Diff for /imach/src/imach.c between versions 1.48 and 1.192

version 1.48, 2002/06/10 13:12:49 version 1.192, 2015/07/16 16:49:02
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.192  2015/07/16 16:49:02  brouard
      Summary: Fixing some outputs
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.191  2015/07/14 10:00:33  brouard
   first survey ("cross") where individuals from different ages are    Summary: Some fixes
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.190  2015/05/05 08:51:13  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: Adding digits in output parameters (7 digits instead of 6)
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Fix 1+age+.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.189  2015/04/30 14:45:16  brouard
   simplest model is the multinomial logistic model where pij is the    Summary: 0.98q2
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.188  2015/04/30 08:27:53  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    *** empty log message ***
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.187  2015/04/29 09:11:15  brouard
   where the markup *Covariates have to be included here again* invites    *** empty log message ***
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.186  2015/04/23 12:01:52  brouard
     Summary: V1*age is working now, version 0.98q1
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Some codes had been disabled in order to simplify and Vn*age was
   identical for each individual. Also, if a individual missed an    working in the optimization phase, ie, giving correct MLE parameters,
   intermediate interview, the information is lost, but taken into    but, as usual, outputs were not correct and program core dumped.
   account using an interpolation or extrapolation.    
     Revision 1.185  2015/03/11 13:26:42  brouard
   hPijx is the probability to be observed in state i at age x+h    Summary: Inclusion of compile and links command line for Intel Compiler
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.184  2015/03/11 11:52:39  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: Back from Windows 8. Intel Compiler
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.183  2015/03/10 20:34:32  brouard
   and the contribution of each individual to the likelihood is simply    Summary: 0.98q0, trying with directest, mnbrak fixed
   hPijx.  
     We use directest instead of original Powell test; probably no
   Also this programme outputs the covariance matrix of the parameters but also    incidence on the results, but better justifications;
   of the life expectancies. It also computes the prevalence limits.    We fixed Numerical Recipes mnbrak routine which was wrong and gave
      wrong results.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.182  2015/02/12 08:19:57  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Summary: Trying to keep directest which seems simpler and more general
   from the European Union.    Author: Nicolas Brouard
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.181  2015/02/11 23:22:24  brouard
   can be accessed at http://euroreves.ined.fr/imach .    Summary: Comments on Powell added
   **********************************************************************/  
      Author:
 #include <math.h>  
 #include <stdio.h>    Revision 1.180  2015/02/11 17:33:45  brouard
 #include <stdlib.h>    Summary: Finishing move from main to function (hpijx and prevalence_limit)
 #include <unistd.h>  
     Revision 1.179  2015/01/04 09:57:06  brouard
 #define MAXLINE 256    Summary: back to OS/X
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.178  2015/01/04 09:35:48  brouard
 #define FILENAMELENGTH 80    *** empty log message ***
 /*#define DEBUG*/  
 #define windows    Revision 1.177  2015/01/03 18:40:56  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Summary: Still testing ilc32 on OSX
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.176  2015/01/03 16:45:04  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    *** empty log message ***
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.175  2015/01/03 16:33:42  brouard
 #define NINTERVMAX 8    *** empty log message ***
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.174  2015/01/03 16:15:49  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Summary: Still in cross-compilation
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.173  2015/01/03 12:06:26  brouard
 #define AGESUP 130    Summary: trying to detect cross-compilation
 #define AGEBASE 40  
 #ifdef windows    Revision 1.172  2014/12/27 12:07:47  brouard
 #define DIRSEPARATOR '\\'    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
 #else  
 #define DIRSEPARATOR '/'    Revision 1.171  2014/12/23 13:26:59  brouard
 #endif    Summary: Back from Visual C
   
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    Still problem with utsname.h on Windows
 int erreur; /* Error number */  
 int nvar;    Revision 1.170  2014/12/23 11:17:12  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Summary: Cleaning some \%% back to %%
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    The escape was mandatory for a specific compiler (which one?), but too many warnings.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.169  2014/12/22 23:08:31  brouard
 int popbased=0;    Summary: 0.98p
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.168  2014/12/22 15:17:42  brouard
 int mle, weightopt;    Summary: update
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.167  2014/12/22 13:50:56  brouard
 double jmean; /* Mean space between 2 waves */    Summary: Testing uname and compiler version and if compiled 32 or 64
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Testing on Linux 64
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.166  2014/12/22 11:40:47  brouard
 FILE *fichtm; /* Html File */    *** empty log message ***
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.165  2014/12/16 11:20:36  brouard
 FILE  *ficresvij;    Summary: After compiling on Visual C
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    * imach.c (Module): Merging 1.61 to 1.162
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.164  2014/12/16 10:52:11  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     * imach.c (Module): Merging 1.61 to 1.162
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
     Revision 1.163  2014/12/16 10:30:11  brouard
 char filerest[FILENAMELENGTH];    * imach.c (Module): Merging 1.61 to 1.162
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.162  2014/09/25 11:43:39  brouard
     Summary: temporary backup 0.99!
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.1  2014/09/16 11:06:58  brouard
 #define NR_END 1    Summary: With some code (wrong) for nlopt
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Author:
   
 #define NRANSI    Revision 1.161  2014/09/15 20:41:41  brouard
 #define ITMAX 200    Summary: Problem with macro SQR on Intel compiler
   
 #define TOL 2.0e-4    Revision 1.160  2014/09/02 09:24:05  brouard
     *** empty log message ***
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.159  2014/09/01 10:34:10  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Summary: WIN32
     Author: Brouard
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.158  2014/08/27 17:11:51  brouard
 #define TINY 1.0e-20    *** empty log message ***
   
 static double maxarg1,maxarg2;    Revision 1.157  2014/08/27 16:26:55  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Summary: Preparing windows Visual studio version
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Author: Brouard
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    In order to compile on Visual studio, time.h is now correct and time_t
 #define rint(a) floor(a+0.5)    and tm struct should be used. difftime should be used but sometimes I
     just make the differences in raw time format (time(&now).
 static double sqrarg;    Trying to suppress #ifdef LINUX
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Add xdg-open for __linux in order to open default browser.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.156  2014/08/25 20:10:10  brouard
 int imx;    *** empty log message ***
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
 int estepm;    Author: Brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.154  2014/06/20 17:32:08  brouard
 int m,nb;    Summary: Outputs now all graphs of convergence to period prevalence
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.153  2014/06/20 16:45:46  brouard
 double **pmmij, ***probs, ***mobaverage;    Summary: If 3 live state, convergence to period prevalence on same graph
 double dateintmean=0;    Author: Brouard
   
 double *weight;    Revision 1.152  2014/06/18 17:54:09  brouard
 int **s; /* Status */    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 /**************** split *************************/    Author: brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.149  2014/06/18 15:51:14  brouard
    char *s;                             /* pointer */    Summary: Some fixes in parameter files errors
    int  l1, l2;                         /* length counters */    Author: Nicolas Brouard
   
    l1 = strlen( path );                 /* length of path */    Revision 1.148  2014/06/17 17:38:48  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Summary: Nothing new
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    Author: Brouard
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Just a new packaging for OS/X version 0.98nS
       extern char       *getwd( );  
     Revision 1.147  2014/06/16 10:33:11  brouard
       if ( getwd( dirc ) == NULL ) {    *** empty log message ***
 #else  
       extern char       *getcwd( );    Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Author: Brouard
 #endif  
          return( GLOCK_ERROR_GETCWD );    Merge, before building revised version.
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.145  2014/06/10 21:23:15  brouard
    } else {                             /* strip direcotry from path */    Summary: Debugging with valgrind
       s++;                              /* after this, the filename */    Author: Nicolas Brouard
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Lot of changes in order to output the results with some covariates
       strcpy( name, s );                /* save file name */    After the Edimburgh REVES conference 2014, it seems mandatory to
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    improve the code.
       dirc[l1-l2] = 0;                  /* add zero */    No more memory valgrind error but a lot has to be done in order to
    }    continue the work of splitting the code into subroutines.
    l1 = strlen( dirc );                 /* length of directory */    Also, decodemodel has been improved. Tricode is still not
 #ifdef windows    optimal. nbcode should be improved. Documentation has been added in
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    the source code.
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.143  2014/01/26 09:45:38  brouard
 #endif    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
    s = strrchr( name, '.' );            /* find last / */  
    s++;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
    strcpy(ext,s);                       /* save extension */    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.142  2014/01/26 03:57:36  brouard
    strncpy( finame, name, l1-l2);    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 }  
     Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 /******************************************/  
     Revision 1.140  2011/09/02 10:37:54  brouard
 void replace(char *s, char*t)    Summary: times.h is ok with mingw32 now.
 {  
   int i;    Revision 1.139  2010/06/14 07:50:17  brouard
   int lg=20;    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   i=0;    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.138  2010/04/30 18:19:40  brouard
     (s[i] = t[i]);    *** empty log message ***
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.137  2010/04/29 18:11:38  brouard
 }    (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
 int nbocc(char *s, char occ)  
 {    Revision 1.136  2010/04/26 20:30:53  brouard
   int i,j=0;    (Module): merging some libgsl code. Fixing computation
   int lg=20;    of likelione (using inter/intrapolation if mle = 0) in order to
   i=0;    get same likelihood as if mle=1.
   lg=strlen(s);    Some cleaning of code and comments added.
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.135  2009/10/29 15:33:14  brouard
   }    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   return j;  
 }    Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.133  2009/07/06 10:21:25  brouard
   int i,lg,j,p=0;    just nforces
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.132  2009/07/06 08:22:05  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Many tings
   }  
     Revision 1.131  2009/06/20 16:22:47  brouard
   lg=strlen(t);    Some dimensions resccaled
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.130  2009/05/26 06:44:34  brouard
   }    (Module): Max Covariate is now set to 20 instead of 8. A
      u[p]='\0';    lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.129  2007/08/31 13:49:27  lievre
   }    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 }  
     Revision 1.128  2006/06/30 13:02:05  brouard
 /********************** nrerror ********************/    (Module): Clarifications on computing e.j
   
 void nrerror(char error_text[])    Revision 1.127  2006/04/28 18:11:50  brouard
 {    (Module): Yes the sum of survivors was wrong since
   fprintf(stderr,"ERREUR ...\n");    imach-114 because nhstepm was no more computed in the age
   fprintf(stderr,"%s\n",error_text);    loop. Now we define nhstepma in the age loop.
   exit(1);    (Module): In order to speed up (in case of numerous covariates) we
 }    compute health expectancies (without variances) in a first step
 /*********************** vector *******************/    and then all the health expectancies with variances or standard
 double *vector(int nl, int nh)    deviation (needs data from the Hessian matrices) which slows the
 {    computation.
   double *v;    In the future we should be able to stop the program is only health
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    expectancies and graph are needed without standard deviations.
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.126  2006/04/28 17:23:28  brouard
 }    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 /************************ free vector ******************/    loop. Now we define nhstepma in the age loop.
 void free_vector(double*v, int nl, int nh)    Version 0.98h
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.125  2006/04/04 15:20:31  lievre
 }    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.124  2006/03/22 17:13:53  lievre
 {    Parameters are printed with %lf instead of %f (more numbers after the comma).
   int *v;    The log-likelihood is printed in the log file
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Revision 1.123  2006/03/20 10:52:43  brouard
   return v-nl+NR_END;    * imach.c (Module): <title> changed, corresponds to .htm file
 }    name. <head> headers where missing.
   
 /******************free ivector **************************/    * imach.c (Module): Weights can have a decimal point as for
 void free_ivector(int *v, long nl, long nh)    English (a comma might work with a correct LC_NUMERIC environment,
 {    otherwise the weight is truncated).
   free((FREE_ARG)(v+nl-NR_END));    Modification of warning when the covariates values are not 0 or
 }    1.
     Version 0.98g
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.122  2006/03/20 09:45:41  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    (Module): Weights can have a decimal point as for
 {    English (a comma might work with a correct LC_NUMERIC environment,
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    otherwise the weight is truncated).
   int **m;    Modification of warning when the covariates values are not 0 or
      1.
   /* allocate pointers to rows */    Version 0.98g
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.121  2006/03/16 17:45:01  lievre
   m += NR_END;    * imach.c (Module): Comments concerning covariates added
   m -= nrl;  
      * imach.c (Module): refinements in the computation of lli if
      status=-2 in order to have more reliable computation if stepm is
   /* allocate rows and set pointers to them */    not 1 month. Version 0.98f
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.120  2006/03/16 15:10:38  lievre
   m[nrl] += NR_END;    (Module): refinements in the computation of lli if
   m[nrl] -= ncl;    status=-2 in order to have more reliable computation if stepm is
      not 1 month. Version 0.98f
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Revision 1.119  2006/03/15 17:42:26  brouard
   /* return pointer to array of pointers to rows */    (Module): Bug if status = -2, the loglikelihood was
   return m;    computed as likelihood omitting the logarithm. Version O.98e
 }  
     Revision 1.118  2006/03/14 18:20:07  brouard
 /****************** free_imatrix *************************/    (Module): varevsij Comments added explaining the second
 void free_imatrix(m,nrl,nrh,ncl,nch)    table of variances if popbased=1 .
       int **m;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
       long nch,ncl,nrh,nrl;    (Module): Function pstamp added
      /* free an int matrix allocated by imatrix() */    (Module): Version 0.98d
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Revision 1.117  2006/03/14 17:16:22  brouard
   free((FREE_ARG) (m+nrl-NR_END));    (Module): varevsij Comments added explaining the second
 }    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 /******************* matrix *******************************/    (Module): Function pstamp added
 double **matrix(long nrl, long nrh, long ncl, long nch)    (Module): Version 0.98d
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Revision 1.116  2006/03/06 10:29:27  brouard
   double **m;    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.115  2006/02/27 12:17:45  brouard
   m += NR_END;    (Module): One freematrix added in mlikeli! 0.98c
   m -= nrl;  
     Revision 1.114  2006/02/26 12:57:58  brouard
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Module): Some improvements in processing parameter
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    filename with strsep.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    datafile was not closed, some imatrix were not freed and on matrix
   return m;    allocation too.
 }  
     Revision 1.112  2006/01/30 09:55:26  brouard
 /*************************free matrix ************************/    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.111  2006/01/25 20:38:18  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Module): Lots of cleaning and bugs added (Gompertz)
   free((FREE_ARG)(m+nrl-NR_END));    (Module): Comments can be added in data file. Missing date values
 }    can be a simple dot '.'.
   
 /******************* ma3x *******************************/    Revision 1.110  2006/01/25 00:51:50  brouard
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    (Module): Lots of cleaning and bugs added (Gompertz)
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Revision 1.109  2006/01/24 19:37:15  brouard
   double ***m;    (Module): Comments (lines starting with a #) are allowed in data.
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.108  2006/01/19 18:05:42  lievre
   if (!m) nrerror("allocation failure 1 in matrix()");    Gnuplot problem appeared...
   m += NR_END;    To be fixed
   m -= nrl;  
     Revision 1.107  2006/01/19 16:20:37  brouard
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Test existence of gnuplot in imach path
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.106  2006/01/19 13:24:36  brouard
   m[nrl] -= ncl;    Some cleaning and links added in html output
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    Revision 1.104  2005/09/30 16:11:43  lievre
   m[nrl][ncl] += NR_END;    (Module): sump fixed, loop imx fixed, and simplifications.
   m[nrl][ncl] -= nll;    (Module): If the status is missing at the last wave but we know
   for (j=ncl+1; j<=nch; j++)    that the person is alive, then we can code his/her status as -2
     m[nrl][j]=m[nrl][j-1]+nlay;    (instead of missing=-1 in earlier versions) and his/her
      contributions to the likelihood is 1 - Prob of dying from last
   for (i=nrl+1; i<=nrh; i++) {    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    the healthy state at last known wave). Version is 0.98
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;    Revision 1.103  2005/09/30 15:54:49  lievre
   }    (Module): sump fixed, loop imx fixed, and simplifications.
   return m;  
 }    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    Revision 1.101  2004/09/15 10:38:38  brouard
 {    Fix on curr_time
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.100  2004/07/12 18:29:06  brouard
   free((FREE_ARG)(m+nrl-NR_END));    Add version for Mac OS X. Just define UNIX in Makefile
 }  
     Revision 1.99  2004/06/05 08:57:40  brouard
 /***************** f1dim *************************/    *** empty log message ***
 extern int ncom;  
 extern double *pcom,*xicom;    Revision 1.98  2004/05/16 15:05:56  brouard
 extern double (*nrfunc)(double []);    New version 0.97 . First attempt to estimate force of mortality
      directly from the data i.e. without the need of knowing the health
 double f1dim(double x)    state at each age, but using a Gompertz model: log u =a + b*age .
 {    This is the basic analysis of mortality and should be done before any
   int j;    other analysis, in order to test if the mortality estimated from the
   double f;    cross-longitudinal survey is different from the mortality estimated
   double *xt;    from other sources like vital statistic data.
    
   xt=vector(1,ncom);    The same imach parameter file can be used but the option for mle should be -3.
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    Agnès, who wrote this part of the code, tried to keep most of the
   free_vector(xt,1,ncom);    former routines in order to include the new code within the former code.
   return f;  
 }    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    Current limitations:
 {    A) Even if you enter covariates, i.e. with the
   int iter;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   double a,b,d,etemp;    B) There is no computation of Life Expectancy nor Life Table.
   double fu,fv,fw,fx;  
   double ftemp;    Revision 1.97  2004/02/20 13:25:42  lievre
   double p,q,r,tol1,tol2,u,v,w,x,xm;    Version 0.96d. Population forecasting command line is (temporarily)
   double e=0.0;    suppressed.
    
   a=(ax < cx ? ax : cx);    Revision 1.96  2003/07/15 15:38:55  brouard
   b=(ax > cx ? ax : cx);    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   x=w=v=bx;    rewritten within the same printf. Workaround: many printfs.
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {    Revision 1.95  2003/07/08 07:54:34  brouard
     xm=0.5*(a+b);    * imach.c (Repository):
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    (Repository): Using imachwizard code to output a more meaningful covariance
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    matrix (cov(a12,c31) instead of numbers.
     printf(".");fflush(stdout);  
 #ifdef DEBUG    Revision 1.94  2003/06/27 13:00:02  brouard
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    Just cleaning
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    Revision 1.93  2003/06/25 16:33:55  brouard
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    (Module): On windows (cygwin) function asctime_r doesn't
       *xmin=x;    exist so I changed back to asctime which exists.
       return fx;    (Module): Version 0.96b
     }  
     ftemp=fu;    Revision 1.92  2003/06/25 16:30:45  brouard
     if (fabs(e) > tol1) {    (Module): On windows (cygwin) function asctime_r doesn't
       r=(x-w)*(fx-fv);    exist so I changed back to asctime which exists.
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    Revision 1.91  2003/06/25 15:30:29  brouard
       q=2.0*(q-r);    * imach.c (Repository): Duplicated warning errors corrected.
       if (q > 0.0) p = -p;    (Repository): Elapsed time after each iteration is now output. It
       q=fabs(q);    helps to forecast when convergence will be reached. Elapsed time
       etemp=e;    is stamped in powell.  We created a new html file for the graphs
       e=d;    concerning matrix of covariance. It has extension -cov.htm.
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    Revision 1.90  2003/06/24 12:34:15  brouard
       else {    (Module): Some bugs corrected for windows. Also, when
         d=p/q;    mle=-1 a template is output in file "or"mypar.txt with the design
         u=x+d;    of the covariance matrix to be input.
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);    Revision 1.89  2003/06/24 12:30:52  brouard
       }    (Module): Some bugs corrected for windows. Also, when
     } else {    mle=-1 a template is output in file "or"mypar.txt with the design
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    of the covariance matrix to be input.
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    Revision 1.88  2003/06/23 17:54:56  brouard
     fu=(*f)(u);    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;    Revision 1.87  2003/06/18 12:26:01  brouard
       SHFT(v,w,x,u)    Version 0.96
         SHFT(fv,fw,fx,fu)  
         } else {    Revision 1.86  2003/06/17 20:04:08  brouard
           if (u < x) a=u; else b=u;    (Module): Change position of html and gnuplot routines and added
           if (fu <= fw || w == x) {    routine fileappend.
             v=w;  
             w=u;    Revision 1.85  2003/06/17 13:12:43  brouard
             fv=fw;    * imach.c (Repository): Check when date of death was earlier that
             fw=fu;    current date of interview. It may happen when the death was just
           } else if (fu <= fv || v == x || v == w) {    prior to the death. In this case, dh was negative and likelihood
             v=u;    was wrong (infinity). We still send an "Error" but patch by
             fv=fu;    assuming that the date of death was just one stepm after the
           }    interview.
         }    (Repository): Because some people have very long ID (first column)
   }    we changed int to long in num[] and we added a new lvector for
   nrerror("Too many iterations in brent");    memory allocation. But we also truncated to 8 characters (left
   *xmin=x;    truncation)
   return fx;    (Repository): No more line truncation errors.
 }  
     Revision 1.84  2003/06/13 21:44:43  brouard
 /****************** mnbrak ***********************/    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    many times. Probs is memory consuming and must be used with
             double (*func)(double))    parcimony.
 {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   double ulim,u,r,q, dum;  
   double fu;    Revision 1.83  2003/06/10 13:39:11  lievre
      *** empty log message ***
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);    Revision 1.82  2003/06/05 15:57:20  brouard
   if (*fb > *fa) {    Add log in  imach.c and  fullversion number is now printed.
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  */
       }  /*
   *cx=(*bx)+GOLD*(*bx-*ax);     Interpolated Markov Chain
   *fc=(*func)(*cx);  
   while (*fb > *fc) {    Short summary of the programme:
     r=(*bx-*ax)*(*fb-*fc);    
     q=(*bx-*cx)*(*fb-*fa);    This program computes Healthy Life Expectancies from
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    first survey ("cross") where individuals from different ages are
     ulim=(*bx)+GLIMIT*(*cx-*bx);    interviewed on their health status or degree of disability (in the
     if ((*bx-u)*(u-*cx) > 0.0) {    case of a health survey which is our main interest) -2- at least a
       fu=(*func)(u);    second wave of interviews ("longitudinal") which measure each change
     } else if ((*cx-u)*(u-ulim) > 0.0) {    (if any) in individual health status.  Health expectancies are
       fu=(*func)(u);    computed from the time spent in each health state according to a
       if (fu < *fc) {    model. More health states you consider, more time is necessary to reach the
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    Maximum Likelihood of the parameters involved in the model.  The
           SHFT(*fb,*fc,fu,(*func)(u))    simplest model is the multinomial logistic model where pij is the
           }    probability to be observed in state j at the second wave
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    conditional to be observed in state i at the first wave. Therefore
       u=ulim;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       fu=(*func)(u);    'age' is age and 'sex' is a covariate. If you want to have a more
     } else {    complex model than "constant and age", you should modify the program
       u=(*cx)+GOLD*(*cx-*bx);    where the markup *Covariates have to be included here again* invites
       fu=(*func)(u);    you to do it.  More covariates you add, slower the
     }    convergence.
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)    The advantage of this computer programme, compared to a simple
       }    multinomial logistic model, is clear when the delay between waves is not
 }    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 /*************** linmin ************************/    account using an interpolation or extrapolation.  
   
 int ncom;    hPijx is the probability to be observed in state i at age x+h
 double *pcom,*xicom;    conditional to the observed state i at age x. The delay 'h' can be
 double (*nrfunc)(double []);    split into an exact number (nh*stepm) of unobserved intermediate
      states. This elementary transition (by month, quarter,
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    semester or year) is modelled as a multinomial logistic.  The hPx
 {    matrix is simply the matrix product of nh*stepm elementary matrices
   double brent(double ax, double bx, double cx,    and the contribution of each individual to the likelihood is simply
                double (*f)(double), double tol, double *xmin);    hPijx.
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    Also this programme outputs the covariance matrix of the parameters but also
               double *fc, double (*func)(double));    of the life expectancies. It also computes the period (stable) prevalence. 
   int j;    
   double xx,xmin,bx,ax;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   double fx,fb,fa;             Institut national d'études démographiques, Paris.
      This software have been partly granted by Euro-REVES, a concerted action
   ncom=n;    from the European Union.
   pcom=vector(1,n);    It is copyrighted identically to a GNU software product, ie programme and
   xicom=vector(1,n);    software can be distributed freely for non commercial use. Latest version
   nrfunc=func;    can be accessed at http://euroreves.ined.fr/imach .
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     xicom[j]=xi[j];    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   }    
   ax=0.0;    **********************************************************************/
   xx=1.0;  /*
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    main
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    read parameterfile
 #ifdef DEBUG    read datafile
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    concatwav
 #endif    freqsummary
   for (j=1;j<=n;j++) {    if (mle >= 1)
     xi[j] *= xmin;      mlikeli
     p[j] += xi[j];    print results files
   }    if mle==1 
   free_vector(xicom,1,n);       computes hessian
   free_vector(pcom,1,n);    read end of parameter file: agemin, agemax, bage, fage, estepm
 }        begin-prev-date,...
     open gnuplot file
 /*************** powell ************************/    open html file
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
             double (*func)(double []))     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
 {                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   void linmin(double p[], double xi[], int n, double *fret,      freexexit2 possible for memory heap.
               double (*func)(double []));  
   int i,ibig,j;    h Pij x                         | pij_nom  ficrestpij
   double del,t,*pt,*ptt,*xit;     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   double fp,fptt;         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   double *xits;         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   pt=vector(1,n);  
   ptt=vector(1,n);         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   xit=vector(1,n);         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   xits=vector(1,n);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
   *fret=(*func)(p);     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   for (j=1;j<=n;j++) pt[j]=p[j];     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);    forecasting if prevfcast==1 prevforecast call prevalence()
     ibig=0;    health expectancies
     del=0.0;    Variance-covariance of DFLE
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    prevalence()
     for (i=1;i<=n;i++)     movingaverage()
       printf(" %d %.12f",i, p[i]);    varevsij() 
     printf("\n");    if popbased==1 varevsij(,popbased)
     for (i=1;i<=n;i++) {    total life expectancies
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    Variance of period (stable) prevalence
       fptt=(*fret);   end
 #ifdef DEBUG  */
       printf("fret=%lf \n",*fret);  
 #endif  /* #define DEBUG */
       printf("%d",i);fflush(stdout);  /* #define DEBUGBRENT */
       linmin(p,xit,n,fret,func);  #define POWELL /* Instead of NLOPT */
       if (fabs(fptt-(*fret)) > del) {  #define POWELLF1F3 /* Skip test */
         del=fabs(fptt-(*fret));  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
         ibig=i;  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
       }  
 #ifdef DEBUG  #include <math.h>
       printf("%d %.12e",i,(*fret));  #include <stdio.h>
       for (j=1;j<=n;j++) {  #include <stdlib.h>
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #include <string.h>
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  #ifdef _WIN32
       for(j=1;j<=n;j++)  #include <io.h>
         printf(" p=%.12e",p[j]);  #include <windows.h>
       printf("\n");  #include <tchar.h>
 #endif  #else
     }  #include <unistd.h>
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #endif
 #ifdef DEBUG  
       int k[2],l;  #include <limits.h>
       k[0]=1;  #include <sys/types.h>
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  #if defined(__GNUC__)
       for (j=1;j<=n;j++)  #include <sys/utsname.h> /* Doesn't work on Windows */
         printf(" %.12e",p[j]);  #endif
       printf("\n");  
       for(l=0;l<=1;l++) {  #include <sys/stat.h>
         for (j=1;j<=n;j++) {  #include <errno.h>
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /* extern int errno; */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  /* #ifdef LINUX */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /* #include <time.h> */
       }  /* #include "timeval.h" */
 #endif  /* #else */
   /* #include <sys/time.h> */
   /* #endif */
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  #include <time.h>
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  #ifdef GSL
       return;  #include <gsl/gsl_errno.h>
     }  #include <gsl/gsl_multimin.h>
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #endif
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  #ifdef NLOPT
       pt[j]=p[j];  #include <nlopt.h>
     }  typedef struct {
     fptt=(*func)(ptt);    double (* function)(double [] );
     if (fptt < fp) {  } myfunc_data ;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  #endif
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  /* #include <libintl.h> */
         for (j=1;j<=n;j++) {  /* #define _(String) gettext (String) */
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
         }  
 #ifdef DEBUG  #define GNUPLOTPROGRAM "gnuplot"
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
         for(j=1;j<=n;j++)  #define FILENAMELENGTH 132
           printf(" %.12e",xit[j]);  
         printf("\n");  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #endif  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       }  
     }  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   }  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
 }  
   #define NINTERVMAX 8
 /**** Prevalence limit ****************/  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 {  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  #define MAXN 20000
      matrix by transitions matrix until convergence is reached */  #define YEARM 12. /**< Number of months per year */
   #define AGESUP 130
   int i, ii,j,k;  #define AGEBASE 40
   double min, max, maxmin, maxmax,sumnew=0.;  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
   double **matprod2();  #ifdef _WIN32
   double **out, cov[NCOVMAX], **pmij();  #define DIRSEPARATOR '\\'
   double **newm;  #define CHARSEPARATOR "\\"
   double agefin, delaymax=50 ; /* Max number of years to converge */  #define ODIRSEPARATOR '/'
   #else
   for (ii=1;ii<=nlstate+ndeath;ii++)  #define DIRSEPARATOR '/'
     for (j=1;j<=nlstate+ndeath;j++){  #define CHARSEPARATOR "/"
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #define ODIRSEPARATOR '\\'
     }  #endif
   
    cov[1]=1.;  /* $Id$ */
    /* $State$ */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  char version[]="Imach version 0.98q3, July 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
     newm=savm;  char fullversion[]="$Revision$ $Date$"; 
     /* Covariates have to be included here again */  char strstart[80];
      cov[2]=agefin;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
    int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       for (k=1; k<=cptcovn;k++) {  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       }  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
       for (k=1; k<=cptcovprod;k++)  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   int cptcoveff=0; /* Total number of covariates to vary for printing results */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  int cptcov=0; /* Working variable */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  int npar=NPARMAX;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  int nlstate=2; /* Number of live states */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  int ndeath=1; /* Number of dead states */
   int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     savm=oldm;  int popbased=0;
     oldm=newm;  
     maxmax=0.;  int *wav; /* Number of waves for this individuual 0 is possible */
     for(j=1;j<=nlstate;j++){  int maxwav=0; /* Maxim number of waves */
       min=1.;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       max=0.;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       for(i=1; i<=nlstate; i++) {  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
         sumnew=0;                     to the likelihood and the sum of weights (done by funcone)*/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  int mle=1, weightopt=0;
         prlim[i][j]= newm[i][j]/(1-sumnew);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
         max=FMAX(max,prlim[i][j]);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
         min=FMIN(min,prlim[i][j]);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       maxmin=max-min;  int countcallfunc=0;  /* Count the number of calls to func */
       maxmax=FMAX(maxmax,maxmin);  double jmean=1; /* Mean space between 2 waves */
     }  double **matprod2(); /* test */
     if(maxmax < ftolpl){  double **oldm, **newm, **savm; /* Working pointers to matrices */
       return prlim;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     }  /*FILE *fic ; */ /* Used in readdata only */
   }  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr=0; /* Global variable for printing or not */
 /*************** transition probabilities ***************/  double fretone; /* Only one call to likelihood */
   long ipmx=0; /* Number of contributions */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   double s1, s2;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   /*double t34;*/  FILE *ficresilk;
   int i,j,j1, nc, ii, jj;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
     for(i=1; i<= nlstate; i++){  FILE *fichtm, *fichtmcov; /* Html File */
     for(j=1; j<i;j++){  FILE *ficreseij;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char filerese[FILENAMELENGTH];
         /*s2 += param[i][j][nc]*cov[nc];*/  FILE *ficresstdeij;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  char fileresstde[FILENAMELENGTH];
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  FILE *ficrescveij;
       }  char filerescve[FILENAMELENGTH];
       ps[i][j]=s2;  FILE  *ficresvij;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  char fileresv[FILENAMELENGTH];
     }  FILE  *ficresvpl;
     for(j=i+1; j<=nlstate+ndeath;j++){  char fileresvpl[FILENAMELENGTH];
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char title[MAXLINE];
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       ps[i][j]=s2;  char command[FILENAMELENGTH];
     }  int  outcmd=0;
   }  
     /*ps[3][2]=1;*/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
   for(i=1; i<= nlstate; i++){  char filelog[FILENAMELENGTH]; /* Log file */
      s1=0;  char filerest[FILENAMELENGTH];
     for(j=1; j<i; j++)  char fileregp[FILENAMELENGTH];
       s1+=exp(ps[i][j]);  char popfile[FILENAMELENGTH];
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /* struct timezone tzp; */
     for(j=i+1; j<=nlstate+ndeath; j++)  /* extern int gettimeofday(); */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  struct tm tml, *gmtime(), *localtime();
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  extern time_t time();
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  struct tm start_time, end_time, curr_time, last_time, forecast_time;
     for(jj=1; jj<= nlstate+ndeath; jj++){  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
       ps[ii][jj]=0;  struct tm tm;
       ps[ii][ii]=1;  
     }  char strcurr[80], strfor[80];
   }  
   char *endptr;
   long lval;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  double dval;
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  #define NR_END 1
    }  #define FREE_ARG char*
     printf("\n ");  #define FTOL 1.0e-10
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  #define NRANSI 
 /*  #define ITMAX 200 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  #define TOL 2.0e-4 
     return ps;  
 }  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 /**************** Product of 2 matrices ******************/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  #define TINY 1.0e-20 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  static double maxarg1,maxarg2;
      before: only the contents of out is modified. The function returns  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
      a pointer to pointers identical to out */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   long i, j, k;    
   for(i=nrl; i<= nrh; i++)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     for(k=ncolol; k<=ncoloh; k++)  #define rint(a) floor(a+0.5)
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
         out[i][k] +=in[i][j]*b[j][k];  #define mytinydouble 1.0e-16
   /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   return out;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
 }  /* static double dsqrarg; */
   /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
   static double sqrarg;
 /************* Higher Matrix Product ***************/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  int agegomp= AGEGOMP;
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  int imx; 
      duration (i.e. until  int stepm=1;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /* Stepm, step in month: minimum step interpolation*/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).  int estepm;
      Model is determined by parameters x and covariates have to be  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
      included manually here.  
   int m,nb;
      */  long *num;
   int firstpass=0, lastpass=4,*cod, *Tage,*cens;
   int i, j, d, h, k;  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
   double **out, cov[NCOVMAX];                     covariate for which somebody answered excluding 
   double **newm;                     undefined. Usually 2: 0 and 1. */
   int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
   /* Hstepm could be zero and should return the unit matrix */                               covariate for which somebody answered including 
   for (i=1;i<=nlstate+ndeath;i++)                               undefined. Usually 3: -1, 0 and 1. */
     for (j=1;j<=nlstate+ndeath;j++){  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  double **pmmij, ***probs;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  double *ageexmed,*agecens;
     }  double dateintmean=0;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  double *weight;
     for(d=1; d <=hstepm; d++){  int **s; /* Status */
       newm=savm;  double *agedc;
       /* Covariates have to be included here again */  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       cov[1]=1.;                    * covar=matrix(0,NCOVMAX,1,n); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  double  idx; 
       for (k=1; k<=cptcovage;k++)  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  int *Ndum; /** Freq of modality (tricode */
       for (k=1; k<=cptcovprod;k++)  int **codtab; /**< codtab=imatrix(1,100,1,10); */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  double ftolhess; /**< Tolerance for computing hessian */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /**************** split *************************/
       savm=oldm;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       oldm=newm;  {
     }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     for(i=1; i<=nlstate+ndeath; i++)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       for(j=1;j<=nlstate+ndeath;j++) {    */ 
         po[i][j][h]=newm[i][j];    char  *ss;                            /* pointer */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    int   l1=0, l2=0;                             /* length counters */
          */  
       }    l1 = strlen(path );                   /* length of path */
   } /* end h */    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   return po;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 /*************** log-likelihood *************/        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 double func( double *x)      /* get current working directory */
 {      /*    extern  char* getcwd ( char *buf , int len);*/
   int i, ii, j, k, mi, d, kk;  #ifdef WIN32
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double **out;  #else
   double sw; /* Sum of weights */          if (getcwd(dirc, FILENAME_MAX) == NULL) {
   double lli; /* Individual log likelihood */  #endif
   long ipmx;        return( GLOCK_ERROR_GETCWD );
   /*extern weight */      }
   /* We are differentiating ll according to initial status */      /* got dirc from getcwd*/
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      printf(" DIRC = %s \n",dirc);
   /*for(i=1;i<imx;i++)    } else {                              /* strip direcotry from path */
     printf(" %d\n",s[4][i]);      ss++;                               /* after this, the filename */
   */      l2 = strlen( ss );                  /* length of filename */
   cov[1]=1.;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
   for(k=1; k<=nlstate; k++) ll[k]=0.;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      dirc[l1-l2] = '\0';                 /* add zero */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      printf(" DIRC2 = %s \n",dirc);
     for(mi=1; mi<= wav[i]-1; mi++){    }
       for (ii=1;ii<=nlstate+ndeath;ii++)    /* We add a separator at the end of dirc if not exists */
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    l1 = strlen( dirc );                  /* length of directory */
       for(d=0; d<dh[mi][i]; d++){    if( dirc[l1-1] != DIRSEPARATOR ){
         newm=savm;      dirc[l1] =  DIRSEPARATOR;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      dirc[l1+1] = 0; 
         for (kk=1; kk<=cptcovage;kk++) {      printf(" DIRC3 = %s \n",dirc);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    }
         }    ss = strrchr( name, '.' );            /* find last / */
            if (ss >0){
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      ss++;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      strcpy(ext,ss);                     /* save extension */
         savm=oldm;      l1= strlen( name);
         oldm=newm;      l2= strlen(ss)+1;
              strncpy( finame, name, l1-l2);
              finame[l1-l2]= 0;
       } /* end mult */    }
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    return( 0 );                          /* we're done */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  }
       ipmx +=1;  
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /******************************************/
     } /* end of wave */  
   } /* end of individual */  void replace_back_to_slash(char *s, char*t)
   {
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    int i;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    int lg=0;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    i=0;
   return -l;    lg=strlen(t);
 }    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 /*********** Maximum Likelihood Estimation ***************/    }
   }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  char *trimbb(char *out, char *in)
   int i,j, iter;  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   double **xi,*delti;    char *s;
   double fret;    s=out;
   xi=matrix(1,npar,1,npar);    while (*in != '\0'){
   for (i=1;i<=npar;i++)      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     for (j=1;j<=npar;j++)        in++;
       xi[i][j]=(i==j ? 1.0 : 0.0);      }
   printf("Powell\n");      *out++ = *in++;
   powell(p,xi,npar,ftol,&iter,&fret,func);    }
     *out='\0';
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    return s;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  }
   
 }  /* char *substrchaine(char *out, char *in, char *chain) */
   /* { */
 /**** Computes Hessian and covariance matrix ***/  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /*   char *s, *t; */
 {  /*   t=in;s=out; */
   double  **a,**y,*x,pd;  /*   while ((*in != *chain) && (*in != '\0')){ */
   double **hess;  /*     *out++ = *in++; */
   int i, j,jk;  /*   } */
   int *indx;  
   /*   /\* *in matches *chain *\/ */
   double hessii(double p[], double delta, int theta, double delti[]);  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
   double hessij(double p[], double delti[], int i, int j);  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*   } */
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /*   in--; chain--; */
   /*   while ( (*in != '\0')){ */
   hess=matrix(1,npar,1,npar);  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   /*     *out++ = *in++; */
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   for (i=1;i<=npar;i++){  /*   } */
     printf("%d",i);fflush(stdout);  /*   *out='\0'; */
     hess[i][i]=hessii(p,ftolhess,i,delti);  /*   out=s; */
     /*printf(" %f ",p[i]);*/  /*   return out; */
     /*printf(" %lf ",hess[i][i]);*/  /* } */
   }  char *substrchaine(char *out, char *in, char *chain)
    {
   for (i=1;i<=npar;i++) {    /* Substract chain 'chain' from 'in', return and output 'out' */
     for (j=1;j<=npar;j++)  {    /* in="V1+V1*age+age*age+V2", chain="age*age" */
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);    char *strloc;
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];        strcpy (out, in); 
         /*printf(" %lf ",hess[i][j]);*/    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
       }    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
     }    if(strloc != NULL){ 
   }      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
   printf("\n");      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
       /* strcpy (strloc, strloc +strlen(chain));*/
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    }
      printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
   a=matrix(1,npar,1,npar);    return out;
   y=matrix(1,npar,1,npar);  }
   x=vector(1,npar);  
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  char *cutl(char *blocc, char *alocc, char *in, char occ)
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  {
   ludcmp(a,npar,indx,&pd);    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
        and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   for (j=1;j<=npar;j++) {       gives blocc="abcdef" and alocc="ghi2j".
     for (i=1;i<=npar;i++) x[i]=0;       If occ is not found blocc is null and alocc is equal to in. Returns blocc
     x[j]=1;    */
     lubksb(a,npar,indx,x);    char *s, *t;
     for (i=1;i<=npar;i++){    t=in;s=in;
       matcov[i][j]=x[i];    while ((*in != occ) && (*in != '\0')){
     }      *alocc++ = *in++;
   }    }
     if( *in == occ){
   printf("\n#Hessian matrix#\n");      *(alocc)='\0';
   for (i=1;i<=npar;i++) {      s=++in;
     for (j=1;j<=npar;j++) {    }
       printf("%.3e ",hess[i][j]);   
     }    if (s == t) {/* occ not found */
     printf("\n");      *(alocc-(in-s))='\0';
   }      in=s;
     }
   /* Recompute Inverse */    while ( *in != '\0'){
   for (i=1;i<=npar;i++)      *blocc++ = *in++;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    }
   ludcmp(a,npar,indx,&pd);  
     *blocc='\0';
   /*  printf("\n#Hessian matrix recomputed#\n");    return t;
   }
   for (j=1;j<=npar;j++) {  char *cutv(char *blocc, char *alocc, char *in, char occ)
     for (i=1;i<=npar;i++) x[i]=0;  {
     x[j]=1;    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
     lubksb(a,npar,indx,x);       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     for (i=1;i<=npar;i++){       gives blocc="abcdef2ghi" and alocc="j".
       y[i][j]=x[i];       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       printf("%.3e ",y[i][j]);    */
     }    char *s, *t;
     printf("\n");    t=in;s=in;
   }    while (*in != '\0'){
   */      while( *in == occ){
         *blocc++ = *in++;
   free_matrix(a,1,npar,1,npar);        s=in;
   free_matrix(y,1,npar,1,npar);      }
   free_vector(x,1,npar);      *blocc++ = *in++;
   free_ivector(indx,1,npar);    }
   free_matrix(hess,1,npar,1,npar);    if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
     else
 }      *(blocc-(in-s)-1)='\0';
     in=s;
 /*************** hessian matrix ****************/    while ( *in != '\0'){
 double hessii( double x[], double delta, int theta, double delti[])      *alocc++ = *in++;
 {    }
   int i;  
   int l=1, lmax=20;    *alocc='\0';
   double k1,k2;    return s;
   double p2[NPARMAX+1];  }
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  int nbocc(char *s, char occ)
   double fx;  {
   int k=0,kmax=10;    int i,j=0;
   double l1;    int lg=20;
     i=0;
   fx=func(x);    lg=strlen(s);
   for (i=1;i<=npar;i++) p2[i]=x[i];    for(i=0; i<= lg; i++) {
   for(l=0 ; l <=lmax; l++){    if  (s[i] == occ ) j++;
     l1=pow(10,l);    }
     delts=delt;    return j;
     for(k=1 ; k <kmax; k=k+1){  }
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;  /* void cutv(char *u,char *v, char*t, char occ) */
       k1=func(p2)-fx;  /* { */
       p2[theta]=x[theta]-delt;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
       k2=func(p2)-fx;  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /*      gives u="abcdef2ghi" and v="j" *\/ */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /*   int i,lg,j,p=0; */
        /*   i=0; */
 #ifdef DEBUG  /*   lg=strlen(t); */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  /*   for(j=0; j<=lg-1; j++) { */
 #endif  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  /*   } */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;  /*   for(j=0; j<p; j++) { */
       }  /*     (u[j] = t[j]); */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  /*   } */
         k=kmax; l=lmax*10.;  /*      u[p]='\0'; */
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  /*    for(j=0; j<= lg; j++) { */
         delts=delt;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
       }  /*   } */
     }  /* } */
   }  
   delti[theta]=delts;  #ifdef _WIN32
   return res;  char * strsep(char **pp, const char *delim)
    {
 }    char *p, *q;
            
 double hessij( double x[], double delti[], int thetai,int thetaj)    if ((p = *pp) == NULL)
 {      return 0;
   int i;    if ((q = strpbrk (p, delim)) != NULL)
   int l=1, l1, lmax=20;    {
   double k1,k2,k3,k4,res,fx;      *pp = q + 1;
   double p2[NPARMAX+1];      *q = '\0';
   int k;    }
     else
   fx=func(x);      *pp = 0;
   for (k=1; k<=2; k++) {    return p;
     for (i=1;i<=npar;i++) p2[i]=x[i];  }
     p2[thetai]=x[thetai]+delti[thetai]/k;  #endif
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;  /********************** nrerror ********************/
    
     p2[thetai]=x[thetai]+delti[thetai]/k;  void nrerror(char error_text[])
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  {
     k2=func(p2)-fx;    fprintf(stderr,"ERREUR ...\n");
      fprintf(stderr,"%s\n",error_text);
     p2[thetai]=x[thetai]-delti[thetai]/k;    exit(EXIT_FAILURE);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  }
     k3=func(p2)-fx;  /*********************** vector *******************/
    double *vector(int nl, int nh)
     p2[thetai]=x[thetai]-delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double *v;
     k4=func(p2)-fx;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    if (!v) nrerror("allocation failure in vector");
 #ifdef DEBUG    return v-nl+NR_END;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  }
 #endif  
   }  /************************ free vector ******************/
   return res;  void free_vector(double*v, int nl, int nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /************** Inverse of matrix **************/  }
 void ludcmp(double **a, int n, int *indx, double *d)  
 {  /************************ivector *******************************/
   int i,imax,j,k;  int *ivector(long nl,long nh)
   double big,dum,sum,temp;  {
   double *vv;    int *v;
      v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   vv=vector(1,n);    if (!v) nrerror("allocation failure in ivector");
   *d=1.0;    return v-nl+NR_END;
   for (i=1;i<=n;i++) {  }
     big=0.0;  
     for (j=1;j<=n;j++)  /******************free ivector **************************/
       if ((temp=fabs(a[i][j])) > big) big=temp;  void free_ivector(int *v, long nl, long nh)
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  {
     vv[i]=1.0/big;    free((FREE_ARG)(v+nl-NR_END));
   }  }
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {  /************************lvector *******************************/
       sum=a[i][j];  long *lvector(long nl,long nh)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    long *v;
     }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     big=0.0;    if (!v) nrerror("allocation failure in ivector");
     for (i=j;i<=n;i++) {    return v-nl+NR_END;
       sum=a[i][j];  }
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];  /******************free lvector **************************/
       a[i][j]=sum;  void free_lvector(long *v, long nl, long nh)
       if ( (dum=vv[i]*fabs(sum)) >= big) {  {
         big=dum;    free((FREE_ARG)(v+nl-NR_END));
         imax=i;  }
       }  
     }  /******************* imatrix *******************************/
     if (j != imax) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       for (k=1;k<=n;k++) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         dum=a[imax][k];  { 
         a[imax][k]=a[j][k];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         a[j][k]=dum;    int **m; 
       }    
       *d = -(*d);    /* allocate pointers to rows */ 
       vv[imax]=vv[j];    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     indx[j]=imax;    m += NR_END; 
     if (a[j][j] == 0.0) a[j][j]=TINY;    m -= nrl; 
     if (j != n) {    
       dum=1.0/(a[j][j]);    
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    /* allocate rows and set pointers to them */ 
     }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   free_vector(vv,1,n);  /* Doesn't work */    m[nrl] += NR_END; 
 ;    m[nrl] -= ncl; 
 }    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 void lubksb(double **a, int n, int *indx, double b[])    
 {    /* return pointer to array of pointers to rows */ 
   int i,ii=0,ip,j;    return m; 
   double sum;  } 
    
   for (i=1;i<=n;i++) {  /****************** free_imatrix *************************/
     ip=indx[i];  void free_imatrix(m,nrl,nrh,ncl,nch)
     sum=b[ip];        int **m;
     b[ip]=b[i];        long nch,ncl,nrh,nrl; 
     if (ii)       /* free an int matrix allocated by imatrix() */ 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  { 
     else if (sum) ii=i;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     b[i]=sum;    free((FREE_ARG) (m+nrl-NR_END)); 
   }  } 
   for (i=n;i>=1;i--) {  
     sum=b[i];  /******************* matrix *******************************/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  double **matrix(long nrl, long nrh, long ncl, long nch)
     b[i]=sum/a[i][i];  {
   }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 }    double **m;
   
 /************ Frequencies ********************/    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    if (!m) nrerror("allocation failure 1 in matrix()");
 {  /* Some frequencies */    m += NR_END;
      m -= nrl;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double *pp;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double pos, k2, dateintsum=0,k2cpt=0;    m[nrl] += NR_END;
   FILE *ficresp;    m[nrl] -= ncl;
   char fileresp[FILENAMELENGTH];  
      for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   pp=vector(1,nlstate);    return m;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   strcpy(fileresp,"p");  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   strcat(fileresp,fileres);  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   if((ficresp=fopen(fileresp,"w"))==NULL) {     */
     printf("Problem with prevalence resultfile: %s\n", fileresp);  }
     exit(0);  
   }  /*************************free matrix ************************/
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   j1=0;  {
      free((FREE_ARG)(m[nrl]+ncl-NR_END));
   j=cptcoveff;    free((FREE_ARG)(m+nrl-NR_END));
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  }
    
   for(k1=1; k1<=j;k1++){  /******************* ma3x *******************************/
     for(i1=1; i1<=ncodemax[k1];i1++){  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       j1++;  {
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         scanf("%d", i);*/    double ***m;
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)      m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
           for(m=agemin; m <= agemax+3; m++)    if (!m) nrerror("allocation failure 1 in matrix()");
             freq[i][jk][m]=0;    m += NR_END;
          m -= nrl;
       dateintsum=0;  
       k2cpt=0;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for (i=1; i<=imx; i++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         bool=1;    m[nrl] += NR_END;
         if  (cptcovn>0) {    m[nrl] -= ncl;
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
               bool=0;  
         }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         if (bool==1) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
           for(m=firstpass; m<=lastpass; m++){    m[nrl][ncl] += NR_END;
             k2=anint[m][i]+(mint[m][i]/12.);    m[nrl][ncl] -= nll;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    for (j=ncl+1; j<=nch; j++) 
               if(agev[m][i]==0) agev[m][i]=agemax+1;      m[nrl][j]=m[nrl][j-1]+nlay;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    
               if (m<lastpass) {    for (i=nrl+1; i<=nrh; i++) {
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      for (j=ncl+1; j<=nch; j++) 
               }        m[i][j]=m[i][j-1]+nlay;
                  }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    return m; 
                 dateintsum=dateintsum+k2;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
                 k2cpt++;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
               }    */
             }  }
           }  
         }  /*************************free ma3x ************************/
       }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
          {
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
       if  (cptcovn>0) {    free((FREE_ARG)(m+nrl-NR_END));
         fprintf(ficresp, "\n#********** Variable ");  }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresp, "**********\n#");  /*************** function subdirf ***********/
       }  char *subdirf(char fileres[])
       for(i=1; i<=nlstate;i++)  {
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    /* Caution optionfilefiname is hidden */
       fprintf(ficresp, "\n");    strcpy(tmpout,optionfilefiname);
          strcat(tmpout,"/"); /* Add to the right */
       for(i=(int)agemin; i <= (int)agemax+3; i++){    strcat(tmpout,fileres);
         if(i==(int)agemax+3)    return tmpout;
           printf("Total");  }
         else  
           printf("Age %d", i);  /*************** function subdirf2 ***********/
         for(jk=1; jk <=nlstate ; jk++){  char *subdirf2(char fileres[], char *preop)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  {
             pp[jk] += freq[jk][m][i];    
         }    /* Caution optionfilefiname is hidden */
         for(jk=1; jk <=nlstate ; jk++){    strcpy(tmpout,optionfilefiname);
           for(m=-1, pos=0; m <=0 ; m++)    strcat(tmpout,"/");
             pos += freq[jk][m][i];    strcat(tmpout,preop);
           if(pp[jk]>=1.e-10)    strcat(tmpout,fileres);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    return tmpout;
           else  }
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
         }  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
         for(jk=1; jk <=nlstate ; jk++){  {
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    
             pp[jk] += freq[jk][m][i];    /* Caution optionfilefiname is hidden */
         }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
         for(jk=1,pos=0; jk <=nlstate ; jk++)    strcat(tmpout,preop);
           pos += pp[jk];    strcat(tmpout,preop2);
         for(jk=1; jk <=nlstate ; jk++){    strcat(tmpout,fileres);
           if(pos>=1.e-5)    return tmpout;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  }
           else  
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  char *asc_diff_time(long time_sec, char ascdiff[])
           if( i <= (int) agemax){  {
             if(pos>=1.e-5){    long sec_left, days, hours, minutes;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    days = (time_sec) / (60*60*24);
               probs[i][jk][j1]= pp[jk]/pos;    sec_left = (time_sec) % (60*60*24);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    hours = (sec_left) / (60*60) ;
             }    sec_left = (sec_left) %(60*60);
             else    minutes = (sec_left) /60;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    sec_left = (sec_left) % (60);
           }    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
         }    return ascdiff;
          }
         for(jk=-1; jk <=nlstate+ndeath; jk++)  
           for(m=-1; m <=nlstate+ndeath; m++)  /***************** f1dim *************************/
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  extern int ncom; 
         if(i <= (int) agemax)  extern double *pcom,*xicom;
           fprintf(ficresp,"\n");  extern double (*nrfunc)(double []); 
         printf("\n");   
       }  double f1dim(double x) 
     }  { 
   }    int j; 
   dateintmean=dateintsum/k2cpt;    double f;
      double *xt; 
   fclose(ficresp);   
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    xt=vector(1,ncom); 
   free_vector(pp,1,nlstate);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
      f=(*nrfunc)(xt); 
   /* End of Freq */    free_vector(xt,1,ncom); 
 }    return f; 
   } 
 /************ Prevalence ********************/  
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  /*****************brent *************************/
 {  /* Some frequencies */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
    {
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
   double ***freq; /* Frequencies */     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
   double *pp;     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
   double pos, k2;     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
      * returned function value. 
   pp=vector(1,nlstate);    */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    int iter; 
      double a,b,d,etemp;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double fu=0,fv,fw,fx;
   j1=0;    double ftemp=0.;
      double p,q,r,tol1,tol2,u,v,w,x,xm; 
   j=cptcoveff;    double e=0.0; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}   
      a=(ax < cx ? ax : cx); 
   for(k1=1; k1<=j;k1++){    b=(ax > cx ? ax : cx); 
     for(i1=1; i1<=ncodemax[k1];i1++){    x=w=v=bx; 
       j1++;    fw=fv=fx=(*f)(x); 
          for (iter=1;iter<=ITMAX;iter++) { 
       for (i=-1; i<=nlstate+ndeath; i++)        xm=0.5*(a+b); 
         for (jk=-1; jk<=nlstate+ndeath; jk++)        tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
           for(m=agemin; m <= agemax+3; m++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
             freq[i][jk][m]=0;      printf(".");fflush(stdout);
            fprintf(ficlog,".");fflush(ficlog);
       for (i=1; i<=imx; i++) {  #ifdef DEBUGBRENT
         bool=1;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         if  (cptcovn>0) {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
           for (z1=1; z1<=cptcoveff; z1++)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  #endif
               bool=0;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         }        *xmin=x; 
         if (bool==1) {        return fx; 
           for(m=firstpass; m<=lastpass; m++){      } 
             k2=anint[m][i]+(mint[m][i]/12.);      ftemp=fu;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      if (fabs(e) > tol1) { 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        r=(x-w)*(fx-fv); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;        q=(x-v)*(fx-fw); 
               if (m<lastpass) {        p=(x-v)*q-(x-w)*r; 
                 if (calagedate>0)        q=2.0*(q-r); 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        if (q > 0.0) p = -p; 
                 else        q=fabs(q); 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        etemp=e; 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        e=d; 
               }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
             }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
           }        else { 
         }          d=p/q; 
       }          u=x+d; 
       for(i=(int)agemin; i <= (int)agemax+3; i++){          if (u-a < tol2 || b-u < tol2) 
         for(jk=1; jk <=nlstate ; jk++){            d=SIGN(tol1,xm-x); 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        } 
             pp[jk] += freq[jk][m][i];      } else { 
         }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         for(jk=1; jk <=nlstate ; jk++){      } 
           for(m=-1, pos=0; m <=0 ; m++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
             pos += freq[jk][m][i];      fu=(*f)(u); 
         }      if (fu <= fx) { 
                if (u >= x) a=x; else b=x; 
         for(jk=1; jk <=nlstate ; jk++){        SHFT(v,w,x,u) 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        SHFT(fv,fw,fx,fu) 
             pp[jk] += freq[jk][m][i];      } else { 
         }        if (u < x) a=u; else b=u; 
                if (fu <= fw || w == x) { 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          v=w; 
                  w=u; 
         for(jk=1; jk <=nlstate ; jk++){              fv=fw; 
           if( i <= (int) agemax){          fw=fu; 
             if(pos>=1.e-5){        } else if (fu <= fv || v == x || v == w) { 
               probs[i][jk][j1]= pp[jk]/pos;          v=u; 
             }          fv=fu; 
           }        } 
         }      } 
            } 
       }    nrerror("Too many iterations in brent"); 
     }    *xmin=x; 
   }    return fx; 
   } 
    
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /****************** mnbrak ***********************/
   free_vector(pp,1,nlstate);  
    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 }  /* End of Freq */              double (*func)(double)) 
   { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
 /************* Waves Concatenation ***************/  the downhill direction (defined by the function as evaluated at the initial points) and returns
   new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
 {     */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    double ulim,u,r,q, dum;
      Death is a valid wave (if date is known).    double fu; 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    double scale=10.;
      and mw[mi+1][i]. dh depends on stepm.    int iterscale=0;
      */  
     *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
   int i, mi, m;    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/  
     /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
   int j, k=0,jk, ju, jl;    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
   double sum=0.;    /*   *bx = *ax - (*ax - *bx)/scale; */
   jmin=1e+5;    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
   jmax=-1;    /* } */
   jmean=0.;  
   for(i=1; i<=imx; i++){    if (*fb > *fa) { 
     mi=0;      SHFT(dum,*ax,*bx,dum) 
     m=firstpass;      SHFT(dum,*fb,*fa,dum) 
     while(s[m][i] <= nlstate){    } 
       if(s[m][i]>=1)    *cx=(*bx)+GOLD*(*bx-*ax); 
         mw[++mi][i]=m;    *fc=(*func)(*cx); 
       if(m >=lastpass)  #ifdef DEBUG
         break;    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
       else    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
         m++;  #endif
     }/* end while */    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
     if (s[m][i] > nlstate){      r=(*bx-*ax)*(*fb-*fc); 
       mi++;     /* Death is another wave */      q=(*bx-*cx)*(*fb-*fa); 
       /* if(mi==0)  never been interviewed correctly before death */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
          /* Only death is a correct wave */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
       mw[mi][i]=m;      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
     }      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
         fu=(*func)(u); 
     wav[i]=mi;  #ifdef DEBUG
     if(mi==0)        /* f(x)=A(x-u)**2+f(u) */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        double A, fparabu; 
   }        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
         fparabu= *fa - A*(*ax-u)*(*ax-u);
   for(i=1; i<=imx; i++){        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
     for(mi=1; mi<wav[i];mi++){        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
       if (stepm <=0)        /* And thus,it can be that fu > *fc even if fparabu < *fc */
         dh[mi][i]=1;        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
       else{          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
         if (s[mw[mi+1][i]][i] > nlstate) {        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
           if (agedc[i] < 2*AGESUP) {  #endif 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  #ifdef MNBRAKORIGINAL
           if(j==0) j=1;  /* Survives at least one month after exam */  #else
           k=k+1;  /*       if (fu > *fc) { */
           if (j >= jmax) jmax=j;  /* #ifdef DEBUG */
           if (j <= jmin) jmin=j;  /*       printf("mnbrak4  fu > fc \n"); */
           sum=sum+j;  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  /* #endif */
           }  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
         }  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
         else{  /*      dum=u; /\* Shifting c and u *\/ */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  /*      u = *cx; */
           k=k+1;  /*      *cx = dum; */
           if (j >= jmax) jmax=j;  /*      dum = fu; */
           else if (j <= jmin)jmin=j;  /*      fu = *fc; */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  /*      *fc =dum; */
           sum=sum+j;  /*       } else { /\* end *\/ */
         }  /* #ifdef DEBUG */
         jk= j/stepm;  /*       printf("mnbrak3  fu < fc \n"); */
         jl= j -jk*stepm;  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
         ju= j -(jk+1)*stepm;  /* #endif */
         if(jl <= -ju)  /*      dum=u; /\* Shifting c and u *\/ */
           dh[mi][i]=jk;  /*      u = *cx; */
         else  /*      *cx = dum; */
           dh[mi][i]=jk+1;  /*      dum = fu; */
         if(dh[mi][i]==0)  /*      fu = *fc; */
           dh[mi][i]=1; /* At least one step */  /*      *fc =dum; */
       }  /*       } */
     }  #ifdef DEBUG
   }        printf("mnbrak34  fu < or >= fc \n");
   jmean=sum/k;        fprintf(ficlog, "mnbrak34 fu < fc\n");
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  #endif
  }        dum=u; /* Shifting c and u */
 /*********** Tricode ****************************/        u = *cx;
 void tricode(int *Tvar, int **nbcode, int imx)        *cx = dum;
 {        dum = fu;
   int Ndum[20],ij=1, k, j, i;        fu = *fc;
   int cptcode=0;        *fc =dum;
   cptcoveff=0;  #endif
        } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
   for (k=0; k<19; k++) Ndum[k]=0;  #ifdef DEBUG
   for (k=1; k<=7; k++) ncodemax[k]=0;        printf("mnbrak2  u after c but before ulim\n");
         fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  #endif
     for (i=1; i<=imx; i++) {        fu=(*func)(u); 
       ij=(int)(covar[Tvar[j]][i]);        if (fu < *fc) { 
       Ndum[ij]++;  #ifdef DEBUG
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
       if (ij > cptcode) cptcode=ij;        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
     }  #endif
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     for (i=0; i<=cptcode; i++) {          SHFT(*fb,*fc,fu,(*func)(u)) 
       if(Ndum[i]!=0) ncodemax[j]++;        } 
     }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
     ij=1;  #ifdef DEBUG
         printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
         fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
     for (i=1; i<=ncodemax[j]; i++) {  #endif
       for (k=0; k<=19; k++) {        u=ulim; 
         if (Ndum[k] != 0) {        fu=(*func)(u); 
           nbcode[Tvar[j]][ij]=k;      } else { /* u could be left to b (if r > q parabola has a maximum) */
            #ifdef DEBUG
           ij++;        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
         }        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
         if (ij > ncodemax[j]) break;  #endif
       }          u=(*cx)+GOLD*(*cx-*bx); 
     }        fu=(*func)(u); 
   }        } /* end tests */
       SHFT(*ax,*bx,*cx,u) 
  for (k=0; k<19; k++) Ndum[k]=0;      SHFT(*fa,*fb,*fc,fu) 
   #ifdef DEBUG
  for (i=1; i<=ncovmodel-2; i++) {        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
       ij=Tvar[i];        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
       Ndum[ij]++;  #endif
     }    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
   } 
  ij=1;  
  for (i=1; i<=10; i++) {  /*************** linmin ************************/
    if((Ndum[i]!=0) && (i<=ncovcol)){  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
      Tvaraff[ij]=i;  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
      ij++;  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
    }  the value of func at the returned location p . This is actually all accomplished by calling the
  }  routines mnbrak and brent .*/
    int ncom; 
     cptcoveff=ij-1;  double *pcom,*xicom;
 }  double (*nrfunc)(double []); 
    
 /*********** Health Expectancies ****************/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
 {    double f1dim(double x); 
   /* Health expectancies */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;                double *fc, double (*func)(double)); 
   double age, agelim, hf;    int j; 
   double ***p3mat,***varhe;    double xx,xmin,bx,ax; 
   double **dnewm,**doldm;    double fx,fb,fa;
   double *xp;  
   double **gp, **gm;    double scale=10., axs, xxs, xxss; /* Scale added for infinity */
   double ***gradg, ***trgradg;   
   int theta;    ncom=n; 
     pcom=vector(1,n); 
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    xicom=vector(1,n); 
   xp=vector(1,npar);    nrfunc=func; 
   dnewm=matrix(1,nlstate*2,1,npar);    for (j=1;j<=n;j++) { 
   doldm=matrix(1,nlstate*2,1,nlstate*2);      pcom[j]=p[j]; 
        xicom[j]=xi[j]; 
   fprintf(ficreseij,"# Health expectancies\n");    } 
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)    /* axs=0.0; */
     for(j=1; j<=nlstate;j++)    /* xxss=1; /\* 1 and using scale *\/ */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    xxs=1;
   fprintf(ficreseij,"\n");    /* do{ */
       ax=0.;
   if(estepm < stepm){      xx= xxs;
     printf ("Problem %d lower than %d\n",estepm, stepm);      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
   }      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
   else  hstepm=estepm;        /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
   /* We compute the life expectancy from trapezoids spaced every estepm months      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
    * This is mainly to measure the difference between two models: for example      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
    * if stepm=24 months pijx are given only every 2 years and by summing them      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
    * we are calculating an estimate of the Life Expectancy assuming a linear      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
    * progression inbetween and thus overestimating or underestimating according    /*   if (fx != fx){ */
    * to the curvature of the survival function. If, for the same date, we    /*    xxs=xxs/scale; /\* Trying a smaller xx, closer to initial ax=0 *\/ */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    /*    printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx); */
    * to compare the new estimate of Life expectancy with the same linear    /*   } */
    * hypothesis. A more precise result, taking into account a more precise    /* }while(fx != fx); */
    * curvature will be obtained if estepm is as small as stepm. */  
   #ifdef DEBUGLINMIN
   /* For example we decided to compute the life expectancy with the smallest unit */    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  #endif
      nhstepm is the number of hstepm from age to agelim    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
      nstepm is the number of stepm from age to agelin.    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
      Look at hpijx to understand the reason of that which relies in memory size    /* fmin = f(p[j] + xmin * xi[j]) */
      and note for a fixed period like estepm months */    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
      survival function given by stepm (the optimization length). Unfortunately it  #ifdef DEBUG
      means that if the survival funtion is printed only each two years of age and if    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      results. So we changed our mind and took the option of the best precision.  #endif
   */  #ifdef DEBUGLINMIN
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    printf("linmin end ");
   #endif
   agelim=AGESUP;    for (j=1;j<=n;j++) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      /* printf(" before xi[%d]=%12.8f", j,xi[j]); */
     /* nhstepm age range expressed in number of stepm */      xi[j] *= xmin; /* xi rescaled by xmin: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      /* if(xxs <1.0) */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      /*   printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs ); */
     /* if (stepm >= YEARM) hstepm=1;*/      p[j] += xi[j]; /* Parameters values are updated accordingly */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    } 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* printf("\n"); */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  #ifdef DEBUGLINMIN
     gp=matrix(0,nhstepm,1,nlstate*2);    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
     gm=matrix(0,nhstepm,1,nlstate*2);    for (j=1;j<=n;j++) { 
       printf(" xi[%d]= %12.7f p[%d]= %12.7f",j,xi[j],j,p[j]);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      if(j % ncovmodel == 0)
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        printf("\n");
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      }
    #endif
     free_vector(xicom,1,n); 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    free_vector(pcom,1,n); 
   } 
     /* Computing Variances of health expectancies */  
   
      for(theta=1; theta <=npar; theta++){  /*************** powell ************************/
       for(i=1; i<=npar; i++){  /*
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  Minimization of a function func of n variables. Input consists of an initial starting point
       }  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
    such that failure to decrease by more than this amount on one iteration signals doneness. On
       cptj=0;  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
       for(j=1; j<= nlstate; j++){  function value at p , and iter is the number of iterations taken. The routine linmin is used.
         for(i=1; i<=nlstate; i++){   */
           cptj=cptj+1;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){              double (*func)(double [])) 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  { 
           }    void linmin(double p[], double xi[], int n, double *fret, 
         }                double (*func)(double [])); 
       }    int i,ibig,j; 
          double del,t,*pt,*ptt,*xit;
          double directest;
       for(i=1; i<=npar; i++)    double fp,fptt;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double *xits;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int niterf, itmp;
        
       cptj=0;    pt=vector(1,n); 
       for(j=1; j<= nlstate; j++){    ptt=vector(1,n); 
         for(i=1;i<=nlstate;i++){    xit=vector(1,n); 
           cptj=cptj+1;    xits=vector(1,n); 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    *fret=(*func)(p); 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for (j=1;j<=n;j++) pt[j]=p[j]; 
           }      rcurr_time = time(NULL);  
         }    for (*iter=1;;++(*iter)) { 
       }      fp=(*fret); /* From former iteration or initial value */
       for(j=1; j<= nlstate*2; j++)      ibig=0; 
         for(h=0; h<=nhstepm-1; h++){      del=0.0; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      rlast_time=rcurr_time;
         }      /* (void) gettimeofday(&curr_time,&tzp); */
      }      rcurr_time = time(NULL);  
          curr_time = *localtime(&rcurr_time);
 /* End theta */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
       for (i=1;i<=n;i++) {
      for(h=0; h<=nhstepm-1; h++)        printf(" %d %.12f",i, p[i]);
       for(j=1; j<=nlstate*2;j++)        fprintf(ficlog," %d %.12lf",i, p[i]);
         for(theta=1; theta <=npar; theta++)        fprintf(ficrespow," %.12lf", p[i]);
           trgradg[h][j][theta]=gradg[h][theta][j];      }
            printf("\n");
       fprintf(ficlog,"\n");
      for(i=1;i<=nlstate*2;i++)      fprintf(ficrespow,"\n");fflush(ficrespow);
       for(j=1;j<=nlstate*2;j++)      if(*iter <=3){
         varhe[i][j][(int)age] =0.;        tml = *localtime(&rcurr_time);
         strcpy(strcurr,asctime(&tml));
      printf("%d|",(int)age);fflush(stdout);        rforecast_time=rcurr_time; 
      for(h=0;h<=nhstepm-1;h++){        itmp = strlen(strcurr);
       for(k=0;k<=nhstepm-1;k++){        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          strcurr[itmp-1]='\0';
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         for(i=1;i<=nlstate*2;i++)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           for(j=1;j<=nlstate*2;j++)        for(niterf=10;niterf<=30;niterf+=10){
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
       }          forecast_time = *localtime(&rforecast_time);
     }          strcpy(strfor,asctime(&forecast_time));
     /* Computing expectancies */          itmp = strlen(strfor);
     for(i=1; i<=nlstate;i++)          if(strfor[itmp-1]=='\n')
       for(j=1; j<=nlstate;j++)          strfor[itmp-1]='\0';
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
                  }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      }
       for (i=1;i<=n;i++) { /* For each direction i */
         }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
         fptt=(*fret); 
     fprintf(ficreseij,"%3.0f",age );  #ifdef DEBUG
     cptj=0;            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
     for(i=1; i<=nlstate;i++)            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
       for(j=1; j<=nlstate;j++){  #endif
         cptj++;            printf("%d",i);fflush(stdout); /* print direction (parameter) i */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        fprintf(ficlog,"%d",i);fflush(ficlog);
       }        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
     fprintf(ficreseij,"\n");                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
            if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
     free_matrix(gm,0,nhstepm,1,nlstate*2);          /* because that direction will be replaced unless the gain del is small */
     free_matrix(gp,0,nhstepm,1,nlstate*2);          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          /* with the new direction. */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          del=fabs(fptt-(*fret)); 
   }          ibig=i; 
   printf("\n");        } 
   #ifdef DEBUG
   free_vector(xp,1,npar);        printf("%d %.12e",i,(*fret));
   free_matrix(dnewm,1,nlstate*2,1,npar);        fprintf(ficlog,"%d %.12e",i,(*fret));
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        for (j=1;j<=n;j++) {
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 }          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 /************ Variance ******************/        }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        for(j=1;j<=n;j++) {
 {          printf(" p(%d)=%.12e",j,p[j]);
   /* Variance of health expectancies */          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        }
   double **newm;        printf("\n");
   double **dnewm,**doldm;        fprintf(ficlog,"\n");
   int i, j, nhstepm, hstepm, h, nstepm ;  #endif
   int k, cptcode;      } /* end loop on each direction i */
   double *xp;      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
   double **gp, **gm;      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
   double ***gradg, ***trgradg;      /* New value of last point Pn is not computed, P(n-1) */
   double ***p3mat;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
   double age,agelim, hf;        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
   int theta;        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
         /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");        /* decreased of more than 3.84  */
   fprintf(ficresvij,"# Age");        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
   for(i=1; i<=nlstate;i++)        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
     for(j=1; j<=nlstate;j++)        /* By adding 10 parameters more the gain should be 18.31 */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");        /* Starting the program with initial values given by a former maximization will simply change */
         /* the scales of the directions and the directions, because the are reset to canonical directions */
   xp=vector(1,npar);        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
   dnewm=matrix(1,nlstate,1,npar);        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
   doldm=matrix(1,nlstate,1,nlstate);  #ifdef DEBUG
          int k[2],l;
   if(estepm < stepm){        k[0]=1;
     printf ("Problem %d lower than %d\n",estepm, stepm);        k[1]=-1;
   }        printf("Max: %.12e",(*func)(p));
   else  hstepm=estepm;          fprintf(ficlog,"Max: %.12e",(*func)(p));
   /* For example we decided to compute the life expectancy with the smallest unit */        for (j=1;j<=n;j++) {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          printf(" %.12e",p[j]);
      nhstepm is the number of hstepm from age to agelim          fprintf(ficlog," %.12e",p[j]);
      nstepm is the number of stepm from age to agelin.        }
      Look at hpijx to understand the reason of that which relies in memory size        printf("\n");
      and note for a fixed period like k years */        fprintf(ficlog,"\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        for(l=0;l<=1;l++) {
      survival function given by stepm (the optimization length). Unfortunately it          for (j=1;j<=n;j++) {
      means that if the survival funtion is printed only each two years of age and if            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
      results. So we changed our mind and took the option of the best precision.            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   */          }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   agelim = AGESUP;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        }
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  #endif
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        free_vector(xit,1,n); 
     gp=matrix(0,nhstepm,1,nlstate);        free_vector(xits,1,n); 
     gm=matrix(0,nhstepm,1,nlstate);        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
     for(theta=1; theta <=npar; theta++){        return; 
       for(i=1; i<=npar; i++){ /* Computes gradient */      } /* enough precision */ 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       }      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          ptt[j]=2.0*p[j]-pt[j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
       if (popbased==1) {      } 
         for(i=1; i<=nlstate;i++)      fptt=(*func)(ptt); /* f_3 */
           prlim[i][i]=probs[(int)age][i][ij];  #ifdef POWELLF1F3
       }  #else
        if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
       for(j=1; j<= nlstate; j++){  #endif
         for(h=0; h<=nhstepm; h++){        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         }        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
       }        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
            /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
       for(i=1; i<=npar; i++) /* Computes gradient */        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  #ifdef NRCORIGINAL
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  #else
          t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
       if (popbased==1) {        t= t- del*SQR(fp-fptt);
         for(i=1; i<=nlstate;i++)  #endif
           prlim[i][i]=probs[(int)age][i][ij];        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
       }  #ifdef DEBUG
         printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
       for(j=1; j<= nlstate; j++){        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
         for(h=0; h<=nhstepm; h++){        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
         }               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
       }        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
       for(j=1; j<= nlstate; j++)  #endif
         for(h=0; h<=nhstepm; h++){  #ifdef POWELLORIGINAL
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        if (t < 0.0) { /* Then we use it for new direction */
         }  #else
     } /* End theta */        if (directest*t < 0.0) { /* Contradiction between both tests */
           printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
           fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
     for(h=0; h<=nhstepm; h++)          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
       for(j=1; j<=nlstate;j++)        } 
         for(theta=1; theta <=npar; theta++)        if (directest < 0.0) { /* Then we use it for new direction */
           trgradg[h][j][theta]=gradg[h][theta][j];  #endif
   #ifdef DEBUGLINMIN
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          printf("Before linmin in direction P%d-P0\n",n);
     for(i=1;i<=nlstate;i++)          for (j=1;j<=n;j++) { 
       for(j=1;j<=nlstate;j++)            printf("Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
         vareij[i][j][(int)age] =0.;            if(j % ncovmodel == 0)
               printf("\n");
     for(h=0;h<=nhstepm;h++){          }
       for(k=0;k<=nhstepm;k++){  #endif
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  #ifdef DEBUGLINMIN
         for(i=1;i<=nlstate;i++)          for (j=1;j<=n;j++) { 
           for(j=1;j<=nlstate;j++)            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            if(j % ncovmodel == 0)
       }              printf("\n");
     }          }
   #endif
     fprintf(ficresvij,"%.0f ",age );          for (j=1;j<=n;j++) { 
     for(i=1; i<=nlstate;i++)            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
       for(j=1; j<=nlstate;j++){            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          }
       }          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
     fprintf(ficresvij,"\n");          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);  #ifdef DEBUG
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(j=1;j<=n;j++){
   } /* End age */            printf(" %.12e",xit[j]);
              fprintf(ficlog," %.12e",xit[j]);
   free_vector(xp,1,npar);          }
   free_matrix(doldm,1,nlstate,1,npar);          printf("\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);          fprintf(ficlog,"\n");
   #endif
 }        } /* end of t or directest negative */
   #ifdef POWELLF1F3
 /************ Variance of prevlim ******************/  #else
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      } /* end if (fptt < fp)  */
 {  #endif
   /* Variance of prevalence limit */    } /* loop iteration */ 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  } 
   double **newm;  
   double **dnewm,**doldm;  /**** Prevalence limit (stable or period prevalence)  ****************/
   int i, j, nhstepm, hstepm;  
   int k, cptcode;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double *xp;  {
   double *gp, *gm;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double **gradg, **trgradg;       matrix by transitions matrix until convergence is reached */
   double age,agelim;    
   int theta;    int i, ii,j,k;
        double min, max, maxmin, maxmax,sumnew=0.;
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    /* double **matprod2(); */ /* test */
   fprintf(ficresvpl,"# Age");    double **out, cov[NCOVMAX+1], **pmij();
   for(i=1; i<=nlstate;i++)    double **newm;
       fprintf(ficresvpl," %1d-%1d",i,i);    double agefin, delaymax=50 ; /* Max number of years to converge */
   fprintf(ficresvpl,"\n");    
     for (ii=1;ii<=nlstate+ndeath;ii++)
   xp=vector(1,npar);      for (j=1;j<=nlstate+ndeath;j++){
   dnewm=matrix(1,nlstate,1,npar);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   doldm=matrix(1,nlstate,1,nlstate);      }
      
   hstepm=1*YEARM; /* Every year of age */    cov[1]=1.;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    
   agelim = AGESUP;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      newm=savm;
     if (stepm >= YEARM) hstepm=1;      /* Covariates have to be included here again */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      cov[2]=agefin;
     gradg=matrix(1,npar,1,nlstate);      if(nagesqr==1)
     gp=vector(1,nlstate);        cov[3]= agefin*agefin;;
     gm=vector(1,nlstate);      for (k=1; k<=cptcovn;k++) {
         cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for(theta=1; theta <=npar; theta++){        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
       for(i=1; i<=npar; i++){ /* Computes gradient */      }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       }      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]*cov[2];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (k=1; k<=cptcovprod;k++) /* Useless */
       for(i=1;i<=nlstate;i++)        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         gp[i] = prlim[i][i];      
          /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       for(i=1; i<=npar; i++) /* Computes gradient */      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       for(i=1;i<=nlstate;i++)      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
         gm[i] = prlim[i][i];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       
       for(i=1;i<=nlstate;i++)      savm=oldm;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      oldm=newm;
     } /* End theta */      maxmax=0.;
       for(j=1;j<=nlstate;j++){
     trgradg =matrix(1,nlstate,1,npar);        min=1.;
         max=0.;
     for(j=1; j<=nlstate;j++)        for(i=1; i<=nlstate; i++) {
       for(theta=1; theta <=npar; theta++)          sumnew=0;
         trgradg[j][theta]=gradg[theta][j];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
     for(i=1;i<=nlstate;i++)          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
       varpl[i][(int)age] =0.;          max=FMAX(max,prlim[i][j]);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          min=FMIN(min,prlim[i][j]);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        }
     for(i=1;i<=nlstate;i++)        maxmin=max-min;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        maxmax=FMAX(maxmax,maxmin);
       } /* j loop */
     fprintf(ficresvpl,"%.0f ",age );      if(maxmax < ftolpl){
     for(i=1; i<=nlstate;i++)        return prlim;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      }
     fprintf(ficresvpl,"\n");    } /* age loop */
     free_vector(gp,1,nlstate);    return prlim; /* should not reach here */
     free_vector(gm,1,nlstate);  }
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);  /*************** transition probabilities ***************/ 
   } /* End age */  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   free_vector(xp,1,npar);  {
   free_matrix(doldm,1,nlstate,1,npar);    /* According to parameters values stored in x and the covariate's values stored in cov,
   free_matrix(dnewm,1,nlstate,1,nlstate);       computes the probability to be observed in state j being in state i by appying the
        model to the ncovmodel covariates (including constant and age).
 }       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
        and, according on how parameters are entered, the position of the coefficient xij(nc) of the
 /************ Variance of one-step probabilities  ******************/       ncth covariate in the global vector x is given by the formula:
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 {       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
   int i, j,  i1, k1, l1;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   int k2, l2, j1,  z1;       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   int k=0,l, cptcode;       Outputs ps[i][j] the probability to be observed in j being in j according to
   int first=1;       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;    */
   double **dnewm,**doldm;    double s1, lnpijopii;
   double *xp;    /*double t34;*/
   double *gp, *gm;    int i,j, nc, ii, jj;
   double **gradg, **trgradg;  
   double **mu;      for(i=1; i<= nlstate; i++){
   double age,agelim, cov[NCOVMAX];        for(j=1; j<i;j++){
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   int theta;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   char fileresprob[FILENAMELENGTH];            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   char fileresprobcov[FILENAMELENGTH];  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   char fileresprobcor[FILENAMELENGTH];          }
           ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   double ***varpij;  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }
   strcpy(fileresprob,"prob");        for(j=i+1; j<=nlstate+ndeath;j++){
   strcat(fileresprob,fileres);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
     printf("Problem with resultfile: %s\n", fileresprob);            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   }  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   strcpy(fileresprobcov,"probcov");          }
   strcat(fileresprobcov,fileres);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        }
     printf("Problem with resultfile: %s\n", fileresprobcov);      }
   }      
   strcpy(fileresprobcor,"probcor");      for(i=1; i<= nlstate; i++){
   strcat(fileresprobcor,fileres);        s1=0;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        for(j=1; j<i; j++){
     printf("Problem with resultfile: %s\n", fileresprobcor);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        }
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        for(j=i+1; j<=nlstate+ndeath; j++){
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
            /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        }
   fprintf(ficresprob,"# Age");        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        ps[i][i]=1./(s1+1.);
   fprintf(ficresprobcov,"# Age");        /* Computing other pijs */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        for(j=1; j<i; j++)
   fprintf(ficresprobcov,"# Age");          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(j=i+1; j<=nlstate+ndeath; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
   for(i=1; i<=nlstate;i++)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     for(j=1; j<=(nlstate+ndeath);j++){      } /* end i */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        for(jj=1; jj<= nlstate+ndeath; jj++){
     }            ps[ii][jj]=0;
   fprintf(ficresprob,"\n");          ps[ii][ii]=1;
   fprintf(ficresprobcov,"\n");        }
   fprintf(ficresprobcor,"\n");      }
   xp=vector(1,npar);      
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   first=1;      /*   } */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      /*   printf("\n "); */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      /* } */
     exit(0);      /* printf("\n ");printf("%lf ",cov[2]);*/
   }      /*
   else{        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     fprintf(ficgp,"\n# Routine varprob");        goto end;*/
   }      return ps;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  }
     printf("Problem with html file: %s\n", optionfilehtm);  
     exit(0);  /**************** Product of 2 matrices ******************/
   }  
   else{  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");  {
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
   }       before: only the contents of out is modified. The function returns
   cov[1]=1;       a pointer to pointers identical to out */
   j=cptcoveff;    int i, j, k;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for(i=nrl; i<= nrh; i++)
   j1=0;      for(k=ncolol; k<=ncoloh; k++){
   for(k1=1; k1<=1;k1++){        out[i][k]=0.;
     for(i1=1; i1<=ncodemax[k1];i1++){        for(j=ncl; j<=nch; j++)
     j1++;          out[i][k] +=in[i][j]*b[j][k];
       }
     if  (cptcovn>0) {    return out;
       fprintf(ficresprob, "\n#********** Variable ");  }
       fprintf(ficresprobcov, "\n#********** Variable ");  
       fprintf(ficgp, "\n#********** Variable ");  
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");  /************* Higher Matrix Product ***************/
       fprintf(ficresprobcor, "\n#********** Variable ");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       fprintf(ficresprob, "**********\n#");  {
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* Computes the transition matrix starting at age 'age' over 
       fprintf(ficresprobcov, "**********\n#");       'nhstepm*hstepm*stepm' months (i.e. until
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       fprintf(ficgp, "**********\n#");       nhstepm*hstepm matrices. 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       fprintf(ficgp, "**********\n#");       (typically every 2 years instead of every month which is too big 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       for the memory).
       fprintf(fichtm, "**********\n#");       Model is determined by parameters x and covariates have to be 
     }       included manually here. 
      
       for (age=bage; age<=fage; age ++){       */
         cov[2]=age;  
         for (k=1; k<=cptcovn;k++) {    int i, j, d, h, k;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    double **out, cov[NCOVMAX+1];
         }    double **newm;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double agexact;
         for (k=1; k<=cptcovprod;k++)  
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /* Hstepm could be zero and should return the unit matrix */
            for (i=1;i<=nlstate+ndeath;i++)
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));      for (j=1;j<=nlstate+ndeath;j++){
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        oldm[i][j]=(i==j ? 1.0 : 0.0);
         gp=vector(1,(nlstate)*(nlstate+ndeath));        po[i][j][0]=(i==j ? 1.0 : 0.0);
         gm=vector(1,(nlstate)*(nlstate+ndeath));      }
        /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         for(theta=1; theta <=npar; theta++){    for(h=1; h <=nhstepm; h++){
           for(i=1; i<=npar; i++)      for(d=1; d <=hstepm; d++){
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        newm=savm;
                  /* Covariates have to be included here again */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        cov[1]=1.;
                  agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           k=0;        cov[2]=agexact;
           for(i=1; i<= (nlstate); i++){        if(nagesqr==1)
             for(j=1; j<=(nlstate+ndeath);j++){          cov[3]= agexact*agexact;
               k=k+1;        for (k=1; k<=cptcovn;k++) 
               gp[k]=pmmij[i][j];          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
             }        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
           }          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
                    cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
           for(i=1; i<=npar; i++)        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
           k=0;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           for(i=1; i<=(nlstate); i++){        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
             for(j=1; j<=(nlstate+ndeath);j++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
               k=k+1;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
               gm[k]=pmmij[i][j];        savm=oldm;
             }        oldm=newm;
           }      }
            for(i=1; i<=nlstate+ndeath; i++)
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        for(j=1;j<=nlstate+ndeath;j++) {
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            po[i][j][h]=newm[i][j];
         }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      /*printf("h=%d ",h);*/
           for(theta=1; theta <=npar; theta++)    } /* end h */
             trgradg[j][theta]=gradg[theta][j];  /*     printf("\n H=%d \n",h); */
            return po;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);  }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);  
          #ifdef NLOPT
         pmij(pmmij,cov,ncovmodel,x,nlstate);    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
            double fret;
         k=0;    double *xt;
         for(i=1; i<=(nlstate); i++){    int j;
           for(j=1; j<=(nlstate+ndeath);j++){    myfunc_data *d2 = (myfunc_data *) pd;
             k=k+1;  /* xt = (p1-1); */
             mu[k][(int) age]=pmmij[i][j];    xt=vector(1,n); 
           }    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
         }  
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
             varpij[i][j][(int)age] = doldm[i][j];    printf("Function = %.12lf ",fret);
     for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
         /*printf("\n%d ",(int)age);    printf("\n");
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){   free_vector(xt,1,n);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    return fret;
      }*/  }
   #endif
         fprintf(ficresprob,"\n%d ",(int)age);  
         fprintf(ficresprobcov,"\n%d ",(int)age);  /*************** log-likelihood *************/
         fprintf(ficresprobcor,"\n%d ",(int)age);  double func( double *x)
   {
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    int i, ii, j, k, mi, d, kk;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    double **out;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    double sw; /* Sum of weights */
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    double lli; /* Individual log likelihood */
         }    int s1, s2;
         i=0;    double bbh, survp;
         for (k=1; k<=(nlstate);k++){    long ipmx;
           for (l=1; l<=(nlstate+ndeath);l++){    double agexact;
             i=i++;    /*extern weight */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    /* We are differentiating ll according to initial status */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             for (j=1; j<=i;j++){    /*for(i=1;i<imx;i++) 
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);      printf(" %d\n",s[4][i]);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    */
             }  
           }    ++countcallfunc;
         }/* end of loop for state */  
       } /* end of loop for age */    cov[1]=1.;
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  
       for (k1=1; k1<=(nlstate);k1++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
         for (l1=1; l1<=(nlstate+ndeath);l1++){  
           if(l1==k1) continue;    if(mle==1){
           i=(k1-1)*(nlstate+ndeath)+l1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for (k2=1; k2<=(nlstate);k2++){        /* Computes the values of the ncovmodel covariates of the model
             for (l2=1; l2<=(nlstate+ndeath);l2++){           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
               if(l2==k2) continue;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
               j=(k2-1)*(nlstate+ndeath)+l2;           to be observed in j being in i according to the model.
               if(j<=i) continue;         */
               for (age=bage; age<=fage; age ++){        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
                 if ((int)age %5==0){            cov[2+nagesqr+k]=covar[Tvar[k]][i];
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
                   mu1=mu[i][(int) age]/stepm*YEARM ;           has been calculated etc */
                   mu2=mu[j][(int) age]/stepm*YEARM;        for(mi=1; mi<= wav[i]-1; mi++){
                   /* Computing eigen value of matrix of covariance */          for (ii=1;ii<=nlstate+ndeath;ii++)
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            for (j=1;j<=nlstate+ndeath;j++){
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   /* Eigen vectors */            }
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          for(d=0; d<dh[mi][i]; d++){
                   v21=sqrt(1.-v11*v11);            newm=savm;
                   v12=-v21;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   v22=v11;            cov[2]=agexact;
                   /*printf(fignu*/            if(nagesqr==1)
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */              cov[3]= agexact*agexact;
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */            for (kk=1; kk<=cptcovage;kk++) {
                   if(first==1){              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
                     first=0;            }
                     fprintf(ficgp,"\nset parametric;set nolabel");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            savm=oldm;
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);            oldm=newm;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);          } /* end mult */
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);        
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          /* But now since version 0.9 we anticipate for bias at large stepm.
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\           * If stepm is larger than one month (smallest stepm) and if the exact delay 
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \           * (in months) between two waves is not a multiple of stepm, we rounded to 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);           * the nearest (and in case of equal distance, to the lowest) interval but now
                   }else{           * we keep into memory the bias bh[mi][i] and also the previous matrix product
                     first=0;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);           * probability in order to take into account the bias as a fraction of the way
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\           * -stepm/2 to stepm/2 .
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \           * For stepm=1 the results are the same as for previous versions of Imach.
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);           * For stepm > 1 the results are less biased than in previous versions. 
                   }/* if first */           */
                 } /* age mod 5 */          s1=s[mw[mi][i]][i];
               } /* end loop age */          s2=s[mw[mi+1][i]][i];
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);          bbh=(double)bh[mi][i]/(double)stepm; 
               first=1;          /* bias bh is positive if real duration
             } /*l12 */           * is higher than the multiple of stepm and negative otherwise.
           } /* k12 */           */
         } /*l1 */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       }/* k1 */          if( s2 > nlstate){ 
     } /* loop covariates */            /* i.e. if s2 is a death state and if the date of death is known 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);               then the contribution to the likelihood is the probability to 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));               die between last step unit time and current  step unit time, 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));               which is also equal to probability to die before dh 
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);               minus probability to die before dh-stepm . 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);               In version up to 0.92 likelihood was computed
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          as if date of death was unknown. Death was treated as any other
   }          health state: the date of the interview describes the actual state
   free_vector(xp,1,npar);          and not the date of a change in health state. The former idea was
   fclose(ficresprob);          to consider that at each interview the state was recorded
   fclose(ficresprobcov);          (healthy, disable or death) and IMaCh was corrected; but when we
   fclose(ficresprobcor);          introduced the exact date of death then we should have modified
   fclose(ficgp);          the contribution of an exact death to the likelihood. This new
   fclose(fichtm);          contribution is smaller and very dependent of the step unit
 }          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
 /******************* Printing html file ***********/          probability to die within a month. Thanks to Chris
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          Jackson for correcting this bug.  Former versions increased
                   int lastpass, int stepm, int weightopt, char model[],\          mortality artificially. The bad side is that we add another loop
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\          which slows down the processing. The difference can be up to 10%
                   int popforecast, int estepm ,\          lower mortality.
                   double jprev1, double mprev1,double anprev1, \            */
                   double jprev2, double mprev2,double anprev2){          /* If, at the beginning of the maximization mostly, the
   int jj1, k1, i1, cpt;             cumulative probability or probability to be dead is
   /*char optionfilehtm[FILENAMELENGTH];*/             constant (ie = 1) over time d, the difference is equal to
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {             0.  out[s1][3] = savm[s1][3]: probability, being at state
     printf("Problem with %s \n",optionfilehtm), exit(0);             s1 at precedent wave, to be dead a month before current
   }             wave is equal to probability, being at state s1 at
              precedent wave, to be dead at mont of the current
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n             wave. Then the observed probability (that this person died)
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n             is null according to current estimated parameter. In fact,
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n             it should be very low but not zero otherwise the log go to
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n             infinity.
  - Life expectancies by age and initial health status (estepm=%2d months):          */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \  /* #ifdef INFINITYORIGINAL */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   /* #else */
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n  /*          lli=log(mytinydouble); */
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  /*        else */
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  /* #endif */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              lli=log(out[s1][s2] - savm[s1][s2]);
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
  if(popforecast==1) fprintf(fichtm,"\n              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            /*survp += out[s1][j]; */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n            lli= log(survp);
         <br>",fileres,fileres,fileres,fileres);          }
  else          
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          else if  (s2==-4) { 
 fprintf(fichtm," <li>Graphs</li><p>");            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
  m=cptcoveff;            lli= log(survp); 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          } 
   
  jj1=0;          else if  (s2==-5) { 
  for(k1=1; k1<=m;k1++){            for (j=1,survp=0. ; j<=2; j++)  
    for(i1=1; i1<=ncodemax[k1];i1++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      jj1++;            lli= log(survp); 
      if (cptcovn > 0) {          } 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          
        for (cpt=1; cpt<=cptcoveff;cpt++)          else{
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
      }          } 
      /* Pij */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          /*if(lli ==000.0)*/
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
      /* Quasi-incidences */          ipmx +=1;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>          sw += weight[i];
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
        /* Stable prevalence in each health state */          /* if (lli < log(mytinydouble)){ */
        for(cpt=1; cpt<nlstate;cpt++){          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          /* } */
        }        } /* end of wave */
     for(cpt=1; cpt<=nlstate;cpt++) {      } /* end of individual */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    }  else if(mle==2){
 interval) in state (%d): v%s%d%d.png <br>      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
      }        for(mi=1; mi<= wav[i]-1; mi++){
      for(cpt=1; cpt<=nlstate;cpt++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>            for (j=1;j<=nlstate+ndeath;j++){
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            }
 health expectancies in states (1) and (2): e%s%d.png<br>          for(d=0; d<=dh[mi][i]; d++){
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            newm=savm;
    }            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
  }            cov[2]=agexact;
 fclose(fichtm);            if(nagesqr==1)
 }              cov[3]= agexact*agexact;
             for (kk=1; kk<=cptcovage;kk++) {
 /******************* Gnuplot file **************/              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int ng;            savm=oldm;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            oldm=newm;
     printf("Problem with file %s",optionfilegnuplot);          } /* end mult */
   }        
           s1=s[mw[mi][i]][i];
 #ifdef windows          s2=s[mw[mi+1][i]][i];
     fprintf(ficgp,"cd \"%s\" \n",pathc);          bbh=(double)bh[mi][i]/(double)stepm; 
 #endif          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 m=pow(2,cptcoveff);          ipmx +=1;
            sw += weight[i];
  /* 1eme*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (cpt=1; cpt<= nlstate ; cpt ++) {        } /* end of wave */
    for (k1=1; k1<= m ; k1 ++) {      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
 #ifdef windows      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        for(mi=1; mi<= wav[i]-1; mi++){
 #endif          for (ii=1;ii<=nlstate+ndeath;ii++)
 #ifdef unix            for (j=1;j<=nlstate+ndeath;j++){
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 #endif            }
           for(d=0; d<dh[mi][i]; d++){
 for (i=1; i<= nlstate ; i ++) {            newm=savm;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            cov[2]=agexact;
 }            if(nagesqr==1)
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              cov[3]= agexact*agexact;
     for (i=1; i<= nlstate ; i ++) {            for (kk=1; kk<=cptcovage;kk++) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      for (i=1; i<= nlstate ; i ++) {            savm=oldm;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            oldm=newm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          } /* end mult */
 }          
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          s1=s[mw[mi][i]][i];
 #ifdef unix          s2=s[mw[mi+1][i]][i];
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");          bbh=(double)bh[mi][i]/(double)stepm; 
 #endif          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
    }          ipmx +=1;
   }          sw += weight[i];
   /*2 eme*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   for (k1=1; k1<= m ; k1 ++) {      } /* end of individual */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
     for (i=1; i<= nlstate+1 ; i ++) {        for(mi=1; mi<= wav[i]-1; mi++){
       k=2*i;          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            for (j=1;j<=nlstate+ndeath;j++){
       for (j=1; j<= nlstate+1 ; j ++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }            for(d=0; d<dh[mi][i]; d++){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            newm=savm;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            cov[2]=agexact;
       for (j=1; j<= nlstate+1 ; j ++) {            if(nagesqr==1)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              cov[3]= agexact*agexact;
         else fprintf(ficgp," \%%*lf (\%%*lf)");            for (kk=1; kk<=cptcovage;kk++) {
 }                cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
       fprintf(ficgp,"\" t\"\" w l 0,");            }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          
       for (j=1; j<= nlstate+1 ; j ++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   else fprintf(ficgp," \%%*lf (\%%*lf)");            savm=oldm;
 }              oldm=newm;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          } /* end mult */
       else fprintf(ficgp,"\" t\"\" w l 0,");        
     }          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
            if( s2 > nlstate){ 
   /*3eme*/            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
   for (k1=1; k1<= m ; k1 ++) {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for (cpt=1; cpt<= nlstate ; cpt ++) {          }
       k=2+nlstate*(2*cpt-2);          ipmx +=1;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          sw += weight[i];
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        } /* end of wave */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      } /* end of individual */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 */          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (i=1; i< nlstate ; i ++) {            for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     }          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
              agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* CV preval stat */            cov[2]=agexact;
     for (k1=1; k1<= m ; k1 ++) {            if(nagesqr==1)
     for (cpt=1; cpt<nlstate ; cpt ++) {              cov[3]= agexact*agexact;
       k=3;            for (kk=1; kk<=cptcovage;kk++) {
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            }
           
       for (i=1; i< nlstate ; i ++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficgp,"+$%d",k+i+1);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            savm=oldm;
                  oldm=newm;
       l=3+(nlstate+ndeath)*cpt;          } /* end mult */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        
       for (i=1; i< nlstate ; i ++) {          s1=s[mw[mi][i]][i];
         l=3+(nlstate+ndeath)*cpt;          s2=s[mw[mi+1][i]][i];
         fprintf(ficgp,"+$%d",l+i+1);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }          ipmx +=1;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }            /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
          } /* end of wave */
   /* proba elementaires */      } /* end of individual */
    for(i=1,jk=1; i <=nlstate; i++){    } /* End of if */
     for(k=1; k <=(nlstate+ndeath); k++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       if (k != i) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(j=1; j <=ncovmodel; j++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
            return -l;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  }
           jk++;  
           fprintf(ficgp,"\n");  /*************** log-likelihood *************/
         }  double funcone( double *x)
       }  {
     }    /* Same as likeli but slower because of a lot of printf and if */
    }    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    double **out;
      for(jk=1; jk <=m; jk++) {    double lli; /* Individual log likelihood */
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    double llt;
        if (ng==2)    int s1, s2;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    double bbh, survp;
        else    double agexact;
          fprintf(ficgp,"\nset title \"Probability\"\n");    /*extern weight */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    /* We are differentiating ll according to initial status */
        i=1;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
        for(k2=1; k2<=nlstate; k2++) {    /*for(i=1;i<imx;i++) 
          k3=i;      printf(" %d\n",s[4][i]);
          for(k=1; k<=(nlstate+ndeath); k++) {    */
            if (k != k2){    cov[1]=1.;
              if(ng==2)  
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    for(k=1; k<=nlstate; k++) ll[k]=0.;
              else  
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              ij=1;      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
              for(j=3; j <=ncovmodel; j++) {      for(mi=1; mi<= wav[i]-1; mi++){
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for (ii=1;ii<=nlstate+ndeath;ii++)
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for (j=1;j<=nlstate+ndeath;j++){
                  ij++;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                else          }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for(d=0; d<dh[mi][i]; d++){
              }          newm=savm;
              fprintf(ficgp,")/(1");          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                        cov[2]=agexact;
              for(k1=1; k1 <=nlstate; k1++){            if(nagesqr==1)
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            cov[3]= agexact*agexact;
                ij=1;          for (kk=1; kk<=cptcovage;kk++) {
                for(j=3; j <=ncovmodel; j++){            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                    ij++;          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                  }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                  else                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
                }          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
                fprintf(ficgp,")");          savm=oldm;
              }          oldm=newm;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        } /* end mult */
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        
              i=i+ncovmodel;        s1=s[mw[mi][i]][i];
            }        s2=s[mw[mi+1][i]][i];
          }        bbh=(double)bh[mi][i]/(double)stepm; 
        }        /* bias is positive if real duration
      }         * is higher than the multiple of stepm and negative otherwise.
    }         */
    fclose(ficgp);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
 }  /* end gnuplot */          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
 /*************** Moving average **************/            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          lli= log(survp);
         }else if (mle==1){
   int i, cpt, cptcod;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        } else if(mle==2){
       for (i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        } else if(mle==3){  /* exponential inter-extrapolation */
           mobaverage[(int)agedeb][i][cptcod]=0.;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
            } else if (mle==4){  /* mle=4 no inter-extrapolation */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          lli=log(out[s1][s2]); /* Original formula */
       for (i=1; i<=nlstate;i++){        } else{  /* mle=0 back to 1 */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           for (cpt=0;cpt<=4;cpt++){          /*lli=log(out[s1][s2]); */ /* Original formula */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        } /* End of if */
           }        ipmx +=1;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        sw += weight[i];
         }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     }        if(globpr){
              fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 }   %11.6f %11.6f %11.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 /************** Forecasting ******************/          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){            llt +=ll[k]*gipmx/gsw;
              fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          }
   int *popage;          fprintf(ficresilk," %10.6f\n", -llt);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        }
   double *popeffectif,*popcount;      } /* end of wave */
   double ***p3mat;    } /* end of individual */
   char fileresf[FILENAMELENGTH];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
  agelim=AGESUP;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      gsw=sw;
      }
      return -l;
   strcpy(fileresf,"f");  }
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);  /*************** function likelione ***********/
   }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   printf("Computing forecasting: result on file '%s' \n", fileresf);  {
     /* This routine should help understanding what is done with 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
   if (mobilav==1) {       Plotting could be done.
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     */
     movingaverage(agedeb, fage, ageminpar, mobaverage);    int k;
   }  
     if(*globpri !=0){ /* Just counts and sums, no printings */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      strcpy(fileresilk,"ilk"); 
   if (stepm<=12) stepsize=1;      strcat(fileresilk,fileres);
        if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   agelim=AGESUP;        printf("Problem with resultfile: %s\n", fileresilk);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   hstepm=1;      }
   hstepm=hstepm/stepm;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   yp1=modf(dateintmean,&yp);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   anprojmean=yp;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   yp2=modf((yp1*12),&yp);      for(k=1; k<=nlstate; k++) 
   mprojmean=yp;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   yp1=modf((yp2*30.5),&yp);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   jprojmean=yp;    }
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;    *fretone=(*funcone)(p);
      if(*globpri !=0){
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      fclose(ficresilk);
        fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   for(cptcov=1;cptcov<=i2;cptcov++){      fflush(fichtm); 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    } 
       k=k+1;    return;
       fprintf(ficresf,"\n#******");  }
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }  /*********** Maximum Likelihood Estimation ***************/
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# StartingAge FinalAge");  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  {
          int i,j, iter=0;
          double **xi;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    double fret;
         fprintf(ficresf,"\n");    double fretone; /* Only one call to likelihood */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      /*  char filerespow[FILENAMELENGTH];*/
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  #ifdef NLOPT
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    int creturn;
           nhstepm = nhstepm/hstepm;    nlopt_opt opt;
              /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double *lb;
           oldm=oldms;savm=savms;    double minf; /* the minimum objective value, upon return */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double * p1; /* Shifted parameters from 0 instead of 1 */
            myfunc_data dinst, *d = &dinst;
           for (h=0; h<=nhstepm; h++){  #endif
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }    xi=matrix(1,npar,1,npar);
             for(j=1; j<=nlstate+ndeath;j++) {    for (i=1;i<=npar;i++)
               kk1=0.;kk2=0;      for (j=1;j<=npar;j++)
               for(i=1; i<=nlstate;i++) {                      xi[i][j]=(i==j ? 1.0 : 0.0);
                 if (mobilav==1)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    strcpy(filerespow,"pow"); 
                 else {    strcat(filerespow,fileres);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    if((ficrespow=fopen(filerespow,"w"))==NULL) {
                 }      printf("Problem with resultfile: %s\n", filerespow);
                      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
               }    }
               if (h==(int)(calagedate+12*cpt)){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
                 fprintf(ficresf," %.3f", kk1);    for (i=1;i<=nlstate;i++)
                              for(j=1;j<=nlstate+ndeath;j++)
               }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
             }    fprintf(ficrespow,"\n");
           }  #ifdef POWELL
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    powell(p,xi,npar,ftol,&iter,&fret,func);
         }  #endif
       }  
     }  #ifdef NLOPT
   }  #ifdef NEWUOA
            opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  #else
     opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   fclose(ficresf);  #endif
 }    lb=vector(0,npar-1);
 /************** Forecasting ******************/    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    nlopt_set_lower_bounds(opt, lb);
      nlopt_set_initial_step1(opt, 0.1);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    
   int *popage;    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    d->function = func;
   double *popeffectif,*popcount;    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
   double ***p3mat,***tabpop,***tabpopprev;    nlopt_set_min_objective(opt, myfunc, d);
   char filerespop[FILENAMELENGTH];    nlopt_set_xtol_rel(opt, ftol);
     if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("nlopt failed! %d\n",creturn); 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   agelim=AGESUP;    else {
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
        printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      iter=1; /* not equal */
      }
      nlopt_destroy(opt);
   strcpy(filerespop,"pop");  #endif
   strcat(filerespop,fileres);    free_matrix(xi,1,npar,1,npar);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    fclose(ficrespow);
     printf("Problem with forecast resultfile: %s\n", filerespop);    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   }    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   printf("Computing forecasting: result on file '%s' \n", filerespop);    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  }
   
   if (mobilav==1) {  /**** Computes Hessian and covariance matrix ***/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     movingaverage(agedeb, fage, ageminpar, mobaverage);  {
   }    double  **a,**y,*x,pd;
     double **hess;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int i, j;
   if (stepm<=12) stepsize=1;    int *indx;
    
   agelim=AGESUP;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   hstepm=1;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   hstepm=hstepm/stepm;    void ludcmp(double **a, int npar, int *indx, double *d) ;
      double gompertz(double p[]);
   if (popforecast==1) {    hess=matrix(1,npar,1,npar);
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);    printf("\nCalculation of the hessian matrix. Wait...\n");
     }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     popage=ivector(0,AGESUP);    for (i=1;i<=npar;i++){
     popeffectif=vector(0,AGESUP);      printf("%d",i);fflush(stdout);
     popcount=vector(0,AGESUP);      fprintf(ficlog,"%d",i);fflush(ficlog);
         
     i=1;         hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      
          /*  printf(" %f ",p[i]);
     imx=i;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    }
   }    
     for (i=1;i<=npar;i++) {
   for(cptcov=1;cptcov<=i2;cptcov++){      for (j=1;j<=npar;j++)  {
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        if (j>i) { 
       k=k+1;          printf(".%d%d",i,j);fflush(stdout);
       fprintf(ficrespop,"\n#******");          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       for(j=1;j<=cptcoveff;j++) {          hess[i][j]=hessij(p,delti,i,j,func,npar);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
       }          hess[j][i]=hess[i][j];    
       fprintf(ficrespop,"******\n");          /*printf(" %lf ",hess[i][j]);*/
       fprintf(ficrespop,"# Age");        }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      }
       if (popforecast==1)  fprintf(ficrespop," [Population]");    }
          printf("\n");
       for (cpt=0; cpt<=0;cpt++) {    fprintf(ficlog,"\n");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
            printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    
           nhstepm = nhstepm/hstepm;    a=matrix(1,npar,1,npar);
              y=matrix(1,npar,1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    x=vector(1,npar);
           oldm=oldms;savm=savms;    indx=ivector(1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for (i=1;i<=npar;i++)
              for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           for (h=0; h<=nhstepm; h++){    ludcmp(a,npar,indx,&pd);
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    for (j=1;j<=npar;j++) {
             }      for (i=1;i<=npar;i++) x[i]=0;
             for(j=1; j<=nlstate+ndeath;j++) {      x[j]=1;
               kk1=0.;kk2=0;      lubksb(a,npar,indx,x);
               for(i=1; i<=nlstate;i++) {                    for (i=1;i<=npar;i++){ 
                 if (mobilav==1)        matcov[i][j]=x[i];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      }
                 else {    }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }    printf("\n#Hessian matrix#\n");
               }    fprintf(ficlog,"\n#Hessian matrix#\n");
               if (h==(int)(calagedate+12*cpt)){    for (i=1;i<=npar;i++) { 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      for (j=1;j<=npar;j++) { 
                   /*fprintf(ficrespop," %.3f", kk1);        printf("%.3e ",hess[i][j]);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        fprintf(ficlog,"%.3e ",hess[i][j]);
               }      }
             }      printf("\n");
             for(i=1; i<=nlstate;i++){      fprintf(ficlog,"\n");
               kk1=0.;    }
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    /* Recompute Inverse */
                 }    for (i=1;i<=npar;i++)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
             }    ludcmp(a,npar,indx,&pd);
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    /*  printf("\n#Hessian matrix recomputed#\n");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }    for (j=1;j<=npar;j++) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1;i<=npar;i++) x[i]=0;
         }      x[j]=1;
       }      lubksb(a,npar,indx,x);
        for (i=1;i<=npar;i++){ 
   /******/        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        fprintf(ficlog,"%.3e ",y[i][j]);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      printf("\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      fprintf(ficlog,"\n");
           nhstepm = nhstepm/hstepm;    }
              */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    free_matrix(a,1,npar,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_matrix(y,1,npar,1,npar);
           for (h=0; h<=nhstepm; h++){    free_vector(x,1,npar);
             if (h==(int) (calagedate+YEARM*cpt)) {    free_ivector(indx,1,npar);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    free_matrix(hess,1,npar,1,npar);
             }  
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;  }
               for(i=1; i<=nlstate;i++) {                
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      /*************** hessian matrix ****************/
               }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  {
             }    int i;
           }    int l=1, lmax=20;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double k1,k2;
         }    double p2[MAXPARM+1]; /* identical to x */
       }    double res;
    }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   }    double fx;
      int k=0,kmax=10;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double l1;
   
   if (popforecast==1) {    fx=func(x);
     free_ivector(popage,0,AGESUP);    for (i=1;i<=npar;i++) p2[i]=x[i];
     free_vector(popeffectif,0,AGESUP);    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
     free_vector(popcount,0,AGESUP);      l1=pow(10,l);
   }      delts=delt;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(k=1 ; k <kmax; k=k+1){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        delt = delta*(l1*k);
   fclose(ficrespop);        p2[theta]=x[theta] +delt;
 }        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
         p2[theta]=x[theta]-delt;
 /***********************************************/        k2=func(p2)-fx;
 /**************** Main Program *****************/        /*res= (k1-2.0*fx+k2)/delt/delt; */
 /***********************************************/        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
 int main(int argc, char *argv[])  #ifdef DEBUGHESS
 {        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  #endif
   double agedeb, agefin,hf;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
   double fret;        }
   double **xi,tmp,delta;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10;
   double dum; /* Dummy variable */        }
   double ***p3mat;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   int *indx;          delts=delt;
   char line[MAXLINE], linepar[MAXLINE];        }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      }
   int firstobs=1, lastobs=10;    }
   int sdeb, sfin; /* Status at beginning and end */    delti[theta]=delts;
   int c,  h , cpt,l;    return res; 
   int ju,jl, mi;    
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  
   int mobilav=0,popforecast=0;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   int hstepm, nhstepm;  {
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    int i;
     int l=1, lmax=20;
   double bage, fage, age, agelim, agebase;    double k1,k2,k3,k4,res,fx;
   double ftolpl=FTOL;    double p2[MAXPARM+1];
   double **prlim;    int k;
   double *severity;  
   double ***param; /* Matrix of parameters */    fx=func(x);
   double  *p;    for (k=1; k<=2; k++) {
   double **matcov; /* Matrix of covariance */      for (i=1;i<=npar;i++) p2[i]=x[i];
   double ***delti3; /* Scale */      p2[thetai]=x[thetai]+delti[thetai]/k;
   double *delti; /* Scale */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double ***eij, ***vareij;      k1=func(p2)-fx;
   double **varpl; /* Variances of prevalence limits by age */    
   double *epj, vepp;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double kk1, kk2;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      k2=func(p2)-fx;
      
       p2[thetai]=x[thetai]-delti[thetai]/k;
   char *alph[]={"a","a","b","c","d","e"}, str[4];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
     
   char z[1]="c", occ;      p2[thetai]=x[thetai]-delti[thetai]/k;
 #include <sys/time.h>      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 #include <time.h>      k4=func(p2)-fx;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
    #ifdef DEBUG
   /* long total_usecs;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   struct timeval start_time, end_time;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
    #endif
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    }
   getcwd(pathcd, size);    return res;
   }
   printf("\n%s",version);  
   if(argc <=1){  /************** Inverse of matrix **************/
     printf("\nEnter the parameter file name: ");  void ludcmp(double **a, int n, int *indx, double *d) 
     scanf("%s",pathtot);  { 
   }    int i,imax,j,k; 
   else{    double big,dum,sum,temp; 
     strcpy(pathtot,argv[1]);    double *vv; 
   }   
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    vv=vector(1,n); 
   /*cygwin_split_path(pathtot,path,optionfile);    *d=1.0; 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    for (i=1;i<=n;i++) { 
   /* cutv(path,optionfile,pathtot,'\\');*/      big=0.0; 
       for (j=1;j<=n;j++) 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        if ((temp=fabs(a[i][j])) > big) big=temp; 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   chdir(path);      vv[i]=1.0/big; 
   replace(pathc,path);    } 
     for (j=1;j<=n;j++) { 
 /*-------- arguments in the command line --------*/      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
   strcpy(fileres,"r");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   strcat(fileres, optionfilefiname);        a[i][j]=sum; 
   strcat(fileres,".txt");    /* Other files have txt extension */      } 
       big=0.0; 
   /*---------arguments file --------*/      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        for (k=1;k<j;k++) 
     printf("Problem with optionfile %s\n",optionfile);          sum -= a[i][k]*a[k][j]; 
     goto end;        a[i][j]=sum; 
   }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
   strcpy(filereso,"o");          imax=i; 
   strcat(filereso,fileres);        } 
   if((ficparo=fopen(filereso,"w"))==NULL) {      } 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      if (j != imax) { 
   }        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
   /* Reads comments: lines beginning with '#' */          a[imax][k]=a[j][k]; 
   while((c=getc(ficpar))=='#' && c!= EOF){          a[j][k]=dum; 
     ungetc(c,ficpar);        } 
     fgets(line, MAXLINE, ficpar);        *d = -(*d); 
     puts(line);        vv[imax]=vv[j]; 
     fputs(line,ficparo);      } 
   }      indx[j]=imax; 
   ungetc(c,ficpar);      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        dum=1.0/(a[j][j]); 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      } 
 while((c=getc(ficpar))=='#' && c!= EOF){    } 
     ungetc(c,ficpar);    free_vector(vv,1,n);  /* Doesn't work */
     fgets(line, MAXLINE, ficpar);  ;
     puts(line);  } 
     fputs(line,ficparo);  
   }  void lubksb(double **a, int n, int *indx, double b[]) 
   ungetc(c,ficpar);  { 
      int i,ii=0,ip,j; 
        double sum; 
   covar=matrix(0,NCOVMAX,1,n);   
   cptcovn=0;    for (i=1;i<=n;i++) { 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      ip=indx[i]; 
       sum=b[ip]; 
   ncovmodel=2+cptcovn;      b[ip]=b[i]; 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      if (ii) 
          for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   /* Read guess parameters */      else if (sum) ii=i; 
   /* Reads comments: lines beginning with '#' */      b[i]=sum; 
   while((c=getc(ficpar))=='#' && c!= EOF){    } 
     ungetc(c,ficpar);    for (i=n;i>=1;i--) { 
     fgets(line, MAXLINE, ficpar);      sum=b[i]; 
     puts(line);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     fputs(line,ficparo);      b[i]=sum/a[i][i]; 
   }    } 
   ungetc(c,ficpar);  } 
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  void pstamp(FILE *fichier)
     for(i=1; i <=nlstate; i++)  {
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
       fscanf(ficpar,"%1d%1d",&i1,&j1);  }
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);  /************ Frequencies ********************/
       for(k=1; k<=ncovmodel;k++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         fscanf(ficpar," %lf",&param[i][j][k]);  {  /* Some frequencies */
         printf(" %lf",param[i][j][k]);    
         fprintf(ficparo," %lf",param[i][j][k]);    int i, m, jk, j1, bool, z1,j;
       }    int first;
       fscanf(ficpar,"\n");    double ***freq; /* Frequencies */
       printf("\n");    double *pp, **prop;
       fprintf(ficparo,"\n");    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     }    char fileresp[FILENAMELENGTH];
      
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
   p=param[1][1];    strcpy(fileresp,"p");
      strcat(fileresp,fileres);
   /* Reads comments: lines beginning with '#' */    if((ficresp=fopen(fileresp,"w"))==NULL) {
   while((c=getc(ficpar))=='#' && c!= EOF){      printf("Problem with prevalence resultfile: %s\n", fileresp);
     ungetc(c,ficpar);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     fgets(line, MAXLINE, ficpar);      exit(0);
     puts(line);    }
     fputs(line,ficparo);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   }    j1=0;
   ungetc(c,ficpar);    
     j=cptcoveff;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){    first=1;
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
       printf("%1d%1d",i,j);    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
       fprintf(ficparo,"%1d%1d",i1,j1);    /*    j1++; */
       for(k=1; k<=ncovmodel;k++){    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
         fscanf(ficpar,"%le",&delti3[i][j][k]);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         printf(" %le",delti3[i][j][k]);          scanf("%d", i);*/
         fprintf(ficparo," %le",delti3[i][j][k]);        for (i=-5; i<=nlstate+ndeath; i++)  
       }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
       fscanf(ficpar,"\n");            for(m=iagemin; m <= iagemax+3; m++)
       printf("\n");              freq[i][jk][m]=0;
       fprintf(ficparo,"\n");        
     }        for (i=1; i<=nlstate; i++)  
   }          for(m=iagemin; m <= iagemax+3; m++)
   delti=delti3[1][1];            prop[i][m]=0;
          
   /* Reads comments: lines beginning with '#' */        dateintsum=0;
   while((c=getc(ficpar))=='#' && c!= EOF){        k2cpt=0;
     ungetc(c,ficpar);        for (i=1; i<=imx; i++) {
     fgets(line, MAXLINE, ficpar);          bool=1;
     puts(line);          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
     fputs(line,ficparo);            for (z1=1; z1<=cptcoveff; z1++)       
   }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
   ungetc(c,ficpar);                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
                  bool=0;
   matcov=matrix(1,npar,1,npar);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
   for(i=1; i <=npar; i++){                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
     fscanf(ficpar,"%s",&str);                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
     printf("%s",str);                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
     fprintf(ficparo,"%s",str);              } 
     for(j=1; j <=i; j++){          }
       fscanf(ficpar," %le",&matcov[i][j]);   
       printf(" %.5le",matcov[i][j]);          if (bool==1){
       fprintf(ficparo," %.5le",matcov[i][j]);            for(m=firstpass; m<=lastpass; m++){
     }              k2=anint[m][i]+(mint[m][i]/12.);
     fscanf(ficpar,"\n");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     printf("\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     fprintf(ficparo,"\n");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   for(i=1; i <=npar; i++)                if (m<lastpass) {
     for(j=i+1;j<=npar;j++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       matcov[i][j]=matcov[j][i];                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                    }
   printf("\n");                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
     /*-------- Rewriting paramater file ----------*/                  k2cpt++;
      strcpy(rfileres,"r");    /* "Rparameterfile */                }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/                /*}*/
      strcat(rfileres,".");    /* */            }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          }
     if((ficres =fopen(rfileres,"w"))==NULL) {        } /* end i */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;         
     }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     fprintf(ficres,"#%s\n",version);        pstamp(ficresp);
            if  (cptcovn>0) {
     /*-------- data file ----------*/          fprintf(ficresp, "\n#********** Variable "); 
     if((fic=fopen(datafile,"r"))==NULL)    {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("Problem with datafile: %s\n", datafile);goto end;          fprintf(ficresp, "**********\n#");
     }          fprintf(ficlog, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     n= lastobs;          fprintf(ficlog, "**********\n#");
     severity = vector(1,maxwav);        }
     outcome=imatrix(1,maxwav+1,1,n);        for(i=1; i<=nlstate;i++) 
     num=ivector(1,n);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     moisnais=vector(1,n);        fprintf(ficresp, "\n");
     annais=vector(1,n);        
     moisdc=vector(1,n);        for(i=iagemin; i <= iagemax+3; i++){
     andc=vector(1,n);          if(i==iagemax+3){
     agedc=vector(1,n);            fprintf(ficlog,"Total");
     cod=ivector(1,n);          }else{
     weight=vector(1,n);            if(first==1){
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */              first=0;
     mint=matrix(1,maxwav,1,n);              printf("See log file for details...\n");
     anint=matrix(1,maxwav,1,n);            }
     s=imatrix(1,maxwav+1,1,n);            fprintf(ficlog,"Age %d", i);
     adl=imatrix(1,maxwav+1,1,n);              }
     tab=ivector(1,NCOVMAX);          for(jk=1; jk <=nlstate ; jk++){
     ncodemax=ivector(1,8);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i]; 
     i=1;          }
     while (fgets(line, MAXLINE, fic) != NULL)    {          for(jk=1; jk <=nlstate ; jk++){
       if ((i >= firstobs) && (i <=lastobs)) {            for(m=-1, pos=0; m <=0 ; m++)
                      pos += freq[jk][m][i];
         for (j=maxwav;j>=1;j--){            if(pp[jk]>=1.e-10){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              if(first==1){
           strcpy(line,stra);                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         }            }else{
                      if(first==1)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
           for(jk=1; jk <=nlstate ; jk++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         for (j=ncovcol;j>=1;j--){              pp[jk] += freq[jk][m][i];
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }       
         }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         num[i]=atol(stra);            pos += pp[jk];
                    posprop += prop[jk][i];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
         i=i+1;              if(first==1)
       }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     /* printf("ii=%d", ij);            }else{
        scanf("%d",i);*/              if(first==1)
   imx=i-1; /* Number of individuals */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   /* for (i=1; i<=imx; i++){            }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            if( i <= iagemax){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              if(pos>=1.e-5){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     }*/                /*probs[i][jk][j1]= pp[jk]/pos;*/
    /*  for (i=1; i<=imx; i++){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
      if (s[4][i]==9)  s[4][i]=-1;              }
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/              else
                  fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
              }
   /* Calculation of the number of parameter from char model*/          }
   Tvar=ivector(1,15);          
   Tprod=ivector(1,15);          for(jk=-1; jk <=nlstate+ndeath; jk++)
   Tvaraff=ivector(1,15);            for(m=-1; m <=nlstate+ndeath; m++)
   Tvard=imatrix(1,15,1,2);              if(freq[jk][m][i] !=0 ) {
   Tage=ivector(1,15);                    if(first==1)
                    printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   if (strlen(model) >1){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     j=0, j1=0, k1=1, k2=1;              }
     j=nbocc(model,'+');          if(i <= iagemax)
     j1=nbocc(model,'*');            fprintf(ficresp,"\n");
     cptcovn=j+1;          if(first==1)
     cptcovprod=j1;            printf("Others in log...\n");
              fprintf(ficlog,"\n");
     strcpy(modelsav,model);        }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        /*}*/
       printf("Error. Non available option model=%s ",model);    }
       goto end;    dateintmean=dateintsum/k2cpt; 
     }   
        fclose(ficresp);
     for(i=(j+1); i>=1;i--){    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       cutv(stra,strb,modelsav,'+');    free_vector(pp,1,nlstate);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    /* End of Freq */
       /*scanf("%d",i);*/  }
       if (strchr(strb,'*')) {  
         cutv(strd,strc,strb,'*');  /************ Prevalence ********************/
         if (strcmp(strc,"age")==0) {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           cptcovprod--;  {  
           cutv(strb,stre,strd,'V');    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           Tvar[i]=atoi(stre);       in each health status at the date of interview (if between dateprev1 and dateprev2).
           cptcovage++;       We still use firstpass and lastpass as another selection.
             Tage[cptcovage]=i;    */
             /*printf("stre=%s ", stre);*/   
         }    int i, m, jk, j1, bool, z1,j;
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;    double **prop;
           cutv(strb,stre,strc,'V');    double posprop; 
           Tvar[i]=atoi(stre);    double  y2; /* in fractional years */
           cptcovage++;    int iagemin, iagemax;
           Tage[cptcovage]=i;    int first; /** to stop verbosity which is redirected to log file */
         }  
         else {    iagemin= (int) agemin;
           cutv(strb,stre,strc,'V');    iagemax= (int) agemax;
           Tvar[i]=ncovcol+k1;    /*pp=vector(1,nlstate);*/
           cutv(strb,strc,strd,'V');    prop=matrix(1,nlstate,iagemin,iagemax+3); 
           Tprod[k1]=i;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           Tvard[k1][1]=atoi(strc);    j1=0;
           Tvard[k1][2]=atoi(stre);    
           Tvar[cptcovn+k2]=Tvard[k1][1];    /*j=cptcoveff;*/
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           for (k=1; k<=lastobs;k++)    
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    first=1;
           k1++;    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
           k2=k2+2;      /*for(i1=1; i1<=ncodemax[k1];i1++){
         }        j1++;*/
       }        
       else {        for (i=1; i<=nlstate; i++)  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          for(m=iagemin; m <= iagemax+3; m++)
        /*  scanf("%d",i);*/            prop[i][m]=0.0;
       cutv(strd,strc,strb,'V');       
       Tvar[i]=atoi(strc);        for (i=1; i<=imx; i++) { /* Each individual */
       }          bool=1;
       strcpy(modelsav,stra);            if  (cptcovn>0) {
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            for (z1=1; z1<=cptcoveff; z1++) 
         scanf("%d",i);*/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     }                bool=0;
 }          } 
            if (bool==1) { 
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   printf("cptcovprod=%d ", cptcovprod);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   scanf("%d ",i);*/              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     fclose(fic);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
     /*  if(mle==1){*/                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     if (weightopt != 1) { /* Maximisation without weights*/                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       for(i=1;i<=n;i++) weight[i]=1.0;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     /*-calculation of age at interview from date of interview and age at death -*/                  prop[s[m][i]][iagemax+3] += weight[i]; 
     agev=matrix(1,maxwav,1,imx);                } 
               }
     for (i=1; i<=imx; i++) {            } /* end selection of waves */
       for(m=2; (m<= maxwav); m++) {          }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        }
          anint[m][i]=9999;        for(i=iagemin; i <= iagemax+3; i++){  
          s[m][i]=-1;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
        }            posprop += prop[jk][i]; 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          } 
       }          
     }          for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
     for (i=1; i<=imx; i++)  {              if(posprop>=1.e-5){ 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                probs[i][jk][j1]= prop[jk][i]/posprop;
       for(m=1; (m<= maxwav); m++){              } else{
         if(s[m][i] >0){                if(first==1){
           if (s[m][i] >= nlstate+1) {                  first=0;
             if(agedc[i]>0)                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
               if(moisdc[i]!=99 && andc[i]!=9999)                }
                 agev[m][i]=agedc[i];              }
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            } 
            else {          }/* end jk */ 
               if (andc[i]!=9999){        }/* end i */ 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      /*} *//* end i1 */
               agev[m][i]=-1;    } /* end j1 */
               }    
             }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           }    /*free_vector(pp,1,nlstate);*/
           else if(s[m][i] !=9){ /* Should no more exist */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  }  /* End of prevalence */
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;  /************* Waves Concatenation ***************/
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  {
             }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             else if(agev[m][i] >agemax){       Death is a valid wave (if date is known).
               agemax=agev[m][i];       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             }       and mw[mi+1][i]. dh depends on stepm.
             /*agev[m][i]=anint[m][i]-annais[i];*/       */
             /*   agev[m][i] = age[i]+2*m;*/  
           }    int i, mi, m;
           else { /* =9 */    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
             agev[m][i]=1;       double sum=0., jmean=0.;*/
             s[m][i]=-1;    int first;
           }    int j, k=0,jk, ju, jl;
         }    double sum=0.;
         else /*= 0 Unknown */    first=0;
           agev[m][i]=1;    jmin=100000;
       }    jmax=-1;
        jmean=0.;
     }    for(i=1; i<=imx; i++){
     for (i=1; i<=imx; i++)  {      mi=0;
       for(m=1; (m<= maxwav); m++){      m=firstpass;
         if (s[m][i] > (nlstate+ndeath)) {      while(s[m][i] <= nlstate){
           printf("Error: Wrong value in nlstate or ndeath\n");          if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           goto end;          mw[++mi][i]=m;
         }        if(m >=lastpass)
       }          break;
     }        else
           m++;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      }/* end while */
       if (s[m][i] > nlstate){
     free_vector(severity,1,maxwav);        mi++;     /* Death is another wave */
     free_imatrix(outcome,1,maxwav+1,1,n);        /* if(mi==0)  never been interviewed correctly before death */
     free_vector(moisnais,1,n);           /* Only death is a correct wave */
     free_vector(annais,1,n);        mw[mi][i]=m;
     /* free_matrix(mint,1,maxwav,1,n);      }
        free_matrix(anint,1,maxwav,1,n);*/  
     free_vector(moisdc,1,n);      wav[i]=mi;
     free_vector(andc,1,n);      if(mi==0){
         nbwarn++;
            if(first==0){
     wav=ivector(1,imx);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          first=1;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        }
            if(first==1){
     /* Concatenates waves */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        }
       } /* end mi==0 */
     } /* End individuals */
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    for(i=1; i<=imx; i++){
       ncodemax[1]=1;      for(mi=1; mi<wav[i];mi++){
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        if (stepm <=0)
                dh[mi][i]=1;
    codtab=imatrix(1,100,1,10);        else{
    h=0;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
    m=pow(2,cptcoveff);            if (agedc[i] < 2*AGESUP) {
                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
    for(k=1;k<=cptcoveff; k++){              if(j==0) j=1;  /* Survives at least one month after exam */
      for(i=1; i <=(m/pow(2,k));i++){              else if(j<0){
        for(j=1; j <= ncodemax[k]; j++){                nberr++;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
            h++;                j=1; /* Temporary Dangerous patch */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
          }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
        }              }
      }              k=k+1;
    }              if (j >= jmax){
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                jmax=j;
       codtab[1][2]=1;codtab[2][2]=2; */                ijmax=i;
    /* for(i=1; i <=m ;i++){              }
       for(k=1; k <=cptcovn; k++){              if (j <= jmin){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                jmin=j;
       }                ijmin=i;
       printf("\n");              }
       }              sum=sum+j;
       scanf("%d",i);*/              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                  /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    /* Calculates basic frequencies. Computes observed prevalence at single age            }
        and prints on file fileres'p'. */          }
           else{
                j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            k=k+1;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            if (j >= jmax) {
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              jmax=j;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              ijmax=i;
                  }
     /* For Powell, parameters are in a vector p[] starting at p[1]            else if (j <= jmin){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */              jmin=j;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              ijmin=i;
             }
     if(mle==1){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     }            if(j<0){
                  nberr++;
     /*--------- results files --------------*/              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
              }
             sum=sum+j;
    jk=1;          }
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          jk= j/stepm;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          jl= j -jk*stepm;
    for(i=1,jk=1; i <=nlstate; i++){          ju= j -(jk+1)*stepm;
      for(k=1; k <=(nlstate+ndeath); k++){          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
        if (k != i)            if(jl==0){
          {              dh[mi][i]=jk;
            printf("%d%d ",i,k);              bh[mi][i]=0;
            fprintf(ficres,"%1d%1d ",i,k);            }else{ /* We want a negative bias in order to only have interpolation ie
            for(j=1; j <=ncovmodel; j++){                    * to avoid the price of an extra matrix product in likelihood */
              printf("%f ",p[jk]);              dh[mi][i]=jk+1;
              fprintf(ficres,"%f ",p[jk]);              bh[mi][i]=ju;
              jk++;            }
            }          }else{
            printf("\n");            if(jl <= -ju){
            fprintf(ficres,"\n");              dh[mi][i]=jk;
          }              bh[mi][i]=jl;       /* bias is positive if real duration
      }                                   * is higher than the multiple of stepm and negative otherwise.
    }                                   */
  if(mle==1){            }
     /* Computing hessian and covariance matrix */            else{
     ftolhess=ftol; /* Usually correct */              dh[mi][i]=jk+1;
     hesscov(matcov, p, npar, delti, ftolhess, func);              bh[mi][i]=ju;
  }            }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");            if(dh[mi][i]==0){
     printf("# Scales (for hessian or gradient estimation)\n");              dh[mi][i]=1; /* At least one step */
      for(i=1,jk=1; i <=nlstate; i++){              bh[mi][i]=ju; /* At least one step */
       for(j=1; j <=nlstate+ndeath; j++){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         if (j!=i) {            }
           fprintf(ficres,"%1d%1d",i,j);          } /* end if mle */
           printf("%1d%1d",i,j);        }
           for(k=1; k<=ncovmodel;k++){      } /* end wave */
             printf(" %.5e",delti[jk]);    }
             fprintf(ficres," %.5e",delti[jk]);    jmean=sum/k;
             jk++;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
           }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
           printf("\n");   }
           fprintf(ficres,"\n");  
         }  /*********** Tricode ****************************/
       }  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
      }  {
        /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     k=1;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     * Boring subroutine which should only output nbcode[Tvar[j]][k]
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     for(i=1;i<=npar;i++){     * nbcode[Tvar[j]][1]= 
       /*  if (k>nlstate) k=1;    */
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
       printf("%s%d%d",alph[k],i1,tab[i]);*/    int modmaxcovj=0; /* Modality max of covariates j */
       fprintf(ficres,"%3d",i);    int cptcode=0; /* Modality max of covariates j */
       printf("%3d",i);    int modmincovj=0; /* Modality min of covariates j */
       for(j=1; j<=i;j++){  
         fprintf(ficres," %.5e",matcov[i][j]);  
         printf(" %.5e",matcov[i][j]);    cptcoveff=0; 
       }   
       fprintf(ficres,"\n");    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
       printf("\n");  
       k++;    /* Loop on covariates without age and products */
     }    for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
          for (k=-1; k < maxncov; k++) Ndum[k]=0;
     while((c=getc(ficpar))=='#' && c!= EOF){      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
       ungetc(c,ficpar);                                 modality of this covariate Vj*/ 
       fgets(line, MAXLINE, ficpar);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
       puts(line);                                      * If product of Vn*Vm, still boolean *:
       fputs(line,ficparo);                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
     }                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
     ungetc(c,ficpar);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
     estepm=0;                                        modality of the nth covariate of individual i. */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        if (ij > modmaxcovj)
     if (estepm==0 || estepm < stepm) estepm=stepm;          modmaxcovj=ij; 
     if (fage <= 2) {        else if (ij < modmincovj) 
       bage = ageminpar;          modmincovj=ij; 
       fage = agemaxpar;        if ((ij < -1) && (ij > NCOVMAX)){
     }          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
              exit(1);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        }else
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
          /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     while((c=getc(ficpar))=='#' && c!= EOF){        /* getting the maximum value of the modality of the covariate
     ungetc(c,ficpar);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
     fgets(line, MAXLINE, ficpar);           female is 1, then modmaxcovj=1.*/
     puts(line);      } /* end for loop on individuals i */
     fputs(line,ficparo);      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   }      fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   ungetc(c,ficpar);      cptcode=modmaxcovj;
        /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);     /*for (i=0; i<=cptcode; i++) {*/
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
              fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
   while((c=getc(ficpar))=='#' && c!= EOF){        if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
     ungetc(c,ficpar);          if( k != -1){
     fgets(line, MAXLINE, ficpar);            ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
     puts(line);                               covariate for which somebody answered excluding 
     fputs(line,ficparo);                               undefined. Usually 2: 0 and 1. */
   }          }
   ungetc(c,ficpar);          ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
                                 covariate for which somebody answered including 
                                undefined. Usually 3: -1, 0 and 1. */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
            historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
   fscanf(ficpar,"pop_based=%d\n",&popbased);      } /* Ndum[-1] number of undefined modalities */
   fprintf(ficparo,"pop_based=%d\n",popbased);    
   fprintf(ficres,"pop_based=%d\n",popbased);        /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
        /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
   while((c=getc(ficpar))=='#' && c!= EOF){         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
     ungetc(c,ficpar);         modmincovj=3; modmaxcovj = 7;
     fgets(line, MAXLINE, ficpar);         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
     puts(line);         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
     fputs(line,ficparo);         defining two dummy variables: variables V1_1 and V1_2.
   }         nbcode[Tvar[j]][ij]=k;
   ungetc(c,ficpar);         nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);         nbcode[Tvar[j]][3]=2;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      ij=0; /* ij is similar to i but can jumps over null modalities */
       for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 to 1*/
           if (Ndum[i] == 0) { /* If at least one individual responded to this modality k */
 while((c=getc(ficpar))=='#' && c!= EOF){            break;
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);          ij++;
     puts(line);          nbcode[Tvar[j]][ij]=i;  /* stores the original modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
     fputs(line,ficparo);          cptcode = ij; /* New max modality for covar j */
   }      } /* end of loop on modality i=-1 to 1 or more */
   ungetc(c,ficpar);        
       /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      /*  /\*recode from 0 *\/ */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      /*                               k is a modality. If we have model=V1+V1*sex  */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      /*  } */
       /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
 /*------------ gnuplot -------------*/      /*  if (ij > ncodemax[j]) { */
   strcpy(optionfilegnuplot,optionfilefiname);      /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
   strcat(optionfilegnuplot,".gp");      /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      /*    break; */
     printf("Problem with file %s",optionfilegnuplot);      /*  } */
   }      /*   }  /\* end of loop on modality k *\/ */
   fclose(ficgp);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    
 /*--------- index.htm --------*/   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     
   strcpy(optionfilehtm,optionfile);    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
   strcat(optionfilehtm,".htm");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
     printf("Problem with %s \n",optionfilehtm), exit(0);     Ndum[ij]++; /* Might be supersed V1 + V1*age */
   }   } 
   
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n   ij=0;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 \n     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
 Total number of observations=%d <br>\n     if((Ndum[i]!=0) && (i<=ncovcol)){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n       ij++;
 <hr  size=\"2\" color=\"#EC5E5E\">       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
  <ul><li>Parameter files<br>\n       Tvaraff[ij]=i; /*For printing (unclear) */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n     }else{
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);         /* Tvaraff[ij]=0; */
   fclose(fichtm);     }
    }
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);   /* ij--; */
     cptcoveff=ij; /*Number of total covariates*/
 /*------------ free_vector  -------------*/  
  chdir(path);  }
    
  free_ivector(wav,1,imx);  
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  /*********** Health Expectancies ****************/
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
  free_ivector(num,1,n);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
  free_vector(agedc,1,n);  
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  {
  fclose(ficparo);    /* Health expectancies, no variances */
  fclose(ficres);    int i, j, nhstepm, hstepm, h, nstepm;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
   /*--------------- Prevalence limit --------------*/    double ***p3mat;
      double eip;
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);    pstamp(ficreseij);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    fprintf(ficreseij,"# Age");
   }    for(i=1; i<=nlstate;i++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      for(j=1; j<=nlstate;j++){
   fprintf(ficrespl,"#Prevalence limit\n");        fprintf(ficreseij," e%1d%1d ",i,j);
   fprintf(ficrespl,"#Age ");      }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      fprintf(ficreseij," e%1d. ",i);
   fprintf(ficrespl,"\n");    }
      fprintf(ficreseij,"\n");
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if(estepm < stepm){
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf ("Problem %d lower than %d\n",estepm, stepm);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    else  hstepm=estepm;   
   k=0;    /* We compute the life expectancy from trapezoids spaced every estepm months
   agebase=ageminpar;     * This is mainly to measure the difference between two models: for example
   agelim=agemaxpar;     * if stepm=24 months pijx are given only every 2 years and by summing them
   ftolpl=1.e-10;     * we are calculating an estimate of the Life Expectancy assuming a linear 
   i1=cptcoveff;     * progression in between and thus overestimating or underestimating according
   if (cptcovn < 1){i1=1;}     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   for(cptcov=1;cptcov<=i1;cptcov++){     * to compare the new estimate of Life expectancy with the same linear 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     * hypothesis. A more precise result, taking into account a more precise
         k=k+1;     * curvature will be obtained if estepm is as small as stepm. */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");    /* For example we decided to compute the life expectancy with the smallest unit */
         for(j=1;j<=cptcoveff;j++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       nhstepm is the number of hstepm from age to agelim 
         fprintf(ficrespl,"******\n");       nstepm is the number of stepm from age to agelin. 
               Look at hpijx to understand the reason of that which relies in memory size
         for (age=agebase; age<=agelim; age++){       and note for a fixed period like estepm months */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           fprintf(ficrespl,"%.0f",age );       survival function given by stepm (the optimization length). Unfortunately it
           for(i=1; i<=nlstate;i++)       means that if the survival funtion is printed only each two years of age and if
           fprintf(ficrespl," %.5f", prlim[i][i]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           fprintf(ficrespl,"\n");       results. So we changed our mind and took the option of the best precision.
         }    */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     }  
   fclose(ficrespl);    agelim=AGESUP;
     /* If stepm=6 months */
   /*------------- h Pij x at various ages ------------*/      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  /* nhstepm age range expressed in number of stepm */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   printf("Computing pij: result on file '%s' \n", filerespij);    /* if (stepm >= YEARM) hstepm=1;*/
      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*if (stepm<=24) stepsize=2;*/  
     for (age=bage; age<=fage; age ++){ 
   agelim=AGESUP;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   hstepm=stepsize*YEARM; /* Every year of age */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      /* if (stepm >= YEARM) hstepm=1;*/
        nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){      /* If stepm=6 months */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       k=k+1;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         fprintf(ficrespij,"\n#****** ");      
         for(j=1;j<=cptcoveff;j++)      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      
         fprintf(ficrespij,"******\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
              
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      printf("%d|",(int)age);fflush(stdout);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Computing expectancies */
           oldm=oldms;savm=savms;      for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(j=1; j<=nlstate;j++)
           fprintf(ficrespij,"# Age");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           for(i=1; i<=nlstate;i++)            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             for(j=1; j<=nlstate+ndeath;j++)            
               fprintf(ficrespij," %1d-%1d",i,j);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           fprintf(ficrespij,"\n");  
            for (h=0; h<=nhstepm; h++){          }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)      fprintf(ficreseij,"%3.0f",age );
               for(j=1; j<=nlstate+ndeath;j++)      for(i=1; i<=nlstate;i++){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        eip=0;
             fprintf(ficrespij,"\n");        for(j=1; j<=nlstate;j++){
              }          eip +=eij[i][j][(int)age];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
           fprintf(ficrespij,"\n");        }
         }        fprintf(ficreseij,"%9.4f", eip );
     }      }
   }      fprintf(ficreseij,"\n");
       
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficrespij);    printf("\n");
     fprintf(ficlog,"\n");
     
   /*---------- Forecasting ------------------*/  }
   if((stepm == 1) && (strcmp(model,".")==0)){  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
   }  {
   else{    /* Covariances of health expectancies eij and of total life expectancies according
     erreur=108;     to initial status i, ei. .
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    */
   }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
      int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
   /*---------- Health expectancies and variances ------------*/    double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
   strcpy(filerest,"t");    double *xp, *xm;
   strcat(filerest,fileres);    double **gp, **gm;
   if((ficrest=fopen(filerest,"w"))==NULL) {    double ***gradg, ***trgradg;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    int theta;
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   strcpy(filerese,"e");    xp=vector(1,npar);
   strcat(filerese,fileres);    xm=vector(1,npar);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    dnewm=matrix(1,nlstate*nlstate,1,npar);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   }    
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
  strcpy(fileresv,"v");    fprintf(ficresstdeij,"# Age");
   strcat(fileresv,fileres);    for(i=1; i<=nlstate;i++){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      for(j=1; j<=nlstate;j++)
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   }      fprintf(ficresstdeij," e%1d. ",i);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    }
   calagedate=-1;    fprintf(ficresstdeij,"\n");
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
     pstamp(ficrescveij);
   k=0;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficrescveij,"# Age");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for(i=1; i<=nlstate;i++)
       k=k+1;      for(j=1; j<=nlstate;j++){
       fprintf(ficrest,"\n#****** ");        cptj= (j-1)*nlstate+i;
       for(j=1;j<=cptcoveff;j++)        for(i2=1; i2<=nlstate;i2++)
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(j2=1; j2<=nlstate;j2++){
       fprintf(ficrest,"******\n");            cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
       fprintf(ficreseij,"\n#****** ");              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       for(j=1;j<=cptcoveff;j++)          }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
       fprintf(ficreseij,"******\n");    fprintf(ficrescveij,"\n");
     
       fprintf(ficresvij,"\n#****** ");    if(estepm < stepm){
       for(j=1;j<=cptcoveff;j++)      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       fprintf(ficresvij,"******\n");    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     * This is mainly to measure the difference between two models: for example
       oldm=oldms;savm=savms;     * if stepm=24 months pijx are given only every 2 years and by summing them
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);       * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     * to the curvature of the survival function. If, for the same date, we 
       oldm=oldms;savm=savms;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);     * to compare the new estimate of Life expectancy with the same linear 
         * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    /* For example we decided to compute the life expectancy with the smallest unit */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficrest,"\n");       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
       epj=vector(1,nlstate+1);       Look at hpijx to understand the reason of that which relies in memory size
       for(age=bage; age <=fage ;age++){       and note for a fixed period like estepm months */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         if (popbased==1) {       survival function given by stepm (the optimization length). Unfortunately it
           for(i=1; i<=nlstate;i++)       means that if the survival funtion is printed only each two years of age and if
             prlim[i][i]=probs[(int)age][i][k];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         }       results. So we changed our mind and took the option of the best precision.
            */
         fprintf(ficrest," %4.0f",age);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    /* If stepm=6 months */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    /* nhstepm age range expressed in number of stepm */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    agelim=AGESUP;
           }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
           epj[nlstate+1] +=epj[j];    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         }    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         for(i=1, vepp=0.;i <=nlstate;i++)    
           for(j=1;j <=nlstate;j++)    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             vepp += vareij[i][j][(int)age];    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         for(j=1;j <=nlstate;j++){    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    gp=matrix(0,nhstepm,1,nlstate*nlstate);
         }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
         fprintf(ficrest,"\n");  
       }    for (age=bage; age<=fage; age ++){ 
     }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 free_matrix(mint,1,maxwav,1,n);      /* if (stepm >= YEARM) hstepm=1;*/
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     free_vector(weight,1,n);  
   fclose(ficreseij);      /* If stepm=6 months */
   fclose(ficresvij);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   fclose(ficrest);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   fclose(ficpar);      
   free_vector(epj,1,nlstate+1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    
   /*------- Variance limit prevalence------*/        /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   strcpy(fileresvpl,"vpl");         decrease memory allocation */
   strcat(fileresvpl,fileres);      for(theta=1; theta <=npar; theta++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        for(i=1; i<=npar; i++){ 
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     exit(0);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   }        }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   k=0;    
   for(cptcov=1;cptcov<=i1;cptcov++){        for(j=1; j<= nlstate; j++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for(i=1; i<=nlstate; i++){
       k=k+1;            for(h=0; h<=nhstepm-1; h++){
       fprintf(ficresvpl,"\n#****** ");              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       for(j=1;j<=cptcoveff;j++)              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
       fprintf(ficresvpl,"******\n");          }
              }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);       
       oldm=oldms;savm=savms;        for(ij=1; ij<= nlstate*nlstate; ij++)
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          for(h=0; h<=nhstepm-1; h++){
     }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
  }          }
       }/* End theta */
   fclose(ficresvpl);      
       
   /*---------- End : free ----------------*/      for(h=0; h<=nhstepm-1; h++)
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        for(j=1; j<=nlstate*nlstate;j++)
            for(theta=1; theta <=npar; theta++)
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            trgradg[h][j][theta]=gradg[h][theta][j];
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      
    
         for(ij=1;ij<=nlstate*nlstate;ij++)
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        for(ji=1;ji<=nlstate*nlstate;ji++)
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          varhe[ij][ji][(int)age] =0.;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);       printf("%d|",(int)age);fflush(stdout);
         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   free_matrix(matcov,1,npar,1,npar);       for(h=0;h<=nhstepm-1;h++){
   free_vector(delti,1,npar);        for(k=0;k<=nhstepm-1;k++){
   free_matrix(agev,1,maxwav,1,imx);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
   fprintf(fichtm,"\n</body>");            for(ji=1;ji<=nlstate*nlstate;ji++)
   fclose(fichtm);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   fclose(ficgp);        }
        }
   
   if(erreur >0)      /* Computing expectancies */
     printf("End of Imach with error or warning %d\n",erreur);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   else   printf("End of Imach\n");      for(i=1; i<=nlstate;i++)
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   /*printf("Total time was %d uSec.\n", total_usecs);*/            
   /*------ End -----------*/            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
  end:  
 #ifdef windows      fprintf(ficresstdeij,"%3.0f",age );
   /* chdir(pathcd);*/      for(i=1; i<=nlstate;i++){
 #endif        eip=0.;
  /*system("wgnuplot graph.plt");*/        vip=0.;
  /*system("../gp37mgw/wgnuplot graph.plt");*/        for(j=1; j<=nlstate;j++){
  /*system("cd ../gp37mgw");*/          eip += eij[i][j][(int)age];
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
  strcpy(plotcmd,GNUPLOTPROGRAM);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
  strcat(plotcmd," ");          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
  strcat(plotcmd,optionfilegnuplot);        }
  system(plotcmd);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
 #ifdef windows      fprintf(ficresstdeij,"\n");
   while (z[0] != 'q') {  
     /* chdir(path); */      fprintf(ficrescveij,"%3.0f",age );
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      for(i=1; i<=nlstate;i++)
     scanf("%s",z);        for(j=1; j<=nlstate;j++){
     if (z[0] == 'c') system("./imach");          cptj= (j-1)*nlstate+i;
     else if (z[0] == 'e') system(optionfilehtm);          for(i2=1; i2<=nlstate;i2++)
     else if (z[0] == 'g') system(plotcmd);            for(j2=1; j2<=nlstate;j2++){
     else if (z[0] == 'q') exit(0);              cptj2= (j2-1)*nlstate+i2;
   }              if(cptj2 <= cptj)
 #endif                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 }            }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
     int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
            printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);fflush(stdout);
          }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                else
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
                    fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){ 
                  if(nagesqr==0)
                    fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
     
                  ij=1;
                  for(j=3; j <=ncovmodel-nagesqr; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
     double age, agebase, agelim;
   
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(0);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     if(model[strlen(model)-1]=='.') /* Suppressing leading dot in the model */
       model[strlen(model)-1]='\0';
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /* codtab[12][3]=1; */
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard maximisation */
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       /* Computes likelihood for initial parameters */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* again, to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.48  
changed lines
  Added in v.1.192


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>