }          a[j][k]=dum; 
         } 
     for (i=0; i<=cptcode; i++) {        *d = -(*d); 
       if(Ndum[i]!=0) ncodemax[j]++;        vv[imax]=vv[j]; 
     }      } 
     ij=1;      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
     for (i=1; i<=ncodemax[j]; i++) {        dum=1.0/(a[j][j]); 
       for (k=0; k<=19; k++) {        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         if (Ndum[k] != 0) {      } 
           nbcode[Tvar[j]][ij]=k;    } 
           ij++;    free_vector(vv,1,n);  /* Doesn't work */
         }  ;
         if (ij > ncodemax[j]) break;  } 
       }    
     }  void lubksb(double **a, int n, int *indx, double b[]) 
   }    { 
     int i,ii=0,ip,j; 
  for (k=0; k<19; k++) Ndum[k]=0;    double sum; 
    
  for (i=1; i<=ncovmodel-2; i++) {    for (i=1;i<=n;i++) { 
       ij=Tvar[i];      ip=indx[i]; 
       Ndum[ij]++;      sum=b[ip]; 
     }      b[ip]=b[i]; 
       if (ii) 
  ij=1;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
  for (i=1; i<=10; i++) {      else if (sum) ii=i; 
    if((Ndum[i]!=0) && (i<=ncov)){      b[i]=sum; 
      Tvaraff[ij]=i;    } 
      ij++;    for (i=n;i>=1;i--) { 
    }      sum=b[i]; 
  }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
        b[i]=sum/a[i][i]; 
     cptcoveff=ij-1;    } 
 }  } 
   
 /*********** Health Expectancies ****************/  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  {  /* Some frequencies */
 {    
   /* Health expectancies */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   int i, j, nhstepm, hstepm, h;    int first;
   double age, agelim,hf;    double ***freq; /* Frequencies */
   double ***p3mat;    double *pp, **prop;
      double pos,posprop, k2, dateintsum=0,k2cpt=0;
   fprintf(ficreseij,"# Health expectancies\n");    FILE *ficresp;
   fprintf(ficreseij,"# Age");    char fileresp[FILENAMELENGTH];
   for(i=1; i<=nlstate;i++)    
     for(j=1; j<=nlstate;j++)    pp=vector(1,nlstate);
       fprintf(ficreseij," %1d-%1d",i,j);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   fprintf(ficreseij,"\n");    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
   hstepm=1*YEARM; /*  Every j years of age (in month) */    if((ficresp=fopen(fileresp,"w"))==NULL) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   agelim=AGESUP;      exit(0);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }
     /* nhstepm age range expressed in number of stepm */    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    j1=0;
     /* Typically if 20 years = 20*12/6=40 stepm */    
     if (stepm >= YEARM) hstepm=1;    j=cptcoveff;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    first=1;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
     for(i=1; i<=nlstate;i++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       for(j=1; j<=nlstate;j++)          scanf("%d", i);*/
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        for (i=-1; i<=nlstate+ndeath; i++)  
           eij[i][j][(int)age] +=p3mat[i][j][h];          for (jk=-1; jk<=nlstate+ndeath; jk++)  
         }            for(m=iagemin; m <= iagemax+3; m++)
                  freq[i][jk][m]=0;
     hf=1;  
     if (stepm >= YEARM) hf=stepm/YEARM;      for (i=1; i<=nlstate; i++)  
     fprintf(ficreseij,"%.0f",age );        for(m=iagemin; m <= iagemax+3; m++)
     for(i=1; i<=nlstate;i++)          prop[i][m]=0;
       for(j=1; j<=nlstate;j++){        
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);        dateintsum=0;
       }        k2cpt=0;
     fprintf(ficreseij,"\n");        for (i=1; i<=imx; i++) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          bool=1;
   }          if  (cptcovn>0) {
 }            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 /************ Variance ******************/                bool=0;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          }
 {          if (bool==1){
   /* Variance of health expectancies */            for(m=firstpass; m<=lastpass; m++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              k2=anint[m][i]+(mint[m][i]/12.);
   double **newm;              if ((k2>=dateprev1) && (k2<=dateprev2)) {
   double **dnewm,**doldm;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int i, j, nhstepm, hstepm, h;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   int k, cptcode;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   double *xp;                if (m<lastpass) {
   double **gp, **gm;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   double ***gradg, ***trgradg;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   double ***p3mat;                }
   double age,agelim;                
   int theta;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
    fprintf(ficresvij,"# Covariances of life expectancies\n");                  k2cpt++;
   fprintf(ficresvij,"# Age");                }
   for(i=1; i<=nlstate;i++)              }
     for(j=1; j<=nlstate;j++)            }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          }
   fprintf(ficresvij,"\n");        }
          
   xp=vector(1,npar);        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);        if  (cptcovn>0) {
            fprintf(ficresp, "\n#********** Variable "); 
   hstepm=1*YEARM; /* Every year of age */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          fprintf(ficresp, "**********\n#");
   agelim = AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for(i=1; i<=nlstate;i++) 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     if (stepm >= YEARM) hstepm=1;        fprintf(ficresp, "\n");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=iagemin; i <= iagemax+3; i++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          if(i==iagemax+3){
     gp=matrix(0,nhstepm,1,nlstate);            fprintf(ficlog,"Total");
     gm=matrix(0,nhstepm,1,nlstate);          }else{
             if(first==1){
     for(theta=1; theta <=npar; theta++){              first=0;
       for(i=1; i<=npar; i++){ /* Computes gradient */              printf("See log file for details...\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            }
       }            fprintf(ficlog,"Age %d", i);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       if (popbased==1) {              pp[jk] += freq[jk][m][i]; 
         for(i=1; i<=nlstate;i++)          }
           prlim[i][i]=probs[(int)age][i][ij];          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=-1, pos=0; m <=0 ; m++)
                    pos += freq[jk][m][i];
       for(j=1; j<= nlstate; j++){            if(pp[jk]>=1.e-10){
         for(h=0; h<=nhstepm; h++){              if(first==1){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];              }
         }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       }            }else{
                  if(first==1)
       for(i=1; i<=npar; i++) /* Computes gradient */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
   
       if (popbased==1) {          for(jk=1; jk <=nlstate ; jk++){
         for(i=1; i<=nlstate;i++)            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           prlim[i][i]=probs[(int)age][i][ij];              pp[jk] += freq[jk][m][i];
       }          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       for(j=1; j<= nlstate; j++){            pos += pp[jk];
         for(h=0; h<=nhstepm; h++){            posprop += prop[jk][i];
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          for(jk=1; jk <=nlstate ; jk++){
         }            if(pos>=1.e-5){
       }              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for(j=1; j<= nlstate; j++)              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         for(h=0; h<=nhstepm; h++){            }else{
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              if(first==1)
         }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     } /* End theta */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            if( i <= iagemax){
               if(pos>=1.e-5){
     for(h=0; h<=nhstepm; h++)                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       for(j=1; j<=nlstate;j++)                probs[i][jk][j1]= pp[jk]/pos;
         for(theta=1; theta <=npar; theta++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           trgradg[h][j][theta]=gradg[h][theta][j];              }
               else
     for(i=1;i<=nlstate;i++)                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       for(j=1;j<=nlstate;j++)            }
         vareij[i][j][(int)age] =0.;          }
     for(h=0;h<=nhstepm;h++){          
       for(k=0;k<=nhstepm;k++){          for(jk=-1; jk <=nlstate+ndeath; jk++)
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            for(m=-1; m <=nlstate+ndeath; m++)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);              if(freq[jk][m][i] !=0 ) {
         for(i=1;i<=nlstate;i++)              if(first==1)
           for(j=1;j<=nlstate;j++)                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             vareij[i][j][(int)age] += doldm[i][j];                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       }              }
     }          if(i <= iagemax)
     h=1;            fprintf(ficresp,"\n");
     if (stepm >= YEARM) h=stepm/YEARM;          if(first==1)
     fprintf(ficresvij,"%.0f ",age );            printf("Others in log...\n");
     for(i=1; i<=nlstate;i++)          fprintf(ficlog,"\n");
       for(j=1; j<=nlstate;j++){        }
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);      }
       }    }
     fprintf(ficresvij,"\n");    dateintmean=dateintsum/k2cpt; 
     free_matrix(gp,0,nhstepm,1,nlstate);   
     free_matrix(gm,0,nhstepm,1,nlstate);    fclose(ficresp);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    free_vector(pp,1,nlstate);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   } /* End age */    /* End of Freq */
    }
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);  /************ Prevalence ********************/
   free_matrix(dnewm,1,nlstate,1,nlstate);  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
 }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
 /************ Variance of prevlim ******************/       We still use firstpass and lastpass as another selection.
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    */
 {   
   /* Variance of prevalence limit */    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double ***freq; /* Frequencies */
   double **newm;    double *pp, **prop;
   double **dnewm,**doldm;    double pos,posprop; 
   int i, j, nhstepm, hstepm;    double  y2; /* in fractional years */
   int k, cptcode;    int iagemin, iagemax;
   double *xp;  
   double *gp, *gm;    iagemin= (int) agemin;
   double **gradg, **trgradg;    iagemax= (int) agemax;
   double age,agelim;    /*pp=vector(1,nlstate);*/
   int theta;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
        /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    j1=0;
   fprintf(ficresvpl,"# Age");    
   for(i=1; i<=nlstate;i++)    j=cptcoveff;
       fprintf(ficresvpl," %1d-%1d",i,i);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fprintf(ficresvpl,"\n");    
     for(k1=1; k1<=j;k1++){
   xp=vector(1,npar);      for(i1=1; i1<=ncodemax[k1];i1++){
   dnewm=matrix(1,nlstate,1,npar);        j1++;
   doldm=matrix(1,nlstate,1,nlstate);        
          for (i=1; i<=nlstate; i++)  
   hstepm=1*YEARM; /* Every year of age */          for(m=iagemin; m <= iagemax+3; m++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            prop[i][m]=0.0;
   agelim = AGESUP;       
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for (i=1; i<=imx; i++) { /* Each individual */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          bool=1;
     if (stepm >= YEARM) hstepm=1;          if  (cptcovn>0) {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            for (z1=1; z1<=cptcoveff; z1++) 
     gradg=matrix(1,npar,1,nlstate);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     gp=vector(1,nlstate);                bool=0;
     gm=vector(1,nlstate);          } 
           if (bool==1) { 
     for(theta=1; theta <=npar; theta++){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       for(i=1; i<=npar; i++){ /* Computes gradient */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for(i=1;i<=nlstate;i++)                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         gp[i] = prlim[i][i];                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                      /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       for(i=1; i<=npar; i++) /* Computes gradient */                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                  prop[s[m][i]][iagemax+3] += weight[i]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                } 
       for(i=1;i<=nlstate;i++)              }
         gm[i] = prlim[i][i];            } /* end selection of waves */
           }
       for(i=1;i<=nlstate;i++)        }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        for(i=iagemin; i <= iagemax+3; i++){  
     } /* End theta */          
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     trgradg =matrix(1,nlstate,1,npar);            posprop += prop[jk][i]; 
           } 
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)          for(jk=1; jk <=nlstate ; jk++){     
         trgradg[j][theta]=gradg[theta][j];            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
     for(i=1;i<=nlstate;i++)                probs[i][jk][j1]= prop[jk][i]/posprop;
       varpl[i][(int)age] =0.;              } 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            } 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          }/* end jk */ 
     for(i=1;i<=nlstate;i++)        }/* end i */ 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      } /* end i1 */
     } /* end k1 */
     fprintf(ficresvpl,"%.0f ",age );    
     for(i=1; i<=nlstate;i++)    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    /*free_vector(pp,1,nlstate);*/
     fprintf(ficresvpl,"\n");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     free_vector(gp,1,nlstate);  }  /* End of prevalence */
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);  /************* Waves Concatenation ***************/
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
   free_vector(xp,1,npar);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   free_matrix(doldm,1,nlstate,1,npar);       Death is a valid wave (if date is known).
   free_matrix(dnewm,1,nlstate,1,nlstate);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 }       and mw[mi+1][i]. dh depends on stepm.
        */
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    int i, mi, m;
 {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   int i, j;       double sum=0., jmean=0.;*/
   int k=0, cptcode;    int first;
   double **dnewm,**doldm;    int j, k=0,jk, ju, jl;
   double *xp;    double sum=0.;
   double *gp, *gm;    first=0;
   double **gradg, **trgradg;    jmin=1e+5;
   double age,agelim, cov[NCOVMAX];    jmax=-1;
   int theta;    jmean=0.;
   char fileresprob[FILENAMELENGTH];    for(i=1; i<=imx; i++){
       mi=0;
   strcpy(fileresprob,"prob");      m=firstpass;
   strcat(fileresprob,fileres);      while(s[m][i] <= nlstate){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        if(s[m][i]>=1)
     printf("Problem with resultfile: %s\n", fileresprob);          mw[++mi][i]=m;
   }        if(m >=lastpass)
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);          break;
          else
           m++;
   xp=vector(1,npar);      }/* end while */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      if (s[m][i] > nlstate){
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        mi++;     /* Death is another wave */
          /* if(mi==0)  never been interviewed correctly before death */
   cov[1]=1;           /* Only death is a correct wave */
   for (age=bage; age<=fage; age ++){        mw[mi][i]=m;
     cov[2]=age;      }
     gradg=matrix(1,npar,1,9);  
     trgradg=matrix(1,9,1,npar);      wav[i]=mi;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      if(mi==0){
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        if(first==0){
              printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
     for(theta=1; theta <=npar; theta++){          first=1;
       for(i=1; i<=npar; i++)        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        if(first==1){
                fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        }
          } /* end mi==0 */
       k=0;    } /* End individuals */
       for(i=1; i<= (nlstate+ndeath); i++){  
         for(j=1; j<=(nlstate+ndeath);j++){    for(i=1; i<=imx; i++){
            k=k+1;      for(mi=1; mi<wav[i];mi++){
           gp[k]=pmmij[i][j];        if (stepm <=0)
         }          dh[mi][i]=1;
       }        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       for(i=1; i<=npar; i++)            if (agedc[i] < 2*AGESUP) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                if(j==0) j=1;  /* Survives at least one month after exam */
             k=k+1;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            if (j >= jmax) jmax=j;
       k=0;            if (j <= jmin) jmin=j;
       for(i=1; i<=(nlstate+ndeath); i++){            sum=sum+j;
         for(j=1; j<=(nlstate+ndeath);j++){            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           k=k+1;            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           gm[k]=pmmij[i][j];            if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }            }
       }          }
                else{
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     }            k=k+1;
             if (j >= jmax) jmax=j;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)            else if (j <= jmin)jmin=j;
       for(theta=1; theta <=npar; theta++)            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       trgradg[j][theta]=gradg[theta][j];            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
              if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);            sum=sum+j;
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          }
           jk= j/stepm;
      pmij(pmmij,cov,ncovmodel,x,nlstate);          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
      k=0;          if(mle <=1){ 
      for(i=1; i<=(nlstate+ndeath); i++){            if(jl==0){
        for(j=1; j<=(nlstate+ndeath);j++){              dh[mi][i]=jk;
          k=k+1;              bh[mi][i]=0;
          gm[k]=pmmij[i][j];            }else{ /* We want a negative bias in order to only have interpolation ie
         }                    * at the price of an extra matrix product in likelihood */
      }              dh[mi][i]=jk+1;
                    bh[mi][i]=ju;
      /*printf("\n%d ",(int)age);            }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          }else{
                    if(jl <= -ju){
               dh[mi][i]=jk;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              bh[mi][i]=jl;       /* bias is positive if real duration
      }*/                                   * is higher than the multiple of stepm and negative otherwise.
                                    */
   fprintf(ficresprob,"\n%d ",(int)age);            }
             else{
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){              dh[mi][i]=jk+1;
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);              bh[mi][i]=ju;
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);            }
   }            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              bh[mi][i]=ju; /* At least one step */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }
 }        } /* end if mle */
  free_vector(xp,1,npar);      } /* end wave */
 fclose(ficresprob);    }
  exit(0);    jmean=sum/k;
 }    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 /***********************************************/   }
 /**************** Main Program *****************/  
 /***********************************************/  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
 /*int main(int argc, char *argv[])*/  {
 int main()    
 {    int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    cptcoveff=0; 
   double agedeb, agefin,hf;   
   double agemin=1.e20, agemax=-1.e20;    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
   double fret;  
   double **xi,tmp,delta;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   double dum; /* Dummy variable */                                 modality*/ 
   double ***p3mat;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   int *indx;        Ndum[ij]++; /*store the modality */
   char line[MAXLINE], linepar[MAXLINE];        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   char title[MAXLINE];        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];                                         Tvar[j]. If V=sex and male is 0 and 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];                                         female is 1, then  cptcode=1.*/
   char filerest[FILENAMELENGTH];      }
   char fileregp[FILENAMELENGTH];  
   char popfile[FILENAMELENGTH];      for (i=0; i<=cptcode; i++) {
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   int firstobs=1, lastobs=10;      }
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;      ij=1; 
   int ju,jl, mi;      for (i=1; i<=ncodemax[j]; i++) {
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        for (k=0; k<= maxncov; k++) {
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          if (Ndum[k] != 0) {
   int mobilav=0, fprev, lprev ,fprevfore=1, lprevfore=1,nforecast,popforecast=0;            nbcode[Tvar[j]][ij]=k; 
   int hstepm, nhstepm;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   int *popage,boolprev=0;/*boolprev=0 if date and zero if wave*/            
             ij++;
   double bage, fage, age, agelim, agebase;          }
   double ftolpl=FTOL;          if (ij > ncodemax[j]) break; 
   double **prlim;        }  
   double *severity;      } 
   double ***param; /* Matrix of parameters */    }  
   double  *p;  
   double **matcov; /* Matrix of covariance */   for (k=0; k< maxncov; k++) Ndum[k]=0;
   double ***delti3; /* Scale */  
   double *delti; /* Scale */   for (i=1; i<=ncovmodel-2; i++) { 
   double ***eij, ***vareij;     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   double **varpl; /* Variances of prevalence limits by age */     ij=Tvar[i];
   double *epj, vepp;     Ndum[ij]++;
   double kk1, kk2;   }
   double *popeffectif,*popcount;  
   double dateprev1, dateprev2;   ij=1;
    for (i=1; i<= maxncov; i++) {
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";     if((Ndum[i]!=0) && (i<=ncovcol)){
   char *alph[]={"a","a","b","c","d","e"}, str[4];       Tvaraff[ij]=i; /*For printing */
        ij++;
      }
   char z[1]="c", occ;   }
 #include <sys/time.h>   
 #include <time.h>   cptcoveff=ij-1; /*Number of simple covariates*/
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  }
   char strfprev[10], strlprev[10];  
   char strfprevfore[10], strlprevfore[10];  /*********** Health Expectancies ****************/
   /* long total_usecs;  
   struct timeval start_time, end_time;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  {
     /* Health expectancies */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   printf("\nIMACH, Version 0.7");    double age, agelim, hf;
   printf("\nEnter the parameter file name: ");    double ***p3mat,***varhe;
     double **dnewm,**doldm;
 #ifdef windows    double *xp;
   scanf("%s",pathtot);    double **gp, **gm;
   getcwd(pathcd, size);    double ***gradg, ***trgradg;
   /*cygwin_split_path(pathtot,path,optionfile);    int theta;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
 split(pathtot, path,optionfile);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   chdir(path);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   replace(pathc,path);    
 #endif    fprintf(ficreseij,"# Health expectancies\n");
 #ifdef unix    fprintf(ficreseij,"# Age");
   scanf("%s",optionfile);    for(i=1; i<=nlstate;i++)
 #endif      for(j=1; j<=nlstate;j++)
         fprintf(ficreseij," %1d-%1d (SE)",i,j);
 /*-------- arguments in the command line --------*/    fprintf(ficreseij,"\n");
   
   strcpy(fileres,"r");    if(estepm < stepm){
   strcat(fileres, optionfile);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   /*---------arguments file --------*/    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
   if((ficpar=fopen(optionfile,"r"))==NULL)    {     * This is mainly to measure the difference between two models: for example
     printf("Problem with optionfile %s\n",optionfile);     * if stepm=24 months pijx are given only every 2 years and by summing them
     goto end;     * we are calculating an estimate of the Life Expectancy assuming a linear 
   }     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   strcpy(filereso,"o");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   strcat(filereso,fileres);     * to compare the new estimate of Life expectancy with the same linear 
   if((ficparo=fopen(filereso,"w"))==NULL) {     * hypothesis. A more precise result, taking into account a more precise
     printf("Problem with Output resultfile: %s\n", filereso);goto end;     * curvature will be obtained if estepm is as small as stepm. */
   }  
     /* For example we decided to compute the life expectancy with the smallest unit */
   /* Reads comments: lines beginning with '#' */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   while((c=getc(ficpar))=='#' && c!= EOF){       nhstepm is the number of hstepm from age to agelim 
     ungetc(c,ficpar);       nstepm is the number of stepm from age to agelin. 
     fgets(line, MAXLINE, ficpar);       Look at hpijx to understand the reason of that which relies in memory size
     puts(line);       and note for a fixed period like estepm months */
     fputs(line,ficparo);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   ungetc(c,ficpar);       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);       results. So we changed our mind and took the option of the best precision.
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    agelim=AGESUP;
     fgets(line, MAXLINE, ficpar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     puts(line);      /* nhstepm age range expressed in number of stepm */
     fputs(line,ficparo);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   ungetc(c,ficpar);      /* if (stepm >= YEARM) hstepm=1;*/
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fscanf(ficpar,"fprevalence=%s lprevalence=%s pop_based=%d\n",strfprev,strlprev,&popbased);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficparo,"fprevalence=%s lprevalence=%s pop_based=%d\n",strfprev,strlprev,popbased);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
        gp=matrix(0,nhstepm,1,nlstate*nlstate);
   /* printf("%s %s",strfprev,strlprev);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
      exit(0);*/  
  while((c=getc(ficpar))=='#' && c!= EOF){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     ungetc(c,ficpar);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     fgets(line, MAXLINE, ficpar);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     puts(line);   
     fputs(line,ficparo);  
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   ungetc(c,ficpar);  
        /* Computing Variances of health expectancies */
   fscanf(ficpar,"fprevalence=%s lprevalence=%s nforecast=%d mob_average=%d\n",strfprevfore,strlprevfore,&nforecast,&mobilav);  
   fprintf(ficparo,"fprevalence=%s lprevalence=%s nforecast=%d mob_average=%d\n",strfprevfore,strlprevfore,nforecast,mobilav);       for(theta=1; theta <=npar; theta++){
              for(i=1; i<=npar; i++){ 
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
 while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fgets(line, MAXLINE, ficpar);    
     puts(line);        cptj=0;
     fputs(line,ficparo);        for(j=1; j<= nlstate; j++){
   }          for(i=1; i<=nlstate; i++){
   ungetc(c,ficpar);            cptj=cptj+1;
              for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   fscanf(ficpar,"popforecast=%d popfile=%s\n",&popforecast,popfile);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
              }
   covar=matrix(0,NCOVMAX,1,n);          }
   cptcovn=0;        }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;       
        
   ncovmodel=2+cptcovn;        for(i=1; i<=npar; i++) 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   /* Read guess parameters */        
   /* Reads comments: lines beginning with '#' */        cptj=0;
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<= nlstate; j++){
     ungetc(c,ficpar);          for(i=1;i<=nlstate;i++){
     fgets(line, MAXLINE, ficpar);            cptj=cptj+1;
     puts(line);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     fputs(line,ficparo);  
   }              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   ungetc(c,ficpar);            }
            }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
     for(i=1; i <=nlstate; i++)        for(j=1; j<= nlstate*nlstate; j++)
     for(j=1; j <=nlstate+ndeath-1; j++){          for(h=0; h<=nhstepm-1; h++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       fprintf(ficparo,"%1d%1d",i1,j1);          }
       printf("%1d%1d",i,j);       } 
       for(k=1; k<=ncovmodel;k++){     
         fscanf(ficpar," %lf",&param[i][j][k]);  /* End theta */
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       }  
       fscanf(ficpar,"\n");       for(h=0; h<=nhstepm-1; h++)
       printf("\n");        for(j=1; j<=nlstate*nlstate;j++)
       fprintf(ficparo,"\n");          for(theta=1; theta <=npar; theta++)
     }            trgradg[h][j][theta]=gradg[h][theta][j];
         
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
        for(i=1;i<=nlstate*nlstate;i++)
   p=param[1][1];        for(j=1;j<=nlstate*nlstate;j++)
            varhe[i][j][(int)age] =0.;
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){       printf("%d|",(int)age);fflush(stdout);
     ungetc(c,ficpar);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fgets(line, MAXLINE, ficpar);       for(h=0;h<=nhstepm-1;h++){
     puts(line);        for(k=0;k<=nhstepm-1;k++){
     fputs(line,ficparo);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   ungetc(c,ficpar);          for(i=1;i<=nlstate*nlstate;i++)
             for(j=1;j<=nlstate*nlstate;j++)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        }
   for(i=1; i <=nlstate; i++){      }
     for(j=1; j <=nlstate+ndeath-1; j++){      /* Computing expectancies */
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(i=1; i<=nlstate;i++)
       printf("%1d%1d",i,j);        for(j=1; j<=nlstate;j++)
       fprintf(ficparo,"%1d%1d",i1,j1);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       for(k=1; k<=ncovmodel;k++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         fscanf(ficpar,"%le",&delti3[i][j][k]);            
         printf(" %le",delti3[i][j][k]);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }          }
       fscanf(ficpar,"\n");  
       printf("\n");      fprintf(ficreseij,"%3.0f",age );
       fprintf(ficparo,"\n");      cptj=0;
     }      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
   delti=delti3[1][1];          cptj++;
            fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficreseij,"\n");
     ungetc(c,ficpar);     
     fgets(line, MAXLINE, ficpar);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     puts(line);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     fputs(line,ficparo);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   ungetc(c,ficpar);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }
   matcov=matrix(1,npar,1,npar);    printf("\n");
   for(i=1; i <=npar; i++){    fprintf(ficlog,"\n");
     fscanf(ficpar,"%s",&str);  
     printf("%s",str);    free_vector(xp,1,npar);
     fprintf(ficparo,"%s",str);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     for(j=1; j <=i; j++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       fscanf(ficpar," %le",&matcov[i][j]);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       printf(" %.5le",matcov[i][j]);  }
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }  /************ Variance ******************/
     fscanf(ficpar,"\n");  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
     printf("\n");  {
     fprintf(ficparo,"\n");    /* Variance of health expectancies */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   for(i=1; i <=npar; i++)    /* double **newm;*/
     for(j=i+1;j<=npar;j++)    double **dnewm,**doldm;
       matcov[i][j]=matcov[j][i];    double **dnewmp,**doldmp;
        int i, j, nhstepm, hstepm, h, nstepm ;
   printf("\n");    int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     /*-------- data file ----------*/    double ***gradg, ***trgradg; /*for var eij */
     if((ficres =fopen(fileres,"w"))==NULL) {    double **gradgp, **trgradgp; /* for var p point j */
       printf("Problem with resultfile: %s\n", fileres);goto end;    double *gpp, *gmp; /* for var p point j */
     }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     fprintf(ficres,"#%s\n",version);    double ***p3mat;
        double age,agelim, hf;
     if((fic=fopen(datafile,"r"))==NULL)    {    double ***mobaverage;
       printf("Problem with datafile: %s\n", datafile);goto end;    int theta;
     }    char digit[4];
     char digitp[25];
     n= lastobs;  
     severity = vector(1,maxwav);    char fileresprobmorprev[FILENAMELENGTH];
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);    if(popbased==1){
     moisnais=vector(1,n);      if(mobilav!=0)
     annais=vector(1,n);        strcpy(digitp,"-populbased-mobilav-");
     moisdc=vector(1,n);      else strcpy(digitp,"-populbased-nomobil-");
     andc=vector(1,n);    }
     agedc=vector(1,n);    else 
     cod=ivector(1,n);      strcpy(digitp,"-stablbased-");
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    if (mobilav!=0) {
     mint=matrix(1,maxwav,1,n);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     anint=matrix(1,maxwav,1,n);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     s=imatrix(1,maxwav+1,1,n);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     adl=imatrix(1,maxwav+1,1,n);            printf(" Error in movingaverage mobilav=%d\n",mobilav);
     tab=ivector(1,NCOVMAX);      }
     ncodemax=ivector(1,8);    }
   
     i=1;    strcpy(fileresprobmorprev,"prmorprev"); 
     while (fgets(line, MAXLINE, fic) != NULL)    {    sprintf(digit,"%-d",ij);
       if ((i >= firstobs) && (i <=lastobs)) {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
            strcat(fileresprobmorprev,digit); /* Tvar to be done */
         for (j=maxwav;j>=1;j--){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    strcat(fileresprobmorprev,fileres);
           strcpy(line,stra);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         }    }
            printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         for (j=ncov;j>=1;j--){    }  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresprobmorprev,"\n");
         }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
         num[i]=atol(stra);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
              fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      exit(0);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    }
     else{
         i=i+1;      fprintf(ficgp,"\n# Routine varevsij");
       }    }
     }    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
     /* printf("ii=%d", ij);      printf("Problem with html file: %s\n", optionfilehtm);
        scanf("%d",i);*/      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
   imx=i-1; /* Number of individuals */      exit(0);
     }
   /* for (i=1; i<=imx; i++){    else{
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    }
     }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/  
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   /* Calculation of the number of parameter from char model*/    fprintf(ficresvij,"# Age");
   Tvar=ivector(1,15);    for(i=1; i<=nlstate;i++)
   Tprod=ivector(1,15);      for(j=1; j<=nlstate;j++)
   Tvaraff=ivector(1,15);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   Tvard=imatrix(1,15,1,2);    fprintf(ficresvij,"\n");
   Tage=ivector(1,15);        
        xp=vector(1,npar);
   if (strlen(model) >1){    dnewm=matrix(1,nlstate,1,npar);
     j=0, j1=0, k1=1, k2=1;    doldm=matrix(1,nlstate,1,nlstate);
     j=nbocc(model,'+');    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     j1=nbocc(model,'*');    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     cptcovn=j+1;  
     cptcovprod=j1;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
        gpp=vector(nlstate+1,nlstate+ndeath);
        gmp=vector(nlstate+1,nlstate+ndeath);
     strcpy(modelsav,model);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    
       printf("Error. Non available option model=%s ",model);    if(estepm < stepm){
       goto end;      printf ("Problem %d lower than %d\n",estepm, stepm);
     }    }
        else  hstepm=estepm;   
     for(i=(j+1); i>=1;i--){    /* For example we decided to compute the life expectancy with the smallest unit */
       cutv(stra,strb,modelsav,'+');    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);       nhstepm is the number of hstepm from age to agelim 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/       nstepm is the number of stepm from age to agelin. 
       /*scanf("%d",i);*/       Look at hpijx to understand the reason of that which relies in memory size
       if (strchr(strb,'*')) {       and note for a fixed period like k years */
         cutv(strd,strc,strb,'*');    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         if (strcmp(strc,"age")==0) {       survival function given by stepm (the optimization length). Unfortunately it
           cptcovprod--;       means that if the survival funtion is printed every two years of age and if
           cutv(strb,stre,strd,'V');       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           Tvar[i]=atoi(stre);       results. So we changed our mind and took the option of the best precision.
           cptcovage++;    */
             Tage[cptcovage]=i;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             /*printf("stre=%s ", stre);*/    agelim = AGESUP;
         }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         else if (strcmp(strd,"age")==0) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           cptcovprod--;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           cutv(strb,stre,strc,'V');      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           Tvar[i]=atoi(stre);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           cptcovage++;      gp=matrix(0,nhstepm,1,nlstate);
           Tage[cptcovage]=i;      gm=matrix(0,nhstepm,1,nlstate);
         }  
         else {  
           cutv(strb,stre,strc,'V');      for(theta=1; theta <=npar; theta++){
           Tvar[i]=ncov+k1;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           cutv(strb,strc,strd,'V');          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           Tprod[k1]=i;        }
           Tvard[k1][1]=atoi(strc);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           Tvard[k1][2]=atoi(stre);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        if (popbased==1) {
           for (k=1; k<=lastobs;k++)          if(mobilav ==0){
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            for(i=1; i<=nlstate;i++)
           k1++;              prlim[i][i]=probs[(int)age][i][ij];
           k2=k2+2;          }else{ /* mobilav */ 
         }            for(i=1; i<=nlstate;i++)
       }              prlim[i][i]=mobaverage[(int)age][i][ij];
       else {          }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        }
        /*  scanf("%d",i);*/    
       cutv(strd,strc,strb,'V');        for(j=1; j<= nlstate; j++){
       Tvar[i]=atoi(strc);          for(h=0; h<=nhstepm; h++){
       }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       strcpy(modelsav,stra);                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          }
         scanf("%d",i);*/        }
     }        /* This for computing probability of death (h=1 means
 }           computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        */
   printf("cptcovprod=%d ", cptcovprod);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   scanf("%d ",i);*/          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     fclose(fic);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
     /*  if(mle==1){*/        /* end probability of death */
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     /*-calculation of age at interview from date of interview and age at death -*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     agev=matrix(1,maxwav,1,imx);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
    for (i=1; i<=imx; i++)        if (popbased==1) {
      for(m=2; (m<= maxwav); m++)          if(mobilav ==0){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            for(i=1; i<=nlstate;i++)
          anint[m][i]=9999;              prlim[i][i]=probs[(int)age][i][ij];
          s[m][i]=-1;          }else{ /* mobilav */ 
        }            for(i=1; i<=nlstate;i++)
                  prlim[i][i]=mobaverage[(int)age][i][ij];
     for (i=1; i<=imx; i++)  {          }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        }
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){        for(j=1; j<= nlstate; j++){
           if (s[m][i] == nlstate+1) {          for(h=0; h<=nhstepm; h++){
             if(agedc[i]>0)            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               if(moisdc[i]!=99 && andc[i]!=9999)              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
               agev[m][i]=agedc[i];          }
             else {        }
               if (andc[i]!=9999){        /* This for computing probability of death (h=1 means
               printf("Warning negative age at death: %d line:%d\n",num[i],i);           computed over hstepm matrices product = hstepm*stepm months) 
               agev[m][i]=-1;           as a weighted average of prlim.
               }        */
             }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           else if(s[m][i] !=9){ /* Should no more exist */           gmp[j] += prlim[i][i]*p3mat[i][j][1];
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        }    
             if(mint[m][i]==99 || anint[m][i]==9999)        /* end probability of death */
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){        for(j=1; j<= nlstate; j++) /* vareij */
               agemin=agev[m][i];          for(h=0; h<=nhstepm; h++){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
             }          }
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
             }        }
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/      } /* End theta */
           }  
           else { /* =9 */      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
             agev[m][i]=1;  
             s[m][i]=-1;      for(h=0; h<=nhstepm; h++) /* veij */
           }        for(j=1; j<=nlstate;j++)
         }          for(theta=1; theta <=npar; theta++)
         else /*= 0 Unknown */            trgradg[h][j][theta]=gradg[h][theta][j];
           agev[m][i]=1;  
       }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
            for(theta=1; theta <=npar; theta++)
     }          trgradgp[j][theta]=gradgp[theta][j];
     for (i=1; i<=imx; i++)  {    
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           printf("Error: Wrong value in nlstate or ndeath\n");        for(i=1;i<=nlstate;i++)
           goto end;        for(j=1;j<=nlstate;j++)
         }          vareij[i][j][(int)age] =0.;
       }  
     }      for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     free_vector(severity,1,maxwav);          for(i=1;i<=nlstate;i++)
     free_imatrix(outcome,1,maxwav+1,1,n);            for(j=1;j<=nlstate;j++)
     free_vector(moisnais,1,n);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     free_vector(annais,1,n);        }
     /* free_matrix(mint,1,maxwav,1,n);      }
        free_matrix(anint,1,maxwav,1,n);*/    
     free_vector(moisdc,1,n);      /* pptj */
     free_vector(andc,1,n);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
          for(j=nlstate+1;j<=nlstate+ndeath;j++)
     wav=ivector(1,imx);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          varppt[j][i]=doldmp[j][i];
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      /* end ppptj */
          /*  x centered again */
     /* Concatenates waves */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
       Tcode=ivector(1,100);        if(mobilav ==0){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          for(i=1; i<=nlstate;i++)
       ncodemax[1]=1;            prlim[i][i]=probs[(int)age][i][ij];
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        }else{ /* mobilav */ 
                for(i=1; i<=nlstate;i++)
    codtab=imatrix(1,100,1,10);            prlim[i][i]=mobaverage[(int)age][i][ij];
    h=0;        }
    m=pow(2,cptcoveff);      }
                 
    for(k=1;k<=cptcoveff; k++){      /* This for computing probability of death (h=1 means
      for(i=1; i <=(m/pow(2,k));i++){         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
        for(j=1; j <= ncodemax[k]; j++){         as a weighted average of prlim.
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      */
            h++;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
            if (h>m) h=1;codtab[h][k]=j;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
          }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
        }      }    
      }      /* end probability of death */
    }  
          fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
    /* Calculates basic frequencies. Computes observed prevalence at single age      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        and prints on file fileres'p'. */        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
     if ((nbocc(strfprev,'/')==1) && (nbocc(strlprev,'/')==1)){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
      boolprev=0;        }
      cutv(stra,strb,strfprev,'/');      } 
      dateprev1=(double)(atoi(strb)+atoi(stra)/12.);      fprintf(ficresprobmorprev,"\n");
      cutv(stra,strb,strlprev,'/');  
      dateprev2=(double)(atoi(strb)+atoi(stra)/12.);      fprintf(ficresvij,"%.0f ",age );
    }      for(i=1; i<=nlstate;i++)
            for(j=1; j<=nlstate;j++){
    else if ((nbocc(strfprev,'/')==0) &&(nbocc(strlprev,'/')==0)){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
      boolprev=1;        }
      fprev=atoi(strfprev); lprev=atoi(strlprev);      fprintf(ficresvij,"\n");
    }      free_matrix(gp,0,nhstepm,1,nlstate);
     else {      free_matrix(gm,0,nhstepm,1,nlstate);
       printf("Error in statement lprevalence or fprevalence\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       goto end;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        } /* End age */
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprev, lprev,mint,anint,boolprev,dateprev1,dateprev2);    free_vector(gpp,nlstate+1,nlstate+ndeath);
      free_vector(gmp,nlstate+1,nlstate+ndeath);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
        /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     /* For Powell, parameters are in a vector p[] starting at p[1]  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
     if(mle==1){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
     }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
        /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     /*--------- results files --------------*/  */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
    fprintf(ficres,"fprevalence=%s lprevalence=%s pop_based=%d\n",strfprev,strlprev,popbased);  
    fprintf(ficres,"fprevalence=%s lprevalence=%s nforecast=%d mob_average=%d\n",strfprevfore,strlprevfore,nforecast,mobilav);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
    jk=1;    free_matrix(dnewm,1,nlstate,1,npar);
    fprintf(ficres,"# Parameters\n");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    printf("# Parameters\n");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
    for(i=1,jk=1; i <=nlstate; i++){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      for(k=1; k <=(nlstate+ndeath); k++){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (k != i)    fclose(ficresprobmorprev);
          {    fclose(ficgp);
            printf("%d%d ",i,k);    fclose(fichtm);
            fprintf(ficres,"%1d%1d ",i,k);  }  
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);  /************ Variance of prevlim ******************/
              fprintf(ficres,"%f ",p[jk]);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
              jk++;  {
            }    /* Variance of prevalence limit */
            printf("\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
            fprintf(ficres,"\n");    double **newm;
          }    double **dnewm,**doldm;
      }    int i, j, nhstepm, hstepm;
    }    int k, cptcode;
  if(mle==1){    double *xp;
     /* Computing hessian and covariance matrix */    double *gp, *gm;
     ftolhess=ftol; /* Usually correct */    double **gradg, **trgradg;
     hesscov(matcov, p, npar, delti, ftolhess, func);    double age,agelim;
  }    int theta;
     fprintf(ficres,"# Scales\n");     
     printf("# Scales\n");    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
      for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficresvpl,"# Age");
       for(j=1; j <=nlstate+ndeath; j++){    for(i=1; i<=nlstate;i++)
         if (j!=i) {        fprintf(ficresvpl," %1d-%1d",i,i);
           fprintf(ficres,"%1d%1d",i,j);    fprintf(ficresvpl,"\n");
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){    xp=vector(1,npar);
             printf(" %.5e",delti[jk]);    dnewm=matrix(1,nlstate,1,npar);
             fprintf(ficres," %.5e",delti[jk]);    doldm=matrix(1,nlstate,1,nlstate);
             jk++;    
           }    hstepm=1*YEARM; /* Every year of age */
           printf("\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           fprintf(ficres,"\n");    agelim = AGESUP;
         }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
      }      if (stepm >= YEARM) hstepm=1;
          nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     k=1;      gradg=matrix(1,npar,1,nlstate);
     fprintf(ficres,"# Covariance\n");      gp=vector(1,nlstate);
     printf("# Covariance\n");      gm=vector(1,nlstate);
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;      for(theta=1; theta <=npar; theta++){
       i1=(i-1)/(ncovmodel*nlstate)+1;        for(i=1; i<=npar; i++){ /* Computes gradient */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       printf("%s%d%d",alph[k],i1,tab[i]);*/        }
       fprintf(ficres,"%3d",i);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       printf("%3d",i);        for(i=1;i<=nlstate;i++)
       for(j=1; j<=i;j++){          gp[i] = prlim[i][i];
         fprintf(ficres," %.5e",matcov[i][j]);      
         printf(" %.5e",matcov[i][j]);        for(i=1; i<=npar; i++) /* Computes gradient */
       }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficres,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       printf("\n");        for(i=1;i<=nlstate;i++)
       k++;          gm[i] = prlim[i][i];
     }  
            for(i=1;i<=nlstate;i++)
     while((c=getc(ficpar))=='#' && c!= EOF){          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       ungetc(c,ficpar);      } /* End theta */
       fgets(line, MAXLINE, ficpar);  
       puts(line);      trgradg =matrix(1,nlstate,1,npar);
       fputs(line,ficparo);  
     }      for(j=1; j<=nlstate;j++)
     ungetc(c,ficpar);        for(theta=1; theta <=npar; theta++)
            trgradg[j][theta]=gradg[theta][j];
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
          for(i=1;i<=nlstate;i++)
     if (fage <= 2) {        varpl[i][(int)age] =0.;
       bage = agemin;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       fage = agemax;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     }      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
            fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 /*------------ gnuplot -------------*/      fprintf(ficresvpl,"\n");
 chdir(pathcd);      free_vector(gp,1,nlstate);
   if((ficgp=fopen("graph.plt","w"))==NULL) {      free_vector(gm,1,nlstate);
     printf("Problem with file graph.gp");goto end;      free_matrix(gradg,1,npar,1,nlstate);
   }      free_matrix(trgradg,1,nlstate,1,npar);
 #ifdef windows    } /* End age */
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif    free_vector(xp,1,npar);
 m=pow(2,cptcoveff);    free_matrix(doldm,1,nlstate,1,npar);
      free_matrix(dnewm,1,nlstate,1,nlstate);
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {  }
    for (k1=1; k1<= m ; k1 ++) {  
   /************ Variance of one-step probabilities  ******************/
 #ifdef windows  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);  {
 #endif    int i, j=0,  i1, k1, l1, t, tj;
 #ifdef unix    int k2, l2, j1,  z1;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    int k=0,l, cptcode;
 #endif    int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 for (i=1; i<= nlstate ; i ++) {    double **dnewm,**doldm;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double *xp;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double *gp, *gm;
 }    double **gradg, **trgradg;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    double **mu;
     for (i=1; i<= nlstate ; i ++) {    double age,agelim, cov[NCOVMAX];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int theta;
 }    char fileresprob[FILENAMELENGTH];
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    char fileresprobcov[FILENAMELENGTH];
      for (i=1; i<= nlstate ; i ++) {    char fileresprobcor[FILENAMELENGTH];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double ***varpij;
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    strcpy(fileresprob,"prob"); 
 #ifdef unix    strcat(fileresprob,fileres);
 fprintf(ficgp,"\nset ter gif small size 400,300");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 #endif      printf("Problem with resultfile: %s\n", fileresprob);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
    }    }
   }    strcpy(fileresprobcov,"probcov"); 
   /*2 eme*/    strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   for (k1=1; k1<= m ; k1 ++) {      printf("Problem with resultfile: %s\n", fileresprobcov);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        }
     for (i=1; i<= nlstate+1 ; i ++) {    strcpy(fileresprobcor,"probcor"); 
       k=2*i;    strcat(fileresprobcor,fileres);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       for (j=1; j<= nlstate+1 ; j ++) {      printf("Problem with resultfile: %s\n", fileresprobcor);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       for (j=1; j<= nlstate+1 ; j ++) {    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }      fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficresprob,"# Age");
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficresprobcov,"# Age");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobcov,"# Age");
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=(nlstate+ndeath);j++){
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
          fprintf(ficresprobcor," p%1d-%1d ",i,j);
   /*3eme*/      }  
    /* fprintf(ficresprob,"\n");
   for (k1=1; k1<= m ; k1 ++) {    fprintf(ficresprobcov,"\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(ficresprobcor,"\n");
       k=2+nlstate*(cpt-1);   */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);   xp=vector(1,npar);
       for (i=1; i< nlstate ; i ++) {    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     }    first=1;
   }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
        printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   /* CV preval stat */      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   for (k1=1; k1<= m ; k1 ++) {      exit(0);
     for (cpt=1; cpt<nlstate ; cpt ++) {    }
       k=3;    else{
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);      fprintf(ficgp,"\n# Routine varprob");
       for (i=1; i< nlstate ; i ++)    }
         fprintf(ficgp,"+$%d",k+i+1);    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      printf("Problem with html file: %s\n", optionfilehtm);
            fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       l=3+(nlstate+ndeath)*cpt;      exit(0);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    }
       for (i=1; i< nlstate ; i ++) {    else{
         l=3+(nlstate+ndeath)*cpt;      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         fprintf(ficgp,"+$%d",l+i+1);      fprintf(fichtm,"\n");
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     }      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   }    
     }
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){    cov[1]=1;
     for(k=1; k <=(nlstate+ndeath); k++){    tj=cptcoveff;
       if (k != i) {    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         for(j=1; j <=ncovmodel; j++){    j1=0;
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    for(t=1; t<=tj;t++){
           /*fprintf(ficgp,"%s",alph[1]);*/      for(i1=1; i1<=ncodemax[t];i1++){ 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        j1++;
           jk++;        if  (cptcovn>0) {
           fprintf(ficgp,"\n");          fprintf(ficresprob, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficresprob, "**********\n#\n");
     }          fprintf(ficresprobcov, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
   for(jk=1; jk <=m; jk++) {          
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);          fprintf(ficgp, "\n#********** Variable "); 
    i=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    for(k2=1; k2<=nlstate; k2++) {          fprintf(ficgp, "**********\n#\n");
      k3=i;          
      for(k=1; k<=(nlstate+ndeath); k++) {          
        if (k != k2){          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 ij=1;          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         for(j=3; j <=ncovmodel; j++) {          
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          fprintf(ficresprobcor, "\n#********** Variable ");    
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             ij++;          fprintf(ficresprobcor, "**********\n#");    
           }        }
           else        
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for (age=bage; age<=fage; age ++){ 
         }          cov[2]=age;
           fprintf(ficgp,")/(1");          for (k=1; k<=cptcovn;k++) {
                    cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         for(k1=1; k1 <=nlstate; k1++){            }
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 ij=1;          for (k=1; k<=cptcovprod;k++)
           for(j=3; j <=ncovmodel; j++){            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
             ij++;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           }          gp=vector(1,(nlstate)*(nlstate+ndeath));
           else          gm=vector(1,(nlstate)*(nlstate+ndeath));
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      
           }          for(theta=1; theta <=npar; theta++){
           fprintf(ficgp,")");            for(i=1; i<=npar; i++)
         }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         i=i+ncovmodel;            
        }            k=0;
      }            for(i=1; i<= (nlstate); i++){
    }              for(j=1; j<=(nlstate+ndeath);j++){
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);                k=k+1;
   }                gp[k]=pmmij[i][j];
                  }
   fclose(ficgp);            }
                
 chdir(path);            for(i=1; i<=npar; i++)
                  xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     free_ivector(wav,1,imx);      
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              k=0;
     free_ivector(num,1,n);            for(i=1; i<=(nlstate); i++){
     free_vector(agedc,1,n);              for(j=1; j<=(nlstate+ndeath);j++){
     /*free_matrix(covar,1,NCOVMAX,1,n);*/                k=k+1;
     fclose(ficparo);                gm[k]=pmmij[i][j];
     fclose(ficres);              }
     /*  }*/            }
           
    /*________fin mle=1_________*/            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                  gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
    
     /* No more information from the sample is required now */          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   /* Reads comments: lines beginning with '#' */            for(theta=1; theta <=npar; theta++)
   while((c=getc(ficpar))=='#' && c!= EOF){              trgradg[j][theta]=gradg[theta][j];
     ungetc(c,ficpar);          
     fgets(line, MAXLINE, ficpar);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     puts(line);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     fputs(line,ficparo);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   ungetc(c,ficpar);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
            free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);          pmij(pmmij,cov,ncovmodel,x,nlstate);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          
 /*--------- index.htm --------*/          k=0;
           for(i=1; i<=(nlstate); i++){
   strcpy(optionfilehtm,optionfile);            for(j=1; j<=(nlstate+ndeath);j++){
   strcat(optionfilehtm,".htm");              k=k+1;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              mu[k][(int) age]=pmmij[i][j];
     printf("Problem with %s \n",optionfilehtm);goto end;            }
   }          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>              varpij[i][j][(int)age] = doldm[i][j];
 Total number of observations=%d <br>  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>          /*printf("\n%d ",(int)age);
 <hr  size=\"2\" color=\"#EC5E5E\">            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 <li>Outputs files<br><br>\n            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>            }*/
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>  
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>          fprintf(ficresprob,"\n%d ",(int)age);
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>          fprintf(ficresprobcov,"\n%d ",(int)age);
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>          fprintf(ficresprobcor,"\n%d ",(int)age);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>  
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
  fprintf(fichtm," <li>Graphs</li><p>");          }
           i=0;
  m=cptcoveff;          for (k=1; k<=(nlstate);k++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
  j1=0;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
  for(k1=1; k1<=m;k1++){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
    for(i1=1; i1<=ncodemax[k1];i1++){              for (j=1; j<=i;j++){
        j1++;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
        if (cptcovn > 0) {                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              }
          for (cpt=1; cpt<=cptcoveff;cpt++)            }
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);          }/* end of loop for state */
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        } /* end of loop for age */
        }  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        /* Confidence intervalle of pij  */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            /*
        for(cpt=1; cpt<nlstate;cpt++){          fprintf(ficgp,"\nset noparametric;unset label");
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
        }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     for(cpt=1; cpt<=nlstate;cpt++) {          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 interval) in state (%d): v%s%d%d.gif <br>          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          */
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        first1=1;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        for (k2=1; k2<=(nlstate);k2++){
      }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            if(l2==k2) continue;
 health expectancies in states (1) and (2): e%s%d.gif<br>            j=(k2-1)*(nlstate+ndeath)+l2;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            for (k1=1; k1<=(nlstate);k1++){
 fprintf(fichtm,"\n</body>");              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
    }                if(l1==k1) continue;
  }                i=(k1-1)*(nlstate+ndeath)+l1;
 fclose(fichtm);                if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
   /*--------------- Prevalence limit --------------*/                  if ((int)age %5==0){
                      v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   strcpy(filerespl,"pl");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   strcat(filerespl,fileres);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                    mu1=mu[i][(int) age]/stepm*YEARM ;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                    mu2=mu[j][(int) age]/stepm*YEARM;
   }                    c12=cv12/sqrt(v1*v2);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                    /* Computing eigen value of matrix of covariance */
   fprintf(ficrespl,"#Prevalence limit\n");                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   fprintf(ficrespl,"#Age ");                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                    /* Eigen vectors */
   fprintf(ficrespl,"\n");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                      /*v21=sqrt(1.-v11*v11); *//* error */
   prlim=matrix(1,nlstate,1,nlstate);                    v21=(lc1-v1)/cv12*v11;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    v12=-v21;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    v22=v11;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    tnalp=v21/v11;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    if(first1==1){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                      first1=0;
   k=0;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   agebase=agemin;                    }
   agelim=agemax;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   ftolpl=1.e-10;                    /*printf(fignu*/
   i1=cptcoveff;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   if (cptcovn < 1){i1=1;}                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
   for(cptcov=1;cptcov<=i1;cptcov++){                      first=0;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      fprintf(ficgp,"\nset parametric;unset label");
         k=k+1;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         fprintf(ficrespl,"\n#******");                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
         for(j=1;j<=cptcoveff;j++)                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         fprintf(ficrespl,"******\n");                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
                              fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         for (age=agebase; age<=agelim; age++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           fprintf(ficrespl,"%.0f",age );                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           for(i=1; i<=nlstate;i++)                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           fprintf(ficrespl," %.5f", prlim[i][i]);                    }else{
           fprintf(ficrespl,"\n");                      first=0;
         }                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
       }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   fclose(ficrespl);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   /*------------- h Pij x at various ages ------------*/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                      }/* if first */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                  } /* age mod 5 */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                } /* end loop age */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
   }                first=1;
   printf("Computing pij: result on file '%s' \n", filerespij);              } /*l12 */
              } /* k12 */
   stepsize=(int) (stepm+YEARM-1)/YEARM;          } /*l1 */
   /*if (stepm<=24) stepsize=2;*/        }/* k1 */
       } /* loop covariates */
   agelim=AGESUP;    }
   hstepm=stepsize*YEARM; /* Every year of age */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      free_vector(xp,1,npar);
   k=0;    fclose(ficresprob);
   for(cptcov=1;cptcov<=i1;cptcov++){    fclose(ficresprobcov);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fclose(ficresprobcor);
       k=k+1;    fclose(ficgp);
         fprintf(ficrespij,"\n#****** ");    fclose(fichtm);
         for(j=1;j<=cptcoveff;j++)  }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");  
          /******************* Printing html file ***********/
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                    int lastpass, int stepm, int weightopt, char model[],\
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    int popforecast, int estepm ,\
           oldm=oldms;savm=savms;                    double jprev1, double mprev1,double anprev1, \
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      double jprev2, double mprev2,double anprev2){
           fprintf(ficrespij,"# Age");    int jj1, k1, i1, cpt;
           for(i=1; i<=nlstate;i++)    /*char optionfilehtm[FILENAMELENGTH];*/
             for(j=1; j<=nlstate+ndeath;j++)    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
               fprintf(ficrespij," %1d-%1d",i,j);      printf("Problem with %s \n",optionfilehtm), exit(0);
           fprintf(ficrespij,"\n");      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
           for (h=0; h<=nhstepm; h++){    }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
               for(j=1; j<=nlstate+ndeath;j++)   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
             fprintf(ficrespij,"\n");   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
           }   - Life expectancies by age and initial health status (estepm=%2d months): 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     <a href=\"e%s\">e%s</a> <br>\n</li>", \
           fprintf(ficrespij,"\n");    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
         }  
     }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   }  
    m=cptcoveff;
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   fclose(ficrespij);   jj1=0;
    for(k1=1; k1<=m;k1++){
   /*---------- Forecasting ------------------*/     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   strcpy(fileresf,"f");       if (cptcovn > 0) {
   strcat(fileresf,fileres);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   if((ficresf=fopen(fileresf,"w"))==NULL) {         for (cpt=1; cpt<=cptcoveff;cpt++) 
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   printf("Computing forecasting: result on file '%s' \n", fileresf);       }
        /* Pij */
  if ((nbocc(strfprevfore,'/')==1) && (nbocc(strlprevfore,'/')==1)){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
      boolprev=0;  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
      cutv(stra,strb,strfprevfore,'/');       /* Quasi-incidences */
      dateprev1=(double)(atoi(strb)+atoi(stra)/12.);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
      cutv(stra,strb,strlprevfore,'/');  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
      dateprev2=(double)(atoi(strb)+atoi(stra)/12.);         /* Stable prevalence in each health state */
    }         for(cpt=1; cpt<nlstate;cpt++){
               fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
    else if ((nbocc(strfprevfore,'/')==0) &&(nbocc(strlprevfore,'/')==0)){  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
      boolprev=1;         }
      fprev=atoi(strfprevfore); lprev=atoi(strlprevfore);       for(cpt=1; cpt<=nlstate;cpt++) {
    }          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
     else {  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
       printf("Error in statement lprevalence or fprevalence\n");       }
       goto end;       fprintf(fichtm,"\n<br>- Total life expectancy by age and
     }  health expectancies in states (1) and (2): e%s%d.png<br>
   <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprevfore, lprevfore,mint,anint,boolprev,dateprev1,dateprev2);     } /* end i1 */
     }/* End k1 */
   free_matrix(mint,1,maxwav,1,n);   fprintf(fichtm,"</ul>");
   free_matrix(anint,1,maxwav,1,n);  
   free_matrix(agev,1,maxwav,1,imx);  
   /* Mobile average */   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
    - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
   if (mobilav==1) {   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
       for (i=1; i<=nlstate;i++)   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;  /*  if(popforecast==1) fprintf(fichtm,"\n */
      /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     for (agedeb=bage+4; agedeb<=fage; agedeb++){  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       for (i=1; i<=nlstate;i++){  /*      <br>",fileres,fileres,fileres,fileres); */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  /*  else  */
           for (cpt=0;cpt<=4;cpt++){  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
           }  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;   m=cptcoveff;
         }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       }  
     }     jj1=0;
   }   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;       jj1++;
   if (stepm<=12) stepsize=1;       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   agelim=AGESUP;         for (cpt=1; cpt<=cptcoveff;cpt++) 
   hstepm=stepsize*YEARM; /* Every year of age */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }
   if (popforecast==1) {       for(cpt=1; cpt<=nlstate;cpt++) {
     if((ficpop=fopen(popfile,"r"))==NULL)    {         fprintf(fichtm,"<br>- Observed and period prevalence (with confident
       printf("Problem with population file : %s\n",popfile);goto end;  interval) in state (%d): v%s%d%d.png <br>
     }  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
     popage=ivector(0,AGESUP);       }
     popeffectif=vector(0,AGESUP);     } /* end i1 */
     popcount=vector(0,AGESUP);   }/* End k1 */
    fprintf(fichtm,"</ul>");
     i=1;    fclose(fichtm);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)  }
       {  
         i=i+1;  /******************* Gnuplot file **************/
       }  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     imx=i;  
      int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    int ng;
   }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    }
       k=k+1;  
       fprintf(ficresf,"\n#****** ");    /*#ifdef windows */
       for(j=1;j<=cptcoveff;j++) {      fprintf(ficgp,"cd \"%s\" \n",pathc);
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /*#endif */
       }  m=pow(2,cptcoveff);
       fprintf(ficresf,"******\n");    
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");   /* 1eme*/
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    for (cpt=1; cpt<= nlstate ; cpt ++) {
       if (popforecast==1)  fprintf(ficresf," [Population]");     for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
       for (agedeb=fage; agedeb>=bage; agedeb--){       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
         fprintf(ficresf,"\n%.f %.f 0",agedeb, agedeb);  
        if (mobilav==1) {       for (i=1; i<= nlstate ; i ++) {
         for(j=1; j<=nlstate;j++)         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficresf," %.3f",mobaverage[(int)agedeb][j][cptcod]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         }       }
         else {       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
           for(j=1; j<=nlstate;j++)       for (i=1; i<= nlstate ; i ++) {
           fprintf(ficresf," %.3f",probs[(int)agedeb][j][cptcod]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         }           else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        for(j=1; j<=ndeath;j++) fprintf(ficresf," 0.00000");       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
        if (popforecast==1) fprintf(ficresf," [%.f] ",popeffectif[(int)agedeb]);       for (i=1; i<= nlstate ; i ++) {
       }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
               else fprintf(ficgp," \%%*lf (\%%*lf)");
       for (cpt=1; cpt<=nforecast;cpt++) {       }  
         fprintf(ficresf,"\n");       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */     }
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    }
         nhstepm = nhstepm/hstepm;    /*2 eme*/
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/    
     for (k1=1; k1<= m ; k1 ++) { 
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
         oldm=oldms;savm=savms;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        
                      for (i=1; i<= nlstate+1 ; i ++) {
         for (h=0; h<=nhstepm; h++){        k=2*i;
                fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
          if (h*hstepm/YEARM*stepm==cpt)        for (j=1; j<= nlstate+1 ; j ++) {
             fprintf(ficresf,"\n%.f %.f %.f",agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                    else fprintf(ficgp," \%%*lf (\%%*lf)");
                  }   
          for(j=1; j<=nlstate+ndeath;j++) {        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
            kk1=0.;kk2=0;        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
            for(i=1; i<=nlstate;i++) {                fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
              if (mobilav==1)        for (j=1; j<= nlstate+1 ; j ++) {
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
              else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];          else fprintf(ficgp," \%%*lf (\%%*lf)");
              if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];        }   
             }        fprintf(ficgp,"\" t\"\" w l 0,");
            if (h*hstepm/YEARM*stepm==cpt) {        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
              fprintf(ficresf," %.3f", kk1);        for (j=1; j<= nlstate+1 ; j ++) {
                if (popforecast==1) fprintf(ficresf," [%.f]", kk2);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            }          else fprintf(ficgp," \%%*lf (\%%*lf)");
           }        }   
         }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        else fprintf(ficgp,"\" t\"\" w l 0,");
              }
       }    }
       }    
     }    /*3eme*/
   }    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (k1=1; k1<= m ; k1 ++) { 
   if (popforecast==1) {      for (cpt=1; cpt<= nlstate ; cpt ++) {
     free_ivector(popage,0,AGESUP);        k=2+nlstate*(2*cpt-2);
     free_vector(popeffectif,0,AGESUP);        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     free_vector(popcount,0,AGESUP);        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
   }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   free_imatrix(s,1,maxwav+1,1,n);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   free_vector(weight,1,n);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   fclose(ficresf);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   /*---------- Health expectancies and variances ------------*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   strcpy(filerest,"t");          
   strcat(filerest,fileres);        */
   if((ficrest=fopen(filerest,"w"))==NULL) {        for (i=1; i< nlstate ; i ++) {
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
   }          
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        } 
       }
     }
   strcpy(filerese,"e");    
   strcat(filerese,fileres);    /* CV preval stable (period) */
   if((ficreseij=fopen(filerese,"w"))==NULL) {    for (k1=1; k1<= m ; k1 ++) { 
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      for (cpt=1; cpt<=nlstate ; cpt ++) {
   }        k=3;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
  strcpy(fileresv,"v");        
   strcat(fileresv,fileres);        for (i=1; i< nlstate ; i ++)
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          fprintf(ficgp,"+$%d",k+i+1);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   }        
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
   k=0;        for (i=1; i< nlstate ; i ++) {
   for(cptcov=1;cptcov<=i1;cptcov++){          l=3+(nlstate+ndeath)*cpt;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficgp,"+$%d",l+i+1);
       k=k+1;        }
       fprintf(ficrest,"\n#****** ");        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       for(j=1;j<=cptcoveff;j++)      } 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }  
       fprintf(ficrest,"******\n");    
     /* proba elementaires */
       fprintf(ficreseij,"\n#****** ");    for(i=1,jk=1; i <=nlstate; i++){
       for(j=1;j<=cptcoveff;j++)      for(k=1; k <=(nlstate+ndeath); k++){
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        if (k != i) {
       fprintf(ficreseij,"******\n");          for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
       fprintf(ficresvij,"\n#****** ");            jk++; 
       for(j=1;j<=cptcoveff;j++)            fprintf(ficgp,"\n");
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          }
       fprintf(ficresvij,"******\n");        }
       }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     }
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);       for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       for(jk=1; jk <=m; jk++) {
       oldm=oldms;savm=savms;         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);         if (ng==2)
                 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");         else
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);           fprintf(ficgp,"\nset title \"Probability\"\n");
       fprintf(ficrest,"\n");         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
                 i=1;
       hf=1;         for(k2=1; k2<=nlstate; k2++) {
       if (stepm >= YEARM) hf=stepm/YEARM;           k3=i;
       epj=vector(1,nlstate+1);           for(k=1; k<=(nlstate+ndeath); k++) {
       for(age=bage; age <=fage ;age++){             if (k != k2){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);               if(ng==2)
         if (popbased==1) {                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
           for(i=1; i<=nlstate;i++)               else
             prlim[i][i]=probs[(int)age][i][k];                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
         }               ij=1;
                       for(j=3; j <=ncovmodel; j++) {
         fprintf(ficrest," %.0f",age);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                   ij++;
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];                 }
           }                 else
           epj[nlstate+1] +=epj[j];                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         }               }
         for(i=1, vepp=0.;i <=nlstate;i++)               fprintf(ficgp,")/(1");
           for(j=1;j <=nlstate;j++)               
             vepp += vareij[i][j][(int)age];               for(k1=1; k1 <=nlstate; k1++){   
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
         for(j=1;j <=nlstate;j++){                 ij=1;
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));                 for(j=3; j <=ncovmodel; j++){
         }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         fprintf(ficrest,"\n");                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       }                     ij++;
     }                   }
   }                   else
                             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                         }
                  fprintf(ficgp,")");
                }
  fclose(ficreseij);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
  fclose(ficresvij);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   fclose(ficrest);               i=i+ncovmodel;
   fclose(ficpar);             }
   free_vector(epj,1,nlstate+1);           } /* end k */
   /*  scanf("%d ",i); */         } /* end k2 */
        } /* end jk */
   /*------- Variance limit prevalence------*/       } /* end ng */
      fclose(ficgp); 
 strcpy(fileresvpl,"vpl");  }  /* end gnuplot */
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  /*************** Moving average **************/
     exit(0);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    int i, cpt, cptcod;
     int modcovmax =1;
  k=0;    int mobilavrange, mob;
  for(cptcov=1;cptcov<=i1;cptcov++){    double age;
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
      k=k+1;    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
      fprintf(ficresvpl,"\n#****** ");                             a covariate has 2 modalities */
      for(j=1;j<=cptcoveff;j++)    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
      fprintf(ficresvpl,"******\n");    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
            if(mobilav==1) mobilavrange=5; /* default */
      varpl=matrix(1,nlstate,(int) bage, (int) fage);      else mobilavrange=mobilav;
      oldm=oldms;savm=savms;      for (age=bage; age<=fage; age++)
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        for (i=1; i<=nlstate;i++)
    }          for (cptcod=1;cptcod<=modcovmax;cptcod++)
  }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
   fclose(ficresvpl);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
   /*---------- End : free ----------------*/      */ 
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      for (mob=3;mob <=mobilavrange;mob=mob+2){
          for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for (i=1; i<=nlstate;i++){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
                mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                  for (cpt=1;cpt<=(mob-1)/2;cpt++){
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
              }
   free_matrix(matcov,1,npar,1,npar);          }
   free_vector(delti,1,npar);        }/* end age */
        }/* end mob */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    }else return -1;
     return 0;
   printf("End of Imach\n");  }/* End movingaverage */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  /************** Forecasting ******************/
   /*printf("Total time was %d uSec.\n", total_usecs);*/  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   /*------ End -----------*/    /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
  end:       anproj2 year of en of projection (same day and month as proj1).
 #ifdef windows    */
  chdir(pathcd);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 #endif    int *popage;
      double agec; /* generic age */
  system("..\\gp37mgw\\wgnuplot graph.plt");    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
 #ifdef windows    double ***p3mat;
   while (z[0] != 'q') {    double ***mobaverage;
     chdir(pathcd);    char fileresf[FILENAMELENGTH];
     printf("\nType e to edit output files, c to start again, and q for exiting: ");  
     scanf("%s",z);    agelim=AGESUP;
     if (z[0] == 'c') system("./imach");    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     else if (z[0] == 'e') {   
       chdir(path);    strcpy(fileresf,"f"); 
       system(optionfilehtm);    strcat(fileresf,fileres);
     }    if((ficresf=fopen(fileresf,"w"))==NULL) {
     else if (z[0] == 'q') exit(0);      printf("Problem with forecast resultfile: %s\n", fileresf);
   }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 #endif    }
 }    printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   #include <sys/time.h>
   #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
     /* long total_usecs;
        struct timeval start_time, end_time;
     
        gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s",version);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1;
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.18  
changed lines
  Added in v.1.83


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>