Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.191

version 1.41.2.1, 2003/06/12 10:43:20 version 1.191, 2015/07/14 10:00:33
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.191  2015/07/14 10:00:33  brouard
      Summary: Some fixes
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.190  2015/05/05 08:51:13  brouard
   first survey ("cross") where individuals from different ages are    Summary: Adding digits in output parameters (7 digits instead of 6)
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Fix 1+age+.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.189  2015/04/30 14:45:16  brouard
   computed from the time spent in each health state according to a    Summary: 0.98q2
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.188  2015/04/30 08:27:53  brouard
   simplest model is the multinomial logistic model where pij is the    *** empty log message ***
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.187  2015/04/29 09:11:15  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    *** empty log message ***
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.186  2015/04/23 12:01:52  brouard
   where the markup *Covariates have to be included here again* invites    Summary: V1*age is working now, version 0.98q1
   you to do it.  More covariates you add, slower the  
   convergence.    Some codes had been disabled in order to simplify and Vn*age was
     working in the optimization phase, ie, giving correct MLE parameters,
   The advantage of this computer programme, compared to a simple    but, as usual, outputs were not correct and program core dumped.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.185  2015/03/11 13:26:42  brouard
   intermediate interview, the information is lost, but taken into    Summary: Inclusion of compile and links command line for Intel Compiler
   account using an interpolation or extrapolation.    
     Revision 1.184  2015/03/11 11:52:39  brouard
   hPijx is the probability to be observed in state i at age x+h    Summary: Back from Windows 8. Intel Compiler
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.183  2015/03/10 20:34:32  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: 0.98q0, trying with directest, mnbrak fixed
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    We use directest instead of original Powell test; probably no
   and the contribution of each individual to the likelihood is simply    incidence on the results, but better justifications;
   hPijx.    We fixed Numerical Recipes mnbrak routine which was wrong and gave
     wrong results.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.182  2015/02/12 08:19:57  brouard
      Summary: Trying to keep directest which seems simpler and more general
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Author: Nicolas Brouard
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.181  2015/02/11 23:22:24  brouard
   from the European Union.    Summary: Comments on Powell added
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Author:
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.180  2015/02/11 17:33:45  brouard
      Summary: Finishing move from main to function (hpijx and prevalence_limit)
 #include <math.h>  
 #include <stdio.h>    Revision 1.179  2015/01/04 09:57:06  brouard
 #include <stdlib.h>    Summary: back to OS/X
 #include <unistd.h>  
     Revision 1.178  2015/01/04 09:35:48  brouard
 #define MAXLINE 256    *** empty log message ***
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.177  2015/01/03 18:40:56  brouard
 #define FILENAMELENGTH 80    Summary: Still testing ilc32 on OSX
 /*#define DEBUG*/  
     Revision 1.176  2015/01/03 16:45:04  brouard
 /*#define windows*/    *** empty log message ***
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.175  2015/01/03 16:33:42  brouard
     *** empty log message ***
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.174  2015/01/03 16:15:49  brouard
     Summary: Still in cross-compilation
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.173  2015/01/03 12:06:26  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Summary: trying to detect cross-compilation
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.172  2014/12/27 12:07:47  brouard
 #define YEARM 12. /* Number of months per year */    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.171  2014/12/23 13:26:59  brouard
     Summary: Back from Visual C
   
 int erreur; /* Error number */    Still problem with utsname.h on Windows
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.170  2014/12/23 11:17:12  brouard
 int npar=NPARMAX;    Summary: Cleaning some \%% back to %%
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    The escape was mandatory for a specific compiler (which one?), but too many warnings.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.169  2014/12/22 23:08:31  brouard
     Summary: 0.98p
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.168  2014/12/22 15:17:42  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Summary: update
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.167  2014/12/22 13:50:56  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Summary: Testing uname and compiler version and if compiled 32 or 64
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Testing on Linux 64
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.166  2014/12/22 11:40:47  brouard
   char filerese[FILENAMELENGTH];    *** empty log message ***
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.165  2014/12/16 11:20:36  brouard
  FILE  *ficresvpl;    Summary: After compiling on Visual C
   char fileresvpl[FILENAMELENGTH];  
     * imach.c (Module): Merging 1.61 to 1.162
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.164  2014/12/16 10:52:11  brouard
 #define FTOL 1.0e-10    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   
 #define NRANSI    * imach.c (Module): Merging 1.61 to 1.162
 #define ITMAX 200  
     Revision 1.163  2014/12/16 10:30:11  brouard
 #define TOL 2.0e-4    * imach.c (Module): Merging 1.61 to 1.162
   
 #define CGOLD 0.3819660    Revision 1.162  2014/09/25 11:43:39  brouard
 #define ZEPS 1.0e-10    Summary: temporary backup 0.99!
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.1  2014/09/16 11:06:58  brouard
 #define GOLD 1.618034    Summary: With some code (wrong) for nlopt
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Author:
   
 static double maxarg1,maxarg2;    Revision 1.161  2014/09/15 20:41:41  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Summary: Problem with macro SQR on Intel compiler
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.160  2014/09/02 09:24:05  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    *** empty log message ***
 #define rint(a) floor(a+0.5)  
     Revision 1.159  2014/09/01 10:34:10  brouard
 static double sqrarg;    Summary: WIN32
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Author: Brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.158  2014/08/27 17:11:51  brouard
 int imx;    *** empty log message ***
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.157  2014/08/27 16:26:55  brouard
     Summary: Preparing windows Visual studio version
 int estepm;    Author: Brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     In order to compile on Visual studio, time.h is now correct and time_t
 int m,nb;    and tm struct should be used. difftime should be used but sometimes I
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    just make the differences in raw time format (time(&now).
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Trying to suppress #ifdef LINUX
 double **pmmij, ***probs, ***mobaverage;    Add xdg-open for __linux in order to open default browser.
 double dateintmean=0;  
     Revision 1.156  2014/08/25 20:10:10  brouard
 double *weight;    *** empty log message ***
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.155  2014/08/25 18:32:34  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Summary: New compile, minor changes
     Author: Brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.154  2014/06/20 17:32:08  brouard
     Summary: Outputs now all graphs of convergence to period prevalence
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.153  2014/06/20 16:45:46  brouard
 {    Summary: If 3 live state, convergence to period prevalence on same graph
    char *s;                             /* pointer */    Author: Brouard
    int  l1, l2;                         /* length counters */  
     Revision 1.152  2014/06/18 17:54:09  brouard
    l1 = strlen( path );                 /* length of path */    Summary: open browser, use gnuplot on same dir than imach if not found in the path
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows    Revision 1.151  2014/06/18 16:43:30  brouard
    s = strrchr( path, '\\' );           /* find last / */    *** empty log message ***
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.150  2014/06/18 16:42:35  brouard
 #endif    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
    if ( s == NULL ) {                   /* no directory, so use current */    Author: brouard
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.149  2014/06/18 15:51:14  brouard
     Summary: Some fixes in parameter files errors
       if ( getwd( dirc ) == NULL ) {    Author: Nicolas Brouard
 #else  
       extern char       *getcwd( );    Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Author: Brouard
 #endif  
          return( GLOCK_ERROR_GETCWD );    Just a new packaging for OS/X version 0.98nS
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.147  2014/06/16 10:33:11  brouard
    } else {                             /* strip direcotry from path */    *** empty log message ***
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.146  2014/06/16 10:20:28  brouard
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Summary: Merge
       strcpy( name, s );                /* save file name */    Author: Brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Merge, before building revised version.
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.145  2014/06/10 21:23:15  brouard
 #ifdef windows    Summary: Debugging with valgrind
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Author: Nicolas Brouard
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Lot of changes in order to output the results with some covariates
 #endif    After the Edimburgh REVES conference 2014, it seems mandatory to
    s = strrchr( name, '.' );            /* find last / */    improve the code.
    s++;    No more memory valgrind error but a lot has to be done in order to
    strcpy(ext,s);                       /* save extension */    continue the work of splitting the code into subroutines.
    l1= strlen( name);    Also, decodemodel has been improved. Tricode is still not
    l2= strlen( s)+1;    optimal. nbcode should be improved. Documentation has been added in
    strncpy( finame, name, l1-l2);    the source code.
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.143  2014/01/26 09:45:38  brouard
 }    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 /******************************************/    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
 void replace(char *s, char*t)    Revision 1.142  2014/01/26 03:57:36  brouard
 {    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   int i;  
   int lg=20;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   i=0;  
   lg=strlen(t);    Revision 1.141  2014/01/26 02:42:01  brouard
   for(i=0; i<= lg; i++) {    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.140  2011/09/02 10:37:54  brouard
   }    Summary: times.h is ok with mingw32 now.
 }  
     Revision 1.139  2010/06/14 07:50:17  brouard
 int nbocc(char *s, char occ)    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 {    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   int i,j=0;  
   int lg=20;    Revision 1.138  2010/04/30 18:19:40  brouard
   i=0;    *** empty log message ***
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.137  2010/04/29 18:11:38  brouard
   if  (s[i] == occ ) j++;    (Module): Checking covariates for more complex models
   }    than V1+V2. A lot of change to be done. Unstable.
   return j;  
 }    Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
 void cutv(char *u,char *v, char*t, char occ)    of likelione (using inter/intrapolation if mle = 0) in order to
 {    get same likelihood as if mle=1.
   int i,lg,j,p=0;    Some cleaning of code and comments added.
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.135  2009/10/29 15:33:14  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   }  
     Revision 1.134  2009/10/29 13:18:53  brouard
   lg=strlen(t);    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.133  2009/07/06 10:21:25  brouard
   }    just nforces
      u[p]='\0';  
     Revision 1.132  2009/07/06 08:22:05  brouard
    for(j=0; j<= lg; j++) {    Many tings
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.131  2009/06/20 16:22:47  brouard
 }    Some dimensions resccaled
   
 /********************** nrerror ********************/    Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
 void nrerror(char error_text[])    lot of cleaning with variables initialized to 0. Trying to make
 {    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.129  2007/08/31 13:49:27  lievre
   exit(1);    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 }  
 /*********************** vector *******************/    Revision 1.128  2006/06/30 13:02:05  brouard
 double *vector(int nl, int nh)    (Module): Clarifications on computing e.j
 {  
   double *v;    Revision 1.127  2006/04/28 18:11:50  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    (Module): Yes the sum of survivors was wrong since
   if (!v) nrerror("allocation failure in vector");    imach-114 because nhstepm was no more computed in the age
   return v-nl+NR_END;    loop. Now we define nhstepma in the age loop.
 }    (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
 /************************ free vector ******************/    and then all the health expectancies with variances or standard
 void free_vector(double*v, int nl, int nh)    deviation (needs data from the Hessian matrices) which slows the
 {    computation.
   free((FREE_ARG)(v+nl-NR_END));    In the future we should be able to stop the program is only health
 }    expectancies and graph are needed without standard deviations.
   
 /************************ivector *******************************/    Revision 1.126  2006/04/28 17:23:28  brouard
 int *ivector(long nl,long nh)    (Module): Yes the sum of survivors was wrong since
 {    imach-114 because nhstepm was no more computed in the age
   int *v;    loop. Now we define nhstepma in the age loop.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Version 0.98h
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.125  2006/04/04 15:20:31  lievre
 }    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.124  2006/03/22 17:13:53  lievre
 {    Parameters are printed with %lf instead of %f (more numbers after the comma).
   free((FREE_ARG)(v+nl-NR_END));    The log-likelihood is printed in the log file
 }  
     Revision 1.123  2006/03/20 10:52:43  brouard
 /******************* imatrix *******************************/    * imach.c (Module): <title> changed, corresponds to .htm file
 int **imatrix(long nrl, long nrh, long ncl, long nch)    name. <head> headers where missing.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    * imach.c (Module): Weights can have a decimal point as for
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    English (a comma might work with a correct LC_NUMERIC environment,
   int **m;    otherwise the weight is truncated).
      Modification of warning when the covariates values are not 0 or
   /* allocate pointers to rows */    1.
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Version 0.98g
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.122  2006/03/20 09:45:41  brouard
   m -= nrl;    (Module): Weights can have a decimal point as for
      English (a comma might work with a correct LC_NUMERIC environment,
      otherwise the weight is truncated).
   /* allocate rows and set pointers to them */    Modification of warning when the covariates values are not 0 or
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    1.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Version 0.98g
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.121  2006/03/16 17:45:01  lievre
      * imach.c (Module): Comments concerning covariates added
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      * imach.c (Module): refinements in the computation of lli if
   /* return pointer to array of pointers to rows */    status=-2 in order to have more reliable computation if stepm is
   return m;    not 1 month. Version 0.98f
 }  
     Revision 1.120  2006/03/16 15:10:38  lievre
 /****************** free_imatrix *************************/    (Module): refinements in the computation of lli if
 void free_imatrix(m,nrl,nrh,ncl,nch)    status=-2 in order to have more reliable computation if stepm is
       int **m;    not 1 month. Version 0.98f
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Revision 1.119  2006/03/15 17:42:26  brouard
 {    (Module): Bug if status = -2, the loglikelihood was
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    computed as likelihood omitting the logarithm. Version O.98e
   free((FREE_ARG) (m+nrl-NR_END));  
 }    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 /******************* matrix *******************************/    table of variances if popbased=1 .
 double **matrix(long nrl, long nrh, long ncl, long nch)    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 {    (Module): Function pstamp added
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    (Module): Version 0.98d
   double **m;  
     Revision 1.117  2006/03/14 17:16:22  brouard
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (Module): varevsij Comments added explaining the second
   if (!m) nrerror("allocation failure 1 in matrix()");    table of variances if popbased=1 .
   m += NR_END;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   m -= nrl;    (Module): Function pstamp added
     (Module): Version 0.98d
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.116  2006/03/06 10:29:27  brouard
   m[nrl] += NR_END;    (Module): Variance-covariance wrong links and
   m[nrl] -= ncl;    varian-covariance of ej. is needed (Saito).
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.115  2006/02/27 12:17:45  brouard
   return m;    (Module): One freematrix added in mlikeli! 0.98c
 }  
     Revision 1.114  2006/02/26 12:57:58  brouard
 /*************************free matrix ************************/    (Module): Some improvements in processing parameter
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    filename with strsep.
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.113  2006/02/24 14:20:24  brouard
   free((FREE_ARG)(m+nrl-NR_END));    (Module): Memory leaks checks with valgrind and:
 }    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Revision 1.112  2006/01/30 09:55:26  brouard
 {    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (Module): Comments can be added in data file. Missing date values
   if (!m) nrerror("allocation failure 1 in matrix()");    can be a simple dot '.'.
   m += NR_END;  
   m -= nrl;    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.109  2006/01/24 19:37:15  brouard
   m[nrl] += NR_END;    (Module): Comments (lines starting with a #) are allowed in data.
   m[nrl] -= ncl;  
     Revision 1.108  2006/01/19 18:05:42  lievre
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Gnuplot problem appeared...
     To be fixed
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    Revision 1.107  2006/01/19 16:20:37  brouard
   m[nrl][ncl] += NR_END;    Test existence of gnuplot in imach path
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)    Revision 1.106  2006/01/19 13:24:36  brouard
     m[nrl][j]=m[nrl][j-1]+nlay;    Some cleaning and links added in html output
    
   for (i=nrl+1; i<=nrh; i++) {    Revision 1.105  2006/01/05 20:23:19  lievre
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    *** empty log message ***
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;    Revision 1.104  2005/09/30 16:11:43  lievre
   }    (Module): sump fixed, loop imx fixed, and simplifications.
   return m;    (Module): If the status is missing at the last wave but we know
 }    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 /*************************free ma3x ************************/    contributions to the likelihood is 1 - Prob of dying from last
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 {    the healthy state at last known wave). Version is 0.98
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.103  2005/09/30 15:54:49  lievre
   free((FREE_ARG)(m+nrl-NR_END));    (Module): sump fixed, loop imx fixed, and simplifications.
 }  
     Revision 1.102  2004/09/15 17:31:30  brouard
 /***************** f1dim *************************/    Add the possibility to read data file including tab characters.
 extern int ncom;  
 extern double *pcom,*xicom;    Revision 1.101  2004/09/15 10:38:38  brouard
 extern double (*nrfunc)(double []);    Fix on curr_time
    
 double f1dim(double x)    Revision 1.100  2004/07/12 18:29:06  brouard
 {    Add version for Mac OS X. Just define UNIX in Makefile
   int j;  
   double f;    Revision 1.99  2004/06/05 08:57:40  brouard
   double *xt;    *** empty log message ***
    
   xt=vector(1,ncom);    Revision 1.98  2004/05/16 15:05:56  brouard
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    New version 0.97 . First attempt to estimate force of mortality
   f=(*nrfunc)(xt);    directly from the data i.e. without the need of knowing the health
   free_vector(xt,1,ncom);    state at each age, but using a Gompertz model: log u =a + b*age .
   return f;    This is the basic analysis of mortality and should be done before any
 }    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 /*****************brent *************************/    from other sources like vital statistic data.
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    The same imach parameter file can be used but the option for mle should be -3.
   int iter;  
   double a,b,d,etemp;    Agnès, who wrote this part of the code, tried to keep most of the
   double fu,fv,fw,fx;    former routines in order to include the new code within the former code.
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    The output is very simple: only an estimate of the intercept and of
   double e=0.0;    the slope with 95% confident intervals.
    
   a=(ax < cx ? ax : cx);    Current limitations:
   b=(ax > cx ? ax : cx);    A) Even if you enter covariates, i.e. with the
   x=w=v=bx;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   fw=fv=fx=(*f)(x);    B) There is no computation of Life Expectancy nor Life Table.
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    Revision 1.97  2004/02/20 13:25:42  lievre
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    Version 0.96d. Population forecasting command line is (temporarily)
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    suppressed.
     printf(".");fflush(stdout);  
 #ifdef DEBUG    Revision 1.96  2003/07/15 15:38:55  brouard
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    rewritten within the same printf. Workaround: many printfs.
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    Revision 1.95  2003/07/08 07:54:34  brouard
       *xmin=x;    * imach.c (Repository):
       return fx;    (Repository): Using imachwizard code to output a more meaningful covariance
     }    matrix (cov(a12,c31) instead of numbers.
     ftemp=fu;  
     if (fabs(e) > tol1) {    Revision 1.94  2003/06/27 13:00:02  brouard
       r=(x-w)*(fx-fv);    Just cleaning
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    Revision 1.93  2003/06/25 16:33:55  brouard
       q=2.0*(q-r);    (Module): On windows (cygwin) function asctime_r doesn't
       if (q > 0.0) p = -p;    exist so I changed back to asctime which exists.
       q=fabs(q);    (Module): Version 0.96b
       etemp=e;  
       e=d;    Revision 1.92  2003/06/25 16:30:45  brouard
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    (Module): On windows (cygwin) function asctime_r doesn't
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    exist so I changed back to asctime which exists.
       else {  
         d=p/q;    Revision 1.91  2003/06/25 15:30:29  brouard
         u=x+d;    * imach.c (Repository): Duplicated warning errors corrected.
         if (u-a < tol2 || b-u < tol2)    (Repository): Elapsed time after each iteration is now output. It
           d=SIGN(tol1,xm-x);    helps to forecast when convergence will be reached. Elapsed time
       }    is stamped in powell.  We created a new html file for the graphs
     } else {    concerning matrix of covariance. It has extension -cov.htm.
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }    Revision 1.90  2003/06/24 12:34:15  brouard
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    (Module): Some bugs corrected for windows. Also, when
     fu=(*f)(u);    mle=-1 a template is output in file "or"mypar.txt with the design
     if (fu <= fx) {    of the covariance matrix to be input.
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)    Revision 1.89  2003/06/24 12:30:52  brouard
         SHFT(fv,fw,fx,fu)    (Module): Some bugs corrected for windows. Also, when
         } else {    mle=-1 a template is output in file "or"mypar.txt with the design
           if (u < x) a=u; else b=u;    of the covariance matrix to be input.
           if (fu <= fw || w == x) {  
             v=w;    Revision 1.88  2003/06/23 17:54:56  brouard
             w=u;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
             fv=fw;  
             fw=fu;    Revision 1.87  2003/06/18 12:26:01  brouard
           } else if (fu <= fv || v == x || v == w) {    Version 0.96
             v=u;  
             fv=fu;    Revision 1.86  2003/06/17 20:04:08  brouard
           }    (Module): Change position of html and gnuplot routines and added
         }    routine fileappend.
   }  
   nrerror("Too many iterations in brent");    Revision 1.85  2003/06/17 13:12:43  brouard
   *xmin=x;    * imach.c (Repository): Check when date of death was earlier that
   return fx;    current date of interview. It may happen when the death was just
 }    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 /****************** mnbrak ***********************/    assuming that the date of death was just one stepm after the
     interview.
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    (Repository): Because some people have very long ID (first column)
             double (*func)(double))    we changed int to long in num[] and we added a new lvector for
 {    memory allocation. But we also truncated to 8 characters (left
   double ulim,u,r,q, dum;    truncation)
   double fu;    (Repository): No more line truncation errors.
    
   *fa=(*func)(*ax);    Revision 1.84  2003/06/13 21:44:43  brouard
   *fb=(*func)(*bx);    * imach.c (Repository): Replace "freqsummary" at a correct
   if (*fb > *fa) {    place. It differs from routine "prevalence" which may be called
     SHFT(dum,*ax,*bx,dum)    many times. Probs is memory consuming and must be used with
       SHFT(dum,*fb,*fa,dum)    parcimony.
       }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);    Revision 1.83  2003/06/10 13:39:11  lievre
   while (*fb > *fc) {    *** empty log message ***
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    Revision 1.82  2003/06/05 15:57:20  brouard
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    Add log in  imach.c and  fullversion number is now printed.
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  */
     if ((*bx-u)*(u-*cx) > 0.0) {  /*
       fu=(*func)(u);     Interpolated Markov Chain
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    Short summary of the programme:
       if (fu < *fc) {    
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    This program computes Healthy Life Expectancies from
           SHFT(*fb,*fc,fu,(*func)(u))    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
           }    first survey ("cross") where individuals from different ages are
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    interviewed on their health status or degree of disability (in the
       u=ulim;    case of a health survey which is our main interest) -2- at least a
       fu=(*func)(u);    second wave of interviews ("longitudinal") which measure each change
     } else {    (if any) in individual health status.  Health expectancies are
       u=(*cx)+GOLD*(*cx-*bx);    computed from the time spent in each health state according to a
       fu=(*func)(u);    model. More health states you consider, more time is necessary to reach the
     }    Maximum Likelihood of the parameters involved in the model.  The
     SHFT(*ax,*bx,*cx,u)    simplest model is the multinomial logistic model where pij is the
       SHFT(*fa,*fb,*fc,fu)    probability to be observed in state j at the second wave
       }    conditional to be observed in state i at the first wave. Therefore
 }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 /*************** linmin ************************/    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 int ncom;    you to do it.  More covariates you add, slower the
 double *pcom,*xicom;    convergence.
 double (*nrfunc)(double []);  
      The advantage of this computer programme, compared to a simple
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    multinomial logistic model, is clear when the delay between waves is not
 {    identical for each individual. Also, if a individual missed an
   double brent(double ax, double bx, double cx,    intermediate interview, the information is lost, but taken into
                double (*f)(double), double tol, double *xmin);    account using an interpolation or extrapolation.  
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    hPijx is the probability to be observed in state i at age x+h
               double *fc, double (*func)(double));    conditional to the observed state i at age x. The delay 'h' can be
   int j;    split into an exact number (nh*stepm) of unobserved intermediate
   double xx,xmin,bx,ax;    states. This elementary transition (by month, quarter,
   double fx,fb,fa;    semester or year) is modelled as a multinomial logistic.  The hPx
      matrix is simply the matrix product of nh*stepm elementary matrices
   ncom=n;    and the contribution of each individual to the likelihood is simply
   pcom=vector(1,n);    hPijx.
   xicom=vector(1,n);  
   nrfunc=func;    Also this programme outputs the covariance matrix of the parameters but also
   for (j=1;j<=n;j++) {    of the life expectancies. It also computes the period (stable) prevalence. 
     pcom[j]=p[j];    
     xicom[j]=xi[j];    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   }             Institut national d'études démographiques, Paris.
   ax=0.0;    This software have been partly granted by Euro-REVES, a concerted action
   xx=1.0;    from the European Union.
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    It is copyrighted identically to a GNU software product, ie programme and
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    software can be distributed freely for non commercial use. Latest version
 #ifdef DEBUG    can be accessed at http://euroreves.ined.fr/imach .
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   for (j=1;j<=n;j++) {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     xi[j] *= xmin;    
     p[j] += xi[j];    **********************************************************************/
   }  /*
   free_vector(xicom,1,n);    main
   free_vector(pcom,1,n);    read parameterfile
 }    read datafile
     concatwav
 /*************** powell ************************/    freqsummary
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    if (mle >= 1)
             double (*func)(double []))      mlikeli
 {    print results files
   void linmin(double p[], double xi[], int n, double *fret,    if mle==1 
               double (*func)(double []));       computes hessian
   int i,ibig,j;    read end of parameter file: agemin, agemax, bage, fage, estepm
   double del,t,*pt,*ptt,*xit;        begin-prev-date,...
   double fp,fptt;    open gnuplot file
   double *xits;    open html file
   pt=vector(1,n);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   ptt=vector(1,n);     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   xit=vector(1,n);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   xits=vector(1,n);      freexexit2 possible for memory heap.
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];    h Pij x                         | pij_nom  ficrestpij
   for (*iter=1;;++(*iter)) {     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
     fp=(*fret);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
     ibig=0;         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
     for (i=1;i<=n;i++)         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
       printf(" %d %.12f",i, p[i]);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
     printf("\n");     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
     for (i=1;i<=n;i++) {     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);    forecasting if prevfcast==1 prevforecast call prevalence()
 #ifdef DEBUG    health expectancies
       printf("fret=%lf \n",*fret);    Variance-covariance of DFLE
 #endif    prevalence()
       printf("%d",i);fflush(stdout);     movingaverage()
       linmin(p,xit,n,fret,func);    varevsij() 
       if (fabs(fptt-(*fret)) > del) {    if popbased==1 varevsij(,popbased)
         del=fabs(fptt-(*fret));    total life expectancies
         ibig=i;    Variance of period (stable) prevalence
       }   end
 #ifdef DEBUG  */
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  /* #define DEBUG */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /* #define DEBUGBRENT */
         printf(" x(%d)=%.12e",j,xit[j]);  #define POWELL /* Instead of NLOPT */
       }  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
       for(j=1;j<=n;j++)  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
         printf(" p=%.12e",p[j]);  
       printf("\n");  #include <math.h>
 #endif  #include <stdio.h>
     }  #include <stdlib.h>
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #include <string.h>
 #ifdef DEBUG  
       int k[2],l;  #ifdef _WIN32
       k[0]=1;  #include <io.h>
       k[1]=-1;  #include <windows.h>
       printf("Max: %.12e",(*func)(p));  #include <tchar.h>
       for (j=1;j<=n;j++)  #else
         printf(" %.12e",p[j]);  #include <unistd.h>
       printf("\n");  #endif
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  #include <limits.h>
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #include <sys/types.h>
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  #if defined(__GNUC__)
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #include <sys/utsname.h> /* Doesn't work on Windows */
       }  #endif
 #endif  
   #include <sys/stat.h>
   #include <errno.h>
       free_vector(xit,1,n);  /* extern int errno; */
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  /* #ifdef LINUX */
       free_vector(pt,1,n);  /* #include <time.h> */
       return;  /* #include "timeval.h" */
     }  /* #else */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /* #include <sys/time.h> */
     for (j=1;j<=n;j++) {  /* #endif */
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  #include <time.h>
       pt[j]=p[j];  
     }  #ifdef GSL
     fptt=(*func)(ptt);  #include <gsl/gsl_errno.h>
     if (fptt < fp) {  #include <gsl/gsl_multimin.h>
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  #endif
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  #ifdef NLOPT
           xi[j][ibig]=xi[j][n];  #include <nlopt.h>
           xi[j][n]=xit[j];  typedef struct {
         }    double (* function)(double [] );
 #ifdef DEBUG  } myfunc_data ;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  #endif
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  /* #include <libintl.h> */
         printf("\n");  /* #define _(String) gettext (String) */
 #endif  
       }  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
     }  
   }  #define GNUPLOTPROGRAM "gnuplot"
 }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 /**** Prevalence limit ****************/  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
      matrix by transitions matrix until convergence is reached */  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   
   int i, ii,j,k;  #define NINTERVMAX 8
   double min, max, maxmin, maxmax,sumnew=0.;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   double **matprod2();  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   double **out, cov[NCOVMAX], **pmij();  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   double **newm;  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   double agefin, delaymax=50 ; /* Max number of years to converge */  #define MAXN 20000
   #define YEARM 12. /**< Number of months per year */
   for (ii=1;ii<=nlstate+ndeath;ii++)  #define AGESUP 130
     for (j=1;j<=nlstate+ndeath;j++){  #define AGEBASE 40
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
     }  #ifdef _WIN32
   #define DIRSEPARATOR '\\'
    cov[1]=1.;  #define CHARSEPARATOR "\\"
    #define ODIRSEPARATOR '/'
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #else
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #define DIRSEPARATOR '/'
     newm=savm;  #define CHARSEPARATOR "/"
     /* Covariates have to be included here again */  #define ODIRSEPARATOR '\\'
      cov[2]=agefin;  #endif
    
       for (k=1; k<=cptcovn;k++) {  /* $Id$ */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /* $State$ */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  char version[]="Imach version 0.98q2, April 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  char fullversion[]="$Revision$ $Date$"; 
       for (k=1; k<=cptcovprod;k++)  char strstart[80];
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
     savm=oldm;  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
     oldm=newm;  int cptcovprodnoage=0; /**< Number of covariate products without age */   
     maxmax=0.;  int cptcoveff=0; /* Total number of covariates to vary for printing results */
     for(j=1;j<=nlstate;j++){  int cptcov=0; /* Working variable */
       min=1.;  int npar=NPARMAX;
       max=0.;  int nlstate=2; /* Number of live states */
       for(i=1; i<=nlstate; i++) {  int ndeath=1; /* Number of dead states */
         sumnew=0;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  int popbased=0;
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  int *wav; /* Number of waves for this individuual 0 is possible */
         min=FMIN(min,prlim[i][j]);  int maxwav=0; /* Maxim number of waves */
       }  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       maxmin=max-min;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       maxmax=FMAX(maxmax,maxmin);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
     }                     to the likelihood and the sum of weights (done by funcone)*/
     if(maxmax < ftolpl){  int mle=1, weightopt=0;
       return prlim;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int countcallfunc=0;  /* Count the number of calls to func */
 /*************** transition probabilities ***************/  double jmean=1; /* Mean space between 2 waves */
   double **matprod2(); /* test */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   double s1, s2;  /*FILE *fic ; */ /* Used in readdata only */
   /*double t34;*/  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   int i,j,j1, nc, ii, jj;  FILE *ficlog, *ficrespow;
   int globpr=0; /* Global variable for printing or not */
     for(i=1; i<= nlstate; i++){  double fretone; /* Only one call to likelihood */
     for(j=1; j<i;j++){  long ipmx=0; /* Number of contributions */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double sw; /* Sum of weights */
         /*s2 += param[i][j][nc]*cov[nc];*/  char filerespow[FILENAMELENGTH];
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  FILE *ficresilk;
       }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       ps[i][j]=s2;  FILE *ficresprobmorprev;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  FILE *fichtm, *fichtmcov; /* Html File */
     }  FILE *ficreseij;
     for(j=i+1; j<=nlstate+ndeath;j++){  char filerese[FILENAMELENGTH];
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  FILE *ficresstdeij;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  char fileresstde[FILENAMELENGTH];
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  FILE *ficrescveij;
       }  char filerescve[FILENAMELENGTH];
       ps[i][j]=s2;  FILE  *ficresvij;
     }  char fileresv[FILENAMELENGTH];
   }  FILE  *ficresvpl;
     /*ps[3][2]=1;*/  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
   for(i=1; i<= nlstate; i++){  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
      s1=0;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     for(j=1; j<i; j++)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       s1+=exp(ps[i][j]);  char command[FILENAMELENGTH];
     for(j=i+1; j<=nlstate+ndeath; j++)  int  outcmd=0;
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  char filelog[FILENAMELENGTH]; /* Log file */
     for(j=i+1; j<=nlstate+ndeath; j++)  char filerest[FILENAMELENGTH];
       ps[i][j]= exp(ps[i][j])*ps[i][i];  char fileregp[FILENAMELENGTH];
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  char popfile[FILENAMELENGTH];
   } /* end i */  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
       ps[ii][jj]=0;  /* struct timezone tzp; */
       ps[ii][ii]=1;  /* extern int gettimeofday(); */
     }  struct tm tml, *gmtime(), *localtime();
   }  
   extern time_t time();
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  struct tm start_time, end_time, curr_time, last_time, forecast_time;
     for(jj=1; jj<= nlstate+ndeath; jj++){  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
      printf("%lf ",ps[ii][jj]);  struct tm tm;
    }  
     printf("\n ");  char strcurr[80], strfor[80];
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  char *endptr;
 /*  long lval;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  double dval;
   goto end;*/  
     return ps;  #define NR_END 1
 }  #define FREE_ARG char*
   #define FTOL 1.0e-10
 /**************** Product of 2 matrices ******************/  
   #define NRANSI 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  #define ITMAX 200 
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  #define TOL 2.0e-4 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  #define CGOLD 0.3819660 
      before: only the contents of out is modified. The function returns  #define ZEPS 1.0e-10 
      a pointer to pointers identical to out */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  #define GOLD 1.618034 
     for(k=ncolol; k<=ncoloh; k++)  #define GLIMIT 100.0 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  #define TINY 1.0e-20 
         out[i][k] +=in[i][j]*b[j][k];  
   static double maxarg1,maxarg2;
   return out;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 /************* Higher Matrix Product ***************/  #define rint(a) floor(a+0.5)
   /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  #define mytinydouble 1.0e-16
 {  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
      duration (i.e. until  /* static double dsqrarg; */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  static double sqrarg;
      (typically every 2 years instead of every month which is too big).  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
      Model is determined by parameters x and covariates have to be  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
      included manually here.  int agegomp= AGEGOMP;
   
      */  int imx; 
   int stepm=1;
   int i, j, d, h, k;  /* Stepm, step in month: minimum step interpolation*/
   double **out, cov[NCOVMAX];  
   double **newm;  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  int m,nb;
     for (j=1;j<=nlstate+ndeath;j++){  long *num;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     }  double **pmmij, ***probs;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  double *ageexmed,*agecens;
   for(h=1; h <=nhstepm; h++){  double dateintmean=0;
     for(d=1; d <=hstepm; d++){  
       newm=savm;  double *weight;
       /* Covariates have to be included here again */  int **s; /* Status */
       cov[1]=1.;  double *agedc;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];                    * covar=matrix(0,NCOVMAX,1,n); 
       for (k=1; k<=cptcovage;k++)                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  double  idx; 
       for (k=1; k<=cptcovprod;k++)  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  int *Ndum; /** Freq of modality (tricode */
   int **codtab; /**< codtab=imatrix(1,100,1,10); */
   int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  double *lsurv, *lpop, *tpop;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  double ftolhess; /**< Tolerance for computing hessian */
       savm=oldm;  
       oldm=newm;  /**************** split *************************/
     }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     for(i=1; i<=nlstate+ndeath; i++)  {
       for(j=1;j<=nlstate+ndeath;j++) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         po[i][j][h]=newm[i][j];       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    */ 
          */    char  *ss;                            /* pointer */
       }    int   l1=0, l2=0;                             /* length counters */
   } /* end h */  
   return po;    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so determine current directory */
 /*************** log-likelihood *************/      strcpy( name, path );               /* we got the fullname name because no directory */
 double func( double *x)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   int i, ii, j, k, mi, d, kk;      /* get current working directory */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      /*    extern  char* getcwd ( char *buf , int len);*/
   double **out;  #ifdef WIN32
   double sw; /* Sum of weights */      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double lli; /* Individual log likelihood */  #else
   long ipmx;          if (getcwd(dirc, FILENAME_MAX) == NULL) {
   /*extern weight */  #endif
   /* We are differentiating ll according to initial status */        return( GLOCK_ERROR_GETCWD );
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      }
   /*for(i=1;i<imx;i++)      /* got dirc from getcwd*/
     printf(" %d\n",s[4][i]);      printf(" DIRC = %s \n",dirc);
   */    } else {                              /* strip direcotry from path */
   cov[1]=1.;      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
   for(k=1; k<=nlstate; k++) ll[k]=0.;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      strcpy( name, ss );         /* save file name */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     for(mi=1; mi<= wav[i]-1; mi++){      dirc[l1-l2] = '\0';                 /* add zero */
       for (ii=1;ii<=nlstate+ndeath;ii++)      printf(" DIRC2 = %s \n",dirc);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    }
       for(d=0; d<dh[mi][i]; d++){    /* We add a separator at the end of dirc if not exists */
         newm=savm;    l1 = strlen( dirc );                  /* length of directory */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    if( dirc[l1-1] != DIRSEPARATOR ){
         for (kk=1; kk<=cptcovage;kk++) {      dirc[l1] =  DIRSEPARATOR;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      dirc[l1+1] = 0; 
         }      printf(" DIRC3 = %s \n",dirc);
            }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    ss = strrchr( name, '.' );            /* find last / */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    if (ss >0){
         savm=oldm;      ss++;
         oldm=newm;      strcpy(ext,ss);                     /* save extension */
              l1= strlen( name);
              l2= strlen(ss)+1;
       } /* end mult */      strncpy( finame, name, l1-l2);
            finame[l1-l2]= 0;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       ipmx +=1;    return( 0 );                          /* we're done */
       sw += weight[i];  }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  
   } /* end of individual */  /******************************************/
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  void replace_back_to_slash(char *s, char*t)
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    int i;
   return -l;    int lg=0;
 }    i=0;
     lg=strlen(t);
     for(i=0; i<= lg; i++) {
 /*********** Maximum Likelihood Estimation ***************/      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    }
 {  }
   int i,j, iter;  
   double **xi,*delti;  char *trimbb(char *out, char *in)
   double fret;  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   xi=matrix(1,npar,1,npar);    char *s;
   for (i=1;i<=npar;i++)    s=out;
     for (j=1;j<=npar;j++)    while (*in != '\0'){
       xi[i][j]=(i==j ? 1.0 : 0.0);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   printf("Powell\n");        in++;
   powell(p,xi,npar,ftol,&iter,&fret,func);      }
       *out++ = *in++;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    *out='\0';
     return s;
 }  }
   
 /**** Computes Hessian and covariance matrix ***/  /* char *substrchaine(char *out, char *in, char *chain) */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /* { */
 {  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
   double  **a,**y,*x,pd;  /*   char *s, *t; */
   double **hess;  /*   t=in;s=out; */
   int i, j,jk;  /*   while ((*in != *chain) && (*in != '\0')){ */
   int *indx;  /*     *out++ = *in++; */
   /*   } */
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);  /*   /\* *in matches *chain *\/ */
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   /*   } */
   hess=matrix(1,npar,1,npar);  /*   in--; chain--; */
   /*   while ( (*in != '\0')){ */
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   for (i=1;i<=npar;i++){  /*     *out++ = *in++; */
     printf("%d",i);fflush(stdout);  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
     hess[i][i]=hessii(p,ftolhess,i,delti);  /*   } */
     /*printf(" %f ",p[i]);*/  /*   *out='\0'; */
     /*printf(" %lf ",hess[i][i]);*/  /*   out=s; */
   }  /*   return out; */
    /* } */
   for (i=1;i<=npar;i++) {  char *substrchaine(char *out, char *in, char *chain)
     for (j=1;j<=npar;j++)  {  {
       if (j>i) {    /* Substract chain 'chain' from 'in', return and output 'out' */
         printf(".%d%d",i,j);fflush(stdout);    /* in="V1+V1*age+age*age+V2", chain="age*age" */
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];        char *strloc;
         /*printf(" %lf ",hess[i][j]);*/  
       }    strcpy (out, in); 
     }    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
   }    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
   printf("\n");    if(strloc != NULL){ 
       /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
        /* strcpy (strloc, strloc +strlen(chain));*/
   a=matrix(1,npar,1,npar);    }
   y=matrix(1,npar,1,npar);    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
   x=vector(1,npar);    return out;
   indx=ivector(1,npar);  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  char *cutl(char *blocc, char *alocc, char *in, char occ)
   {
   for (j=1;j<=npar;j++) {    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
     for (i=1;i<=npar;i++) x[i]=0;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     x[j]=1;       gives blocc="abcdef" and alocc="ghi2j".
     lubksb(a,npar,indx,x);       If occ is not found blocc is null and alocc is equal to in. Returns blocc
     for (i=1;i<=npar;i++){    */
       matcov[i][j]=x[i];    char *s, *t;
     }    t=in;s=in;
   }    while ((*in != occ) && (*in != '\0')){
       *alocc++ = *in++;
   printf("\n#Hessian matrix#\n");    }
   for (i=1;i<=npar;i++) {    if( *in == occ){
     for (j=1;j<=npar;j++) {      *(alocc)='\0';
       printf("%.3e ",hess[i][j]);      s=++in;
     }    }
     printf("\n");   
   }    if (s == t) {/* occ not found */
       *(alocc-(in-s))='\0';
   /* Recompute Inverse */      in=s;
   for (i=1;i<=npar;i++)    }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    while ( *in != '\0'){
   ludcmp(a,npar,indx,&pd);      *blocc++ = *in++;
     }
   /*  printf("\n#Hessian matrix recomputed#\n");  
     *blocc='\0';
   for (j=1;j<=npar;j++) {    return t;
     for (i=1;i<=npar;i++) x[i]=0;  }
     x[j]=1;  char *cutv(char *blocc, char *alocc, char *in, char occ)
     lubksb(a,npar,indx,x);  {
     for (i=1;i<=npar;i++){    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
       y[i][j]=x[i];       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       printf("%.3e ",y[i][j]);       gives blocc="abcdef2ghi" and alocc="j".
     }       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     printf("\n");    */
   }    char *s, *t;
   */    t=in;s=in;
     while (*in != '\0'){
   free_matrix(a,1,npar,1,npar);      while( *in == occ){
   free_matrix(y,1,npar,1,npar);        *blocc++ = *in++;
   free_vector(x,1,npar);        s=in;
   free_ivector(indx,1,npar);      }
   free_matrix(hess,1,npar,1,npar);      *blocc++ = *in++;
     }
     if (s == t) /* occ not found */
 }      *(blocc-(in-s))='\0';
     else
 /*************** hessian matrix ****************/      *(blocc-(in-s)-1)='\0';
 double hessii( double x[], double delta, int theta, double delti[])    in=s;
 {    while ( *in != '\0'){
   int i;      *alocc++ = *in++;
   int l=1, lmax=20;    }
   double k1,k2;  
   double p2[NPARMAX+1];    *alocc='\0';
   double res;    return s;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  }
   double fx;  
   int k=0,kmax=10;  int nbocc(char *s, char occ)
   double l1;  {
     int i,j=0;
   fx=func(x);    int lg=20;
   for (i=1;i<=npar;i++) p2[i]=x[i];    i=0;
   for(l=0 ; l <=lmax; l++){    lg=strlen(s);
     l1=pow(10,l);    for(i=0; i<= lg; i++) {
     delts=delt;    if  (s[i] == occ ) j++;
     for(k=1 ; k <kmax; k=k+1){    }
       delt = delta*(l1*k);    return j;
       p2[theta]=x[theta] +delt;  }
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;  /* void cutv(char *u,char *v, char*t, char occ) */
       k2=func(p2)-fx;  /* { */
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
        /*      gives u="abcdef2ghi" and v="j" *\/ */
 #ifdef DEBUG  /*   int i,lg,j,p=0; */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  /*   i=0; */
 #endif  /*   lg=strlen(t); */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  /*   for(j=0; j<=lg-1; j++) { */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
         k=kmax;  /*   } */
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  /*   for(j=0; j<p; j++) { */
         k=kmax; l=lmax*10.;  /*     (u[j] = t[j]); */
       }  /*   } */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  /*      u[p]='\0'; */
         delts=delt;  
       }  /*    for(j=0; j<= lg; j++) { */
     }  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   }  /*   } */
   delti[theta]=delts;  /* } */
   return res;  
    #ifdef _WIN32
 }  char * strsep(char **pp, const char *delim)
   {
 double hessij( double x[], double delti[], int thetai,int thetaj)    char *p, *q;
 {           
   int i;    if ((p = *pp) == NULL)
   int l=1, l1, lmax=20;      return 0;
   double k1,k2,k3,k4,res,fx;    if ((q = strpbrk (p, delim)) != NULL)
   double p2[NPARMAX+1];    {
   int k;      *pp = q + 1;
       *q = '\0';
   fx=func(x);    }
   for (k=1; k<=2; k++) {    else
     for (i=1;i<=npar;i++) p2[i]=x[i];      *pp = 0;
     p2[thetai]=x[thetai]+delti[thetai]/k;    return p;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  }
     k1=func(p2)-fx;  #endif
    
     p2[thetai]=x[thetai]+delti[thetai]/k;  /********************** nrerror ********************/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;  void nrerror(char error_text[])
    {
     p2[thetai]=x[thetai]-delti[thetai]/k;    fprintf(stderr,"ERREUR ...\n");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    fprintf(stderr,"%s\n",error_text);
     k3=func(p2)-fx;    exit(EXIT_FAILURE);
    }
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*********************** vector *******************/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  double *vector(int nl, int nh)
     k4=func(p2)-fx;  {
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    double *v;
 #ifdef DEBUG    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    if (!v) nrerror("allocation failure in vector");
 #endif    return v-nl+NR_END;
   }  }
   return res;  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /************** Inverse of matrix **************/  {
 void ludcmp(double **a, int n, int *indx, double *d)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   int i,imax,j,k;  
   double big,dum,sum,temp;  /************************ivector *******************************/
   double *vv;  int *ivector(long nl,long nh)
    {
   vv=vector(1,n);    int *v;
   *d=1.0;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for (i=1;i<=n;i++) {    if (!v) nrerror("allocation failure in ivector");
     big=0.0;    return v-nl+NR_END;
     for (j=1;j<=n;j++)  }
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /******************free ivector **************************/
     vv[i]=1.0/big;  void free_ivector(int *v, long nl, long nh)
   }  {
   for (j=1;j<=n;j++) {    free((FREE_ARG)(v+nl-NR_END));
     for (i=1;i<j;i++) {  }
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  /************************lvector *******************************/
       a[i][j]=sum;  long *lvector(long nl,long nh)
     }  {
     big=0.0;    long *v;
     for (i=j;i<=n;i++) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       sum=a[i][j];    if (!v) nrerror("allocation failure in ivector");
       for (k=1;k<j;k++)    return v-nl+NR_END;
         sum -= a[i][k]*a[k][j];  }
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {  /******************free lvector **************************/
         big=dum;  void free_lvector(long *v, long nl, long nh)
         imax=i;  {
       }    free((FREE_ARG)(v+nl-NR_END));
     }  }
     if (j != imax) {  
       for (k=1;k<=n;k++) {  /******************* imatrix *******************************/
         dum=a[imax][k];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         a[imax][k]=a[j][k];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         a[j][k]=dum;  { 
       }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       *d = -(*d);    int **m; 
       vv[imax]=vv[j];    
     }    /* allocate pointers to rows */ 
     indx[j]=imax;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (a[j][j] == 0.0) a[j][j]=TINY;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     if (j != n) {    m += NR_END; 
       dum=1.0/(a[j][j]);    m -= nrl; 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    
     }    
   }    /* allocate rows and set pointers to them */ 
   free_vector(vv,1,n);  /* Doesn't work */    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 ;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 }    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
 void lubksb(double **a, int n, int *indx, double b[])    
 {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   int i,ii=0,ip,j;    
   double sum;    /* return pointer to array of pointers to rows */ 
      return m; 
   for (i=1;i<=n;i++) {  } 
     ip=indx[i];  
     sum=b[ip];  /****************** free_imatrix *************************/
     b[ip]=b[i];  void free_imatrix(m,nrl,nrh,ncl,nch)
     if (ii)        int **m;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        long nch,ncl,nrh,nrl; 
     else if (sum) ii=i;       /* free an int matrix allocated by imatrix() */ 
     b[i]=sum;  { 
   }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   for (i=n;i>=1;i--) {    free((FREE_ARG) (m+nrl-NR_END)); 
     sum=b[i];  } 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  /******************* matrix *******************************/
   }  double **matrix(long nrl, long nrh, long ncl, long nch)
 }  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 /************ Frequencies ********************/    double **m;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  
 {  /* Some frequencies */    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      if (!m) nrerror("allocation failure 1 in matrix()");
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    m += NR_END;
   double ***freq; /* Frequencies */    m -= nrl;
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   FILE *ficresp;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   char fileresp[FILENAMELENGTH];    m[nrl] += NR_END;
      m[nrl] -= ncl;
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   strcpy(fileresp,"p");    return m;
   strcat(fileresp,fileres);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   if((ficresp=fopen(fileresp,"w"))==NULL) {  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
     printf("Problem with prevalence resultfile: %s\n", fileresp);  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     exit(0);     */
   }  }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  /*************************free matrix ************************/
    void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   j=cptcoveff;  {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      free((FREE_ARG)(m+nrl-NR_END));
   for(k1=1; k1<=j;k1++){  }
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  /******************* ma3x *******************************/
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         scanf("%d", i);*/  {
       for (i=-1; i<=nlstate+ndeath; i++)      long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double ***m;
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
          if (!m) nrerror("allocation failure 1 in matrix()");
       dateintsum=0;    m += NR_END;
       k2cpt=0;    m -= nrl;
       for (i=1; i<=imx; i++) {  
         bool=1;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         if  (cptcovn>0) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           for (z1=1; z1<=cptcoveff; z1++)    m[nrl] += NR_END;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    m[nrl] -= ncl;
               bool=0;  
         }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
             k2=anint[m][i]+(mint[m][i]/12.);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    m[nrl][ncl] += NR_END;
               if(agev[m][i]==0) agev[m][i]=agemax+1;    m[nrl][ncl] -= nll;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    for (j=ncl+1; j<=nch; j++) 
               if (m<lastpass) {      m[nrl][j]=m[nrl][j-1]+nlay;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    for (i=nrl+1; i<=nrh; i++) {
               }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
                    for (j=ncl+1; j<=nch; j++) 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        m[i][j]=m[i][j-1]+nlay;
                 dateintsum=dateintsum+k2;    }
                 k2cpt++;    return m; 
               }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
             }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
           }    */
         }  }
       }  
          /*************************free ma3x ************************/
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
       if  (cptcovn>0) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         fprintf(ficresp, "\n#********** Variable ");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free((FREE_ARG)(m+nrl-NR_END));
         fprintf(ficresp, "**********\n#");  }
       }  
       for(i=1; i<=nlstate;i++)  /*************** function subdirf ***********/
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  char *subdirf(char fileres[])
       fprintf(ficresp, "\n");  {
          /* Caution optionfilefiname is hidden */
       for(i=(int)agemin; i <= (int)agemax+3; i++){    strcpy(tmpout,optionfilefiname);
         if(i==(int)agemax+3)    strcat(tmpout,"/"); /* Add to the right */
           printf("Total");    strcat(tmpout,fileres);
         else    return tmpout;
           printf("Age %d", i);  }
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /*************** function subdirf2 ***********/
             pp[jk] += freq[jk][m][i];  char *subdirf2(char fileres[], char *preop)
         }  {
         for(jk=1; jk <=nlstate ; jk++){    
           for(m=-1, pos=0; m <=0 ; m++)    /* Caution optionfilefiname is hidden */
             pos += freq[jk][m][i];    strcpy(tmpout,optionfilefiname);
           if(pp[jk]>=1.e-10)    strcat(tmpout,"/");
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    strcat(tmpout,preop);
           else    strcat(tmpout,fileres);
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    return tmpout;
         }  }
   
         for(jk=1; jk <=nlstate ; jk++){  /*************** function subdirf3 ***********/
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  char *subdirf3(char fileres[], char *preop, char *preop2)
             pp[jk] += freq[jk][m][i];  {
         }    
     /* Caution optionfilefiname is hidden */
         for(jk=1,pos=0; jk <=nlstate ; jk++)    strcpy(tmpout,optionfilefiname);
           pos += pp[jk];    strcat(tmpout,"/");
         for(jk=1; jk <=nlstate ; jk++){    strcat(tmpout,preop);
           if(pos>=1.e-5)    strcat(tmpout,preop2);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    strcat(tmpout,fileres);
           else    return tmpout;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  }
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  char *asc_diff_time(long time_sec, char ascdiff[])
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  {
               probs[i][jk][j1]= pp[jk]/pos;    long sec_left, days, hours, minutes;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    days = (time_sec) / (60*60*24);
             }    sec_left = (time_sec) % (60*60*24);
             else    hours = (sec_left) / (60*60) ;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    sec_left = (sec_left) %(60*60);
           }    minutes = (sec_left) /60;
         }    sec_left = (sec_left) % (60);
            sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
         for(jk=-1; jk <=nlstate+ndeath; jk++)    return ascdiff;
           for(m=-1; m <=nlstate+ndeath; m++)  }
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
         if(i <= (int) agemax)  /***************** f1dim *************************/
           fprintf(ficresp,"\n");  extern int ncom; 
         printf("\n");  extern double *pcom,*xicom;
       }  extern double (*nrfunc)(double []); 
     }   
   }  double f1dim(double x) 
   dateintmean=dateintsum/k2cpt;  { 
      int j; 
   fclose(ficresp);    double f;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    double *xt; 
   free_vector(pp,1,nlstate);   
      xt=vector(1,ncom); 
   /* End of Freq */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 }    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
 /************ Prevalence ********************/    return f; 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  } 
 {  /* Some frequencies */  
    /*****************brent *************************/
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double ***freq; /* Frequencies */  {
   double *pp;    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
   double pos, k2;     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
      * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
   pp=vector(1,nlstate);     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);     * returned function value. 
      */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    int iter; 
   j1=0;    double a,b,d,etemp;
      double fu=0,fv,fw,fx;
   j=cptcoveff;    double ftemp=0.;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double p,q,r,tol1,tol2,u,v,w,x,xm; 
      double e=0.0; 
  for(k1=1; k1<=j;k1++){   
     for(i1=1; i1<=ncodemax[k1];i1++){    a=(ax < cx ? ax : cx); 
       j1++;    b=(ax > cx ? ax : cx); 
      x=w=v=bx; 
       for (i=-1; i<=nlstate+ndeath; i++)      fw=fv=fx=(*f)(x); 
         for (jk=-1; jk<=nlstate+ndeath; jk++)      for (iter=1;iter<=ITMAX;iter++) { 
           for(m=agemin; m <= agemax+3; m++)      xm=0.5*(a+b); 
             freq[i][jk][m]=0;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
            /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       for (i=1; i<=imx; i++) {      printf(".");fflush(stdout);
         bool=1;      fprintf(ficlog,".");fflush(ficlog);
         if  (cptcovn>0) {  #ifdef DEBUGBRENT
           for (z1=1; z1<=cptcoveff; z1++)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
               bool=0;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         }  #endif
         if (bool==1) {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
           for(m=firstpass; m<=lastpass; m++){        *xmin=x; 
             k2=anint[m][i]+(mint[m][i]/12.);        return fx; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      } 
               if(agev[m][i]==0) agev[m][i]=agemax+1;      ftemp=fu;
               if(agev[m][i]==1) agev[m][i]=agemax+2;      if (fabs(e) > tol1) { 
               if (m<lastpass)        r=(x-w)*(fx-fv); 
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        q=(x-v)*(fx-fw); 
               else        p=(x-v)*q-(x-w)*r; 
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        q=2.0*(q-r); 
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        if (q > 0.0) p = -p; 
             }        q=fabs(q); 
           }        etemp=e; 
         }        e=d; 
       }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         for(i=(int)agemin; i <= (int)agemax+3; i++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
           for(jk=1; jk <=nlstate ; jk++){        else { 
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          d=p/q; 
               pp[jk] += freq[jk][m][i];          u=x+d; 
           }          if (u-a < tol2 || b-u < tol2) 
           for(jk=1; jk <=nlstate ; jk++){            d=SIGN(tol1,xm-x); 
             for(m=-1, pos=0; m <=0 ; m++)        } 
             pos += freq[jk][m][i];      } else { 
         }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
              } 
          for(jk=1; jk <=nlstate ; jk++){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      fu=(*f)(u); 
              pp[jk] += freq[jk][m][i];      if (fu <= fx) { 
          }        if (u >= x) a=x; else b=x; 
                  SHFT(v,w,x,u) 
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        SHFT(fv,fw,fx,fu) 
       } else { 
          for(jk=1; jk <=nlstate ; jk++){                  if (u < x) a=u; else b=u; 
            if( i <= (int) agemax){        if (fu <= fw || w == x) { 
              if(pos>=1.e-5){          v=w; 
                probs[i][jk][j1]= pp[jk]/pos;          w=u; 
              }          fv=fw; 
            }          fw=fu; 
          }        } else if (fu <= fv || v == x || v == w) { 
                    v=u; 
         }          fv=fu; 
     }        } 
   }      } 
     } 
      nrerror("Too many iterations in brent"); 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    *xmin=x; 
   free_vector(pp,1,nlstate);    return fx; 
    } 
 }  /* End of Freq */  
   /****************** mnbrak ***********************/
 /************* Waves Concatenation ***************/  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)              double (*func)(double)) 
 {  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  the downhill direction (defined by the function as evaluated at the initial points) and returns
      Death is a valid wave (if date is known).  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]     */
      and mw[mi+1][i]. dh depends on stepm.    double ulim,u,r,q, dum;
      */    double fu; 
   
   int i, mi, m;    double scale=10.;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    int iterscale=0;
      double sum=0., jmean=0.;*/  
     *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
   int j, k=0,jk, ju, jl;    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
   double sum=0.;  
   jmin=1e+5;  
   jmax=-1;    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
   jmean=0.;    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
   for(i=1; i<=imx; i++){    /*   *bx = *ax - (*ax - *bx)/scale; */
     mi=0;    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
     m=firstpass;    /* } */
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)    if (*fb > *fa) { 
         mw[++mi][i]=m;      SHFT(dum,*ax,*bx,dum) 
       if(m >=lastpass)      SHFT(dum,*fb,*fa,dum) 
         break;    } 
       else    *cx=(*bx)+GOLD*(*bx-*ax); 
         m++;    *fc=(*func)(*cx); 
     }/* end while */  #ifdef DEBUG
     if (s[m][i] > nlstate){    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
       mi++;     /* Death is another wave */    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
       /* if(mi==0)  never been interviewed correctly before death */  #endif
          /* Only death is a correct wave */    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
       mw[mi][i]=m;      r=(*bx-*ax)*(*fb-*fc); 
     }      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     wav[i]=mi;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
     if(mi==0)      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
   }        fu=(*func)(u); 
   #ifdef DEBUG
   for(i=1; i<=imx; i++){        /* f(x)=A(x-u)**2+f(u) */
     for(mi=1; mi<wav[i];mi++){        double A, fparabu; 
       if (stepm <=0)        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
         dh[mi][i]=1;        fparabu= *fa - A*(*ax-u)*(*ax-u);
       else{        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         if (s[mw[mi+1][i]][i] > nlstate) {        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
           if (agedc[i] < 2*AGESUP) {        /* And thus,it can be that fu > *fc even if fparabu < *fc */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
           if(j==0) j=1;  /* Survives at least one month after exam */          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
           k=k+1;        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
           if (j >= jmax) jmax=j;  #endif 
           if (j <= jmin) jmin=j;  #ifdef MNBRAKORIGINAL
           sum=sum+j;  #else
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  /*       if (fu > *fc) { */
           }  /* #ifdef DEBUG */
         }  /*       printf("mnbrak4  fu > fc \n"); */
         else{  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  /* #endif */
           k=k+1;  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
           if (j >= jmax) jmax=j;  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
           else if (j <= jmin)jmin=j;  /*      dum=u; /\* Shifting c and u *\/ */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  /*      u = *cx; */
           sum=sum+j;  /*      *cx = dum; */
         }  /*      dum = fu; */
         jk= j/stepm;  /*      fu = *fc; */
         jl= j -jk*stepm;  /*      *fc =dum; */
         ju= j -(jk+1)*stepm;  /*       } else { /\* end *\/ */
         if(jl <= -ju)  /* #ifdef DEBUG */
           dh[mi][i]=jk;  /*       printf("mnbrak3  fu < fc \n"); */
         else  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
           dh[mi][i]=jk+1;  /* #endif */
         if(dh[mi][i]==0)  /*      dum=u; /\* Shifting c and u *\/ */
           dh[mi][i]=1; /* At least one step */  /*      u = *cx; */
       }  /*      *cx = dum; */
     }  /*      dum = fu; */
   }  /*      fu = *fc; */
   jmean=sum/k;  /*      *fc =dum; */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  /*       } */
  }  #ifdef DEBUG
 /*********** Tricode ****************************/        printf("mnbrak34  fu < or >= fc \n");
 void tricode(int *Tvar, int **nbcode, int imx)        fprintf(ficlog, "mnbrak34 fu < fc\n");
 {  #endif
   int Ndum[20],ij=1, k, j, i;        dum=u; /* Shifting c and u */
   int cptcode=0;        u = *cx;
   cptcoveff=0;        *cx = dum;
          dum = fu;
   for (k=0; k<19; k++) Ndum[k]=0;        fu = *fc;
   for (k=1; k<=7; k++) ncodemax[k]=0;        *fc =dum;
   #endif
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
     for (i=1; i<=imx; i++) {  #ifdef DEBUG
       ij=(int)(covar[Tvar[j]][i]);        printf("mnbrak2  u after c but before ulim\n");
       Ndum[ij]++;        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  #endif
       if (ij > cptcode) cptcode=ij;        fu=(*func)(u); 
     }        if (fu < *fc) { 
   #ifdef DEBUG
     for (i=0; i<=cptcode; i++) {        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
       if(Ndum[i]!=0) ncodemax[j]++;        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
     }  #endif
     ij=1;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
           SHFT(*fb,*fc,fu,(*func)(u)) 
         } 
     for (i=1; i<=ncodemax[j]; i++) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
       for (k=0; k<=19; k++) {  #ifdef DEBUG
         if (Ndum[k] != 0) {        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
           nbcode[Tvar[j]][ij]=k;        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
            #endif
           ij++;        u=ulim; 
         }        fu=(*func)(u); 
         if (ij > ncodemax[j]) break;      } else { /* u could be left to b (if r > q parabola has a maximum) */
       }    #ifdef DEBUG
     }        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
   }          fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
   #endif
  for (k=0; k<19; k++) Ndum[k]=0;        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
  for (i=1; i<=ncovmodel-2; i++) {      } /* end tests */
       ij=Tvar[i];      SHFT(*ax,*bx,*cx,u) 
       Ndum[ij]++;      SHFT(*fa,*fb,*fc,fu) 
     }  #ifdef DEBUG
         printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
  ij=1;        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
  for (i=1; i<=10; i++) {  #endif
    if((Ndum[i]!=0) && (i<=ncovcol)){    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
      Tvaraff[ij]=i;  } 
      ij++;  
    }  /*************** linmin ************************/
  }  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
    resets p to where the function func(p) takes on a minimum along the direction xi from p ,
     cptcoveff=ij-1;  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
 }  the value of func at the returned location p . This is actually all accomplished by calling the
   routines mnbrak and brent .*/
 /*********** Health Expectancies ****************/  int ncom; 
   double *pcom,*xicom;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  double (*nrfunc)(double []); 
    
 {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   /* Health expectancies */  { 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    double brent(double ax, double bx, double cx, 
   double age, agelim, hf;                 double (*f)(double), double tol, double *xmin); 
   double ***p3mat,***varhe;    double f1dim(double x); 
   double **dnewm,**doldm;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   double *xp;                double *fc, double (*func)(double)); 
   double **gp, **gm;    int j; 
   double ***gradg, ***trgradg;    double xx,xmin,bx,ax; 
   int theta;    double fx,fb,fa;
   
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    double scale=10., axs, xxs, xxss; /* Scale added for infinity */
   xp=vector(1,npar);   
   dnewm=matrix(1,nlstate*2,1,npar);    ncom=n; 
   doldm=matrix(1,nlstate*2,1,nlstate*2);    pcom=vector(1,n); 
      xicom=vector(1,n); 
   fprintf(ficreseij,"# Health expectancies\n");    nrfunc=func; 
   fprintf(ficreseij,"# Age");    for (j=1;j<=n;j++) { 
   for(i=1; i<=nlstate;i++)      pcom[j]=p[j]; 
     for(j=1; j<=nlstate;j++)      xicom[j]=xi[j]; 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    } 
   fprintf(ficreseij,"\n");  
     axs=0.0;
   if(estepm < stepm){    xxss=1; /* 1 and using scale */
     printf ("Problem %d lower than %d\n",estepm, stepm);    xxs=1;
   }    do{
   else  hstepm=estepm;        ax=0.;
   /* We compute the life expectancy from trapezoids spaced every estepm months      xx= xxs;
    * This is mainly to measure the difference between two models: for example      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
    * if stepm=24 months pijx are given only every 2 years and by summing them      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
    * we are calculating an estimate of the Life Expectancy assuming a linear      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
    * progression inbetween and thus overestimating or underestimating according      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
    * to the curvature of the survival function. If, for the same date, we      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
    * to compare the new estimate of Life expectancy with the same linear      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
    * hypothesis. A more precise result, taking into account a more precise      if (fx != fx){
    * curvature will be obtained if estepm is as small as stepm. */          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
           printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
   /* For example we decided to compute the life expectancy with the smallest unit */      }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    }while(fx != fx);
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.  #ifdef DEBUGLINMIN
      Look at hpijx to understand the reason of that which relies in memory size    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
      and note for a fixed period like estepm months */  #endif
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
      survival function given by stepm (the optimization length). Unfortunately it    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
      means that if the survival funtion is printed only each two years of age and if    /* fmin = f(p[j] + xmin * xi[j]) */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
      results. So we changed our mind and took the option of the best precision.    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
   */  #ifdef DEBUG
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   agelim=AGESUP;  #endif
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  #ifdef DEBUGLINMIN
     /* nhstepm age range expressed in number of stepm */    printf("linmin end ");
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  #endif
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    for (j=1;j<=n;j++) { 
     /* if (stepm >= YEARM) hstepm=1;*/      /* printf(" before xi[%d]=%12.8f", j,xi[j]); */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      xi[j] *= xmin; /* xi rescaled by xmin: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* if(xxs <1.0) */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      /*   printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs ); */
     gp=matrix(0,nhstepm,1,nlstate*2);      p[j] += xi[j]; /* Parameters values are updated accordingly */
     gm=matrix(0,nhstepm,1,nlstate*2);    } 
     /* printf("\n"); */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  #ifdef DEBUGLINMIN
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      for (j=1;j<=n;j++) { 
        printf(" xi[%d]= %12.7f p[%d]= %12.7f",j,xi[j],j,p[j]);
       if(j % ncovmodel == 0)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        printf("\n");
     }
     /* Computing Variances of health expectancies */  #endif
     free_vector(xicom,1,n); 
      for(theta=1; theta <=npar; theta++){    free_vector(pcom,1,n); 
       for(i=1; i<=npar; i++){  } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /*************** powell ************************/
    /*
       cptj=0;  Minimization of a function func of n variables. Input consists of an initial starting point
       for(j=1; j<= nlstate; j++){  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
         for(i=1; i<=nlstate; i++){  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
           cptj=cptj+1;  such that failure to decrease by more than this amount on one iteration signals doneness. On
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  function value at p , and iter is the number of iterations taken. The routine linmin is used.
           }   */
         }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       }              double (*func)(double [])) 
        { 
          void linmin(double p[], double xi[], int n, double *fret, 
       for(i=1; i<=npar; i++)                double (*func)(double [])); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int i,ibig,j; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double del,t,*pt,*ptt,*xit;
          double directest;
       cptj=0;    double fp,fptt;
       for(j=1; j<= nlstate; j++){    double *xits;
         for(i=1;i<=nlstate;i++){    int niterf, itmp;
           cptj=cptj+1;  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    pt=vector(1,n); 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    ptt=vector(1,n); 
           }    xit=vector(1,n); 
         }    xits=vector(1,n); 
       }    *fret=(*func)(p); 
          for (j=1;j<=n;j++) pt[j]=p[j]; 
          rcurr_time = time(NULL);  
     for (*iter=1;;++(*iter)) { 
       for(j=1; j<= nlstate*2; j++)      fp=(*fret); /* From former iteration or initial value */
         for(h=0; h<=nhstepm-1; h++){      ibig=0; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      del=0.0; 
         }      rlast_time=rcurr_time;
       /* (void) gettimeofday(&curr_time,&tzp); */
      }      rcurr_time = time(NULL);  
          curr_time = *localtime(&rcurr_time);
 /* End theta */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
      for (i=1;i<=n;i++) {
      for(h=0; h<=nhstepm-1; h++)        printf(" %d %.12f",i, p[i]);
       for(j=1; j<=nlstate*2;j++)        fprintf(ficlog," %d %.12lf",i, p[i]);
         for(theta=1; theta <=npar; theta++)        fprintf(ficrespow," %.12lf", p[i]);
         trgradg[h][j][theta]=gradg[h][theta][j];      }
       printf("\n");
       fprintf(ficlog,"\n");
      for(i=1;i<=nlstate*2;i++)      fprintf(ficrespow,"\n");fflush(ficrespow);
       for(j=1;j<=nlstate*2;j++)      if(*iter <=3){
         varhe[i][j][(int)age] =0.;        tml = *localtime(&rcurr_time);
         strcpy(strcurr,asctime(&tml));
     for(h=0;h<=nhstepm-1;h++){        rforecast_time=rcurr_time; 
       for(k=0;k<=nhstepm-1;k++){        itmp = strlen(strcurr);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          strcurr[itmp-1]='\0';
         for(i=1;i<=nlstate*2;i++)        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           for(j=1;j<=nlstate*2;j++)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        for(niterf=10;niterf<=30;niterf+=10){
       }          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
     }          forecast_time = *localtime(&rforecast_time);
           strcpy(strfor,asctime(&forecast_time));
                itmp = strlen(strfor);
     /* Computing expectancies */          if(strfor[itmp-1]=='\n')
     for(i=1; i<=nlstate;i++)          strfor[itmp-1]='\0';
       for(j=1; j<=nlstate;j++)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        }
                }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      for (i=1;i<=n;i++) { /* For each direction i */
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
         }        fptt=(*fret); 
   #ifdef DEBUG
     fprintf(ficreseij,"%3.0f",age );            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
     cptj=0;            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
     for(i=1; i<=nlstate;i++)  #endif
       for(j=1; j<=nlstate;j++){            printf("%d",i);fflush(stdout); /* print direction (parameter) i */
         cptj++;        fprintf(ficlog,"%d",i);fflush(ficlog);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
       }                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
     fprintf(ficreseij,"\n");        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
              /* because that direction will be replaced unless the gain del is small */
     free_matrix(gm,0,nhstepm,1,nlstate*2);          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
     free_matrix(gp,0,nhstepm,1,nlstate*2);          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          /* with the new direction. */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          del=fabs(fptt-(*fret)); 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          ibig=i; 
   }        } 
   free_vector(xp,1,npar);  #ifdef DEBUG
   free_matrix(dnewm,1,nlstate*2,1,npar);        printf("%d %.12e",i,(*fret));
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        fprintf(ficlog,"%d %.12e",i,(*fret));
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        for (j=1;j<=n;j++) {
 }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
 /************ Variance ******************/          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        }
 {        for(j=1;j<=n;j++) {
   /* Variance of health expectancies */          printf(" p(%d)=%.12e",j,p[j]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
   double **newm;        }
   double **dnewm,**doldm;        printf("\n");
   int i, j, nhstepm, hstepm, h, nstepm ;        fprintf(ficlog,"\n");
   int k, cptcode;  #endif
   double *xp;      } /* end loop on each direction i */
   double **gp, **gm;      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
   double ***gradg, ***trgradg;      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
   double ***p3mat;      /* New value of last point Pn is not computed, P(n-1) */
   double age,agelim, hf;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
   int theta;        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
         /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
    fprintf(ficresvij,"# Covariances of life expectancies\n");        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
   fprintf(ficresvij,"# Age");        /* decreased of more than 3.84  */
   for(i=1; i<=nlstate;i++)        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
     for(j=1; j<=nlstate;j++)        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        /* By adding 10 parameters more the gain should be 18.31 */
   fprintf(ficresvij,"\n");  
         /* Starting the program with initial values given by a former maximization will simply change */
   xp=vector(1,npar);        /* the scales of the directions and the directions, because the are reset to canonical directions */
   dnewm=matrix(1,nlstate,1,npar);        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
   doldm=matrix(1,nlstate,1,nlstate);        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
    #ifdef DEBUG
   if(estepm < stepm){        int k[2],l;
     printf ("Problem %d lower than %d\n",estepm, stepm);        k[0]=1;
   }        k[1]=-1;
   else  hstepm=estepm;          printf("Max: %.12e",(*func)(p));
   /* For example we decided to compute the life expectancy with the smallest unit */        fprintf(ficlog,"Max: %.12e",(*func)(p));
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        for (j=1;j<=n;j++) {
      nhstepm is the number of hstepm from age to agelim          printf(" %.12e",p[j]);
      nstepm is the number of stepm from age to agelin.          fprintf(ficlog," %.12e",p[j]);
      Look at hpijx to understand the reason of that which relies in memory size        }
      and note for a fixed period like k years */        printf("\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        fprintf(ficlog,"\n");
      survival function given by stepm (the optimization length). Unfortunately it        for(l=0;l<=1;l++) {
      means that if the survival funtion is printed only each two years of age and if          for (j=1;j<=n;j++) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
      results. So we changed our mind and took the option of the best precision.            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          }
   agelim = AGESUP;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  #endif
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);        free_vector(xit,1,n); 
     gm=matrix(0,nhstepm,1,nlstate);        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
     for(theta=1; theta <=npar; theta++){        free_vector(pt,1,n); 
       for(i=1; i<=npar; i++){ /* Computes gradient */        return; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } 
       }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
       if (popbased==1) {        pt[j]=p[j]; 
         for(i=1; i<=nlstate;i++)      } 
           prlim[i][i]=probs[(int)age][i][ij];      fptt=(*func)(ptt); /* f_3 */
       }      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
          /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
       for(j=1; j<= nlstate; j++){        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
         for(h=0; h<=nhstepm; h++){        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
         }        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
       }        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
      #ifdef NRCORIGINAL
       for(i=1; i<=npar; i++) /* Computes gradient */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  #else
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        t= t- del*SQR(fp-fptt);
    #endif
       if (popbased==1) {        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
         for(i=1; i<=nlstate;i++)  #ifdef DEBUG
           prlim[i][i]=probs[(int)age][i][ij];        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
       }        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
         printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
       for(j=1; j<= nlstate; j++){               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
         for(h=0; h<=nhstepm; h++){        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         }        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
       }  #endif
   #ifdef POWELLORIGINAL
       for(j=1; j<= nlstate; j++)        if (t < 0.0) { /* Then we use it for new direction */
         for(h=0; h<=nhstepm; h++){  #else
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        if (directest*t < 0.0) { /* Contradiction between both tests */
         }        printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
     } /* End theta */        printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
         fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
       } 
     for(h=0; h<=nhstepm; h++)        if (directest < 0.0) { /* Then we use it for new direction */
       for(j=1; j<=nlstate;j++)  #endif
         for(theta=1; theta <=npar; theta++)  #ifdef DEBUGLINMIN
           trgradg[h][j][theta]=gradg[h][theta][j];          printf("Before linmin in direction P%d-P0\n",n);
           for (j=1;j<=n;j++) { 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            printf("Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
     for(i=1;i<=nlstate;i++)            if(j % ncovmodel == 0)
       for(j=1;j<=nlstate;j++)              printf("\n");
         vareij[i][j][(int)age] =0.;          }
   #endif
     for(h=0;h<=nhstepm;h++){          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
       for(k=0;k<=nhstepm;k++){  #ifdef DEBUGLINMIN
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          for (j=1;j<=n;j++) { 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
         for(i=1;i<=nlstate;i++)            if(j % ncovmodel == 0)
           for(j=1;j<=nlstate;j++)              printf("\n");
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          }
       }  #endif
     }          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
     fprintf(ficresvij,"%.0f ",age );            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
     for(i=1; i<=nlstate;i++)          }
       for(j=1; j<=nlstate;j++){          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       }  
     fprintf(ficresvij,"\n");  #ifdef DEBUG
     free_matrix(gp,0,nhstepm,1,nlstate);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     free_matrix(gm,0,nhstepm,1,nlstate);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          for(j=1;j<=n;j++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            printf(" %.12e",xit[j]);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficlog," %.12e",xit[j]);
   } /* End age */          }
            printf("\n");
   free_vector(xp,1,npar);          fprintf(ficlog,"\n");
   free_matrix(doldm,1,nlstate,1,npar);  #endif
   free_matrix(dnewm,1,nlstate,1,nlstate);        } /* end of t negative */
       } /* end if (fptt < fp)  */
 }    } 
   } 
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  /**** Prevalence limit (stable or period prevalence)  ****************/
 {  
   /* Variance of prevalence limit */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  {
   double **newm;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double **dnewm,**doldm;       matrix by transitions matrix until convergence is reached */
   int i, j, nhstepm, hstepm;    
   int k, cptcode;    int i, ii,j,k;
   double *xp;    double min, max, maxmin, maxmax,sumnew=0.;
   double *gp, *gm;    /* double **matprod2(); */ /* test */
   double **gradg, **trgradg;    double **out, cov[NCOVMAX+1], **pmij();
   double age,agelim;    double **newm;
   int theta;    double agefin, delaymax=50 ; /* Max number of years to converge */
        
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficresvpl,"# Age");      for (j=1;j<=nlstate+ndeath;j++){
   for(i=1; i<=nlstate;i++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresvpl," %1d-%1d",i,i);      }
   fprintf(ficresvpl,"\n");    
     cov[1]=1.;
   xp=vector(1,npar);    
   dnewm=matrix(1,nlstate,1,npar);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   doldm=matrix(1,nlstate,1,nlstate);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
        newm=savm;
   hstepm=1*YEARM; /* Every year of age */      /* Covariates have to be included here again */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      cov[2]=agefin;
   agelim = AGESUP;      if(nagesqr==1)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        cov[3]= agefin*agefin;;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (k=1; k<=cptcovn;k++) {
     if (stepm >= YEARM) hstepm=1;        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
     gradg=matrix(1,npar,1,nlstate);      }
     gp=vector(1,nlstate);      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
     gm=vector(1,nlstate);      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]*cov[2];
       for (k=1; k<=cptcovprod;k++) /* Useless */
     for(theta=1; theta <=npar; theta++){        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for(i=1; i<=npar; i++){ /* Computes gradient */      
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       }      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       for(i=1;i<=nlstate;i++)      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         gp[i] = prlim[i][i];      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
          out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       for(i=1; i<=npar; i++) /* Computes gradient */      
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      savm=oldm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      oldm=newm;
       for(i=1;i<=nlstate;i++)      maxmax=0.;
         gm[i] = prlim[i][i];      for(j=1;j<=nlstate;j++){
         min=1.;
       for(i=1;i<=nlstate;i++)        max=0.;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        for(i=1; i<=nlstate; i++) {
     } /* End theta */          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     trgradg =matrix(1,nlstate,1,npar);          prlim[i][j]= newm[i][j]/(1-sumnew);
           /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
     for(j=1; j<=nlstate;j++)          max=FMAX(max,prlim[i][j]);
       for(theta=1; theta <=npar; theta++)          min=FMIN(min,prlim[i][j]);
         trgradg[j][theta]=gradg[theta][j];        }
         maxmin=max-min;
     for(i=1;i<=nlstate;i++)        maxmax=FMAX(maxmax,maxmin);
       varpl[i][(int)age] =0.;      } /* j loop */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      if(maxmax < ftolpl){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        return prlim;
     for(i=1;i<=nlstate;i++)      }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    } /* age loop */
     return prlim; /* should not reach here */
     fprintf(ficresvpl,"%.0f ",age );  }
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  /*************** transition probabilities ***************/ 
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     free_vector(gm,1,nlstate);  {
     free_matrix(gradg,1,npar,1,nlstate);    /* According to parameters values stored in x and the covariate's values stored in cov,
     free_matrix(trgradg,1,nlstate,1,npar);       computes the probability to be observed in state j being in state i by appying the
   } /* End age */       model to the ncovmodel covariates (including constant and age).
        lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   free_vector(xp,1,npar);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   free_matrix(doldm,1,nlstate,1,npar);       ncth covariate in the global vector x is given by the formula:
   free_matrix(dnewm,1,nlstate,1,nlstate);       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
        j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 }       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
        sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
 /************ Variance of one-step probabilities  ******************/       Outputs ps[i][j] the probability to be observed in j being in j according to
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 {    */
   int i, j, i1, k1, j1, z1;    double s1, lnpijopii;
   int k=0, cptcode;    /*double t34;*/
   double **dnewm,**doldm;    int i,j, nc, ii, jj;
   double *xp;  
   double *gp, *gm;      for(i=1; i<= nlstate; i++){
   double **gradg, **trgradg;        for(j=1; j<i;j++){
   double age,agelim, cov[NCOVMAX];          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   int theta;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   char fileresprob[FILENAMELENGTH];            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   strcpy(fileresprob,"prob");          }
   strcat(fileresprob,fileres);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     printf("Problem with resultfile: %s\n", fileresprob);        }
   }        for(j=i+1; j<=nlstate+ndeath;j++){
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
              /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   fprintf(ficresprob,"# Age");  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   for(i=1; i<=nlstate;i++)          }
     for(j=1; j<=(nlstate+ndeath);j++)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        }
       }
       
   fprintf(ficresprob,"\n");      for(i=1; i<= nlstate; i++){
         s1=0;
         for(j=1; j<i; j++){
   xp=vector(1,npar);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        }
          for(j=i+1; j<=nlstate+ndeath; j++){
   cov[1]=1;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   j=cptcoveff;          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        }
   j1=0;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   for(k1=1; k1<=1;k1++){        ps[i][i]=1./(s1+1.);
     for(i1=1; i1<=ncodemax[k1];i1++){        /* Computing other pijs */
     j1++;        for(j=1; j<i; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
     if  (cptcovn>0) {        for(j=i+1; j<=nlstate+ndeath; j++)
       fprintf(ficresprob, "\n#********** Variable ");          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       fprintf(ficresprob, "**********\n#");      } /* end i */
     }      
          for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for (age=bage; age<=fage; age ++){        for(jj=1; jj<= nlstate+ndeath; jj++){
         cov[2]=age;          ps[ii][jj]=0;
         for (k=1; k<=cptcovn;k++) {          ps[ii][ii]=1;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        }
                }
         }      
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      
         for (k=1; k<=cptcovprod;k++)      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
              /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
         gradg=matrix(1,npar,1,9);      /*   } */
         trgradg=matrix(1,9,1,npar);      /*   printf("\n "); */
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      /* } */
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      /* printf("\n ");printf("%lf ",cov[2]);*/
          /*
         for(theta=1; theta <=npar; theta++){        for(i=1; i<= npar; i++) printf("%f ",x[i]);
           for(i=1; i<=npar; i++)        goto end;*/
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      return ps;
            }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
            /**************** Product of 2 matrices ******************/
           k=0;  
           for(i=1; i<= (nlstate+ndeath); i++){  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
             for(j=1; j<=(nlstate+ndeath);j++){  {
               k=k+1;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
               gp[k]=pmmij[i][j];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
             }    /* in, b, out are matrice of pointers which should have been initialized 
           }       before: only the contents of out is modified. The function returns
                 a pointer to pointers identical to out */
           for(i=1; i<=npar; i++)    int i, j, k;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    for(i=nrl; i<= nrh; i++)
          for(k=ncolol; k<=ncoloh; k++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        out[i][k]=0.;
           k=0;        for(j=ncl; j<=nch; j++)
           for(i=1; i<=(nlstate+ndeath); i++){          out[i][k] +=in[i][j]*b[j][k];
             for(j=1; j<=(nlstate+ndeath);j++){      }
               k=k+1;    return out;
               gm[k]=pmmij[i][j];  }
             }  
           }  
        /************* Higher Matrix Product ***************/
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         }  {
     /* Computes the transition matrix starting at age 'age' over 
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)       'nhstepm*hstepm*stepm' months (i.e. until
           for(theta=1; theta <=npar; theta++)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
             trgradg[j][theta]=gradg[theta][j];       nhstepm*hstepm matrices. 
               Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);       (typically every 2 years instead of every month which is too big 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);       for the memory).
               Model is determined by parameters x and covariates have to be 
         pmij(pmmij,cov,ncovmodel,x,nlstate);       included manually here. 
          
         k=0;       */
         for(i=1; i<=(nlstate+ndeath); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){    int i, j, d, h, k;
             k=k+1;    double **out, cov[NCOVMAX+1];
             gm[k]=pmmij[i][j];    double **newm;
           }    double agexact;
         }  
          /* Hstepm could be zero and should return the unit matrix */
      /*printf("\n%d ",(int)age);    for (i=1;i<=nlstate+ndeath;i++)
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      for (j=1;j<=nlstate+ndeath;j++){
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        oldm[i][j]=(i==j ? 1.0 : 0.0);
      }*/        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
         fprintf(ficresprob,"\n%d ",(int)age);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)      for(d=1; d <=hstepm; d++){
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));        newm=savm;
          /* Covariates have to be included here again */
       }        cov[1]=1.;
     }        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        cov[2]=agexact;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        if(nagesqr==1)
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          cov[3]= agexact*agexact;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for (k=1; k<=cptcovn;k++) 
   }          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   free_vector(xp,1,npar);        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
   fclose(ficresprob);          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
            cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
 }        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
  int lastpass, int stepm, int weightopt, char model[],\        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
  char version[], int popforecast, int estepm ){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   int jj1, k1, i1, cpt;        savm=oldm;
   FILE *fichtm;        oldm=newm;
   /*char optionfilehtm[FILENAMELENGTH];*/      }
       for(i=1; i<=nlstate+ndeath; i++)
   strcpy(optionfilehtm,optionfile);        for(j=1;j<=nlstate+ndeath;j++) {
   strcat(optionfilehtm,".htm");          po[i][j][h]=newm[i][j];
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     printf("Problem with %s \n",optionfilehtm), exit(0);        }
   }      /*printf("h=%d ",h);*/
     } /* end h */
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  /*     printf("\n H=%d \n",h); */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    return po;
 \n  }
 Total number of observations=%d <br>\n  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n  #ifdef NLOPT
 <hr  size=\"2\" color=\"#EC5E5E\">    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
  <ul><li>Outputs files<br>\n    double fret;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    double *xt;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    int j;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    myfunc_data *d2 = (myfunc_data *) pd;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n  /* xt = (p1-1); */
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    xt=vector(1,n); 
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   
  fprintf(fichtm,"\n    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    printf("Function = %.12lf ",fret);
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    printf("\n");
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);   free_vector(xt,1,n);
     return fret;
  if(popforecast==1) fprintf(fichtm,"\n  }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  #endif
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  
         <br>",fileres,fileres,fileres,fileres);  /*************** log-likelihood *************/
  else  double func( double *x)
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  {
 fprintf(fichtm," <li>Graphs</li><p>");    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
  m=cptcoveff;    double **out;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
  jj1=0;    int s1, s2;
  for(k1=1; k1<=m;k1++){    double bbh, survp;
    for(i1=1; i1<=ncodemax[k1];i1++){    long ipmx;
        jj1++;    double agexact;
        if (cptcovn > 0) {    /*extern weight */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    /* We are differentiating ll according to initial status */
          for (cpt=1; cpt<=cptcoveff;cpt++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    /*for(i=1;i<imx;i++) 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      printf(" %d\n",s[4][i]);
        }    */
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>  
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        ++countcallfunc;
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    cov[1]=1.;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    if(mle==1){
 interval) in state (%d): v%s%d%d.gif <br>      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          /* Computes the values of the ncovmodel covariates of the model
      }           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
      for(cpt=1; cpt<=nlstate;cpt++) {           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>           to be observed in j being in i according to the model.
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);         */
      }        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            cov[2+nagesqr+k]=covar[Tvar[k]][i];
 health expectancies in states (1) and (2): e%s%d.gif<br>        }
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
 fprintf(fichtm,"\n</body>");           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
    }           has been calculated etc */
    }        for(mi=1; mi<= wav[i]-1; mi++){
 fclose(fichtm);          for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /******************* Gnuplot file **************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            }
           for(d=0; d<dh[mi][i]; d++){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            newm=savm;
             agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   strcpy(optionfilegnuplot,optionfilefiname);            cov[2]=agexact;
   strcat(optionfilegnuplot,".gp.txt");            if(nagesqr==1)
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {              cov[3]= agexact*agexact;
     printf("Problem with file %s",optionfilegnuplot);            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
             }
 #ifdef windows            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(ficgp,"cd \"%s\" \n",pathc);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 #endif            savm=oldm;
 m=pow(2,cptcoveff);            oldm=newm;
            } /* end mult */
  /* 1eme*/        
   for (cpt=1; cpt<= nlstate ; cpt ++) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
    for (k1=1; k1<= m ; k1 ++) {          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
 for (i=1; i<= nlstate ; i ++) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   else fprintf(ficgp," \%%*lf (\%%*lf)");           * probability in order to take into account the bias as a fraction of the way
 }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);           * -stepm/2 to stepm/2 .
     for (i=1; i<= nlstate ; i ++) {           * For stepm=1 the results are the same as for previous versions of Imach.
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");           * For stepm > 1 the results are less biased than in previous versions. 
   else fprintf(ficgp," \%%*lf (\%%*lf)");           */
 }          s1=s[mw[mi][i]][i];
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          s2=s[mw[mi+1][i]][i];
      for (i=1; i<= nlstate ; i ++) {          bbh=(double)bh[mi][i]/(double)stepm; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          /* bias bh is positive if real duration
   else fprintf(ficgp," \%%*lf (\%%*lf)");           * is higher than the multiple of stepm and negative otherwise.
 }             */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            /* i.e. if s2 is a death state and if the date of death is known 
    }               then the contribution to the likelihood is the probability to 
   }               die between last step unit time and current  step unit time, 
   /*2 eme*/               which is also equal to probability to die before dh 
                minus probability to die before dh-stepm . 
   for (k1=1; k1<= m ; k1 ++) {               In version up to 0.92 likelihood was computed
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);          as if date of death was unknown. Death was treated as any other
              health state: the date of the interview describes the actual state
     for (i=1; i<= nlstate+1 ; i ++) {          and not the date of a change in health state. The former idea was
       k=2*i;          to consider that at each interview the state was recorded
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          (healthy, disable or death) and IMaCh was corrected; but when we
       for (j=1; j<= nlstate+1 ; j ++) {          introduced the exact date of death then we should have modified
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          the contribution of an exact death to the likelihood. This new
   else fprintf(ficgp," \%%*lf (\%%*lf)");          contribution is smaller and very dependent of the step unit
 }            stepm. It is no more the probability to die between last interview
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          and month of death but the probability to survive from last
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          interview up to one month before death multiplied by the
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          probability to die within a month. Thanks to Chris
       for (j=1; j<= nlstate+1 ; j ++) {          Jackson for correcting this bug.  Former versions increased
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          mortality artificially. The bad side is that we add another loop
         else fprintf(ficgp," \%%*lf (\%%*lf)");          which slows down the processing. The difference can be up to 10%
 }            lower mortality.
       fprintf(ficgp,"\" t\"\" w l 0,");            */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          /* If, at the beginning of the maximization mostly, the
       for (j=1; j<= nlstate+1 ; j ++) {             cumulative probability or probability to be dead is
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");             constant (ie = 1) over time d, the difference is equal to
   else fprintf(ficgp," \%%*lf (\%%*lf)");             0.  out[s1][3] = savm[s1][3]: probability, being at state
 }               s1 at precedent wave, to be dead a month before current
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");             wave is equal to probability, being at state s1 at
       else fprintf(ficgp,"\" t\"\" w l 0,");             precedent wave, to be dead at mont of the current
     }             wave. Then the observed probability (that this person died)
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);             is null according to current estimated parameter. In fact,
   }             it should be very low but not zero otherwise the log go to
               infinity.
   /*3eme*/          */
   /* #ifdef INFINITYORIGINAL */
   for (k1=1; k1<= m ; k1 ++) {  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
     for (cpt=1; cpt<= nlstate ; cpt ++) {  /* #else */
       k=2+nlstate*(2*cpt-2);  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  /*          lli=log(mytinydouble); */
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  /*        else */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  /* #endif */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              lli=log(out[s1][s2] - savm[s1][s2]);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
 */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for (i=1; i< nlstate ; i ++) {            /*survp += out[s1][j]; */
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            lli= log(survp);
           }
       }          
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          else if  (s2==-4) { 
     }            for (j=3,survp=0. ; j<=nlstate; j++)  
     }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              lli= log(survp); 
   /* CV preval stat */          } 
     for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {          else if  (s2==-5) { 
       k=3;            for (j=1,survp=0. ; j<=2; j++)  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
       for (i=1; i< nlstate ; i ++)          } 
         fprintf(ficgp,"+$%d",k+i+1);          
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          else{
                  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       l=3+(nlstate+ndeath)*cpt;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          } 
       for (i=1; i< nlstate ; i ++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         l=3+(nlstate+ndeath)*cpt;          /*if(lli ==000.0)*/
         fprintf(ficgp,"+$%d",l+i+1);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       }          ipmx +=1;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            sw += weight[i];
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }          /* if (lli < log(mytinydouble)){ */
   }            /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
            /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
   /* proba elementaires */          /* } */
    for(i=1,jk=1; i <=nlstate; i++){        } /* end of wave */
     for(k=1; k <=(nlstate+ndeath); k++){      } /* end of individual */
       if (k != i) {    }  else if(mle==2){
         for(j=1; j <=ncovmodel; j++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        for(mi=1; mi<= wav[i]-1; mi++){
           jk++;          for (ii=1;ii<=nlstate+ndeath;ii++)
           fprintf(ficgp,"\n");            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
     }          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
     for(jk=1; jk <=m; jk++) {            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            cov[2]=agexact;
    i=1;            if(nagesqr==1)
    for(k2=1; k2<=nlstate; k2++) {              cov[3]= agexact*agexact;
      k3=i;            for (kk=1; kk<=cptcovage;kk++) {
      for(k=1; k<=(nlstate+ndeath); k++) {              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
        if (k != k2){            }
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 ij=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(j=3; j <=ncovmodel; j++) {            savm=oldm;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            oldm=newm;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          } /* end mult */
             ij++;        
           }          s1=s[mw[mi][i]][i];
           else          s2=s[mw[mi+1][i]][i];
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           fprintf(ficgp,")/(1");          ipmx +=1;
                  sw += weight[i];
         for(k1=1; k1 <=nlstate; k1++){            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        } /* end of wave */
 ij=1;      } /* end of individual */
           for(j=3; j <=ncovmodel; j++){    }  else if(mle==3){  /* exponential inter-extrapolation */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
             ij++;        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
           else            for (j=1;j<=nlstate+ndeath;j++){
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           fprintf(ficgp,")");            }
         }          for(d=0; d<dh[mi][i]; d++){
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            newm=savm;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
         i=i+ncovmodel;            cov[2]=agexact;
        }            if(nagesqr==1)
      }              cov[3]= agexact*agexact;
    }            for (kk=1; kk<=cptcovage;kk++) {
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
    }            }
                out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fclose(ficgp);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }  /* end gnuplot */            savm=oldm;
             oldm=newm;
           } /* end mult */
 /*************** Moving average **************/        
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   int i, cpt, cptcod;          bbh=(double)bh[mi][i]/(double)stepm; 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for (i=1; i<=nlstate;i++)          ipmx +=1;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          sw += weight[i];
           mobaverage[(int)agedeb][i][cptcod]=0.;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            } /* end of wave */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      } /* end of individual */
       for (i=1; i<=nlstate;i++){    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for (cpt=0;cpt<=4;cpt++){        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
              for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
             agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
             cov[2]=agexact;
 /************** Forecasting ******************/            if(nagesqr==1)
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){              cov[3]= agexact*agexact;
              for (kk=1; kk<=cptcovage;kk++) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   int *popage;            }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          
   double *popeffectif,*popcount;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double ***p3mat;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   char fileresf[FILENAMELENGTH];            savm=oldm;
             oldm=newm;
  agelim=AGESUP;          } /* end mult */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        
           s1=s[mw[mi][i]][i];
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          s2=s[mw[mi+1][i]][i];
            if( s2 > nlstate){ 
              lli=log(out[s1][s2] - savm[s1][s2]);
   strcpy(fileresf,"f");          }else{
   strcat(fileresf,fileres);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   if((ficresf=fopen(fileresf,"w"))==NULL) {          }
     printf("Problem with forecast resultfile: %s\n", fileresf);          ipmx +=1;
   }          sw += weight[i];
   printf("Computing forecasting: result on file '%s' \n", fileresf);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        } /* end of wave */
       } /* end of individual */
   if (mobilav==1) {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;            for (j=1;j<=nlstate+ndeath;j++){
   if (stepm<=12) stepsize=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   agelim=AGESUP;            }
            for(d=0; d<dh[mi][i]; d++){
   hstepm=1;            newm=savm;
   hstepm=hstepm/stepm;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   yp1=modf(dateintmean,&yp);            cov[2]=agexact;
   anprojmean=yp;            if(nagesqr==1)
   yp2=modf((yp1*12),&yp);              cov[3]= agexact*agexact;
   mprojmean=yp;            for (kk=1; kk<=cptcovage;kk++) {
   yp1=modf((yp2*30.5),&yp);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   jprojmean=yp;            }
   if(jprojmean==0) jprojmean=1;          
   if(mprojmean==0) jprojmean=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);            savm=oldm;
              oldm=newm;
   for(cptcov=1;cptcov<=i2;cptcov++){          } /* end mult */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        
       k=k+1;          s1=s[mw[mi][i]][i];
       fprintf(ficresf,"\n#******");          s2=s[mw[mi+1][i]][i];
       for(j=1;j<=cptcoveff;j++) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          ipmx +=1;
       }          sw += weight[i];
       fprintf(ficresf,"******\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficresf,"# StartingAge FinalAge");          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        } /* end of wave */
            } /* end of individual */
          } /* End of if */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         fprintf(ficresf,"\n");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  /*************** log-likelihood *************/
            double funcone( double *x)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
           oldm=oldms;savm=savms;    /* Same as likeli but slower because of a lot of printf and if */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int i, ii, j, k, mi, d, kk;
            double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
           for (h=0; h<=nhstepm; h++){    double **out;
             if (h==(int) (calagedate+YEARM*cpt)) {    double lli; /* Individual log likelihood */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    double llt;
             }    int s1, s2;
             for(j=1; j<=nlstate+ndeath;j++) {    double bbh, survp;
               kk1=0.;kk2=0;    double agexact;
               for(i=1; i<=nlstate;i++) {                  /*extern weight */
                 if (mobilav==1)    /* We are differentiating ll according to initial status */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                 else {    /*for(i=1;i<imx;i++) 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      printf(" %d\n",s[4][i]);
                 }    */
                    cov[1]=1.;
               }  
               if (h==(int)(calagedate+12*cpt)){    for(k=1; k<=nlstate; k++) ll[k]=0.;
                 fprintf(ficresf," %.3f", kk1);  
                            for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               }      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
             }      for(mi=1; mi<= wav[i]-1; mi++){
           }        for (ii=1;ii<=nlstate+ndeath;ii++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (j=1;j<=nlstate+ndeath;j++){
         }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }          }
   }        for(d=0; d<dh[mi][i]; d++){
                  newm=savm;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
           cov[2]=agexact;
   fclose(ficresf);          if(nagesqr==1)
 }            cov[3]= agexact*agexact;
 /************** Forecasting ******************/          for (kk=1; kk<=cptcovage;kk++) {
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
            }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double *popeffectif,*popcount;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***p3mat,***tabpop,***tabpopprev;          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   char filerespop[FILENAMELENGTH];          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
           savm=oldm;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          oldm=newm;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        } /* end mult */
   agelim=AGESUP;        
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        s1=s[mw[mi][i]][i];
          s2=s[mw[mi+1][i]][i];
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        bbh=(double)bh[mi][i]/(double)stepm; 
          /* bias is positive if real duration
           * is higher than the multiple of stepm and negative otherwise.
   strcpy(filerespop,"pop");         */
   strcat(filerespop,fileres);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          lli=log(out[s1][s2] - savm[s1][s2]);
     printf("Problem with forecast resultfile: %s\n", filerespop);        } else if  (s2==-2) {
   }          for (j=1,survp=0. ; j<=nlstate; j++) 
   printf("Computing forecasting: result on file '%s' \n", filerespop);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   if (mobilav==1) {        } else if(mle==2){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     movingaverage(agedeb, fage, ageminpar, mobaverage);        } else if(mle==3){  /* exponential inter-extrapolation */
   }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
   stepsize=(int) (stepm+YEARM-1)/YEARM;          lli=log(out[s1][s2]); /* Original formula */
   if (stepm<=12) stepsize=1;        } else{  /* mle=0 back to 1 */
            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   agelim=AGESUP;          /*lli=log(out[s1][s2]); */ /* Original formula */
          } /* End of if */
   hstepm=1;        ipmx +=1;
   hstepm=hstepm/stepm;        sw += weight[i];
          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if (popforecast==1) {        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     if((ficpop=fopen(popfile,"r"))==NULL) {        if(globpr){
       printf("Problem with population file : %s\n",popfile);exit(0);          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     }   %11.6f %11.6f %11.6f ", \
     popage=ivector(0,AGESUP);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     popeffectif=vector(0,AGESUP);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     popcount=vector(0,AGESUP);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                llt +=ll[k]*gipmx/gsw;
     i=1;              fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          }
              fprintf(ficresilk," %10.6f\n", -llt);
     imx=i;        }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      } /* end of wave */
   }    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   for(cptcov=1;cptcov<=i2;cptcov++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       k=k+1;    if(globpr==0){ /* First time we count the contributions and weights */
       fprintf(ficrespop,"\n#******");      gipmx=ipmx;
       for(j=1;j<=cptcoveff;j++) {      gsw=sw;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       }    return -l;
       fprintf(ficrespop,"******\n");  }
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");  /*************** function likelione ***********/
        void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       for (cpt=0; cpt<=0;cpt++) {  {
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /* This routine should help understanding what is done with 
               the selection of individuals/waves and
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       to check the exact contribution to the likelihood.
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       Plotting could be done.
           nhstepm = nhstepm/hstepm;     */
              int k;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    if(*globpri !=0){ /* Just counts and sums, no printings */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        strcpy(fileresilk,"ilk"); 
              strcat(fileresilk,fileres);
           for (h=0; h<=nhstepm; h++){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
             if (h==(int) (calagedate+YEARM*cpt)) {        printf("Problem with resultfile: %s\n", fileresilk);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
             }      }
             for(j=1; j<=nlstate+ndeath;j++) {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
               kk1=0.;kk2=0;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
               for(i=1; i<=nlstate;i++) {                    /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
                 if (mobilav==1)      for(k=1; k<=nlstate; k++) 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
                 else {      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    }
                 }  
               }    *fretone=(*funcone)(p);
               if (h==(int)(calagedate+12*cpt)){    if(*globpri !=0){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      fclose(ficresilk);
                   /*fprintf(ficrespop," %.3f", kk1);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      fflush(fichtm); 
               }    } 
             }    return;
             for(i=1; i<=nlstate;i++){  }
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  /*********** Maximum Likelihood Estimation ***************/
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
             }  {
     int i,j, iter=0;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    double **xi;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    double fret;
           }    double fretone; /* Only one call to likelihood */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*  char filerespow[FILENAMELENGTH];*/
         }  
       }  #ifdef NLOPT
      int creturn;
   /******/    nlopt_opt opt;
     /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    double *lb;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      double minf; /* the minimum objective value, upon return */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double * p1; /* Shifted parameters from 0 instead of 1 */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    myfunc_data dinst, *d = &dinst;
           nhstepm = nhstepm/hstepm;  #endif
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    xi=matrix(1,npar,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for (i=1;i<=npar;i++)
           for (h=0; h<=nhstepm; h++){      for (j=1;j<=npar;j++)
             if (h==(int) (calagedate+YEARM*cpt)) {        xi[i][j]=(i==j ? 1.0 : 0.0);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
             }    strcpy(filerespow,"pow"); 
             for(j=1; j<=nlstate+ndeath;j++) {    strcat(filerespow,fileres);
               kk1=0.;kk2=0;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
               for(i=1; i<=nlstate;i++) {                    printf("Problem with resultfile: %s\n", filerespow);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
               }    }
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
             }    for (i=1;i<=nlstate;i++)
           }      for(j=1;j<=nlstate+ndeath;j++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         }    fprintf(ficrespow,"\n");
       }  #ifdef POWELL
    }    powell(p,xi,npar,ftol,&iter,&fret,func);
   }  #endif
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  #ifdef NLOPT
   #ifdef NEWUOA
   if (popforecast==1) {    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
     free_ivector(popage,0,AGESUP);  #else
     free_vector(popeffectif,0,AGESUP);    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
     free_vector(popcount,0,AGESUP);  #endif
   }    lb=vector(0,npar-1);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    nlopt_set_lower_bounds(opt, lb);
   fclose(ficrespop);    nlopt_set_initial_step1(opt, 0.1);
 }    
     p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
 /***********************************************/    d->function = func;
 /**************** Main Program *****************/    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
 /***********************************************/    nlopt_set_min_objective(opt, myfunc, d);
     nlopt_set_xtol_rel(opt, ftol);
 int main(int argc, char *argv[])    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
 {      printf("nlopt failed! %d\n",creturn); 
     }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    else {
   double agedeb, agefin,hf;      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
       iter=1; /* not equal */
   double fret;    }
   double **xi,tmp,delta;    nlopt_destroy(opt);
   #endif
   double dum; /* Dummy variable */    free_matrix(xi,1,npar,1,npar);
   double ***p3mat;    fclose(ficrespow);
   int *indx;    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   char line[MAXLINE], linepar[MAXLINE];    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   char title[MAXLINE];    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  }
    
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   char filerest[FILENAMELENGTH];  {
   char fileregp[FILENAMELENGTH];    double  **a,**y,*x,pd;
   char popfile[FILENAMELENGTH];    double **hess;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    int i, j;
   int firstobs=1, lastobs=10;    int *indx;
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   int ju,jl, mi;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   int mobilav=0,popforecast=0;    double gompertz(double p[]);
   int hstepm, nhstepm;    hess=matrix(1,npar,1,npar);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
     printf("\nCalculation of the hessian matrix. Wait...\n");
   double bage, fage, age, agelim, agebase;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   double ftolpl=FTOL;    for (i=1;i<=npar;i++){
   double **prlim;      printf("%d",i);fflush(stdout);
   double *severity;      fprintf(ficlog,"%d",i);fflush(ficlog);
   double ***param; /* Matrix of parameters */     
   double  *p;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   double **matcov; /* Matrix of covariance */      
   double ***delti3; /* Scale */      /*  printf(" %f ",p[i]);
   double *delti; /* Scale */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   double ***eij, ***vareij;    }
   double **varpl; /* Variances of prevalence limits by age */    
   double *epj, vepp;    for (i=1;i<=npar;i++) {
   double kk1, kk2;      for (j=1;j<=npar;j++)  {
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        if (j>i) { 
            printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";          hess[i][j]=hessij(p,delti,i,j,func,npar);
   char *alph[]={"a","a","b","c","d","e"}, str[4];          
           hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
   char z[1]="c", occ;        }
 #include <sys/time.h>      }
 #include <time.h>    }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    printf("\n");
      fprintf(ficlog,"\n");
   /* long total_usecs;  
   struct timeval start_time, end_time;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    
   getcwd(pathcd, size);    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   printf("\n%s",version);    x=vector(1,npar);
   if(argc <=1){    indx=ivector(1,npar);
     printf("\nEnter the parameter file name: ");    for (i=1;i<=npar;i++)
     scanf("%s",pathtot);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   }    ludcmp(a,npar,indx,&pd);
   else{  
     strcpy(pathtot,argv[1]);    for (j=1;j<=npar;j++) {
   }      for (i=1;i<=npar;i++) x[i]=0;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      x[j]=1;
   /*cygwin_split_path(pathtot,path,optionfile);      lubksb(a,npar,indx,x);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      for (i=1;i<=npar;i++){ 
   /* cutv(path,optionfile,pathtot,'\\');*/        matcov[i][j]=x[i];
       }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    }
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);    printf("\n#Hessian matrix#\n");
   replace(pathc,path);    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
 /*-------- arguments in the command line --------*/      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
   strcpy(fileres,"r");        fprintf(ficlog,"%.3e ",hess[i][j]);
   strcat(fileres, optionfilefiname);      }
   strcat(fileres,".txt");    /* Other files have txt extension */      printf("\n");
       fprintf(ficlog,"\n");
   /*---------arguments file --------*/    }
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    /* Recompute Inverse */
     printf("Problem with optionfile %s\n",optionfile);    for (i=1;i<=npar;i++)
     goto end;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   }    ludcmp(a,npar,indx,&pd);
   
   strcpy(filereso,"o");    /*  printf("\n#Hessian matrix recomputed#\n");
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {    for (j=1;j<=npar;j++) {
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      for (i=1;i<=npar;i++) x[i]=0;
   }      x[j]=1;
       lubksb(a,npar,indx,x);
   /* Reads comments: lines beginning with '#' */      for (i=1;i<=npar;i++){ 
   while((c=getc(ficpar))=='#' && c!= EOF){        y[i][j]=x[i];
     ungetc(c,ficpar);        printf("%.3e ",y[i][j]);
     fgets(line, MAXLINE, ficpar);        fprintf(ficlog,"%.3e ",y[i][j]);
     puts(line);      }
     fputs(line,ficparo);      printf("\n");
   }      fprintf(ficlog,"\n");
   ungetc(c,ficpar);    }
     */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    free_matrix(a,1,npar,1,npar);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    free_matrix(y,1,npar,1,npar);
 while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(x,1,npar);
     ungetc(c,ficpar);    free_ivector(indx,1,npar);
     fgets(line, MAXLINE, ficpar);    free_matrix(hess,1,npar,1,npar);
     puts(line);  
     fputs(line,ficparo);  
   }  }
   ungetc(c,ficpar);  
    /*************** hessian matrix ****************/
      double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   covar=matrix(0,NCOVMAX,1,n);  {
   cptcovn=0;    int i;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    int l=1, lmax=20;
     double k1,k2;
   ncovmodel=2+cptcovn;    double p2[MAXPARM+1]; /* identical to x */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    double res;
      double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   /* Read guess parameters */    double fx;
   /* Reads comments: lines beginning with '#' */    int k=0,kmax=10;
   while((c=getc(ficpar))=='#' && c!= EOF){    double l1;
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    fx=func(x);
     puts(line);    for (i=1;i<=npar;i++) p2[i]=x[i];
     fputs(line,ficparo);    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   }      l1=pow(10,l);
   ungetc(c,ficpar);      delts=delt;
        for(k=1 ; k <kmax; k=k+1){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        delt = delta*(l1*k);
     for(i=1; i <=nlstate; i++)        p2[theta]=x[theta] +delt;
     for(j=1; j <=nlstate+ndeath-1; j++){        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
       fscanf(ficpar,"%1d%1d",&i1,&j1);        p2[theta]=x[theta]-delt;
       fprintf(ficparo,"%1d%1d",i1,j1);        k2=func(p2)-fx;
       printf("%1d%1d",i,j);        /*res= (k1-2.0*fx+k2)/delt/delt; */
       for(k=1; k<=ncovmodel;k++){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         fscanf(ficpar," %lf",&param[i][j][k]);        
         printf(" %lf",param[i][j][k]);  #ifdef DEBUGHESS
         fprintf(ficparo," %lf",param[i][j][k]);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       fscanf(ficpar,"\n");  #endif
       printf("\n");        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       fprintf(ficparo,"\n");        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     }          k=kmax;
          }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10;
   p=param[1][1];        }
          else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   /* Reads comments: lines beginning with '#' */          delts=delt;
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    delti[theta]=delts;
     fputs(line,ficparo);    return res; 
   }    
   ungetc(c,ficpar);  }
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  {
   for(i=1; i <=nlstate; i++){    int i;
     for(j=1; j <=nlstate+ndeath-1; j++){    int l=1, lmax=20;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double k1,k2,k3,k4,res,fx;
       printf("%1d%1d",i,j);    double p2[MAXPARM+1];
       fprintf(ficparo,"%1d%1d",i1,j1);    int k;
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fx=func(x);
         printf(" %le",delti3[i][j][k]);    for (k=1; k<=2; k++) {
         fprintf(ficparo," %le",delti3[i][j][k]);      for (i=1;i<=npar;i++) p2[i]=x[i];
       }      p2[thetai]=x[thetai]+delti[thetai]/k;
       fscanf(ficpar,"\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       printf("\n");      k1=func(p2)-fx;
       fprintf(ficparo,"\n");    
     }      p2[thetai]=x[thetai]+delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   delti=delti3[1][1];      k2=func(p2)-fx;
      
   /* Reads comments: lines beginning with '#' */      p2[thetai]=x[thetai]-delti[thetai]/k;
   while((c=getc(ficpar))=='#' && c!= EOF){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     ungetc(c,ficpar);      k3=func(p2)-fx;
     fgets(line, MAXLINE, ficpar);    
     puts(line);      p2[thetai]=x[thetai]-delti[thetai]/k;
     fputs(line,ficparo);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k4=func(p2)-fx;
   ungetc(c,ficpar);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
    #ifdef DEBUG
   matcov=matrix(1,npar,1,npar);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   for(i=1; i <=npar; i++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fscanf(ficpar,"%s",&str);  #endif
     printf("%s",str);    }
     fprintf(ficparo,"%s",str);    return res;
     for(j=1; j <=i; j++){  }
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);  /************** Inverse of matrix **************/
       fprintf(ficparo," %.5le",matcov[i][j]);  void ludcmp(double **a, int n, int *indx, double *d) 
     }  { 
     fscanf(ficpar,"\n");    int i,imax,j,k; 
     printf("\n");    double big,dum,sum,temp; 
     fprintf(ficparo,"\n");    double *vv; 
   }   
   for(i=1; i <=npar; i++)    vv=vector(1,n); 
     for(j=i+1;j<=npar;j++)    *d=1.0; 
       matcov[i][j]=matcov[j][i];    for (i=1;i<=n;i++) { 
          big=0.0; 
   printf("\n");      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     /*-------- Rewriting paramater file ----------*/      vv[i]=1.0/big; 
      strcpy(rfileres,"r");    /* "Rparameterfile */    } 
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    for (j=1;j<=n;j++) { 
      strcat(rfileres,".");    /* */      for (i=1;i<j;i++) { 
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        sum=a[i][j]; 
     if((ficres =fopen(rfileres,"w"))==NULL) {        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        a[i][j]=sum; 
     }      } 
     fprintf(ficres,"#%s\n",version);      big=0.0; 
          for (i=j;i<=n;i++) { 
     /*-------- data file ----------*/        sum=a[i][j]; 
     if((fic=fopen(datafile,"r"))==NULL)    {        for (k=1;k<j;k++) 
       printf("Problem with datafile: %s\n", datafile);goto end;          sum -= a[i][k]*a[k][j]; 
     }        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
     n= lastobs;          big=dum; 
     severity = vector(1,maxwav);          imax=i; 
     outcome=imatrix(1,maxwav+1,1,n);        } 
     num=ivector(1,n);      } 
     moisnais=vector(1,n);      if (j != imax) { 
     annais=vector(1,n);        for (k=1;k<=n;k++) { 
     moisdc=vector(1,n);          dum=a[imax][k]; 
     andc=vector(1,n);          a[imax][k]=a[j][k]; 
     agedc=vector(1,n);          a[j][k]=dum; 
     cod=ivector(1,n);        } 
     weight=vector(1,n);        *d = -(*d); 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        vv[imax]=vv[j]; 
     mint=matrix(1,maxwav,1,n);      } 
     anint=matrix(1,maxwav,1,n);      indx[j]=imax; 
     s=imatrix(1,maxwav+1,1,n);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     adl=imatrix(1,maxwav+1,1,n);          if (j != n) { 
     tab=ivector(1,NCOVMAX);        dum=1.0/(a[j][j]); 
     ncodemax=ivector(1,8);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
     i=1;    } 
     while (fgets(line, MAXLINE, fic) != NULL)    {    free_vector(vv,1,n);  /* Doesn't work */
       if ((i >= firstobs) && (i <=lastobs)) {  ;
          } 
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  void lubksb(double **a, int n, int *indx, double b[]) 
           strcpy(line,stra);  { 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int i,ii=0,ip,j; 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double sum; 
         }   
            for (i=1;i<=n;i++) { 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      ip=indx[i]; 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      sum=b[ip]; 
       b[ip]=b[i]; 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      if (ii) 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      b[i]=sum; 
         for (j=ncovcol;j>=1;j--){    } 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=n;i>=1;i--) { 
         }      sum=b[i]; 
         num[i]=atol(stra);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
              b[i]=sum/a[i][i]; 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    } 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  } 
   
         i=i+1;  void pstamp(FILE *fichier)
       }  {
     }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
     /* printf("ii=%d", ij);  }
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   /* for (i=1; i<=imx; i++){  {  /* Some frequencies */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    int i, m, jk, j1, bool, z1,j;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    int first;
     }*/    double ***freq; /* Frequencies */
    /*  for (i=1; i<=imx; i++){    double *pp, **prop;
      if (s[4][i]==9)  s[4][i]=-1;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    char fileresp[FILENAMELENGTH];
      
      pp=vector(1,nlstate);
   /* Calculation of the number of parameter from char model*/    prop=matrix(1,nlstate,iagemin,iagemax+3);
   Tvar=ivector(1,15);    strcpy(fileresp,"p");
   Tprod=ivector(1,15);    strcat(fileresp,fileres);
   Tvaraff=ivector(1,15);    if((ficresp=fopen(fileresp,"w"))==NULL) {
   Tvard=imatrix(1,15,1,2);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   Tage=ivector(1,15);            fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
          exit(0);
   if (strlen(model) >1){    }
     j=0, j1=0, k1=1, k2=1;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j=nbocc(model,'+');    j1=0;
     j1=nbocc(model,'*');    
     cptcovn=j+1;    j=cptcoveff;
     cptcovprod=j1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      
     strcpy(modelsav,model);    first=1;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
       goto end;    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
     }    /*    j1++; */
        for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
     for(i=(j+1); i>=1;i--){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       cutv(stra,strb,modelsav,'+');          scanf("%d", i);*/
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        for (i=-5; i<=nlstate+ndeath; i++)  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          for (jk=-5; jk<=nlstate+ndeath; jk++)  
       /*scanf("%d",i);*/            for(m=iagemin; m <= iagemax+3; m++)
       if (strchr(strb,'*')) {              freq[i][jk][m]=0;
         cutv(strd,strc,strb,'*');        
         if (strcmp(strc,"age")==0) {        for (i=1; i<=nlstate; i++)  
           cptcovprod--;          for(m=iagemin; m <= iagemax+3; m++)
           cutv(strb,stre,strd,'V');            prop[i][m]=0;
           Tvar[i]=atoi(stre);        
           cptcovage++;        dateintsum=0;
             Tage[cptcovage]=i;        k2cpt=0;
             /*printf("stre=%s ", stre);*/        for (i=1; i<=imx; i++) {
         }          bool=1;
         else if (strcmp(strd,"age")==0) {          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
           cptcovprod--;            for (z1=1; z1<=cptcoveff; z1++)       
           cutv(strb,stre,strc,'V');              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
           Tvar[i]=atoi(stre);                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
           cptcovage++;                bool=0;
           Tage[cptcovage]=i;                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
         }                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
         else {                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
           cutv(strb,stre,strc,'V');                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
           Tvar[i]=ncovcol+k1;              } 
           cutv(strb,strc,strd,'V');          }
           Tprod[k1]=i;   
           Tvard[k1][1]=atoi(strc);          if (bool==1){
           Tvard[k1][2]=atoi(stre);            for(m=firstpass; m<=lastpass; m++){
           Tvar[cptcovn+k2]=Tvard[k1][1];              k2=anint[m][i]+(mint[m][i]/12.);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           for (k=1; k<=lastobs;k++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           k1++;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           k2=k2+2;                if (m<lastpass) {
         }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       else {                }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                
        /*  scanf("%d",i);*/                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       cutv(strd,strc,strb,'V');                  dateintsum=dateintsum+k2;
       Tvar[i]=atoi(strc);                  k2cpt++;
       }                }
       strcpy(modelsav,stra);                  /*}*/
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            }
         scanf("%d",i);*/          }
     }        } /* end i */
 }         
          /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        pstamp(ficresp);
   printf("cptcovprod=%d ", cptcovprod);        if  (cptcovn>0) {
   scanf("%d ",i);*/          fprintf(ficresp, "\n#********** Variable "); 
     fclose(fic);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
     /*  if(mle==1){*/          fprintf(ficlog, "\n#********** Variable "); 
     if (weightopt != 1) { /* Maximisation without weights*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(i=1;i<=n;i++) weight[i]=1.0;          fprintf(ficlog, "**********\n#");
     }        }
     /*-calculation of age at interview from date of interview and age at death -*/        for(i=1; i<=nlstate;i++) 
     agev=matrix(1,maxwav,1,imx);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
     for (i=1; i<=imx; i++) {        
       for(m=2; (m<= maxwav); m++) {        for(i=iagemin; i <= iagemax+3; i++){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          if(i==iagemax+3){
          anint[m][i]=9999;            fprintf(ficlog,"Total");
          s[m][i]=-1;          }else{
        }            if(first==1){
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;              first=0;
       }              printf("See log file for details...\n");
     }            }
             fprintf(ficlog,"Age %d", i);
     for (i=1; i<=imx; i++)  {          }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          for(jk=1; jk <=nlstate ; jk++){
       for(m=1; (m<= maxwav); m++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         if(s[m][i] >0){              pp[jk] += freq[jk][m][i]; 
           if (s[m][i] >= nlstate+1) {          }
             if(agedc[i]>0)          for(jk=1; jk <=nlstate ; jk++){
               if(moisdc[i]!=99 && andc[i]!=9999)            for(m=-1, pos=0; m <=0 ; m++)
                 agev[m][i]=agedc[i];              pos += freq[jk][m][i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            if(pp[jk]>=1.e-10){
            else {              if(first==1){
               if (andc[i]!=9999){                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              }
               agev[m][i]=-1;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }            }else{
             }              if(first==1)
           }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           else if(s[m][i] !=9){ /* Should no more exist */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            }
             if(mint[m][i]==99 || anint[m][i]==9999)          }
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){          for(jk=1; jk <=nlstate ; jk++){
               agemin=agev[m][i];            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/              pp[jk] += freq[jk][m][i];
             }          }       
             else if(agev[m][i] >agemax){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
               agemax=agev[m][i];            pos += pp[jk];
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            posprop += prop[jk][i];
             }          }
             /*agev[m][i]=anint[m][i]-annais[i];*/          for(jk=1; jk <=nlstate ; jk++){
             /*   agev[m][i] = age[i]+2*m;*/            if(pos>=1.e-5){
           }              if(first==1)
           else { /* =9 */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             agev[m][i]=1;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             s[m][i]=-1;            }else{
           }              if(first==1)
         }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         else /*= 0 Unknown */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           agev[m][i]=1;            }
       }            if( i <= iagemax){
                  if(pos>=1.e-5){
     }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     for (i=1; i<=imx; i++)  {                /*probs[i][jk][j1]= pp[jk]/pos;*/
       for(m=1; (m<= maxwav); m++){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         if (s[m][i] > (nlstate+ndeath)) {              }
           printf("Error: Wrong value in nlstate or ndeath\n");                else
           goto end;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         }            }
       }          }
     }          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
     free_vector(severity,1,maxwav);              if(first==1)
     free_imatrix(outcome,1,maxwav+1,1,n);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_vector(moisnais,1,n);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_vector(annais,1,n);              }
     /* free_matrix(mint,1,maxwav,1,n);          if(i <= iagemax)
        free_matrix(anint,1,maxwav,1,n);*/            fprintf(ficresp,"\n");
     free_vector(moisdc,1,n);          if(first==1)
     free_vector(andc,1,n);            printf("Others in log...\n");
           fprintf(ficlog,"\n");
            }
     wav=ivector(1,imx);        /*}*/
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    dateintmean=dateintsum/k2cpt; 
       
     /* Concatenates waves */    fclose(ficresp);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       Tcode=ivector(1,100);    /* End of Freq */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  }
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  /************ Prevalence ********************/
        void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    codtab=imatrix(1,100,1,10);  {  
    h=0;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
    m=pow(2,cptcoveff);       in each health status at the date of interview (if between dateprev1 and dateprev2).
         We still use firstpass and lastpass as another selection.
    for(k=1;k<=cptcoveff; k++){    */
      for(i=1; i <=(m/pow(2,k));i++){   
        for(j=1; j <= ncodemax[k]; j++){    int i, m, jk, j1, bool, z1,j;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;    double **prop;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    double posprop; 
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    double  y2; /* in fractional years */
          }    int iagemin, iagemax;
        }    int first; /** to stop verbosity which is redirected to log file */
      }  
    }    iagemin= (int) agemin;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    iagemax= (int) agemax;
       codtab[1][2]=1;codtab[2][2]=2; */    /*pp=vector(1,nlstate);*/
    /* for(i=1; i <=m ;i++){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       for(k=1; k <=cptcovn; k++){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    j1=0;
       }    
       printf("\n");    /*j=cptcoveff;*/
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       scanf("%d",i);*/    
        first=1;
    /* Calculates basic frequencies. Computes observed prevalence at single age    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
        and prints on file fileres'p'. */      /*for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;*/
            
            for (i=1; i<=nlstate; i++)  
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(m=iagemin; m <= iagemax+3; m++)
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            prop[i][m]=0.0;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (i=1; i<=imx; i++) { /* Each individual */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          bool=1;
                if  (cptcovn>0) {
     /* For Powell, parameters are in a vector p[] starting at p[1]            for (z1=1; z1<=cptcoveff; z1++) 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                bool=0;
           } 
     if(mle==1){          if (bool==1) { 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                  if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     /*--------- results files --------------*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
    jk=1;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                  prop[s[m][i]][iagemax+3] += weight[i]; 
    for(i=1,jk=1; i <=nlstate; i++){                } 
      for(k=1; k <=(nlstate+ndeath); k++){              }
        if (k != i)            } /* end selection of waves */
          {          }
            printf("%d%d ",i,k);        }
            fprintf(ficres,"%1d%1d ",i,k);        for(i=iagemin; i <= iagemax+3; i++){  
            for(j=1; j <=ncovmodel; j++){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
              printf("%f ",p[jk]);            posprop += prop[jk][i]; 
              fprintf(ficres,"%f ",p[jk]);          } 
              jk++;          
            }          for(jk=1; jk <=nlstate ; jk++){     
            printf("\n");            if( i <=  iagemax){ 
            fprintf(ficres,"\n");              if(posprop>=1.e-5){ 
          }                probs[i][jk][j1]= prop[jk][i]/posprop;
      }              } else{
    }                if(first==1){
  if(mle==1){                  first=0;
     /* Computing hessian and covariance matrix */                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
     ftolhess=ftol; /* Usually correct */                }
     hesscov(matcov, p, npar, delti, ftolhess, func);              }
  }            } 
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          }/* end jk */ 
     printf("# Scales (for hessian or gradient estimation)\n");        }/* end i */ 
      for(i=1,jk=1; i <=nlstate; i++){      /*} *//* end i1 */
       for(j=1; j <=nlstate+ndeath; j++){    } /* end j1 */
         if (j!=i) {    
           fprintf(ficres,"%1d%1d",i,j);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           printf("%1d%1d",i,j);    /*free_vector(pp,1,nlstate);*/
           for(k=1; k<=ncovmodel;k++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             printf(" %.5e",delti[jk]);  }  /* End of prevalence */
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;  /************* Waves Concatenation ***************/
           }  
           printf("\n");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           fprintf(ficres,"\n");  {
         }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       }       Death is a valid wave (if date is known).
      }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     k=1;       and mw[mi+1][i]. dh depends on stepm.
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     for(i=1;i<=npar;i++){    int i, mi, m;
       /*  if (k>nlstate) k=1;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       i1=(i-1)/(ncovmodel*nlstate)+1;       double sum=0., jmean=0.;*/
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    int first;
       printf("%s%d%d",alph[k],i1,tab[i]);*/    int j, k=0,jk, ju, jl;
       fprintf(ficres,"%3d",i);    double sum=0.;
       printf("%3d",i);    first=0;
       for(j=1; j<=i;j++){    jmin=100000;
         fprintf(ficres," %.5e",matcov[i][j]);    jmax=-1;
         printf(" %.5e",matcov[i][j]);    jmean=0.;
       }    for(i=1; i<=imx; i++){
       fprintf(ficres,"\n");      mi=0;
       printf("\n");      m=firstpass;
       k++;      while(s[m][i] <= nlstate){
     }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
              mw[++mi][i]=m;
     while((c=getc(ficpar))=='#' && c!= EOF){        if(m >=lastpass)
       ungetc(c,ficpar);          break;
       fgets(line, MAXLINE, ficpar);        else
       puts(line);          m++;
       fputs(line,ficparo);      }/* end while */
     }      if (s[m][i] > nlstate){
     ungetc(c,ficpar);        mi++;     /* Death is another wave */
     estepm=0;        /* if(mi==0)  never been interviewed correctly before death */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);           /* Only death is a correct wave */
     if (estepm==0 || estepm < stepm) estepm=stepm;        mw[mi][i]=m;
     if (fage <= 2) {      }
       bage = ageminpar;  
       fage = agemaxpar;      wav[i]=mi;
     }      if(mi==0){
            nbwarn++;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        if(first==0){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          first=1;
          }
     while((c=getc(ficpar))=='#' && c!= EOF){        if(first==1){
     ungetc(c,ficpar);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      } /* end mi==0 */
     fputs(line,ficparo);    } /* End individuals */
   }  
   ungetc(c,ficpar);    for(i=1; i<=imx; i++){
        for(mi=1; mi<wav[i];mi++){
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        if (stepm <=0)
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          dh[mi][i]=1;
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        else{
                if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   while((c=getc(ficpar))=='#' && c!= EOF){            if (agedc[i] < 2*AGESUP) {
     ungetc(c,ficpar);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     fgets(line, MAXLINE, ficpar);              if(j==0) j=1;  /* Survives at least one month after exam */
     puts(line);              else if(j<0){
     fputs(line,ficparo);                nberr++;
   }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   ungetc(c,ficpar);                j=1; /* Temporary Dangerous patch */
                  printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;              }
               k=k+1;
   fscanf(ficpar,"pop_based=%d\n",&popbased);              if (j >= jmax){
   fprintf(ficparo,"pop_based=%d\n",popbased);                  jmax=j;
   fprintf(ficres,"pop_based=%d\n",popbased);                  ijmax=i;
                }
   while((c=getc(ficpar))=='#' && c!= EOF){              if (j <= jmin){
     ungetc(c,ficpar);                jmin=j;
     fgets(line, MAXLINE, ficpar);                ijmin=i;
     puts(line);              }
     fputs(line,ficparo);              sum=sum+j;
   }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   ungetc(c,ficpar);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          else{
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
 while((c=getc(ficpar))=='#' && c!= EOF){            k=k+1;
     ungetc(c,ficpar);            if (j >= jmax) {
     fgets(line, MAXLINE, ficpar);              jmax=j;
     puts(line);              ijmax=i;
     fputs(line,ficparo);            }
   }            else if (j <= jmin){
   ungetc(c,ficpar);              jmin=j;
               ijmin=i;
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 /*------------ gnuplot -------------*/              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);            }
              sum=sum+j;
 /*------------ free_vector  -------------*/          }
  chdir(path);          jk= j/stepm;
            jl= j -jk*stepm;
  free_ivector(wav,1,imx);          ju= j -(jk+1)*stepm;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              if(jl==0){
  free_ivector(num,1,n);              dh[mi][i]=jk;
  free_vector(agedc,1,n);              bh[mi][i]=0;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/            }else{ /* We want a negative bias in order to only have interpolation ie
  fclose(ficparo);                    * to avoid the price of an extra matrix product in likelihood */
  fclose(ficres);              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
 /*--------- index.htm --------*/            }
           }else{
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);            if(jl <= -ju){
               dh[mi][i]=jk;
                bh[mi][i]=jl;       /* bias is positive if real duration
   /*--------------- Prevalence limit --------------*/                                   * is higher than the multiple of stepm and negative otherwise.
                                     */
   strcpy(filerespl,"pl");            }
   strcat(filerespl,fileres);            else{
   if((ficrespl=fopen(filerespl,"w"))==NULL) {              dh[mi][i]=jk+1;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;              bh[mi][i]=ju;
   }            }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            if(dh[mi][i]==0){
   fprintf(ficrespl,"#Prevalence limit\n");              dh[mi][i]=1; /* At least one step */
   fprintf(ficrespl,"#Age ");              bh[mi][i]=ju; /* At least one step */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   fprintf(ficrespl,"\n");            }
            } /* end if mle */
   prlim=matrix(1,nlstate,1,nlstate);        }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      } /* end wave */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    jmean=sum/k;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   k=0;   }
   agebase=ageminpar;  
   agelim=agemaxpar;  /*********** Tricode ****************************/
   ftolpl=1.e-10;  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   i1=cptcoveff;  {
   if (cptcovn < 1){i1=1;}    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   for(cptcov=1;cptcov<=i1;cptcov++){     * Boring subroutine which should only output nbcode[Tvar[j]][k]
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
         k=k+1;     * nbcode[Tvar[j]][1]= 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    */
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int modmaxcovj=0; /* Modality max of covariates j */
         fprintf(ficrespl,"******\n");    int cptcode=0; /* Modality max of covariates j */
            int modmincovj=0; /* Modality min of covariates j */
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );    cptcoveff=0; 
           for(i=1; i<=nlstate;i++)   
           fprintf(ficrespl," %.5f", prlim[i][i]);    for (k=-1; k < maxncov; k++) Ndum[k]=0;
           fprintf(ficrespl,"\n");    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
         }  
       }    /* Loop on covariates without age and products */
     }    for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
   fclose(ficrespl);      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
                                  modality of this covariate Vj*/ 
   /*------------- h Pij x at various ages ------------*/        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                                        * If product of Vn*Vm, still boolean *:
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
   }                                        modality of the nth covariate of individual i. */
   printf("Computing pij: result on file '%s' \n", filerespij);        if (ij > modmaxcovj)
            modmaxcovj=ij; 
   stepsize=(int) (stepm+YEARM-1)/YEARM;        else if (ij < modmincovj) 
   /*if (stepm<=24) stepsize=2;*/          modmincovj=ij; 
         if ((ij < -1) && (ij > NCOVMAX)){
   agelim=AGESUP;          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
   hstepm=stepsize*YEARM; /* Every year of age */          exit(1);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        }else
          Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   k=0;        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   for(cptcov=1;cptcov<=i1;cptcov++){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        /* getting the maximum value of the modality of the covariate
       k=k+1;           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
         fprintf(ficrespij,"\n#****** ");           female is 1, then modmaxcovj=1.*/
         for(j=1;j<=cptcoveff;j++)      } /* end for loop on individuals */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
         fprintf(ficrespij,"******\n");      cptcode=modmaxcovj;
              /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */     /*for (i=0; i<=cptcode; i++) {*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], i, Ndum[i]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
           oldm=oldms;savm=savms;          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }
           fprintf(ficrespij,"# Age");        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
           for(i=1; i<=nlstate;i++)           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
             for(j=1; j<=nlstate+ndeath;j++)      } /* Ndum[-1] number of undefined modalities */
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
            for (h=0; h<=nhstepm; h++){      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
             for(i=1; i<=nlstate;i++)         modmincovj=3; modmaxcovj = 7;
               for(j=1; j<=nlstate+ndeath;j++)         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
             fprintf(ficrespij,"\n");         defining two dummy variables: variables V1_1 and V1_2.
              }         nbcode[Tvar[j]][ij]=k;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         nbcode[Tvar[j]][1]=0;
           fprintf(ficrespij,"\n");         nbcode[Tvar[j]][2]=1;
         }         nbcode[Tvar[j]][3]=2;
     }      */
   }      ij=1; /* ij is similar to i but can jumps over null modalities */
       for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
           /*recode from 0 */
   fclose(ficrespij);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             nbcode[Tvar[j]][ij]=k;  /* stores the modality k in an array nbcode. 
                                        k is a modality. If we have model=V1+V1*sex 
   /*---------- Forecasting ------------------*/                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   if((stepm == 1) && (strcmp(model,".")==0)){            ij++;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);          }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          if (ij > ncodemax[j]) break; 
   }        }  /* end of loop on */
   else{      } /* end of loop on modality */ 
     erreur=108;    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    
   }   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
      
     for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
   /*---------- Health expectancies and variances ------------*/     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   strcpy(filerest,"t");     Ndum[ij]++; /* Might be supersed V1 + V1*age */
   strcat(filerest,fileres);   } 
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   ij=1;
   }   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
      if((Ndum[i]!=0) && (i<=ncovcol)){
        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   strcpy(filerese,"e");       Tvaraff[ij]=i; /*For printing (unclear) */
   strcat(filerese,fileres);       ij++;
   if((ficreseij=fopen(filerese,"w"))==NULL) {     }else
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);         Tvaraff[ij]=0;
   }   }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);   ij--;
    cptcoveff=ij; /*Number of total covariates*/
  strcpy(fileresv,"v");  
   strcat(fileresv,fileres);  }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }  /*********** Health Expectancies ****************/
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   calagedate=-1;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
   {
   k=0;    /* Health expectancies, no variances */
   for(cptcov=1;cptcov<=i1;cptcov++){    int i, j, nhstepm, hstepm, h, nstepm;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int nhstepma, nstepma; /* Decreasing with age */
       k=k+1;    double age, agelim, hf;
       fprintf(ficrest,"\n#****** ");    double ***p3mat;
       for(j=1;j<=cptcoveff;j++)    double eip;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       fprintf(ficreseij,"\n#****** ");    fprintf(ficreseij,"# Age");
       for(j=1;j<=cptcoveff;j++)    for(i=1; i<=nlstate;i++){
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(j=1; j<=nlstate;j++){
       fprintf(ficreseij,"******\n");        fprintf(ficreseij," e%1d%1d ",i,j);
       }
       fprintf(ficresvij,"\n#****** ");      fprintf(ficreseij," e%1d. ",i);
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficreseij,"\n");
       fprintf(ficresvij,"******\n");  
     
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if(estepm < stepm){
       oldm=oldms;savm=savms;      printf ("Problem %d lower than %d\n",estepm, stepm);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      }
      else  hstepm=estepm;   
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /* We compute the life expectancy from trapezoids spaced every estepm months
       oldm=oldms;savm=savms;     * This is mainly to measure the difference between two models: for example
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);     * if stepm=24 months pijx are given only every 2 years and by summing them
         * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);     * to compare the new estimate of Life expectancy with the same linear 
       fprintf(ficrest,"\n");     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){    /* For example we decided to compute the life expectancy with the smallest unit */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         if (popbased==1) {       nhstepm is the number of hstepm from age to agelim 
           for(i=1; i<=nlstate;i++)       nstepm is the number of stepm from age to agelin. 
             prlim[i][i]=probs[(int)age][i][k];       Look at hpijx to understand the reason of that which relies in memory size
         }       and note for a fixed period like estepm months */
            /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         fprintf(ficrest," %4.0f",age);       survival function given by stepm (the optimization length). Unfortunately it
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){       means that if the survival funtion is printed only each two years of age and if
           for(i=1, epj[j]=0.;i <=nlstate;i++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             epj[j] += prlim[i][i]*eij[i][j][(int)age];       results. So we changed our mind and took the option of the best precision.
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    */
           }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           epj[nlstate+1] +=epj[j];  
         }    agelim=AGESUP;
     /* If stepm=6 months */
         for(i=1, vepp=0.;i <=nlstate;i++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           for(j=1;j <=nlstate;j++)         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
             vepp += vareij[i][j][(int)age];      
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  /* nhstepm age range expressed in number of stepm */
         for(j=1;j <=nlstate;j++){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         }    /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficrest,"\n");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }  
   }    for (age=bage; age<=fage; age ++){ 
 free_matrix(mint,1,maxwav,1,n);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_vector(weight,1,n);      /* if (stepm >= YEARM) hstepm=1;*/
   fclose(ficreseij);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   fclose(ficresvij);  
   fclose(ficrest);      /* If stepm=6 months */
   fclose(ficpar);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   free_vector(epj,1,nlstate+1);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
        
   /*------- Variance limit prevalence------*/        hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
   strcpy(fileresvpl,"vpl");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   strcat(fileresvpl,fileres);      
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      printf("%d|",(int)age);fflush(stdout);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     exit(0);      
   }      /* Computing expectancies */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   k=0;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   for(cptcov=1;cptcov<=i1;cptcov++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            
       k=k+1;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficresvpl,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)          }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvpl,"******\n");      fprintf(ficreseij,"%3.0f",age );
            for(i=1; i<=nlstate;i++){
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        eip=0;
       oldm=oldms;savm=savms;        for(j=1; j<=nlstate;j++){
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          eip +=eij[i][j][(int)age];
     }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
  }        }
         fprintf(ficreseij,"%9.4f", eip );
   fclose(ficresvpl);      }
       fprintf(ficreseij,"\n");
   /*---------- End : free ----------------*/      
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    }
      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    printf("\n");
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficlog,"\n");
      
    }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  {
      /* Covariances of health expectancies eij and of total life expectancies according
   free_matrix(matcov,1,npar,1,npar);     to initial status i, ei. .
   free_vector(delti,1,npar);    */
   free_matrix(agev,1,maxwav,1,imx);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
   if(erreur >0)    double ***p3matp, ***p3matm, ***varhe;
     printf("End of Imach with error or warning %d\n",erreur);    double **dnewm,**doldm;
   else   printf("End of Imach\n");    double *xp, *xm;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    double **gp, **gm;
      double ***gradg, ***trgradg;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    int theta;
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/    double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
  end:    xp=vector(1,npar);
   /* chdir(pathcd);*/    xm=vector(1,npar);
  /*system("wgnuplot graph.plt");*/    dnewm=matrix(1,nlstate*nlstate,1,npar);
  /*system("../gp37mgw/wgnuplot graph.plt");*/    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
  /*system("cd ../gp37mgw");*/    
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    pstamp(ficresstdeij);
  strcpy(plotcmd,GNUPLOTPROGRAM);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
  strcat(plotcmd," ");    fprintf(ficresstdeij,"# Age");
  strcat(plotcmd,optionfilegnuplot);    for(i=1; i<=nlstate;i++){
  system(plotcmd);      for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
  /*#ifdef windows*/      fprintf(ficresstdeij," e%1d. ",i);
   while (z[0] != 'q') {    }
     /* chdir(path); */    fprintf(ficresstdeij,"\n");
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);    pstamp(ficrescveij);
     if (z[0] == 'c') system("./imach");    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     else if (z[0] == 'e') system(optionfilehtm);    fprintf(ficrescveij,"# Age");
     else if (z[0] == 'g') system(plotcmd);    for(i=1; i<=nlstate;i++)
     else if (z[0] == 'q') exit(0);      for(j=1; j<=nlstate;j++){
   }        cptj= (j-1)*nlstate+i;
   /*#endif */        for(i2=1; i2<=nlstate;i2++)
 }          for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
     int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                else
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
                    fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){ 
                  if(nagesqr==0)
                    fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
     
                  ij=1;
                  for(j=3; j <=ncovmodel-nagesqr; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1' or 'model=1+age+age*age+V1+V1*age', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1' or 'model=1+age+age*age+V1+V1*age', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
     double age, agebase, agelim;
   
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(0);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     if(model[strlen(model)-1]=='.') /* Suppressing leading dot in the model */
       model[strlen(model)-1]='\0';
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /* codtab[12][3]=1; */
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard maximisation */
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       /* Computes likelihood for initial parameters */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* again, to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.41.2.1  
changed lines
  Added in v.1.191


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>