Diff for /imach/src/imach.c between versions 1.19 and 1.105

version 1.19, 2002/02/20 17:19:10 version 1.105, 2006/01/05 20:23:19
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.105  2006/01/05 20:23:19  lievre
   individuals from different ages are interviewed on their health status    *** empty log message ***
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.104  2005/09/30 16:11:43  lievre
   Health expectancies are computed from the transistions observed between    (Module): sump fixed, loop imx fixed, and simplifications.
   waves and are computed for each degree of severity of disability (number    (Module): If the status is missing at the last wave but we know
   of life states). More degrees you consider, more time is necessary to    that the person is alive, then we can code his/her status as -2
   reach the Maximum Likelihood of the parameters involved in the model.    (instead of missing=-1 in earlier versions) and his/her
   The simplest model is the multinomial logistic model where pij is    contributions to the likelihood is 1 - Prob of dying from last
   the probabibility to be observed in state j at the second wave conditional    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   to be observed in state i at the first wave. Therefore the model is:    the healthy state at last known wave). Version is 0.98
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.103  2005/09/30 15:54:49  lievre
   age", you should modify the program where the markup    (Module): sump fixed, loop imx fixed, and simplifications.
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
   The advantage that this computer programme claims, comes from that if the  
   delay between waves is not identical for each individual, or if some    Revision 1.101  2004/09/15 10:38:38  brouard
   individual missed an interview, the information is not rounded or lost, but    Fix on curr_time
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.100  2004/07/12 18:29:06  brouard
   observed in state i at age x+h conditional to the observed state i at age    Add version for Mac OS X. Just define UNIX in Makefile
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.99  2004/06/05 08:57:40  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    *** empty log message ***
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
   Also this programme outputs the covariance matrix of the parameters but also    directly from the data i.e. without the need of knowing the health
   of the life expectancies. It also computes the prevalence limits.    state at each age, but using a Gompertz model: log u =a + b*age .
      This is the basic analysis of mortality and should be done before any
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    other analysis, in order to test if the mortality estimated from the
            Institut national d'études démographiques, Paris.    cross-longitudinal survey is different from the mortality estimated
   This software have been partly granted by Euro-REVES, a concerted action    from other sources like vital statistic data.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    The same imach parameter file can be used but the option for mle should be -3.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Agnès, who wrote this part of the code, tried to keep most of the
   **********************************************************************/    former routines in order to include the new code within the former code.
    
 #include <math.h>    The output is very simple: only an estimate of the intercept and of
 #include <stdio.h>    the slope with 95% confident intervals.
 #include <stdlib.h>  
 #include <unistd.h>    Current limitations:
     A) Even if you enter covariates, i.e. with the
 #define MAXLINE 256    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define FILENAMELENGTH 80    B) There is no computation of Life Expectancy nor Life Table.
 /*#define DEBUG*/  
 #define windows    Revision 1.97  2004/02/20 13:25:42  lievre
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Version 0.96d. Population forecasting command line is (temporarily)
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    suppressed.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.96  2003/07/15 15:38:55  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.95  2003/07/08 07:54:34  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    * imach.c (Repository):
 #define NCOVMAX 8 /* Maximum number of covariates */    (Repository): Using imachwizard code to output a more meaningful covariance
 #define MAXN 20000    matrix (cov(a12,c31) instead of numbers.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.94  2003/06/27 13:00:02  brouard
 #define AGEBASE 40    Just cleaning
   
     Revision 1.93  2003/06/25 16:33:55  brouard
 int nvar;    (Module): On windows (cygwin) function asctime_r doesn't
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    exist so I changed back to asctime which exists.
 int npar=NPARMAX;    (Module): Version 0.96b
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.92  2003/06/25 16:30:45  brouard
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): On windows (cygwin) function asctime_r doesn't
 int popbased=0;    exist so I changed back to asctime which exists.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.91  2003/06/25 15:30:29  brouard
 int maxwav; /* Maxim number of waves */    * imach.c (Repository): Duplicated warning errors corrected.
 int jmin, jmax; /* min, max spacing between 2 waves */    (Repository): Elapsed time after each iteration is now output. It
 int mle, weightopt;    helps to forecast when convergence will be reached. Elapsed time
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    is stamped in powell.  We created a new html file for the graphs
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    concerning matrix of covariance. It has extension -cov.htm.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.90  2003/06/24 12:34:15  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Some bugs corrected for windows. Also, when
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    mle=-1 a template is output in file "or"mypar.txt with the design
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    of the covariance matrix to be input.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.89  2003/06/24 12:30:52  brouard
  FILE  *ficresvij;    (Module): Some bugs corrected for windows. Also, when
   char fileresv[FILENAMELENGTH];    mle=-1 a template is output in file "or"mypar.txt with the design
  FILE  *ficresvpl;    of the covariance matrix to be input.
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.88  2003/06/23 17:54:56  brouard
 #define NR_END 1    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 #define NRANSI  
 #define ITMAX 200    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 #define TOL 2.0e-4    routine fileappend.
   
 #define CGOLD 0.3819660    Revision 1.85  2003/06/17 13:12:43  brouard
 #define ZEPS 1.0e-10    * imach.c (Repository): Check when date of death was earlier that
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 #define GOLD 1.618034    was wrong (infinity). We still send an "Error" but patch by
 #define GLIMIT 100.0    assuming that the date of death was just one stepm after the
 #define TINY 1.0e-20    interview.
     (Repository): Because some people have very long ID (first column)
 static double maxarg1,maxarg2;    we changed int to long in num[] and we added a new lvector for
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    memory allocation. But we also truncated to 8 characters (left
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    truncation)
      (Repository): No more line truncation errors.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 static double sqrarg;    place. It differs from routine "prevalence" which may be called
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    many times. Probs is memory consuming and must be used with
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int imx;  
 int stepm;    Revision 1.83  2003/06/10 13:39:11  lievre
 /* Stepm, step in month: minimum step interpolation*/    *** empty log message ***
   
 int m,nb;    Revision 1.82  2003/06/05 15:57:20  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Add log in  imach.c and  fullversion number is now printed.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;  */
 double dateintmean=0;  /*
      Interpolated Markov Chain
 double *weight;  
 int **s; /* Status */    Short summary of the programme:
 double *agedc, **covar, idx;    
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    first survey ("cross") where individuals from different ages are
 double ftolhess; /* Tolerance for computing hessian */    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 /**************** split *************************/    second wave of interviews ("longitudinal") which measure each change
 static  int split( char *path, char *dirc, char *name )    (if any) in individual health status.  Health expectancies are
 {    computed from the time spent in each health state according to a
    char *s;                             /* pointer */    model. More health states you consider, more time is necessary to reach the
    int  l1, l2;                         /* length counters */    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
    l1 = strlen( path );                 /* length of path */    probability to be observed in state j at the second wave
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    conditional to be observed in state i at the first wave. Therefore
    s = strrchr( path, '\\' );           /* find last / */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    if ( s == NULL ) {                   /* no directory, so use current */    'age' is age and 'sex' is a covariate. If you want to have a more
 #if     defined(__bsd__)                /* get current working directory */    complex model than "constant and age", you should modify the program
       extern char       *getwd( );    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
       if ( getwd( dirc ) == NULL ) {    convergence.
 #else  
       extern char       *getcwd( );    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    identical for each individual. Also, if a individual missed an
 #endif    intermediate interview, the information is lost, but taken into
          return( GLOCK_ERROR_GETCWD );    account using an interpolation or extrapolation.  
       }  
       strcpy( name, path );             /* we've got it */    hPijx is the probability to be observed in state i at age x+h
    } else {                             /* strip direcotry from path */    conditional to the observed state i at age x. The delay 'h' can be
       s++;                              /* after this, the filename */    split into an exact number (nh*stepm) of unobserved intermediate
       l2 = strlen( s );                 /* length of filename */    states. This elementary transition (by month, quarter,
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    semester or year) is modelled as a multinomial logistic.  The hPx
       strcpy( name, s );                /* save file name */    matrix is simply the matrix product of nh*stepm elementary matrices
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    and the contribution of each individual to the likelihood is simply
       dirc[l1-l2] = 0;                  /* add zero */    hPijx.
    }  
    l1 = strlen( dirc );                 /* length of directory */    Also this programme outputs the covariance matrix of the parameters but also
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    of the life expectancies. It also computes the stable prevalence. 
    return( 0 );                         /* we're done */    
 }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /******************************************/    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 void replace(char *s, char*t)    software can be distributed freely for non commercial use. Latest version
 {    can be accessed at http://euroreves.ined.fr/imach .
   int i;  
   int lg=20;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   i=0;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   lg=strlen(t);    
   for(i=0; i<= lg; i++) {    **********************************************************************/
     (s[i] = t[i]);  /*
     if (t[i]== '\\') s[i]='/';    main
   }    read parameterfile
 }    read datafile
     concatwav
 int nbocc(char *s, char occ)    freqsummary
 {    if (mle >= 1)
   int i,j=0;      mlikeli
   int lg=20;    print results files
   i=0;    if mle==1 
   lg=strlen(s);       computes hessian
   for(i=0; i<= lg; i++) {    read end of parameter file: agemin, agemax, bage, fage, estepm
   if  (s[i] == occ ) j++;        begin-prev-date,...
   }    open gnuplot file
   return j;    open html file
 }    stable prevalence
      for age prevalim()
 void cutv(char *u,char *v, char*t, char occ)    h Pij x
 {    variance of p varprob
   int i,lg,j,p=0;    forecasting if prevfcast==1 prevforecast call prevalence()
   i=0;    health expectancies
   for(j=0; j<=strlen(t)-1; j++) {    Variance-covariance of DFLE
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    prevalence()
   }     movingaverage()
     varevsij() 
   lg=strlen(t);    if popbased==1 varevsij(,popbased)
   for(j=0; j<p; j++) {    total life expectancies
     (u[j] = t[j]);    Variance of stable prevalence
   }   end
      u[p]='\0';  */
   
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }   
 }  #include <math.h>
   #include <stdio.h>
 /********************** nrerror ********************/  #include <stdlib.h>
   #include <unistd.h>
 void nrerror(char error_text[])  
 {  /* #include <sys/time.h> */
   fprintf(stderr,"ERREUR ...\n");  #include <time.h>
   fprintf(stderr,"%s\n",error_text);  #include "timeval.h"
   exit(1);  
 }  /* #include <libintl.h> */
 /*********************** vector *******************/  /* #define _(String) gettext (String) */
 double *vector(int nl, int nh)  
 {  #define MAXLINE 256
   double *v;  #define GNUPLOTPROGRAM "gnuplot"
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   if (!v) nrerror("allocation failure in vector");  #define FILENAMELENGTH 132
   return v-nl+NR_END;  /*#define DEBUG*/
 }  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 /************************ free vector ******************/  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 void free_vector(double*v, int nl, int nh)  
 {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   free((FREE_ARG)(v+nl-NR_END));  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 }  
   #define NINTERVMAX 8
 /************************ivector *******************************/  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 int *ivector(long nl,long nh)  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 {  #define NCOVMAX 8 /* Maximum number of covariates */
   int *v;  #define MAXN 20000
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define YEARM 12. /* Number of months per year */
   if (!v) nrerror("allocation failure in ivector");  #define AGESUP 130
   return v-nl+NR_END;  #define AGEBASE 40
 }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 /******************free ivector **************************/  #define DIRSEPARATOR '/'
 void free_ivector(int *v, long nl, long nh)  #define ODIRSEPARATOR '\\'
 {  #else
   free((FREE_ARG)(v+nl-NR_END));  #define DIRSEPARATOR '\\'
 }  #define ODIRSEPARATOR '/'
   #endif
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  /* $Id$ */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  /* $State$ */
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char version[]="Imach version 0.98, September 2005, INED-EUROREVES ";
   int **m;  char fullversion[]="$Revision$ $Date$"; 
    int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   /* allocate pointers to rows */  int nvar;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   if (!m) nrerror("allocation failure 1 in matrix()");  int npar=NPARMAX;
   m += NR_END;  int nlstate=2; /* Number of live states */
   m -= nrl;  int ndeath=1; /* Number of dead states */
    int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    int popbased=0;
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int *wav; /* Number of waves for this individuual 0 is possible */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int maxwav; /* Maxim number of waves */
   m[nrl] += NR_END;  int jmin, jmax; /* min, max spacing between 2 waves */
   m[nrl] -= ncl;  int gipmx, gsw; /* Global variables on the number of contributions 
                       to the likelihood and the sum of weights (done by funcone)*/
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int mle, weightopt;
    int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   /* return pointer to array of pointers to rows */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   return m;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 /****************** free_imatrix *************************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
 void free_imatrix(m,nrl,nrh,ncl,nch)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       int **m;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       long nch,ncl,nrh,nrl;  FILE *ficlog, *ficrespow;
      /* free an int matrix allocated by imatrix() */  int globpr; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  long ipmx; /* Number of contributions */
   free((FREE_ARG) (m+nrl-NR_END));  double sw; /* Sum of weights */
 }  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /******************* matrix *******************************/  FILE *ficresilk;
 double **matrix(long nrl, long nrh, long ncl, long nch)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  FILE *fichtm, *fichtmcov; /* Html File */
   double **m;  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE  *ficresvij;
   if (!m) nrerror("allocation failure 1 in matrix()");  char fileresv[FILENAMELENGTH];
   m += NR_END;  FILE  *ficresvpl;
   m -= nrl;  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   m[nrl] += NR_END;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   m[nrl] -= ncl;  char command[FILENAMELENGTH];
   int  outcmd=0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 }  
   char filelog[FILENAMELENGTH]; /* Log file */
 /*************************free matrix ************************/  char filerest[FILENAMELENGTH];
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  char fileregp[FILENAMELENGTH];
 {  char popfile[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 }  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 /******************* ma3x *******************************/  struct timezone tzp;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  extern int gettimeofday();
 {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  long time_value;
   double ***m;  extern long time();
   char strcurr[80], strfor[80];
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  #define NR_END 1
   m += NR_END;  #define FREE_ARG char*
   m -= nrl;  #define FTOL 1.0e-10
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define NRANSI 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define ITMAX 200 
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define TOL 2.0e-4 
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  #define GOLD 1.618034 
   m[nrl][ncl] -= nll;  #define GLIMIT 100.0 
   for (j=ncl+1; j<=nch; j++)  #define TINY 1.0e-20 
     m[nrl][j]=m[nrl][j-1]+nlay;  
    static double maxarg1,maxarg2;
   for (i=nrl+1; i<=nrh; i++) {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     for (j=ncl+1; j<=nch; j++)    
       m[i][j]=m[i][j-1]+nlay;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   }  #define rint(a) floor(a+0.5)
   return m;  
 }  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 /*************************free ma3x ************************/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int agegomp= AGEGOMP;
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int imx; 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int stepm=1;
   free((FREE_ARG)(m+nrl-NR_END));  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 /***************** f1dim *************************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 extern int ncom;  
 extern double *pcom,*xicom;  int m,nb;
 extern double (*nrfunc)(double []);  long *num;
    int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 double f1dim(double x)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 {  double **pmmij, ***probs;
   int j;  double *ageexmed,*agecens;
   double f;  double dateintmean=0;
   double *xt;  
    double *weight;
   xt=vector(1,ncom);  int **s; /* Status */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  double *agedc, **covar, idx;
   f=(*nrfunc)(xt);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   free_vector(xt,1,ncom);  double *lsurv, *lpop, *tpop;
   return f;  
 }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  /**************** split *************************/
 {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   int iter;  {
   double a,b,d,etemp;    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   double fu,fv,fw,fx;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   double ftemp;    */ 
   double p,q,r,tol1,tol2,u,v,w,x,xm;    char  *ss;                            /* pointer */
   double e=0.0;    int   l1, l2;                         /* length counters */
    
   a=(ax < cx ? ax : cx);    l1 = strlen(path );                   /* length of path */
   b=(ax > cx ? ax : cx);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   x=w=v=bx;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   fw=fv=fx=(*f)(x);    if ( ss == NULL ) {                   /* no directory, so use current */
   for (iter=1;iter<=ITMAX;iter++) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     xm=0.5*(a+b);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      /* get current working directory */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      /*    extern  char* getcwd ( char *buf , int len);*/
     printf(".");fflush(stdout);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 #ifdef DEBUG        return( GLOCK_ERROR_GETCWD );
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      strcpy( name, path );               /* we've got it */
 #endif    } else {                              /* strip direcotry from path */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      ss++;                               /* after this, the filename */
       *xmin=x;      l2 = strlen( ss );                  /* length of filename */
       return fx;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     }      strcpy( name, ss );         /* save file name */
     ftemp=fu;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     if (fabs(e) > tol1) {      dirc[l1-l2] = 0;                    /* add zero */
       r=(x-w)*(fx-fv);    }
       q=(x-v)*(fx-fw);    l1 = strlen( dirc );                  /* length of directory */
       p=(x-v)*q-(x-w)*r;    /*#ifdef windows
       q=2.0*(q-r);    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
       if (q > 0.0) p = -p;  #else
       q=fabs(q);    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
       etemp=e;  #endif
       e=d;    */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    ss = strrchr( name, '.' );            /* find last / */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (ss >0){
       else {      ss++;
         d=p/q;      strcpy(ext,ss);                     /* save extension */
         u=x+d;      l1= strlen( name);
         if (u-a < tol2 || b-u < tol2)      l2= strlen(ss)+1;
           d=SIGN(tol1,xm-x);      strncpy( finame, name, l1-l2);
       }      finame[l1-l2]= 0;
     } else {    }
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    return( 0 );                          /* we're done */
     }  }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  
     if (fu <= fx) {  /******************************************/
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  void replace_back_to_slash(char *s, char*t)
         SHFT(fv,fw,fx,fu)  {
         } else {    int i;
           if (u < x) a=u; else b=u;    int lg=0;
           if (fu <= fw || w == x) {    i=0;
             v=w;    lg=strlen(t);
             w=u;    for(i=0; i<= lg; i++) {
             fv=fw;      (s[i] = t[i]);
             fw=fu;      if (t[i]== '\\') s[i]='/';
           } else if (fu <= fv || v == x || v == w) {    }
             v=u;  }
             fv=fu;  
           }  int nbocc(char *s, char occ)
         }  {
   }    int i,j=0;
   nrerror("Too many iterations in brent");    int lg=20;
   *xmin=x;    i=0;
   return fx;    lg=strlen(s);
 }    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 /****************** mnbrak ***********************/    }
     return j;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  }
             double (*func)(double))  
 {  void cutv(char *u,char *v, char*t, char occ)
   double ulim,u,r,q, dum;  {
   double fu;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
         and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   *fa=(*func)(*ax);       gives u="abcedf" and v="ghi2j" */
   *fb=(*func)(*bx);    int i,lg,j,p=0;
   if (*fb > *fa) {    i=0;
     SHFT(dum,*ax,*bx,dum)    for(j=0; j<=strlen(t)-1; j++) {
       SHFT(dum,*fb,*fa,dum)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       }    }
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);    lg=strlen(t);
   while (*fb > *fc) {    for(j=0; j<p; j++) {
     r=(*bx-*ax)*(*fb-*fc);      (u[j] = t[j]);
     q=(*bx-*cx)*(*fb-*fa);    }
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/       u[p]='\0';
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);     for(j=0; j<= lg; j++) {
     if ((*bx-u)*(u-*cx) > 0.0) {      if (j>=(p+1))(v[j-p-1] = t[j]);
       fu=(*func)(u);    }
     } else if ((*cx-u)*(u-ulim) > 0.0) {  }
       fu=(*func)(u);  
       if (fu < *fc) {  /********************** nrerror ********************/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  void nrerror(char error_text[])
           }  {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    fprintf(stderr,"ERREUR ...\n");
       u=ulim;    fprintf(stderr,"%s\n",error_text);
       fu=(*func)(u);    exit(EXIT_FAILURE);
     } else {  }
       u=(*cx)+GOLD*(*cx-*bx);  /*********************** vector *******************/
       fu=(*func)(u);  double *vector(int nl, int nh)
     }  {
     SHFT(*ax,*bx,*cx,u)    double *v;
       SHFT(*fa,*fb,*fc,fu)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       }    if (!v) nrerror("allocation failure in vector");
 }    return v-nl+NR_END;
   }
 /*************** linmin ************************/  
   /************************ free vector ******************/
 int ncom;  void free_vector(double*v, int nl, int nh)
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);    free((FREE_ARG)(v+nl-NR_END));
    }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  /************************ivector *******************************/
   double brent(double ax, double bx, double cx,  int *ivector(long nl,long nh)
                double (*f)(double), double tol, double *xmin);  {
   double f1dim(double x);    int *v;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
               double *fc, double (*func)(double));    if (!v) nrerror("allocation failure in ivector");
   int j;    return v-nl+NR_END;
   double xx,xmin,bx,ax;  }
   double fx,fb,fa;  
    /******************free ivector **************************/
   ncom=n;  void free_ivector(int *v, long nl, long nh)
   pcom=vector(1,n);  {
   xicom=vector(1,n);    free((FREE_ARG)(v+nl-NR_END));
   nrfunc=func;  }
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  /************************lvector *******************************/
     xicom[j]=xi[j];  long *lvector(long nl,long nh)
   }  {
   ax=0.0;    long *v;
   xx=1.0;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    if (!v) nrerror("allocation failure in ivector");
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    return v-nl+NR_END;
 #ifdef DEBUG  }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  /******************free lvector **************************/
   for (j=1;j<=n;j++) {  void free_lvector(long *v, long nl, long nh)
     xi[j] *= xmin;  {
     p[j] += xi[j];    free((FREE_ARG)(v+nl-NR_END));
   }  }
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  /******************* imatrix *******************************/
 }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 /*************** powell ************************/  { 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
             double (*func)(double []))    int **m; 
 {    
   void linmin(double p[], double xi[], int n, double *fret,    /* allocate pointers to rows */ 
               double (*func)(double []));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   int i,ibig,j;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   double del,t,*pt,*ptt,*xit;    m += NR_END; 
   double fp,fptt;    m -= nrl; 
   double *xits;    
   pt=vector(1,n);    
   ptt=vector(1,n);    /* allocate rows and set pointers to them */ 
   xit=vector(1,n);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   xits=vector(1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   *fret=(*func)(p);    m[nrl] += NR_END; 
   for (j=1;j<=n;j++) pt[j]=p[j];    m[nrl] -= ncl; 
   for (*iter=1;;++(*iter)) {    
     fp=(*fret);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     ibig=0;    
     del=0.0;    /* return pointer to array of pointers to rows */ 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    return m; 
     for (i=1;i<=n;i++)  } 
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  /****************** free_imatrix *************************/
     for (i=1;i<=n;i++) {  void free_imatrix(m,nrl,nrh,ncl,nch)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        int **m;
       fptt=(*fret);        long nch,ncl,nrh,nrl; 
 #ifdef DEBUG       /* free an int matrix allocated by imatrix() */ 
       printf("fret=%lf \n",*fret);  { 
 #endif    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       printf("%d",i);fflush(stdout);    free((FREE_ARG) (m+nrl-NR_END)); 
       linmin(p,xit,n,fret,func);  } 
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  /******************* matrix *******************************/
         ibig=i;  double **matrix(long nrl, long nrh, long ncl, long nch)
       }  {
 #ifdef DEBUG    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       printf("%d %.12e",i,(*fret));    double **m;
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         printf(" x(%d)=%.12e",j,xit[j]);    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
       for(j=1;j<=n;j++)    m -= nrl;
         printf(" p=%.12e",p[j]);  
       printf("\n");    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #endif    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m[nrl] -= ncl;
 #ifdef DEBUG  
       int k[2],l;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       k[0]=1;    return m;
       k[1]=-1;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       printf("Max: %.12e",(*func)(p));     */
       for (j=1;j<=n;j++)  }
         printf(" %.12e",p[j]);  
       printf("\n");  /*************************free matrix ************************/
       for(l=0;l<=1;l++) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         for (j=1;j<=n;j++) {  {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    free((FREE_ARG)(m+nrl-NR_END));
         }  }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  /******************* ma3x *******************************/
 #endif  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       free_vector(xit,1,n);    double ***m;
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       free_vector(pt,1,n);    if (!m) nrerror("allocation failure 1 in matrix()");
       return;    m += NR_END;
     }    m -= nrl;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       ptt[j]=2.0*p[j]-pt[j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       xit[j]=p[j]-pt[j];    m[nrl] += NR_END;
       pt[j]=p[j];    m[nrl] -= ncl;
     }  
     fptt=(*func)(ptt);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       if (t < 0.0) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         linmin(p,xit,n,fret,func);    m[nrl][ncl] += NR_END;
         for (j=1;j<=n;j++) {    m[nrl][ncl] -= nll;
           xi[j][ibig]=xi[j][n];    for (j=ncl+1; j<=nch; j++) 
           xi[j][n]=xit[j];      m[nrl][j]=m[nrl][j-1]+nlay;
         }    
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         for(j=1;j<=n;j++)      for (j=ncl+1; j<=nch; j++) 
           printf(" %.12e",xit[j]);        m[i][j]=m[i][j-1]+nlay;
         printf("\n");    }
 #endif    return m; 
       }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   }    */
 }  }
   
 /**** Prevalence limit ****************/  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  {
 {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      matrix by transitions matrix until convergence is reached */    free((FREE_ARG)(m+nrl-NR_END));
   }
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  /*************** function subdirf ***********/
   double **matprod2();  char *subdirf(char fileres[])
   double **out, cov[NCOVMAX], **pmij();  {
   double **newm;    /* Caution optionfilefiname is hidden */
   double agefin, delaymax=50 ; /* Max number of years to converge */    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
   for (ii=1;ii<=nlstate+ndeath;ii++)    strcat(tmpout,fileres);
     for (j=1;j<=nlstate+ndeath;j++){    return tmpout;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
     }  
   /*************** function subdirf2 ***********/
    cov[1]=1.;  char *subdirf2(char fileres[], char *preop)
    {
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    /* Caution optionfilefiname is hidden */
     newm=savm;    strcpy(tmpout,optionfilefiname);
     /* Covariates have to be included here again */    strcat(tmpout,"/");
      cov[2]=agefin;    strcat(tmpout,preop);
      strcat(tmpout,fileres);
       for (k=1; k<=cptcovn;k++) {    return tmpout;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  
       }  /*************** function subdirf3 ***********/
       for (k=1; k<=cptcovage;k++)  char *subdirf3(char fileres[], char *preop, char *preop2)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  {
       for (k=1; k<=cptcovprod;k++)    
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    strcat(tmpout,"/");
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    strcat(tmpout,preop);
     strcat(tmpout,preop2);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    strcat(tmpout,fileres);
     return tmpout;
     savm=oldm;  }
     oldm=newm;  
     maxmax=0.;  /***************** f1dim *************************/
     for(j=1;j<=nlstate;j++){  extern int ncom; 
       min=1.;  extern double *pcom,*xicom;
       max=0.;  extern double (*nrfunc)(double []); 
       for(i=1; i<=nlstate; i++) {   
         sumnew=0;  double f1dim(double x) 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  { 
         prlim[i][j]= newm[i][j]/(1-sumnew);    int j; 
         max=FMAX(max,prlim[i][j]);    double f;
         min=FMIN(min,prlim[i][j]);    double *xt; 
       }   
       maxmin=max-min;    xt=vector(1,ncom); 
       maxmax=FMAX(maxmax,maxmin);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     }    f=(*nrfunc)(xt); 
     if(maxmax < ftolpl){    free_vector(xt,1,ncom); 
       return prlim;    return f; 
     }  } 
   }  
 }  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 /*************** transition probabilities ***************/  { 
     int iter; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    double a,b,d,etemp;
 {    double fu,fv,fw,fx;
   double s1, s2;    double ftemp;
   /*double t34;*/    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   int i,j,j1, nc, ii, jj;    double e=0.0; 
    
     for(i=1; i<= nlstate; i++){    a=(ax < cx ? ax : cx); 
     for(j=1; j<i;j++){    b=(ax > cx ? ax : cx); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    x=w=v=bx; 
         /*s2 += param[i][j][nc]*cov[nc];*/    fw=fv=fx=(*f)(x); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    for (iter=1;iter<=ITMAX;iter++) { 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      xm=0.5*(a+b); 
       }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       ps[i][j]=s2;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      printf(".");fflush(stdout);
     }      fprintf(ficlog,".");fflush(ficlog);
     for(j=i+1; j<=nlstate+ndeath;j++){  #ifdef DEBUG
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
       ps[i][j]=(s2);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     }        *xmin=x; 
   }        return fx; 
     /*ps[3][2]=1;*/      } 
       ftemp=fu;
   for(i=1; i<= nlstate; i++){      if (fabs(e) > tol1) { 
      s1=0;        r=(x-w)*(fx-fv); 
     for(j=1; j<i; j++)        q=(x-v)*(fx-fw); 
       s1+=exp(ps[i][j]);        p=(x-v)*q-(x-w)*r; 
     for(j=i+1; j<=nlstate+ndeath; j++)        q=2.0*(q-r); 
       s1+=exp(ps[i][j]);        if (q > 0.0) p = -p; 
     ps[i][i]=1./(s1+1.);        q=fabs(q); 
     for(j=1; j<i; j++)        etemp=e; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        e=d; 
     for(j=i+1; j<=nlstate+ndeath; j++)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        else { 
   } /* end i */          d=p/q; 
           u=x+d; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          if (u-a < tol2 || b-u < tol2) 
     for(jj=1; jj<= nlstate+ndeath; jj++){            d=SIGN(tol1,xm-x); 
       ps[ii][jj]=0;        } 
       ps[ii][ii]=1;      } else { 
     }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   }      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      if (fu <= fx) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){        if (u >= x) a=x; else b=x; 
      printf("%lf ",ps[ii][jj]);        SHFT(v,w,x,u) 
    }          SHFT(fv,fw,fx,fu) 
     printf("\n ");          } else { 
     }            if (u < x) a=u; else b=u; 
     printf("\n ");printf("%lf ",cov[2]);*/            if (fu <= fw || w == x) { 
 /*              v=w; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);              w=u; 
   goto end;*/              fv=fw; 
     return ps;              fw=fu; 
 }            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
 /**************** Product of 2 matrices ******************/              fv=fu; 
             } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          } 
 {    } 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    nrerror("Too many iterations in brent"); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    *xmin=x; 
   /* in, b, out are matrice of pointers which should have been initialized    return fx; 
      before: only the contents of out is modified. The function returns  } 
      a pointer to pointers identical to out */  
   long i, j, k;  /****************** mnbrak ***********************/
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)              double (*func)(double)) 
         out[i][k] +=in[i][j]*b[j][k];  { 
     double ulim,u,r,q, dum;
   return out;    double fu; 
 }   
     *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
 /************* Higher Matrix Product ***************/    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        SHFT(dum,*fb,*fa,dum) 
 {        } 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    *cx=(*bx)+GOLD*(*bx-*ax); 
      duration (i.e. until    *fc=(*func)(*cx); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    while (*fb > *fc) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      r=(*bx-*ax)*(*fb-*fc); 
      (typically every 2 years instead of every month which is too big).      q=(*bx-*cx)*(*fb-*fa); 
      Model is determined by parameters x and covariates have to be      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
      included manually here.        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
      */      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
   int i, j, d, h, k;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double **out, cov[NCOVMAX];        fu=(*func)(u); 
   double **newm;        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   /* Hstepm could be zero and should return the unit matrix */            SHFT(*fb,*fc,fu,(*func)(u)) 
   for (i=1;i<=nlstate+ndeath;i++)            } 
     for (j=1;j<=nlstate+ndeath;j++){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        u=ulim; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        fu=(*func)(u); 
     }      } else { 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        u=(*cx)+GOLD*(*cx-*bx); 
   for(h=1; h <=nhstepm; h++){        fu=(*func)(u); 
     for(d=1; d <=hstepm; d++){      } 
       newm=savm;      SHFT(*ax,*bx,*cx,u) 
       /* Covariates have to be included here again */        SHFT(*fa,*fb,*fc,fu) 
       cov[1]=1.;        } 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  /*************** linmin ************************/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  int ncom; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  double *pcom,*xicom;
   double (*nrfunc)(double []); 
    
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double brent(double ax, double bx, double cx, 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));                 double (*f)(double), double tol, double *xmin); 
       savm=oldm;    double f1dim(double x); 
       oldm=newm;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     }                double *fc, double (*func)(double)); 
     for(i=1; i<=nlstate+ndeath; i++)    int j; 
       for(j=1;j<=nlstate+ndeath;j++) {    double xx,xmin,bx,ax; 
         po[i][j][h]=newm[i][j];    double fx,fb,fa;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);   
          */    ncom=n; 
       }    pcom=vector(1,n); 
   } /* end h */    xicom=vector(1,n); 
   return po;    nrfunc=func; 
 }    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
 /*************** log-likelihood *************/    } 
 double func( double *x)    ax=0.0; 
 {    xx=1.0; 
   int i, ii, j, k, mi, d, kk;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   double **out;  #ifdef DEBUG
   double sw; /* Sum of weights */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double lli; /* Individual log likelihood */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   long ipmx;  #endif
   /*extern weight */    for (j=1;j<=n;j++) { 
   /* We are differentiating ll according to initial status */      xi[j] *= xmin; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      p[j] += xi[j]; 
   /*for(i=1;i<imx;i++)    } 
     printf(" %d\n",s[4][i]);    free_vector(xicom,1,n); 
   */    free_vector(pcom,1,n); 
   cov[1]=1.;  } 
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;  char *asc_diff_time(long time_sec, char ascdiff[])
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  {
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    long sec_left, days, hours, minutes;
     for(mi=1; mi<= wav[i]-1; mi++){    days = (time_sec) / (60*60*24);
       for (ii=1;ii<=nlstate+ndeath;ii++)    sec_left = (time_sec) % (60*60*24);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    hours = (sec_left) / (60*60) ;
       for(d=0; d<dh[mi][i]; d++){    sec_left = (sec_left) %(60*60);
         newm=savm;    minutes = (sec_left) /60;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    sec_left = (sec_left) % (60);
         for (kk=1; kk<=cptcovage;kk++) {    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    return ascdiff;
         }  }
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /*************** powell ************************/
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         savm=oldm;              double (*func)(double [])) 
         oldm=newm;  { 
            void linmin(double p[], double xi[], int n, double *fret, 
                        double (*func)(double [])); 
       } /* end mult */    int i,ibig,j; 
          double del,t,*pt,*ptt,*xit;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    double fp,fptt;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    double *xits;
       ipmx +=1;    int niterf, itmp;
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    pt=vector(1,n); 
     } /* end of wave */    ptt=vector(1,n); 
   } /* end of individual */    xit=vector(1,n); 
     xits=vector(1,n); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    *fret=(*func)(p); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    for (j=1;j<=n;j++) pt[j]=p[j]; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    for (*iter=1;;++(*iter)) { 
   return -l;      fp=(*fret); 
 }      ibig=0; 
       del=0.0; 
       last_time=curr_time;
 /*********** Maximum Likelihood Estimation ***************/      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
 {      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   int i,j, iter;      */
   double **xi,*delti;     for (i=1;i<=n;i++) {
   double fret;        printf(" %d %.12f",i, p[i]);
   xi=matrix(1,npar,1,npar);        fprintf(ficlog," %d %.12lf",i, p[i]);
   for (i=1;i<=npar;i++)        fprintf(ficrespow," %.12lf", p[i]);
     for (j=1;j<=npar;j++)      }
       xi[i][j]=(i==j ? 1.0 : 0.0);      printf("\n");
   printf("Powell\n");      fprintf(ficlog,"\n");
   powell(p,xi,npar,ftol,&iter,&fret,func);      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        tm = *localtime(&curr_time.tv_sec);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        strcpy(strcurr,asctime(&tm));
   /*       asctime_r(&tm,strcurr); */
 }        forecast_time=curr_time; 
         itmp = strlen(strcurr);
 /**** Computes Hessian and covariance matrix ***/        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          strcurr[itmp-1]='\0';
 {        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double  **a,**y,*x,pd;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double **hess;        for(niterf=10;niterf<=30;niterf+=10){
   int i, j,jk;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   int *indx;          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
   double hessii(double p[], double delta, int theta, double delti[]);          strcpy(strfor,asctime(&tmf));
   double hessij(double p[], double delti[], int i, int j);          itmp = strlen(strfor);
   void lubksb(double **a, int npar, int *indx, double b[]) ;          if(strfor[itmp-1]=='\n')
   void ludcmp(double **a, int npar, int *indx, double *d) ;          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   hess=matrix(1,npar,1,npar);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
   printf("\nCalculation of the hessian matrix. Wait...\n");      }
   for (i=1;i<=npar;i++){      for (i=1;i<=n;i++) { 
     printf("%d",i);fflush(stdout);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     hess[i][i]=hessii(p,ftolhess,i,delti);        fptt=(*fret); 
     /*printf(" %f ",p[i]);*/  #ifdef DEBUG
     /*printf(" %lf ",hess[i][i]);*/        printf("fret=%lf \n",*fret);
   }        fprintf(ficlog,"fret=%lf \n",*fret);
    #endif
   for (i=1;i<=npar;i++) {        printf("%d",i);fflush(stdout);
     for (j=1;j<=npar;j++)  {        fprintf(ficlog,"%d",i);fflush(ficlog);
       if (j>i) {        linmin(p,xit,n,fret,func); 
         printf(".%d%d",i,j);fflush(stdout);        if (fabs(fptt-(*fret)) > del) { 
         hess[i][j]=hessij(p,delti,i,j);          del=fabs(fptt-(*fret)); 
         hess[j][i]=hess[i][j];              ibig=i; 
         /*printf(" %lf ",hess[i][j]);*/        } 
       }  #ifdef DEBUG
     }        printf("%d %.12e",i,(*fret));
   }        fprintf(ficlog,"%d %.12e",i,(*fret));
   printf("\n");        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          printf(" x(%d)=%.12e",j,xit[j]);
            fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   a=matrix(1,npar,1,npar);        }
   y=matrix(1,npar,1,npar);        for(j=1;j<=n;j++) {
   x=vector(1,npar);          printf(" p=%.12e",p[j]);
   indx=ivector(1,npar);          fprintf(ficlog," p=%.12e",p[j]);
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        printf("\n");
   ludcmp(a,npar,indx,&pd);        fprintf(ficlog,"\n");
   #endif
   for (j=1;j<=npar;j++) {      } 
     for (i=1;i<=npar;i++) x[i]=0;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     x[j]=1;  #ifdef DEBUG
     lubksb(a,npar,indx,x);        int k[2],l;
     for (i=1;i<=npar;i++){        k[0]=1;
       matcov[i][j]=x[i];        k[1]=-1;
     }        printf("Max: %.12e",(*func)(p));
   }        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
   printf("\n#Hessian matrix#\n");          printf(" %.12e",p[j]);
   for (i=1;i<=npar;i++) {          fprintf(ficlog," %.12e",p[j]);
     for (j=1;j<=npar;j++) {        }
       printf("%.3e ",hess[i][j]);        printf("\n");
     }        fprintf(ficlog,"\n");
     printf("\n");        for(l=0;l<=1;l++) {
   }          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   /* Recompute Inverse */            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (i=1;i<=npar;i++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          }
   ludcmp(a,npar,indx,&pd);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   /*  printf("\n#Hessian matrix recomputed#\n");        }
   #endif
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;        free_vector(xit,1,n); 
     lubksb(a,npar,indx,x);        free_vector(xits,1,n); 
     for (i=1;i<=npar;i++){        free_vector(ptt,1,n); 
       y[i][j]=x[i];        free_vector(pt,1,n); 
       printf("%.3e ",y[i][j]);        return; 
     }      } 
     printf("\n");      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   }      for (j=1;j<=n;j++) { 
   */        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
   free_matrix(a,1,npar,1,npar);        pt[j]=p[j]; 
   free_matrix(y,1,npar,1,npar);      } 
   free_vector(x,1,npar);      fptt=(*func)(ptt); 
   free_ivector(indx,1,npar);      if (fptt < fp) { 
   free_matrix(hess,1,npar,1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
 }          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
 /*************** hessian matrix ****************/            xi[j][n]=xit[j]; 
 double hessii( double x[], double delta, int theta, double delti[])          }
 {  #ifdef DEBUG
   int i;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int l=1, lmax=20;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double k1,k2;          for(j=1;j<=n;j++){
   double p2[NPARMAX+1];            printf(" %.12e",xit[j]);
   double res;            fprintf(ficlog," %.12e",xit[j]);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          }
   double fx;          printf("\n");
   int k=0,kmax=10;          fprintf(ficlog,"\n");
   double l1;  #endif
         }
   fx=func(x);      } 
   for (i=1;i<=npar;i++) p2[i]=x[i];    } 
   for(l=0 ; l <=lmax; l++){  } 
     l1=pow(10,l);  
     delts=delt;  /**** Prevalence limit (stable prevalence)  ****************/
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       p2[theta]=x[theta] +delt;  {
       k1=func(p2)-fx;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       p2[theta]=x[theta]-delt;       matrix by transitions matrix until convergence is reached */
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */    int i, ii,j,k;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double min, max, maxmin, maxmax,sumnew=0.;
          double **matprod2();
 #ifdef DEBUG    double **out, cov[NCOVMAX], **pmij();
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double **newm;
 #endif    double agefin, delaymax=50 ; /* Max number of years to converge */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    for (ii=1;ii<=nlstate+ndeath;ii++)
         k=kmax;      for (j=1;j<=nlstate+ndeath;j++){
       }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      }
         k=kmax; l=lmax*10.;  
       }     cov[1]=1.;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){   
         delts=delt;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     }      newm=savm;
   }      /* Covariates have to be included here again */
   delti[theta]=delts;       cov[2]=agefin;
   return res;    
          for (k=1; k<=cptcovn;k++) {
 }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 double hessij( double x[], double delti[], int thetai,int thetaj)        }
 {        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   int i;        for (k=1; k<=cptcovprod;k++)
   int l=1, l1, lmax=20;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   int k;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   fx=func(x);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];      savm=oldm;
     p2[thetai]=x[thetai]+delti[thetai]/k;      oldm=newm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      maxmax=0.;
     k1=func(p2)-fx;      for(j=1;j<=nlstate;j++){
          min=1.;
     p2[thetai]=x[thetai]+delti[thetai]/k;        max=0.;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for(i=1; i<=nlstate; i++) {
     k2=func(p2)-fx;          sumnew=0;
            for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     p2[thetai]=x[thetai]-delti[thetai]/k;          prlim[i][j]= newm[i][j]/(1-sumnew);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          max=FMAX(max,prlim[i][j]);
     k3=func(p2)-fx;          min=FMIN(min,prlim[i][j]);
          }
     p2[thetai]=x[thetai]-delti[thetai]/k;        maxmin=max-min;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        maxmax=FMAX(maxmax,maxmin);
     k4=func(p2)-fx;      }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      if(maxmax < ftolpl){
 #ifdef DEBUG        return prlim;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      }
 #endif    }
   }  }
   return res;  
 }  /*************** transition probabilities ***************/ 
   
 /************** Inverse of matrix **************/  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 void ludcmp(double **a, int n, int *indx, double *d)  {
 {    double s1, s2;
   int i,imax,j,k;    /*double t34;*/
   double big,dum,sum,temp;    int i,j,j1, nc, ii, jj;
   double *vv;  
        for(i=1; i<= nlstate; i++){
   vv=vector(1,n);        for(j=1; j<i;j++){
   *d=1.0;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for (i=1;i<=n;i++) {            /*s2 += param[i][j][nc]*cov[nc];*/
     big=0.0;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (j=1;j<=n;j++)  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       if ((temp=fabs(a[i][j])) > big) big=temp;          }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          ps[i][j]=s2;
     vv[i]=1.0/big;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   }        }
   for (j=1;j<=n;j++) {        for(j=i+1; j<=nlstate+ndeath;j++){
     for (i=1;i<j;i++) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       sum=a[i][j];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       a[i][j]=sum;          }
     }          ps[i][j]=s2;
     big=0.0;        }
     for (i=j;i<=n;i++) {      }
       sum=a[i][j];      /*ps[3][2]=1;*/
       for (k=1;k<j;k++)      
         sum -= a[i][k]*a[k][j];      for(i=1; i<= nlstate; i++){
       a[i][j]=sum;        s1=0;
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for(j=1; j<i; j++)
         big=dum;          s1+=exp(ps[i][j]);
         imax=i;        for(j=i+1; j<=nlstate+ndeath; j++)
       }          s1+=exp(ps[i][j]);
     }        ps[i][i]=1./(s1+1.);
     if (j != imax) {        for(j=1; j<i; j++)
       for (k=1;k<=n;k++) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
         dum=a[imax][k];        for(j=i+1; j<=nlstate+ndeath; j++)
         a[imax][k]=a[j][k];          ps[i][j]= exp(ps[i][j])*ps[i][i];
         a[j][k]=dum;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       }      } /* end i */
       *d = -(*d);      
       vv[imax]=vv[j];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     }        for(jj=1; jj<= nlstate+ndeath; jj++){
     indx[j]=imax;          ps[ii][jj]=0;
     if (a[j][j] == 0.0) a[j][j]=TINY;          ps[ii][ii]=1;
     if (j != n) {        }
       dum=1.0/(a[j][j]);      }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      
     }  
   }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   free_vector(vv,1,n);  /* Doesn't work */  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
 ;  /*         printf("ddd %lf ",ps[ii][jj]); */
 }  /*       } */
   /*       printf("\n "); */
 void lubksb(double **a, int n, int *indx, double b[])  /*        } */
 {  /*        printf("\n ");printf("%lf ",cov[2]); */
   int i,ii=0,ip,j;         /*
   double sum;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
          goto end;*/
   for (i=1;i<=n;i++) {      return ps;
     ip=indx[i];  }
     sum=b[ip];  
     b[ip]=b[i];  /**************** Product of 2 matrices ******************/
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     else if (sum) ii=i;  {
     b[i]=sum;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   for (i=n;i>=1;i--) {    /* in, b, out are matrice of pointers which should have been initialized 
     sum=b[i];       before: only the contents of out is modified. The function returns
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       a pointer to pointers identical to out */
     b[i]=sum/a[i][i];    long i, j, k;
   }    for(i=nrl; i<= nrh; i++)
 }      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
 /************ Frequencies ********************/          out[i][k] +=in[i][j]*b[j][k];
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)  
 {  /* Some frequencies */    return out;
    }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */  
   double *pp;  /************* Higher Matrix Product ***************/
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   char fileresp[FILENAMELENGTH];  {
     /* Computes the transition matrix starting at age 'age' over 
   pp=vector(1,nlstate);       'nhstepm*hstepm*stepm' months (i.e. until
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   strcpy(fileresp,"p");       nhstepm*hstepm matrices. 
   strcat(fileresp,fileres);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   if((ficresp=fopen(fileresp,"w"))==NULL) {       (typically every 2 years instead of every month which is too big 
     printf("Problem with prevalence resultfile: %s\n", fileresp);       for the memory).
     exit(0);       Model is determined by parameters x and covariates have to be 
   }       included manually here. 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;       */
   
   j=cptcoveff;    int i, j, d, h, k;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double **out, cov[NCOVMAX];
     double **newm;
   for(k1=1; k1<=j;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){    /* Hstepm could be zero and should return the unit matrix */
        j1++;    for (i=1;i<=nlstate+ndeath;i++)
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      for (j=1;j<=nlstate+ndeath;j++){
          scanf("%d", i);*/        oldm[i][j]=(i==j ? 1.0 : 0.0);
         for (i=-1; i<=nlstate+ndeath; i++)          po[i][j][0]=(i==j ? 1.0 : 0.0);
          for (jk=-1; jk<=nlstate+ndeath; jk++)        }
            for(m=agemin; m <= agemax+3; m++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
              freq[i][jk][m]=0;    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
         dateintsum=0;        newm=savm;
         k2cpt=0;        /* Covariates have to be included here again */
        for (i=1; i<=imx; i++) {        cov[1]=1.;
          bool=1;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          if  (cptcovn>0) {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
            for (z1=1; z1<=cptcoveff; z1++)        for (k=1; k<=cptcovage;k++)
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                bool=0;        for (k=1; k<=cptcovprod;k++)
          }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          if (bool==1) {  
            for(m=firstpass; m<=lastpass; m++){  
              k2=anint[m][i]+(mint[m][i]/12.);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
              if ((k2>=dateprev1) && (k2<=dateprev2)) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
                if(agev[m][i]==0) agev[m][i]=agemax+1;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                if(agev[m][i]==1) agev[m][i]=agemax+2;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        savm=oldm;
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        oldm=newm;
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      }
                  dateintsum=dateintsum+k2;      for(i=1; i<=nlstate+ndeath; i++)
                  k2cpt++;        for(j=1;j<=nlstate+ndeath;j++) {
                }          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
              }           */
            }        }
          }    } /* end h */
        }    return po;
         if  (cptcovn>0) {  }
          fprintf(ficresp, "\n#********** Variable ");  
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
        fprintf(ficresp, "**********\n#");  /*************** log-likelihood *************/
         }  double func( double *x)
        for(i=1; i<=nlstate;i++)  {
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    int i, ii, j, k, mi, d, kk;
        fprintf(ficresp, "\n");    double l, ll[NLSTATEMAX], cov[NCOVMAX];
            double **out;
   for(i=(int)agemin; i <= (int)agemax+3; i++){    double sw; /* Sum of weights */
     if(i==(int)agemax+3)    double lli; /* Individual log likelihood */
       printf("Total");    int s1, s2;
     else    double bbh, survp;
       printf("Age %d", i);    long ipmx;
     for(jk=1; jk <=nlstate ; jk++){    /*extern weight */
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    /* We are differentiating ll according to initial status */
         pp[jk] += freq[jk][m][i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     }    /*for(i=1;i<imx;i++) 
     for(jk=1; jk <=nlstate ; jk++){      printf(" %d\n",s[4][i]);
       for(m=-1, pos=0; m <=0 ; m++)    */
         pos += freq[jk][m][i];    cov[1]=1.;
       if(pp[jk]>=1.e-10)  
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    for(k=1; k<=nlstate; k++) ll[k]=0.;
       else  
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    if(mle==1){
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         pp[jk] += freq[jk][m][i];            for (j=1;j<=nlstate+ndeath;j++){
      }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(jk=1,pos=0; jk <=nlstate ; jk++)            }
       pos += pp[jk];          for(d=0; d<dh[mi][i]; d++){
     for(jk=1; jk <=nlstate ; jk++){            newm=savm;
       if(pos>=1.e-5)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            for (kk=1; kk<=cptcovage;kk++) {
       else              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            }
       if( i <= (int) agemax){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if(pos>=1.e-5){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            savm=oldm;
           probs[i][jk][j1]= pp[jk]/pos;            oldm=newm;
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          } /* end mult */
         }        
       else          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          /* But now since version 0.9 we anticipate for bias at large stepm.
       }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     }           * (in months) between two waves is not a multiple of stepm, we rounded to 
     for(jk=-1; jk <=nlstate+ndeath; jk++)           * the nearest (and in case of equal distance, to the lowest) interval but now
       for(m=-1; m <=nlstate+ndeath; m++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     if(i <= (int) agemax)           * probability in order to take into account the bias as a fraction of the way
       fprintf(ficresp,"\n");           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     printf("\n");           * -stepm/2 to stepm/2 .
     }           * For stepm=1 the results are the same as for previous versions of Imach.
     }           * For stepm > 1 the results are less biased than in previous versions. 
  }           */
   dateintmean=dateintsum/k2cpt;          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   fclose(ficresp);          bbh=(double)bh[mi][i]/(double)stepm; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          /* bias bh is positive if real duration
   free_vector(pp,1,nlstate);           * is higher than the multiple of stepm and negative otherwise.
            */
   /* End of Freq */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 }          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known 
 /************ Prevalence ********************/               then the contribution to the likelihood is the probability to 
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)               die between last step unit time and current  step unit time, 
 {  /* Some frequencies */               which is also equal to probability to die before dh 
                 minus probability to die before dh-stepm . 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;               In version up to 0.92 likelihood was computed
   double ***freq; /* Frequencies */          as if date of death was unknown. Death was treated as any other
   double *pp;          health state: the date of the interview describes the actual state
   double pos, k2;          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
   pp=vector(1,nlstate);          (healthy, disable or death) and IMaCh was corrected; but when we
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          introduced the exact date of death then we should have modified
            the contribution of an exact death to the likelihood. This new
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          contribution is smaller and very dependent of the step unit
   j1=0;          stepm. It is no more the probability to die between last interview
            and month of death but the probability to survive from last
   j=cptcoveff;          interview up to one month before death multiplied by the
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          probability to die within a month. Thanks to Chris
            Jackson for correcting this bug.  Former versions increased
  for(k1=1; k1<=j;k1++){          mortality artificially. The bad side is that we add another loop
     for(i1=1; i1<=ncodemax[k1];i1++){          which slows down the processing. The difference can be up to 10%
       j1++;          lower mortality.
              */
       for (i=-1; i<=nlstate+ndeath; i++)              lli=log(out[s1][s2] - savm[s1][s2]);
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;          } else if  (s2==-2) {
                  for (j=1,survp=0. ; j<=nlstate; j++) 
       for (i=1; i<=imx; i++) {              survp += out[s1][j];
         bool=1;            lli= survp;
         if  (cptcovn>0) {          }
           for (z1=1; z1<=cptcoveff; z1++)          
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          else if  (s2==-4) {
               bool=0;            for (j=3,survp=0. ; j<=nlstate; j++) 
         }              survp += out[s1][j];
         if (bool==1) {            lli= survp;
           for(m=firstpass; m<=lastpass; m++){          }
             k2=anint[m][i]+(mint[m][i]/12.);          
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          else if  (s2==-5) {
               if(agev[m][i]==0) agev[m][i]=agemax+1;            for (j=1,survp=0. ; j<=2; j++) 
               if(agev[m][i]==1) agev[m][i]=agemax+2;              survp += out[s1][j];
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-1/12.)] += weight[i];            lli= survp;
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];            }
             }  
           }  
         }          else{
       }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         for(i=(int)agemin; i <= (int)agemax+3; i++){          } 
           for(jk=1; jk <=nlstate ; jk++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /*if(lli ==000.0)*/
               pp[jk] += freq[jk][m][i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           }          ipmx +=1;
           for(jk=1; jk <=nlstate ; jk++){          sw += weight[i];
             for(m=-1, pos=0; m <=0 ; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             pos += freq[jk][m][i];        } /* end of wave */
         }      } /* end of individual */
            }  else if(mle==2){
          for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              pp[jk] += freq[jk][m][i];        for(mi=1; mi<= wav[i]-1; mi++){
          }          for (ii=1;ii<=nlstate+ndeath;ii++)
                      for (j=1;j<=nlstate+ndeath;j++){
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
          for(jk=1; jk <=nlstate ; jk++){                      }
            if( i <= (int) agemax){          for(d=0; d<=dh[mi][i]; d++){
              if(pos>=1.e-5){            newm=savm;
                probs[i][jk][j1]= pp[jk]/pos;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              }            for (kk=1; kk<=cptcovage;kk++) {
            }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          }            }
                      out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
   }            oldm=newm;
            } /* end mult */
          
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          s1=s[mw[mi][i]][i];
   free_vector(pp,1,nlstate);          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
 }  /* End of Freq */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
 /************* Waves Concatenation ***************/          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        } /* end of wave */
 {      } /* end of individual */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    }  else if(mle==3){  /* exponential inter-extrapolation */
      Death is a valid wave (if date is known).      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        for(mi=1; mi<= wav[i]-1; mi++){
      and mw[mi+1][i]. dh depends on stepm.          for (ii=1;ii<=nlstate+ndeath;ii++)
      */            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, mi, m;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            }
      double sum=0., jmean=0.;*/          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   int j, k=0,jk, ju, jl;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double sum=0.;            for (kk=1; kk<=cptcovage;kk++) {
   jmin=1e+5;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   jmax=-1;            }
   jmean=0.;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(i=1; i<=imx; i++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     mi=0;            savm=oldm;
     m=firstpass;            oldm=newm;
     while(s[m][i] <= nlstate){          } /* end mult */
       if(s[m][i]>=1)        
         mw[++mi][i]=m;          s1=s[mw[mi][i]][i];
       if(m >=lastpass)          s2=s[mw[mi+1][i]][i];
         break;          bbh=(double)bh[mi][i]/(double)stepm; 
       else          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         m++;          ipmx +=1;
     }/* end while */          sw += weight[i];
     if (s[m][i] > nlstate){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       mi++;     /* Death is another wave */        } /* end of wave */
       /* if(mi==0)  never been interviewed correctly before death */      } /* end of individual */
          /* Only death is a correct wave */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       mw[mi][i]=m;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     wav[i]=mi;          for (ii=1;ii<=nlstate+ndeath;ii++)
     if(mi==0)            for (j=1;j<=nlstate+ndeath;j++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   for(i=1; i<=imx; i++){          for(d=0; d<dh[mi][i]; d++){
     for(mi=1; mi<wav[i];mi++){            newm=savm;
       if (stepm <=0)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         dh[mi][i]=1;            for (kk=1; kk<=cptcovage;kk++) {
       else{              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if (s[mw[mi+1][i]][i] > nlstate) {            }
           if (agedc[i] < 2*AGESUP) {          
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if(j==0) j=1;  /* Survives at least one month after exam */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           k=k+1;            savm=oldm;
           if (j >= jmax) jmax=j;            oldm=newm;
           if (j <= jmin) jmin=j;          } /* end mult */
           sum=sum+j;        
           /* if (j<10) printf("j=%d num=%d ",j,i); */          s1=s[mw[mi][i]][i];
           }          s2=s[mw[mi+1][i]][i];
         }          if( s2 > nlstate){ 
         else{            lli=log(out[s1][s2] - savm[s1][s2]);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          }else{
           k=k+1;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           if (j >= jmax) jmax=j;          }
           else if (j <= jmin)jmin=j;          ipmx +=1;
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          sw += weight[i];
           sum=sum+j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         jk= j/stepm;        } /* end of wave */
         jl= j -jk*stepm;      } /* end of individual */
         ju= j -(jk+1)*stepm;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         if(jl <= -ju)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           dh[mi][i]=jk;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         else        for(mi=1; mi<= wav[i]-1; mi++){
           dh[mi][i]=jk+1;          for (ii=1;ii<=nlstate+ndeath;ii++)
         if(dh[mi][i]==0)            for (j=1;j<=nlstate+ndeath;j++){
           dh[mi][i]=1; /* At least one step */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
   }          for(d=0; d<dh[mi][i]; d++){
   jmean=sum/k;            newm=savm;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  }            for (kk=1; kk<=cptcovage;kk++) {
 /*********** Tricode ****************************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void tricode(int *Tvar, int **nbcode, int imx)            }
 {          
   int Ndum[20],ij=1, k, j, i;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int cptcode=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   cptcoveff=0;            savm=oldm;
              oldm=newm;
   for (k=0; k<19; k++) Ndum[k]=0;          } /* end mult */
   for (k=1; k<=7; k++) ncodemax[k]=0;        
           s1=s[mw[mi][i]][i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          s2=s[mw[mi+1][i]][i];
     for (i=1; i<=imx; i++) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       ij=(int)(covar[Tvar[j]][i]);          ipmx +=1;
       Ndum[ij]++;          sw += weight[i];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if (ij > cptcode) cptcode=ij;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     }        } /* end of wave */
       } /* end of individual */
     for (i=0; i<=cptcode; i++) {    } /* End of if */
       if(Ndum[i]!=0) ncodemax[j]++;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     ij=1;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
   }
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=19; k++) {  /*************** log-likelihood *************/
         if (Ndum[k] != 0) {  double funcone( double *x)
           nbcode[Tvar[j]][ij]=k;  {
           ij++;    /* Same as likeli but slower because of a lot of printf and if */
         }    int i, ii, j, k, mi, d, kk;
         if (ij > ncodemax[j]) break;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       }      double **out;
     }    double lli; /* Individual log likelihood */
   }      double llt;
     int s1, s2;
  for (k=0; k<19; k++) Ndum[k]=0;    double bbh, survp;
     /*extern weight */
  for (i=1; i<=ncovmodel-2; i++) {    /* We are differentiating ll according to initial status */
       ij=Tvar[i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       Ndum[ij]++;    /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
     */
  ij=1;    cov[1]=1.;
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncov)){    for(k=1; k<=nlstate; k++) ll[k]=0.;
      Tvaraff[ij]=i;  
      ij++;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  }      for(mi=1; mi<= wav[i]-1; mi++){
          for (ii=1;ii<=nlstate+ndeath;ii++)
     cptcoveff=ij-1;          for (j=1;j<=nlstate+ndeath;j++){
 }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*********** Health Expectancies ****************/          }
         for(d=0; d<dh[mi][i]; d++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          newm=savm;
 {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* Health expectancies */          for (kk=1; kk<=cptcovage;kk++) {
   int i, j, nhstepm, hstepm, h;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double age, agelim,hf;          }
   double ***p3mat;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficreseij,"# Health expectancies\n");          savm=oldm;
   fprintf(ficreseij,"# Age");          oldm=newm;
   for(i=1; i<=nlstate;i++)        } /* end mult */
     for(j=1; j<=nlstate;j++)        
       fprintf(ficreseij," %1d-%1d",i,j);        s1=s[mw[mi][i]][i];
   fprintf(ficreseij,"\n");        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
   hstepm=1*YEARM; /*  Every j years of age (in month) */        /* bias is positive if real duration
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */         * is higher than the multiple of stepm and negative otherwise.
          */
   agelim=AGESUP;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          lli=log(out[s1][s2] - savm[s1][s2]);
     /* nhstepm age range expressed in number of stepm */        } else if (mle==1){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     /* Typically if 20 years = 20*12/6=40 stepm */        } else if(mle==2){
     if (stepm >= YEARM) hstepm=1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */        } else if(mle==3){  /* exponential inter-extrapolation */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        } else if (mle==4){  /* mle=4 no inter-extrapolation */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          lli=log(out[s1][s2]); /* Original formula */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
         } /* End of if */
     for(i=1; i<=nlstate;i++)        ipmx +=1;
       for(j=1; j<=nlstate;j++)        sw += weight[i];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           eij[i][j][(int)age] +=p3mat[i][j][h];  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        if(globpr){
              fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     hf=1;   %10.6f %10.6f %10.6f ", \
     if (stepm >= YEARM) hf=stepm/YEARM;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     fprintf(ficreseij,"%.0f",age );                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     for(i=1; i<=nlstate;i++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       for(j=1; j<=nlstate;j++){            llt +=ll[k]*gipmx/gsw;
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       }          }
     fprintf(ficreseij,"\n");          fprintf(ficresilk," %10.6f\n", -llt);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
   }      } /* end of wave */
 }    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 /************ Variance ******************/    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 {    if(globpr==0){ /* First time we count the contributions and weights */
   /* Variance of health expectancies */      gipmx=ipmx;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      gsw=sw;
   double **newm;    }
   double **dnewm,**doldm;    return -l;
   int i, j, nhstepm, hstepm, h;  }
   int k, cptcode;  
   double *xp;  
   double **gp, **gm;  /*************** function likelione ***********/
   double ***gradg, ***trgradg;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   double ***p3mat;  {
   double age,agelim;    /* This routine should help understanding what is done with 
   int theta;       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
    fprintf(ficresvij,"# Covariances of life expectancies\n");       Plotting could be done.
   fprintf(ficresvij,"# Age");     */
   for(i=1; i<=nlstate;i++)    int k;
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    if(*globpri !=0){ /* Just counts and sums, no printings */
   fprintf(ficresvij,"\n");      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
   xp=vector(1,npar);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   dnewm=matrix(1,nlstate,1,npar);        printf("Problem with resultfile: %s\n", fileresilk);
   doldm=matrix(1,nlstate,1,nlstate);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
        }
   hstepm=1*YEARM; /* Every year of age */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   agelim = AGESUP;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for(k=1; k<=nlstate; k++) 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     if (stepm >= YEARM) hstepm=1;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    *fretone=(*funcone)(p);
     gp=matrix(0,nhstepm,1,nlstate);    if(*globpri !=0){
     gm=matrix(0,nhstepm,1,nlstate);      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     for(theta=1; theta <=npar; theta++){      fflush(fichtm); 
       for(i=1; i<=npar; i++){ /* Computes gradient */    } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    return;
       }  }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
   /*********** Maximum Likelihood Estimation ***************/
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           prlim[i][i]=probs[(int)age][i][ij];  {
       }    int i,j, iter;
          double **xi;
       for(j=1; j<= nlstate; j++){    double fret;
         for(h=0; h<=nhstepm; h++){    double fretone; /* Only one call to likelihood */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    /*  char filerespow[FILENAMELENGTH];*/
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    xi=matrix(1,npar,1,npar);
         }    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++)
            xi[i][j]=(i==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++) /* Computes gradient */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    strcpy(filerespow,"pow"); 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      strcat(filerespow,fileres);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       if (popbased==1) {      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         for(i=1; i<=nlstate;i++)    }
           prlim[i][i]=probs[(int)age][i][ij];    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       }    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
       for(j=1; j<= nlstate; j++){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         for(h=0; h<=nhstepm; h++){    fprintf(ficrespow,"\n");
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    powell(p,xi,npar,ftol,&iter,&fret,func);
         }  
       }    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for(j=1; j<= nlstate; j++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for(h=0; h<=nhstepm; h++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  }
     } /* End theta */  
   /**** Computes Hessian and covariance matrix ***/
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
     for(h=0; h<=nhstepm; h++)    double  **a,**y,*x,pd;
       for(j=1; j<=nlstate;j++)    double **hess;
         for(theta=1; theta <=npar; theta++)    int i, j,jk;
           trgradg[h][j][theta]=gradg[h][theta][j];    int *indx;
   
     for(i=1;i<=nlstate;i++)    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       for(j=1;j<=nlstate;j++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         vareij[i][j][(int)age] =0.;    void lubksb(double **a, int npar, int *indx, double b[]) ;
     for(h=0;h<=nhstepm;h++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
       for(k=0;k<=nhstepm;k++){    double gompertz(double p[]);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    hess=matrix(1,npar,1,npar);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)    printf("\nCalculation of the hessian matrix. Wait...\n");
           for(j=1;j<=nlstate;j++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
             vareij[i][j][(int)age] += doldm[i][j];    for (i=1;i<=npar;i++){
       }      printf("%d",i);fflush(stdout);
     }      fprintf(ficlog,"%d",i);fflush(ficlog);
     h=1;     
     if (stepm >= YEARM) h=stepm/YEARM;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     fprintf(ficresvij,"%.0f ",age );      
     for(i=1; i<=nlstate;i++)      /*  printf(" %f ",p[i]);
       for(j=1; j<=nlstate;j++){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    }
       }    
     fprintf(ficresvij,"\n");    for (i=1;i<=npar;i++) {
     free_matrix(gp,0,nhstepm,1,nlstate);      for (j=1;j<=npar;j++)  {
     free_matrix(gm,0,nhstepm,1,nlstate);        if (j>i) { 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          printf(".%d%d",i,j);fflush(stdout);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          hess[i][j]=hessij(p,delti,i,j,func,npar);
   } /* End age */          
            hess[j][i]=hess[i][j];    
   free_vector(xp,1,npar);          /*printf(" %lf ",hess[i][j]);*/
   free_matrix(doldm,1,nlstate,1,npar);        }
   free_matrix(dnewm,1,nlstate,1,nlstate);      }
     }
 }    printf("\n");
     fprintf(ficlog,"\n");
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 {    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   /* Variance of prevalence limit */    
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    a=matrix(1,npar,1,npar);
   double **newm;    y=matrix(1,npar,1,npar);
   double **dnewm,**doldm;    x=vector(1,npar);
   int i, j, nhstepm, hstepm;    indx=ivector(1,npar);
   int k, cptcode;    for (i=1;i<=npar;i++)
   double *xp;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double *gp, *gm;    ludcmp(a,npar,indx,&pd);
   double **gradg, **trgradg;  
   double age,agelim;    for (j=1;j<=npar;j++) {
   int theta;      for (i=1;i<=npar;i++) x[i]=0;
          x[j]=1;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      lubksb(a,npar,indx,x);
   fprintf(ficresvpl,"# Age");      for (i=1;i<=npar;i++){ 
   for(i=1; i<=nlstate;i++)        matcov[i][j]=x[i];
       fprintf(ficresvpl," %1d-%1d",i,i);      }
   fprintf(ficresvpl,"\n");    }
   
   xp=vector(1,npar);    printf("\n#Hessian matrix#\n");
   dnewm=matrix(1,nlstate,1,npar);    fprintf(ficlog,"\n#Hessian matrix#\n");
   doldm=matrix(1,nlstate,1,nlstate);    for (i=1;i<=npar;i++) { 
        for (j=1;j<=npar;j++) { 
   hstepm=1*YEARM; /* Every year of age */        printf("%.3e ",hess[i][j]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        fprintf(ficlog,"%.3e ",hess[i][j]);
   agelim = AGESUP;      }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf("\n");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficlog,"\n");
     if (stepm >= YEARM) hstepm=1;    }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);    /* Recompute Inverse */
     gp=vector(1,nlstate);    for (i=1;i<=npar;i++)
     gm=vector(1,nlstate);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    /*  printf("\n#Hessian matrix recomputed#\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    for (j=1;j<=npar;j++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=1;i<=npar;i++) x[i]=0;
       for(i=1;i<=nlstate;i++)      x[j]=1;
         gp[i] = prlim[i][i];      lubksb(a,npar,indx,x);
          for (i=1;i<=npar;i++){ 
       for(i=1; i<=npar; i++) /* Computes gradient */        y[i][j]=x[i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        printf("%.3e ",y[i][j]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        fprintf(ficlog,"%.3e ",y[i][j]);
       for(i=1;i<=nlstate;i++)      }
         gm[i] = prlim[i][i];      printf("\n");
       fprintf(ficlog,"\n");
       for(i=1;i<=nlstate;i++)    }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    */
     } /* End theta */  
     free_matrix(a,1,npar,1,npar);
     trgradg =matrix(1,nlstate,1,npar);    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
     for(j=1; j<=nlstate;j++)    free_ivector(indx,1,npar);
       for(theta=1; theta <=npar; theta++)    free_matrix(hess,1,npar,1,npar);
         trgradg[j][theta]=gradg[theta][j];  
   
     for(i=1;i<=nlstate;i++)  }
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  /*************** hessian matrix ****************/
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     for(i=1;i<=nlstate;i++)  {
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    int i;
     int l=1, lmax=20;
     fprintf(ficresvpl,"%.0f ",age );    double k1,k2;
     for(i=1; i<=nlstate;i++)    double p2[NPARMAX+1];
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double res;
     fprintf(ficresvpl,"\n");    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     free_vector(gp,1,nlstate);    double fx;
     free_vector(gm,1,nlstate);    int k=0,kmax=10;
     free_matrix(gradg,1,npar,1,nlstate);    double l1;
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   free_vector(xp,1,npar);    for(l=0 ; l <=lmax; l++){
   free_matrix(doldm,1,nlstate,1,npar);      l1=pow(10,l);
   free_matrix(dnewm,1,nlstate,1,nlstate);      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
 }        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
 /************ Variance of one-step probabilities  ******************/        k1=func(p2)-fx;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)        p2[theta]=x[theta]-delt;
 {        k2=func(p2)-fx;
   int i, j;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   int k=0, cptcode;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   double **dnewm,**doldm;        
   double *xp;  #ifdef DEBUG
   double *gp, *gm;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double **gradg, **trgradg;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double age,agelim, cov[NCOVMAX];  #endif
   int theta;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   char fileresprob[FILENAMELENGTH];        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
   strcpy(fileresprob,"prob");        }
   strcat(fileresprob,fileres);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          k=kmax; l=lmax*10.;
     printf("Problem with resultfile: %s\n", fileresprob);        }
   }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);          delts=delt;
          }
       }
   xp=vector(1,npar);    }
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    delti[theta]=delts;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    return res; 
      
   cov[1]=1;  }
   for (age=bage; age<=fage; age ++){  
     cov[2]=age;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     gradg=matrix(1,npar,1,9);  {
     trgradg=matrix(1,9,1,npar);    int i;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    int l=1, l1, lmax=20;
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    double k1,k2,k3,k4,res,fx;
        double p2[NPARMAX+1];
     for(theta=1; theta <=npar; theta++){    int k;
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fx=func(x);
          for (k=1; k<=2; k++) {
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      for (i=1;i<=npar;i++) p2[i]=x[i];
          p2[thetai]=x[thetai]+delti[thetai]/k;
       k=0;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(i=1; i<= (nlstate+ndeath); i++){      k1=func(p2)-fx;
         for(j=1; j<=(nlstate+ndeath);j++){    
            k=k+1;      p2[thetai]=x[thetai]+delti[thetai]/k;
           gp[k]=pmmij[i][j];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         }      k2=func(p2)-fx;
       }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
       for(i=1; i<=npar; i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      k3=func(p2)-fx;
        
       p2[thetai]=x[thetai]-delti[thetai]/k;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k=0;      k4=func(p2)-fx;
       for(i=1; i<=(nlstate+ndeath); i++){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         for(j=1; j<=(nlstate+ndeath);j++){  #ifdef DEBUG
           k=k+1;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           gm[k]=pmmij[i][j];      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         }  #endif
       }    }
          return res;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  }
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    
     }  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  { 
       for(theta=1; theta <=npar; theta++)    int i,imax,j,k; 
       trgradg[j][theta]=gradg[theta][j];    double big,dum,sum,temp; 
      double *vv; 
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);   
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    vv=vector(1,n); 
     *d=1.0; 
      pmij(pmmij,cov,ncovmodel,x,nlstate);    for (i=1;i<=n;i++) { 
       big=0.0; 
      k=0;      for (j=1;j<=n;j++) 
      for(i=1; i<=(nlstate+ndeath); i++){        if ((temp=fabs(a[i][j])) > big) big=temp; 
        for(j=1; j<=(nlstate+ndeath);j++){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
          k=k+1;      vv[i]=1.0/big; 
          gm[k]=pmmij[i][j];    } 
         }    for (j=1;j<=n;j++) { 
      }      for (i=1;i<j;i++) { 
              sum=a[i][j]; 
      /*printf("\n%d ",(int)age);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        a[i][j]=sum; 
              } 
       big=0.0; 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      for (i=j;i<=n;i++) { 
      }*/        sum=a[i][j]; 
         for (k=1;k<j;k++) 
   fprintf(ficresprob,"\n%d ",(int)age);          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          big=dum; 
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          imax=i; 
   }        } 
       } 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      if (j != imax) { 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        for (k=1;k<=n;k++) { 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          dum=a[imax][k]; 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          a[imax][k]=a[j][k]; 
 }          a[j][k]=dum; 
  free_vector(xp,1,npar);        } 
 fclose(ficresprob);        *d = -(*d); 
  exit(0);        vv[imax]=vv[j]; 
 }      } 
       indx[j]=imax; 
 /***********************************************/      if (a[j][j] == 0.0) a[j][j]=TINY; 
 /**************** Main Program *****************/      if (j != n) { 
 /***********************************************/        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 /*int main(int argc, char *argv[])*/      } 
 int main()    } 
 {    free_vector(vv,1,n);  /* Doesn't work */
   ;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  } 
   double agedeb, agefin,hf;  
   double agemin=1.e20, agemax=-1.e20;  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
   double fret;    int i,ii=0,ip,j; 
   double **xi,tmp,delta;    double sum; 
    
   double dum; /* Dummy variable */    for (i=1;i<=n;i++) { 
   double ***p3mat;      ip=indx[i]; 
   int *indx;      sum=b[ip]; 
   char line[MAXLINE], linepar[MAXLINE];      b[ip]=b[i]; 
   char title[MAXLINE];      if (ii) 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];      else if (sum) ii=i; 
   char filerest[FILENAMELENGTH];      b[i]=sum; 
   char fileregp[FILENAMELENGTH];    } 
   char popfile[FILENAMELENGTH];    for (i=n;i>=1;i--) { 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      sum=b[i]; 
   int firstobs=1, lastobs=10;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   int sdeb, sfin; /* Status at beginning and end */      b[i]=sum/a[i][i]; 
   int c,  h , cpt,l;    } 
   int ju,jl, mi;  } 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  /************ Frequencies ********************/
   int mobilav=0,popforecast=0;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   int hstepm, nhstepm;  {  /* Some frequencies */
   int *popage;/*boolprev=0 if date and zero if wave*/    
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
   double bage, fage, age, agelim, agebase;    double ***freq; /* Frequencies */
   double ftolpl=FTOL;    double *pp, **prop;
   double **prlim;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   double *severity;    FILE *ficresp;
   double ***param; /* Matrix of parameters */    char fileresp[FILENAMELENGTH];
   double  *p;    
   double **matcov; /* Matrix of covariance */    pp=vector(1,nlstate);
   double ***delti3; /* Scale */    prop=matrix(1,nlstate,iagemin,iagemax+3);
   double *delti; /* Scale */    strcpy(fileresp,"p");
   double ***eij, ***vareij;    strcat(fileresp,fileres);
   double **varpl; /* Variances of prevalence limits by age */    if((ficresp=fopen(fileresp,"w"))==NULL) {
   double *epj, vepp;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   double kk1, kk2;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   double *popeffectif,*popcount;      exit(0);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;    }
   double yp,yp1,yp2;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";    
   char *alph[]={"a","a","b","c","d","e"}, str[4];    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
   char z[1]="c", occ;    first=1;
 #include <sys/time.h>  
 #include <time.h>    for(k1=1; k1<=j;k1++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      for(i1=1; i1<=ncodemax[k1];i1++){
          j1++;
   /* long total_usecs;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   struct timeval start_time, end_time;          scanf("%d", i);*/
          for (i=-5; i<=nlstate+ndeath; i++)  
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
   printf("\nIMACH, Version 0.7");  
   printf("\nEnter the parameter file name: ");      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
 #ifdef windows          prop[i][m]=0;
   scanf("%s",pathtot);        
   getcwd(pathcd, size);        dateintsum=0;
   /*cygwin_split_path(pathtot,path,optionfile);        k2cpt=0;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        for (i=1; i<=imx; i++) {
   /* cutv(path,optionfile,pathtot,'\\');*/          bool=1;
           if  (cptcovn>0) {
 split(pathtot, path,optionfile);            for (z1=1; z1<=cptcoveff; z1++) 
   chdir(path);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   replace(pathc,path);                bool=0;
 #endif          }
 #ifdef unix          if (bool==1){
   scanf("%s",optionfile);            for(m=firstpass; m<=lastpass; m++){
 #endif              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 /*-------- arguments in the command line --------*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   strcpy(fileres,"r");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   strcat(fileres, optionfile);                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   /*---------arguments file --------*/                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                
     printf("Problem with optionfile %s\n",optionfile);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     goto end;                  dateintsum=dateintsum+k2;
   }                  k2cpt++;
                 }
   strcpy(filereso,"o");                /*}*/
   strcat(filereso,fileres);            }
   if((ficparo=fopen(filereso,"w"))==NULL) {          }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        }
   }         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   /* Reads comments: lines beginning with '#' */  fprintf(ficresp, "#Local time at start: %s", strstart);
   while((c=getc(ficpar))=='#' && c!= EOF){        if  (cptcovn>0) {
     ungetc(c,ficpar);          fprintf(ficresp, "\n#********** Variable "); 
     fgets(line, MAXLINE, ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     puts(line);          fprintf(ficresp, "**********\n#");
     fputs(line,ficparo);        }
   }        for(i=1; i<=nlstate;i++) 
   ungetc(c,ficpar);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);        for(i=iagemin; i <= iagemax+3; i++){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);          if(i==iagemax+3){
 while((c=getc(ficpar))=='#' && c!= EOF){            fprintf(ficlog,"Total");
     ungetc(c,ficpar);          }else{
     fgets(line, MAXLINE, ficpar);            if(first==1){
     puts(line);              first=0;
     fputs(line,ficparo);              printf("See log file for details...\n");
   }            }
   ungetc(c,ficpar);            fprintf(ficlog,"Age %d", i);
            }
              for(jk=1; jk <=nlstate ; jk++){
   covar=matrix(0,NCOVMAX,1,n);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   cptcovn=0;              pp[jk] += freq[jk][m][i]; 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          }
           for(jk=1; jk <=nlstate ; jk++){
   ncovmodel=2+cptcovn;            for(m=-1, pos=0; m <=0 ; m++)
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */              pos += freq[jk][m][i];
              if(pp[jk]>=1.e-10){
   /* Read guess parameters */              if(first==1){
   /* Reads comments: lines beginning with '#' */              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     fgets(line, MAXLINE, ficpar);            }else{
     puts(line);              if(first==1)
     fputs(line,ficparo);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   ungetc(c,ficpar);            }
            }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)          for(jk=1; jk <=nlstate ; jk++){
     for(j=1; j <=nlstate+ndeath-1; j++){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);              pp[jk] += freq[jk][m][i];
       fprintf(ficparo,"%1d%1d",i1,j1);          }       
       printf("%1d%1d",i,j);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       for(k=1; k<=ncovmodel;k++){            pos += pp[jk];
         fscanf(ficpar," %lf",&param[i][j][k]);            posprop += prop[jk][i];
         printf(" %lf",param[i][j][k]);          }
         fprintf(ficparo," %lf",param[i][j][k]);          for(jk=1; jk <=nlstate ; jk++){
       }            if(pos>=1.e-5){
       fscanf(ficpar,"\n");              if(first==1)
       printf("\n");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficparo,"\n");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     }            }else{
                if(first==1)
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   p=param[1][1];            }
              if( i <= iagemax){
   /* Reads comments: lines beginning with '#' */              if(pos>=1.e-5){
   while((c=getc(ficpar))=='#' && c!= EOF){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     ungetc(c,ficpar);                /*probs[i][jk][j1]= pp[jk]/pos;*/
     fgets(line, MAXLINE, ficpar);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     puts(line);              }
     fputs(line,ficparo);              else
   }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   ungetc(c,ficpar);            }
           }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          for(jk=-1; jk <=nlstate+ndeath; jk++)
   for(i=1; i <=nlstate; i++){            for(m=-1; m <=nlstate+ndeath; m++)
     for(j=1; j <=nlstate+ndeath-1; j++){              if(freq[jk][m][i] !=0 ) {
       fscanf(ficpar,"%1d%1d",&i1,&j1);              if(first==1)
       printf("%1d%1d",i,j);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       fprintf(ficparo,"%1d%1d",i1,j1);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       for(k=1; k<=ncovmodel;k++){              }
         fscanf(ficpar,"%le",&delti3[i][j][k]);          if(i <= iagemax)
         printf(" %le",delti3[i][j][k]);            fprintf(ficresp,"\n");
         fprintf(ficparo," %le",delti3[i][j][k]);          if(first==1)
       }            printf("Others in log...\n");
       fscanf(ficpar,"\n");          fprintf(ficlog,"\n");
       printf("\n");        }
       fprintf(ficparo,"\n");      }
     }    }
   }    dateintmean=dateintsum/k2cpt; 
   delti=delti3[1][1];   
      fclose(ficresp);
   /* Reads comments: lines beginning with '#' */    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(pp,1,nlstate);
     ungetc(c,ficpar);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     fgets(line, MAXLINE, ficpar);    /* End of Freq */
     puts(line);  }
     fputs(line,ficparo);  
   }  /************ Prevalence ********************/
   ungetc(c,ficpar);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    {  
   matcov=matrix(1,npar,1,npar);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   for(i=1; i <=npar; i++){       in each health status at the date of interview (if between dateprev1 and dateprev2).
     fscanf(ficpar,"%s",&str);       We still use firstpass and lastpass as another selection.
     printf("%s",str);    */
     fprintf(ficparo,"%s",str);   
     for(j=1; j <=i; j++){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       fscanf(ficpar," %le",&matcov[i][j]);    double ***freq; /* Frequencies */
       printf(" %.5le",matcov[i][j]);    double *pp, **prop;
       fprintf(ficparo," %.5le",matcov[i][j]);    double pos,posprop; 
     }    double  y2; /* in fractional years */
     fscanf(ficpar,"\n");    int iagemin, iagemax;
     printf("\n");  
     fprintf(ficparo,"\n");    iagemin= (int) agemin;
   }    iagemax= (int) agemax;
   for(i=1; i <=npar; i++)    /*pp=vector(1,nlstate);*/
     for(j=i+1;j<=npar;j++)    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       matcov[i][j]=matcov[j][i];    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
        j1=0;
   printf("\n");    
     j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     /*-------- data file ----------*/    
     if((ficres =fopen(fileres,"w"))==NULL) {    for(k1=1; k1<=j;k1++){
       printf("Problem with resultfile: %s\n", fileres);goto end;      for(i1=1; i1<=ncodemax[k1];i1++){
     }        j1++;
     fprintf(ficres,"#%s\n",version);        
            for (i=1; i<=nlstate; i++)  
     if((fic=fopen(datafile,"r"))==NULL)    {          for(m=iagemin; m <= iagemax+3; m++)
       printf("Problem with datafile: %s\n", datafile);goto end;            prop[i][m]=0.0;
     }       
         for (i=1; i<=imx; i++) { /* Each individual */
     n= lastobs;          bool=1;
     severity = vector(1,maxwav);          if  (cptcovn>0) {
     outcome=imatrix(1,maxwav+1,1,n);            for (z1=1; z1<=cptcoveff; z1++) 
     num=ivector(1,n);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     moisnais=vector(1,n);                bool=0;
     annais=vector(1,n);          } 
     moisdc=vector(1,n);          if (bool==1) { 
     andc=vector(1,n);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     agedc=vector(1,n);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     cod=ivector(1,n);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     weight=vector(1,n);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     mint=matrix(1,maxwav,1,n);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     anint=matrix(1,maxwav,1,n);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     s=imatrix(1,maxwav+1,1,n);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     adl=imatrix(1,maxwav+1,1,n);                      prop[s[m][i]][(int)agev[m][i]] += weight[i];
     tab=ivector(1,NCOVMAX);                  prop[s[m][i]][iagemax+3] += weight[i]; 
     ncodemax=ivector(1,8);                } 
               }
     i=1;            } /* end selection of waves */
     while (fgets(line, MAXLINE, fic) != NULL)    {          }
       if ((i >= firstobs) && (i <=lastobs)) {        }
                for(i=iagemin; i <= iagemax+3; i++){  
         for (j=maxwav;j>=1;j--){          
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           strcpy(line,stra);            posprop += prop[jk][i]; 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          } 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }          for(jk=1; jk <=nlstate ; jk++){     
                    if( i <=  iagemax){ 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              if(posprop>=1.e-5){ 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            } 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          }/* end jk */ 
         }/* end i */ 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      } /* end i1 */
         for (j=ncov;j>=1;j--){    } /* end k1 */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    
         }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         num[i]=atol(stra);    /*free_vector(pp,1,nlstate);*/
            free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  }  /* End of prevalence */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
   /************* Waves Concatenation ***************/
         i=i+1;  
       }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     }  {
     /* printf("ii=%d", ij);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        scanf("%d",i);*/       Death is a valid wave (if date is known).
   imx=i-1; /* Number of individuals */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   /* for (i=1; i<=imx; i++){       and mw[mi+1][i]. dh depends on stepm.
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;       */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    int i, mi, m;
     }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
     for (i=1; i<=imx; i++)    int first;
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    int j, k=0,jk, ju, jl;
     double sum=0.;
   /* Calculation of the number of parameter from char model*/    first=0;
   Tvar=ivector(1,15);    jmin=1e+5;
   Tprod=ivector(1,15);    jmax=-1;
   Tvaraff=ivector(1,15);    jmean=0.;
   Tvard=imatrix(1,15,1,2);    for(i=1; i<=imx; i++){
   Tage=ivector(1,15);            mi=0;
          m=firstpass;
   if (strlen(model) >1){      while(s[m][i] <= nlstate){
     j=0, j1=0, k1=1, k2=1;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     j=nbocc(model,'+');          mw[++mi][i]=m;
     j1=nbocc(model,'*');        if(m >=lastpass)
     cptcovn=j+1;          break;
     cptcovprod=j1;        else
              m++;
          }/* end while */
     strcpy(modelsav,model);      if (s[m][i] > nlstate){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        mi++;     /* Death is another wave */
       printf("Error. Non available option model=%s ",model);        /* if(mi==0)  never been interviewed correctly before death */
       goto end;           /* Only death is a correct wave */
     }        mw[mi][i]=m;
          }
     for(i=(j+1); i>=1;i--){  
       cutv(stra,strb,modelsav,'+');      wav[i]=mi;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      if(mi==0){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        nbwarn++;
       /*scanf("%d",i);*/        if(first==0){
       if (strchr(strb,'*')) {          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         cutv(strd,strc,strb,'*');          first=1;
         if (strcmp(strc,"age")==0) {        }
           cptcovprod--;        if(first==1){
           cutv(strb,stre,strd,'V');          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
           Tvar[i]=atoi(stre);        }
           cptcovage++;      } /* end mi==0 */
             Tage[cptcovage]=i;    } /* End individuals */
             /*printf("stre=%s ", stre);*/  
         }    for(i=1; i<=imx; i++){
         else if (strcmp(strd,"age")==0) {      for(mi=1; mi<wav[i];mi++){
           cptcovprod--;        if (stepm <=0)
           cutv(strb,stre,strc,'V');          dh[mi][i]=1;
           Tvar[i]=atoi(stre);        else{
           cptcovage++;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           Tage[cptcovage]=i;            if (agedc[i] < 2*AGESUP) {
         }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         else {              if(j==0) j=1;  /* Survives at least one month after exam */
           cutv(strb,stre,strc,'V');              else if(j<0){
           Tvar[i]=ncov+k1;                nberr++;
           cutv(strb,strc,strd,'V');                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           Tprod[k1]=i;                j=1; /* Temporary Dangerous patch */
           Tvard[k1][1]=atoi(strc);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           Tvard[k1][2]=atoi(stre);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           Tvar[cptcovn+k2]=Tvard[k1][1];                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];              }
           for (k=1; k<=lastobs;k++)              k=k+1;
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];              if (j >= jmax) jmax=j;
           k1++;              if (j <= jmin) jmin=j;
           k2=k2+2;              sum=sum+j;
         }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       else {            }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          }
        /*  scanf("%d",i);*/          else{
       cutv(strd,strc,strb,'V');            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       Tvar[i]=atoi(strc);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       }  
       strcpy(modelsav,stra);              k=k+1;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            if (j >= jmax) jmax=j;
         scanf("%d",i);*/            else if (j <= jmin)jmin=j;
     }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
              if(j<0){
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              nberr++;
   printf("cptcovprod=%d ", cptcovprod);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   scanf("%d ",i);*/              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fclose(fic);            }
             sum=sum+j;
     /*  if(mle==1){*/          }
     if (weightopt != 1) { /* Maximisation without weights*/          jk= j/stepm;
       for(i=1;i<=n;i++) weight[i]=1.0;          jl= j -jk*stepm;
     }          ju= j -(jk+1)*stepm;
     /*-calculation of age at interview from date of interview and age at death -*/          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     agev=matrix(1,maxwav,1,imx);            if(jl==0){
               dh[mi][i]=jk;
    for (i=1; i<=imx; i++)              bh[mi][i]=0;
      for(m=2; (m<= maxwav); m++)            }else{ /* We want a negative bias in order to only have interpolation ie
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){                    * at the price of an extra matrix product in likelihood */
          anint[m][i]=9999;              dh[mi][i]=jk+1;
          s[m][i]=-1;              bh[mi][i]=ju;
        }            }
              }else{
     for (i=1; i<=imx; i++)  {            if(jl <= -ju){
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);              dh[mi][i]=jk;
       for(m=1; (m<= maxwav); m++){              bh[mi][i]=jl;       /* bias is positive if real duration
         if(s[m][i] >0){                                   * is higher than the multiple of stepm and negative otherwise.
           if (s[m][i] == nlstate+1) {                                   */
             if(agedc[i]>0)            }
               if(moisdc[i]!=99 && andc[i]!=9999)            else{
               agev[m][i]=agedc[i];              dh[mi][i]=jk+1;
             else {              bh[mi][i]=ju;
               if (andc[i]!=9999){            }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            if(dh[mi][i]==0){
               agev[m][i]=-1;              dh[mi][i]=1; /* At least one step */
               }              bh[mi][i]=ju; /* At least one step */
             }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           }            }
           else if(s[m][i] !=9){ /* Should no more exist */          } /* end if mle */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        }
             if(mint[m][i]==99 || anint[m][i]==9999)      } /* end wave */
               agev[m][i]=1;    }
             else if(agev[m][i] <agemin){    jmean=sum/k;
               agemin=agev[m][i];    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
             }   }
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];  /*********** Tricode ****************************/
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  void tricode(int *Tvar, int **nbcode, int imx)
             }  {
             /*agev[m][i]=anint[m][i]-annais[i];*/    
             /*   agev[m][i] = age[i]+2*m;*/    int Ndum[20],ij=1, k, j, i, maxncov=19;
           }    int cptcode=0;
           else { /* =9 */    cptcoveff=0; 
             agev[m][i]=1;   
             s[m][i]=-1;    for (k=0; k<maxncov; k++) Ndum[k]=0;
           }    for (k=1; k<=7; k++) ncodemax[k]=0;
         }  
         else /*= 0 Unknown */    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
           agev[m][i]=1;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       }                                 modality*/ 
            ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     }        Ndum[ij]++; /*store the modality */
     for (i=1; i<=imx; i++)  {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       for(m=1; (m<= maxwav); m++){        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
         if (s[m][i] > (nlstate+ndeath)) {                                         Tvar[j]. If V=sex and male is 0 and 
           printf("Error: Wrong value in nlstate or ndeath\n");                                           female is 1, then  cptcode=1.*/
           goto end;      }
         }  
       }      for (i=0; i<=cptcode; i++) {
     }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
       ij=1; 
     free_vector(severity,1,maxwav);      for (i=1; i<=ncodemax[j]; i++) {
     free_imatrix(outcome,1,maxwav+1,1,n);        for (k=0; k<= maxncov; k++) {
     free_vector(moisnais,1,n);          if (Ndum[k] != 0) {
     free_vector(annais,1,n);            nbcode[Tvar[j]][ij]=k; 
     /* free_matrix(mint,1,maxwav,1,n);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
        free_matrix(anint,1,maxwav,1,n);*/            
     free_vector(moisdc,1,n);            ij++;
     free_vector(andc,1,n);          }
           if (ij > ncodemax[j]) break; 
            }  
     wav=ivector(1,imx);      } 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    }  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
       for (k=0; k< maxncov; k++) Ndum[k]=0;
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
       Tcode=ivector(1,100);     Ndum[ij]++;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   }
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);   ij=1;
         for (i=1; i<= maxncov; i++) {
    codtab=imatrix(1,100,1,10);     if((Ndum[i]!=0) && (i<=ncovcol)){
    h=0;       Tvaraff[ij]=i; /*For printing */
    m=pow(2,cptcoveff);       ij++;
       }
    for(k=1;k<=cptcoveff; k++){   }
      for(i=1; i <=(m/pow(2,k));i++){   
        for(j=1; j <= ncodemax[k]; j++){   cptcoveff=ij-1; /*Number of simple covariates*/
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  }
            h++;  
            if (h>m) h=1;codtab[h][k]=j;  /*********** Health Expectancies ****************/
          }  
        }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
      }  
    }  {
        /* Health expectancies */
    /* Calculates basic frequencies. Computes observed prevalence at single age    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
        and prints on file fileres'p'. */    double age, agelim, hf;
     double ***p3mat,***varhe;
        double **dnewm,**doldm;
        double *xp;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double **gp, **gm;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***gradg, ***trgradg;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int theta;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
          xp=vector(1,npar);
     /* For Powell, parameters are in a vector p[] starting at p[1]    dnewm=matrix(1,nlstate*nlstate,1,npar);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    
     fprintf(ficreseij,"# Local time at start: %s", strstart);
     if(mle==1){    fprintf(ficreseij,"# Health expectancies\n");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    fprintf(ficreseij,"# Age");
     }    for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
     /*--------- results files --------------*/        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    fprintf(ficreseij,"\n");
    
     if(estepm < stepm){
    jk=1;      printf ("Problem %d lower than %d\n",estepm, stepm);
    fprintf(ficres,"# Parameters\n");    }
    printf("# Parameters\n");    else  hstepm=estepm;   
    for(i=1,jk=1; i <=nlstate; i++){    /* We compute the life expectancy from trapezoids spaced every estepm months
      for(k=1; k <=(nlstate+ndeath); k++){     * This is mainly to measure the difference between two models: for example
        if (k != i)     * if stepm=24 months pijx are given only every 2 years and by summing them
          {     * we are calculating an estimate of the Life Expectancy assuming a linear 
            printf("%d%d ",i,k);     * progression in between and thus overestimating or underestimating according
            fprintf(ficres,"%1d%1d ",i,k);     * to the curvature of the survival function. If, for the same date, we 
            for(j=1; j <=ncovmodel; j++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
              printf("%f ",p[jk]);     * to compare the new estimate of Life expectancy with the same linear 
              fprintf(ficres,"%f ",p[jk]);     * hypothesis. A more precise result, taking into account a more precise
              jk++;     * curvature will be obtained if estepm is as small as stepm. */
            }  
            printf("\n");    /* For example we decided to compute the life expectancy with the smallest unit */
            fprintf(ficres,"\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
          }       nhstepm is the number of hstepm from age to agelim 
      }       nstepm is the number of stepm from age to agelin. 
    }       Look at hpijx to understand the reason of that which relies in memory size
  if(mle==1){       and note for a fixed period like estepm months */
     /* Computing hessian and covariance matrix */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     ftolhess=ftol; /* Usually correct */       survival function given by stepm (the optimization length). Unfortunately it
     hesscov(matcov, p, npar, delti, ftolhess, func);       means that if the survival funtion is printed only each two years of age and if
  }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fprintf(ficres,"# Scales\n");       results. So we changed our mind and took the option of the best precision.
     printf("# Scales\n");    */
      for(i=1,jk=1; i <=nlstate; i++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {    agelim=AGESUP;
           fprintf(ficres,"%1d%1d",i,j);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           printf("%1d%1d",i,j);      /* nhstepm age range expressed in number of stepm */
           for(k=1; k<=ncovmodel;k++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
             printf(" %.5e",delti[jk]);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             fprintf(ficres," %.5e",delti[jk]);      /* if (stepm >= YEARM) hstepm=1;*/
             jk++;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           printf("\n");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           fprintf(ficres,"\n");      gp=matrix(0,nhstepm,1,nlstate*nlstate);
         }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
       }  
      }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
             in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     k=1;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     fprintf(ficres,"# Covariance\n");   
     printf("# Covariance\n");  
     for(i=1;i<=npar;i++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       /*  if (k>nlstate) k=1;  
       i1=(i-1)/(ncovmodel*nlstate)+1;      /* Computing  Variances of health expectancies */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/       for(theta=1; theta <=npar; theta++){
       fprintf(ficres,"%3d",i);        for(i=1; i<=npar; i++){ 
       printf("%3d",i);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(j=1; j<=i;j++){        }
         fprintf(ficres," %.5e",matcov[i][j]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         printf(" %.5e",matcov[i][j]);    
       }        cptj=0;
       fprintf(ficres,"\n");        for(j=1; j<= nlstate; j++){
       printf("\n");          for(i=1; i<=nlstate; i++){
       k++;            cptj=cptj+1;
     }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                  gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     while((c=getc(ficpar))=='#' && c!= EOF){            }
       ungetc(c,ficpar);          }
       fgets(line, MAXLINE, ficpar);        }
       puts(line);       
       fputs(line,ficparo);       
     }        for(i=1; i<=npar; i++) 
     ungetc(c,ficpar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        
            cptj=0;
     if (fage <= 2) {        for(j=1; j<= nlstate; j++){
       bage = agemin;          for(i=1;i<=nlstate;i++){
       fage = agemax;            cptj=cptj+1;
     }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   
     fprintf(ficres,"# agemin agemax for life expectancy.\n");              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        }
          for(j=1; j<= nlstate*nlstate; j++)
     while((c=getc(ficpar))=='#' && c!= EOF){          for(h=0; h<=nhstepm-1; h++){
     ungetc(c,ficpar);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     fgets(line, MAXLINE, ficpar);          }
     puts(line);       } 
     fputs(line,ficparo);     
   }  /* End theta */
   ungetc(c,ficpar);  
         trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);       for(h=0; h<=nhstepm-1; h++)
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        for(j=1; j<=nlstate*nlstate;j++)
                for(theta=1; theta <=npar; theta++)
   while((c=getc(ficpar))=='#' && c!= EOF){            trgradg[h][j][theta]=gradg[h][theta][j];
     ungetc(c,ficpar);       
     fgets(line, MAXLINE, ficpar);  
     puts(line);       for(i=1;i<=nlstate*nlstate;i++)
     fputs(line,ficparo);        for(j=1;j<=nlstate*nlstate;j++)
   }          varhe[i][j][(int)age] =0.;
   ungetc(c,ficpar);  
         printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;       for(h=0;h<=nhstepm-1;h++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   fscanf(ficpar,"pop_based=%d\n",&popbased);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
    fprintf(ficparo,"pop_based=%d\n",popbased);            for(i=1;i<=nlstate*nlstate;i++)
    fprintf(ficres,"pop_based=%d\n",popbased);              for(j=1;j<=nlstate*nlstate;j++)
               varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);      /* Computing expectancies */
     puts(line);      for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);        for(j=1; j<=nlstate;j++)
   }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   ungetc(c,ficpar);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);            
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);  
           }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);  
       fprintf(ficreseij,"%3.0f",age );
  /*------------ gnuplot -------------*/      cptj=0;
 chdir(pathcd);      for(i=1; i<=nlstate;i++)
   if((ficgp=fopen("graph.plt","w"))==NULL) {        for(j=1; j<=nlstate;j++){
     printf("Problem with file graph.gp");goto end;          cptj++;
   }          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 #ifdef windows        }
   fprintf(ficgp,"cd \"%s\" \n",pathc);      fprintf(ficreseij,"\n");
 #endif     
 m=pow(2,cptcoveff);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
        free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
  /* 1eme*/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   for (cpt=1; cpt<= nlstate ; cpt ++) {      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
    for (k1=1; k1<= m ; k1 ++) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }
 #ifdef windows    printf("\n");
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    fprintf(ficlog,"\n");
 #endif  
 #ifdef unix    free_vector(xp,1,npar);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 #endif    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 for (i=1; i<= nlstate ; i ++) {  }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /************ Variance ******************/
 }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  {
     for (i=1; i<= nlstate ; i ++) {    /* Variance of health expectancies */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* double **newm;*/
 }    double **dnewm,**doldm;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    double **dnewmp,**doldmp;
      for (i=1; i<= nlstate ; i ++) {    int i, j, nhstepm, hstepm, h, nstepm ;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    int k, cptcode;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double *xp;
 }      double **gp, **gm;  /* for var eij */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    double ***gradg, ***trgradg; /*for var eij */
 #ifdef unix    double **gradgp, **trgradgp; /* for var p point j */
 fprintf(ficgp,"\nset ter gif small size 400,300");    double *gpp, *gmp; /* for var p point j */
 #endif    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    double ***p3mat;
    }    double age,agelim, hf;
   }    double ***mobaverage;
   /*2 eme*/    int theta;
     char digit[4];
   for (k1=1; k1<= m ; k1 ++) {    char digitp[25];
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  
        char fileresprobmorprev[FILENAMELENGTH];
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;    if(popbased==1){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      if(mobilav!=0)
       for (j=1; j<= nlstate+1 ; j ++) {        strcpy(digitp,"-populbased-mobilav-");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      else strcpy(digitp,"-populbased-nomobil-");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      else 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      strcpy(digitp,"-stablbased-");
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    if (mobilav!=0) {
       for (j=1; j<= nlstate+1 ; j ++) {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 }          printf(" Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficgp,"\" t\"\" w l 0,");      }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    strcpy(fileresprobmorprev,"prmorprev"); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    sprintf(digit,"%-d",ij);
 }      /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       else fprintf(ficgp,"\" t\"\" w l 0,");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     }    strcat(fileresprobmorprev,fileres);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   /*3eme*/    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   for (k1=1; k1<= m ; k1 ++) {   
     for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       k=2+nlstate*(cpt-1);    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       for (i=1; i< nlstate ; i ++) {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       }      fprintf(ficresprobmorprev," p.%-d SE",j);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      for(i=1; i<=nlstate;i++)
     }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   }    }  
      fprintf(ficresprobmorprev,"\n");
   /* CV preval stat */    fprintf(ficgp,"\n# Routine varevsij");
   for (k1=1; k1<= m ; k1 ++) {   fprintf(fichtm, "#Local time at start: %s", strstart);
     for (cpt=1; cpt<nlstate ; cpt ++) {    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       k=3;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);  /*   } */
       for (i=1; i< nlstate ; i ++)    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficgp,"+$%d",k+i+1);   fprintf(ficresvij, "#Local time at start: %s", strstart);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
          fprintf(ficresvij,"# Age");
       l=3+(nlstate+ndeath)*cpt;    for(i=1; i<=nlstate;i++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      for(j=1; j<=nlstate;j++)
       for (i=1; i< nlstate ; i ++) {        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
         l=3+(nlstate+ndeath)*cpt;    fprintf(ficresvij,"\n");
         fprintf(ficgp,"+$%d",l+i+1);  
       }    xp=vector(1,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      dnewm=matrix(1,nlstate,1,npar);
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    doldm=matrix(1,nlstate,1,nlstate);
     }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   }      doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
   /* proba elementaires */    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
    for(i=1,jk=1; i <=nlstate; i++){    gpp=vector(nlstate+1,nlstate+ndeath);
     for(k=1; k <=(nlstate+ndeath); k++){    gmp=vector(nlstate+1,nlstate+ndeath);
       if (k != i) {    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         for(j=1; j <=ncovmodel; j++){    
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    if(estepm < stepm){
           /*fprintf(ficgp,"%s",alph[1]);*/      printf ("Problem %d lower than %d\n",estepm, stepm);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    }
           jk++;    else  hstepm=estepm;   
           fprintf(ficgp,"\n");    /* For example we decided to compute the life expectancy with the smallest unit */
         }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
     }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
   for(jk=1; jk <=m; jk++) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);       survival function given by stepm (the optimization length). Unfortunately it
    i=1;       means that if the survival funtion is printed every two years of age and if
    for(k2=1; k2<=nlstate; k2++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      k3=i;       results. So we changed our mind and took the option of the best precision.
      for(k=1; k<=(nlstate+ndeath); k++) {    */
        if (k != k2){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    agelim = AGESUP;
 ij=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         for(j=3; j <=ncovmodel; j++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             ij++;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           }      gp=matrix(0,nhstepm,1,nlstate);
           else      gm=matrix(0,nhstepm,1,nlstate);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
         }  
           fprintf(ficgp,")/(1");      for(theta=1; theta <=npar; theta++){
                for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         for(k1=1; k1 <=nlstate; k1++){            xp[i] = x[i] + (i==theta ?delti[theta]:0);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        }
 ij=1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           for(j=3; j <=ncovmodel; j++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        if (popbased==1) {
             ij++;          if(mobilav ==0){
           }            for(i=1; i<=nlstate;i++)
           else              prlim[i][i]=probs[(int)age][i][ij];
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }else{ /* mobilav */ 
           }            for(i=1; i<=nlstate;i++)
           fprintf(ficgp,")");              prlim[i][i]=mobaverage[(int)age][i][ij];
         }          }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        }
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    
         i=i+ncovmodel;        for(j=1; j<= nlstate; j++){
        }          for(h=0; h<=nhstepm; h++){
      }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
    }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          }
   }        }
            /* This for computing probability of death (h=1 means
   fclose(ficgp);           computed over hstepm matrices product = hstepm*stepm months) 
               as a weighted average of prlim.
 chdir(path);        */
            for(j=nlstate+1;j<=nlstate+ndeath;j++){
     free_ivector(wav,1,imx);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          }    
     free_ivector(num,1,n);        /* end probability of death */
     free_vector(agedc,1,n);  
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     fclose(ficparo);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fclose(ficres);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     /*  }*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       
    /*________fin mle=1_________*/        if (popbased==1) {
              if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
     /* No more information from the sample is required now */          }else{ /* mobilav */ 
   /* Reads comments: lines beginning with '#' */            for(i=1; i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){              prlim[i][i]=mobaverage[(int)age][i][ij];
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);        }
     puts(line);  
     fputs(line,ficparo);        for(j=1; j<= nlstate; j++){
   }          for(h=0; h<=nhstepm; h++){
   ungetc(c,ficpar);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          }
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);        }
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        /* This for computing probability of death (h=1 means
 /*--------- index.htm --------*/           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   strcpy(optionfilehtm,optionfile);        */
   strcat(optionfilehtm,".htm");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     printf("Problem with %s \n",optionfilehtm);goto end;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
         /* end probability of death */
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">  
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>        for(j=1; j<= nlstate; j++) /* vareij */
 Total number of observations=%d <br>          for(h=0; h<=nhstepm; h++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 <hr  size=\"2\" color=\"#EC5E5E\">          }
 <li>Outputs files<br><br>\n  
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>        }
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>  
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>      } /* End theta */
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>  
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>  
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>      for(h=0; h<=nhstepm; h++) /* veij */
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>        for(j=1; j<=nlstate;j++)
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
  fprintf(fichtm," <li>Graphs</li><p>");  
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
  m=cptcoveff;        for(theta=1; theta <=npar; theta++)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          trgradgp[j][theta]=gradgp[theta][j];
     
  j1=0;  
  for(k1=1; k1<=m;k1++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    for(i1=1; i1<=ncodemax[k1];i1++){      for(i=1;i<=nlstate;i++)
        j1++;        for(j=1;j<=nlstate;j++)
        if (cptcovn > 0) {          vareij[i][j][(int)age] =0.;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
          for (cpt=1; cpt<=cptcoveff;cpt++)      for(h=0;h<=nhstepm;h++){
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);        for(k=0;k<=nhstepm;k++){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
        }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          for(i=1;i<=nlstate;i++)
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                for(j=1;j<=nlstate;j++)
        for(cpt=1; cpt<nlstate;cpt++){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        }
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      }
        }    
     for(cpt=1; cpt<=nlstate;cpt++) {      /* pptj */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 interval) in state (%d): v%s%d%d.gif <br>      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        for(j=nlstate+1;j<=nlstate+ndeath;j++)
      }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
      for(cpt=1; cpt<=nlstate;cpt++) {          varppt[j][i]=doldmp[j][i];
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      /* end ppptj */
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      /*  x centered again */
      }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 health expectancies in states (1) and (2): e%s%d.gif<br>   
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      if (popbased==1) {
 fprintf(fichtm,"\n</body>");        if(mobilav ==0){
    }          for(i=1; i<=nlstate;i++)
  }            prlim[i][i]=probs[(int)age][i][ij];
 fclose(fichtm);        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
   /*--------------- Prevalence limit --------------*/            prlim[i][i]=mobaverage[(int)age][i][ij];
          }
   strcpy(filerespl,"pl");      }
   strcat(filerespl,fileres);               
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      /* This for computing probability of death (h=1 means
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   }         as a weighted average of prlim.
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      */
   fprintf(ficrespl,"#Prevalence limit\n");      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fprintf(ficrespl,"#Age ");        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   fprintf(ficrespl,"\n");      }    
        /* end probability of death */
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1; i<=nlstate;i++){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   k=0;        }
   agebase=agemin;      } 
   agelim=agemax;      fprintf(ficresprobmorprev,"\n");
   ftolpl=1.e-10;  
   i1=cptcoveff;      fprintf(ficresvij,"%.0f ",age );
   if (cptcovn < 1){i1=1;}      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
         k=k+1;      fprintf(ficresvij,"\n");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      free_matrix(gp,0,nhstepm,1,nlstate);
         fprintf(ficrespl,"\n#******");      free_matrix(gm,0,nhstepm,1,nlstate);
         for(j=1;j<=cptcoveff;j++)      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         fprintf(ficrespl,"******\n");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            } /* End age */
         for (age=agebase; age<=agelim; age++){    free_vector(gpp,nlstate+1,nlstate+ndeath);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    free_vector(gmp,nlstate+1,nlstate+ndeath);
           fprintf(ficrespl,"%.0f",age );    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           for(i=1; i<=nlstate;i++)    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           fprintf(ficrespl," %.5f", prlim[i][i]);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           fprintf(ficrespl,"\n");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         }    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   fclose(ficrespl);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   /*------------- h Pij x at various ages ------------*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   }  */
   printf("Computing pij: result on file '%s' \n", filerespij);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
      fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
   agelim=AGESUP;    free_matrix(dnewm,1,nlstate,1,npar);
   hstepm=stepsize*YEARM; /* Every year of age */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   k=0;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   for(cptcov=1;cptcov<=i1;cptcov++){    fclose(ficresprobmorprev);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fflush(ficgp);
       k=k+1;    fflush(fichtm); 
         fprintf(ficrespij,"\n#****** ");  }  /* end varevsij */
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /************ Variance of prevlim ******************/
         fprintf(ficrespij,"******\n");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
          {
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    /* Variance of prevalence limit */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double **newm;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **dnewm,**doldm;
           oldm=oldms;savm=savms;    int i, j, nhstepm, hstepm;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int k, cptcode;
           fprintf(ficrespij,"# Age");    double *xp;
           for(i=1; i<=nlstate;i++)    double *gp, *gm;
             for(j=1; j<=nlstate+ndeath;j++)    double **gradg, **trgradg;
               fprintf(ficrespij," %1d-%1d",i,j);    double age,agelim;
           fprintf(ficrespij,"\n");    int theta;
           for (h=0; h<=nhstepm; h++){    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
             for(i=1; i<=nlstate;i++)    fprintf(ficresvpl,"# Age");
               for(j=1; j<=nlstate+ndeath;j++)    for(i=1; i<=nlstate;i++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        fprintf(ficresvpl," %1d-%1d",i,i);
             fprintf(ficrespij,"\n");    fprintf(ficresvpl,"\n");
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    xp=vector(1,npar);
           fprintf(ficrespij,"\n");    dnewm=matrix(1,nlstate,1,npar);
         }    doldm=matrix(1,nlstate,1,nlstate);
     }    
   }    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fclose(ficrespij);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
   /*---------- Forecasting ------------------*/      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
   strcpy(fileresf,"f");        for(i=1; i<=npar; i++){ /* Computes gradient */
   strcat(fileresf,fileres);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if((ficresf=fopen(fileresf,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }        for(i=1;i<=nlstate;i++)
   printf("Computing forecasting: result on file '%s' \n", fileresf);          gp[i] = prlim[i][i];
       
   free_matrix(mint,1,maxwav,1,n);        for(i=1; i<=npar; i++) /* Computes gradient */
   free_matrix(anint,1,maxwav,1,n);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   free_matrix(agev,1,maxwav,1,imx);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* Mobile average */        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
         for(i=1;i<=nlstate;i++)
   if (mobilav==1) {          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      } /* End theta */
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)  
       for (i=1; i<=nlstate;i++)      trgradg =matrix(1,nlstate,1,npar);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;      for(j=1; j<=nlstate;j++)
            for(theta=1; theta <=npar; theta++)
     for (agedeb=bage+4; agedeb<=fage; agedeb++){          trgradg[j][theta]=gradg[theta][j];
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for(i=1;i<=nlstate;i++)
           for (cpt=0;cpt<=4;cpt++){        varpl[i][(int)age] =0.;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
           }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      for(i=1;i<=nlstate;i++)
         }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       }  
     }        fprintf(ficresvpl,"%.0f ",age );
   }      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficresvpl,"\n");
   if (stepm<=12) stepsize=1;      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
   agelim=AGESUP;      free_matrix(gradg,1,npar,1,nlstate);
   /*hstepm=stepsize*YEARM; *//* Every year of age */      free_matrix(trgradg,1,nlstate,1,npar);
   hstepm=1;    } /* End age */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */  
   yp1=modf(dateintmean,&yp);    free_vector(xp,1,npar);
   anprojmean=yp;    free_matrix(doldm,1,nlstate,1,npar);
   yp2=modf((yp1*12),&yp);    free_matrix(dnewm,1,nlstate,1,nlstate);
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);  }
   jprojmean=yp;  
   fprintf(ficresf,"Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   if (popforecast==1) {  {
     if((ficpop=fopen(popfile,"r"))==NULL)    {    int i, j=0,  i1, k1, l1, t, tj;
       printf("Problem with population file : %s\n",popfile);goto end;    int k2, l2, j1,  z1;
     }    int k=0,l, cptcode;
     popage=ivector(0,AGESUP);    int first=1, first1;
     popeffectif=vector(0,AGESUP);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     popcount=vector(0,AGESUP);    double **dnewm,**doldm;
     double *xp;
     i=1;      double *gp, *gm;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)    double **gradg, **trgradg;
       {    double **mu;
         i=i+1;    double age,agelim, cov[NCOVMAX];
       }    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     imx=i;    int theta;
        char fileresprob[FILENAMELENGTH];
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    char fileresprobcov[FILENAMELENGTH];
   }    char fileresprobcor[FILENAMELENGTH];
   
   for(cptcov=1;cptcov<=i1;cptcov++){    double ***varpij;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    strcpy(fileresprob,"prob"); 
       fprintf(ficresf,"\n#******");    strcat(fileresprob,fileres);
       for(j=1;j<=cptcoveff;j++) {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Problem with resultfile: %s\n", fileresprob);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       fprintf(ficresf,"******\n");    }
       fprintf(ficresf,"# StartingAge FinalAge");    strcpy(fileresprobcov,"probcov"); 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    strcat(fileresprobcov,fileres);
       if (popforecast==1)  fprintf(ficresf," [Population]");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcov);
       for (cpt=0; cpt<=1;cpt++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
         fprintf(ficresf,"\n");    }
   fprintf(ficresf,"\nForecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      strcpy(fileresprobcor,"probcor"); 
       for (agedeb=(fage-(1/12.)); agedeb>=(bage-(1/12.)); agedeb--){ /* If stepm=6 months */    strcat(fileresprobcor,fileres);
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
         nhstepm = nhstepm/hstepm;      printf("Problem with resultfile: %s\n", fileresprobcor);
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         oldm=oldms;savm=savms;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         for (h=0; h<=nhstepm; h++){    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           if (h==(int) (calagedate+12*cpt)) {    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             fprintf(ficresf,"h=%d ", h);    fprintf(ficresprob, "#Local time at start: %s", strstart);
             fprintf(ficresf,"\n %f %f ",agedeb,agedeb+h*hstepm/YEARM*stepm);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           }    fprintf(ficresprob,"# Age");
           for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
             kk1=0.;kk2=0;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
             for(i=1; i<=nlstate;i++) {            fprintf(ficresprobcov,"# Age");
               if (mobilav==1)    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
               else {    fprintf(ficresprobcov,"# Age");
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 /*  fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h],probs[(int)(agedeb)+1][i][cptcod]);*/  
               }    for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
             }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
                  fprintf(ficresprobcor," p%1d-%1d ",i,j);
             if (h==(int)(calagedate+12*cpt)){      }  
               fprintf(ficresf," %.3f", kk1);   /* fprintf(ficresprob,"\n");
                  fprintf(ficresprobcov,"\n");
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);    fprintf(ficresprobcor,"\n");
             }   */
           }   xp=vector(1,npar);
         }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     }    first=1;
   }    fprintf(ficgp,"\n# Routine varprob");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   if (popforecast==1) {    fprintf(fichtm,"\n");
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     free_vector(popcount,0,AGESUP);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   }    file %s<br>\n",optionfilehtmcov);
   free_imatrix(s,1,maxwav+1,1,n);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   free_vector(weight,1,n);  and drawn. It helps understanding how is the covariance between two incidences.\
   fclose(ficresf);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   /*---------- Health expectancies and variances ------------*/    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   strcpy(filerest,"t");  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   strcat(filerest,fileres);  standard deviations wide on each axis. <br>\
   if((ficrest=fopen(filerest,"w"))==NULL) {   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
     cov[1]=1;
     tj=cptcoveff;
   strcpy(filerese,"e");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   strcat(filerese,fileres);    j1=0;
   if((ficreseij=fopen(filerese,"w"))==NULL) {    for(t=1; t<=tj;t++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      for(i1=1; i1<=ncodemax[t];i1++){ 
   }        j1++;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
  strcpy(fileresv,"v");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   strcat(fileresv,fileres);          fprintf(ficresprob, "**********\n#\n");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          fprintf(ficresprobcov, "\n#********** Variable "); 
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprobcov, "**********\n#\n");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          
           fprintf(ficgp, "\n#********** Variable "); 
   k=0;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficgp, "**********\n#\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          
       k=k+1;          
       fprintf(ficrest,"\n#****** ");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       for(j=1;j<=cptcoveff;j++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficrest,"******\n");          
           fprintf(ficresprobcor, "\n#********** Variable ");    
       fprintf(ficreseij,"\n#****** ");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(j=1;j<=cptcoveff;j++)          fprintf(ficresprobcor, "**********\n#");    
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        }
       fprintf(ficreseij,"******\n");        
         for (age=bage; age<=fage; age ++){ 
       fprintf(ficresvij,"\n#****** ");          cov[2]=age;
       for(j=1;j<=cptcoveff;j++)          for (k=1; k<=cptcovn;k++) {
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       fprintf(ficresvij,"******\n");          }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          for (k=1; k<=cptcovprod;k++)
       oldm=oldms;savm=savms;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);            
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       oldm=oldms;savm=savms;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          gp=vector(1,(nlstate)*(nlstate+ndeath));
                gm=vector(1,(nlstate)*(nlstate+ndeath));
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          for(theta=1; theta <=npar; theta++){
       fprintf(ficrest,"\n");            for(i=1; i<=npar; i++)
                      xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       hf=1;            
       if (stepm >= YEARM) hf=stepm/YEARM;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       epj=vector(1,nlstate+1);            
       for(age=bage; age <=fage ;age++){            k=0;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            for(i=1; i<= (nlstate); i++){
         if (popbased==1) {              for(j=1; j<=(nlstate+ndeath);j++){
           for(i=1; i<=nlstate;i++)                k=k+1;
             prlim[i][i]=probs[(int)age][i][k];                gp[k]=pmmij[i][j];
         }              }
                    }
         fprintf(ficrest," %.0f",age);            
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            for(i=1; i<=npar; i++)
           for(i=1, epj[j]=0.;i <=nlstate;i++) {              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];      
           }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           epj[nlstate+1] +=epj[j];            k=0;
         }            for(i=1; i<=(nlstate); i++){
         for(i=1, vepp=0.;i <=nlstate;i++)              for(j=1; j<=(nlstate+ndeath);j++){
           for(j=1;j <=nlstate;j++)                k=k+1;
             vepp += vareij[i][j][(int)age];                gm[k]=pmmij[i][j];
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));              }
         for(j=1;j <=nlstate;j++){            }
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));       
         }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
         fprintf(ficrest,"\n");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       }          }
     }  
   }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                    for(theta=1; theta <=npar; theta++)
                      trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
  fclose(ficreseij);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
  fclose(ficresvij);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   fclose(ficrest);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   fclose(ficpar);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   free_vector(epj,1,nlstate+1);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   /*  scanf("%d ",i); */  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
   /*------- Variance limit prevalence------*/            
           k=0;
 strcpy(fileresvpl,"vpl");          for(i=1; i<=(nlstate); i++){
   strcat(fileresvpl,fileres);            for(j=1; j<=(nlstate+ndeath);j++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {              k=k+1;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);              mu[k][(int) age]=pmmij[i][j];
     exit(0);            }
   }          }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
  k=0;              varpij[i][j][(int)age] = doldm[i][j];
  for(cptcov=1;cptcov<=i1;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          /*printf("\n%d ",(int)age);
      k=k+1;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
      fprintf(ficresvpl,"\n#****** ");            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
      for(j=1;j<=cptcoveff;j++)            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }*/
      fprintf(ficresvpl,"******\n");  
                fprintf(ficresprob,"\n%d ",(int)age);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);          fprintf(ficresprobcov,"\n%d ",(int)age);
      oldm=oldms;savm=savms;          fprintf(ficresprobcor,"\n%d ",(int)age);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
    }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
  }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   fclose(ficresvpl);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   /*---------- End : free ----------------*/          }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          i=0;
            for (k=1; k<=(nlstate);k++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            for (l=1; l<=(nlstate+ndeath);l++){ 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);              i=i++;
                fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              for (j=1; j<=i;j++){
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);              }
              }
   free_matrix(matcov,1,npar,1,npar);          }/* end of loop for state */
   free_vector(delti,1,npar);        } /* end of loop for age */
    
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        /* Confidence intervalle of pij  */
         /*
   printf("End of Imach\n");          fprintf(ficgp,"\nset noparametric;unset label");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
            fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   /*printf("Total time was %d uSec.\n", total_usecs);*/          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   /*------ End -----------*/          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
  end:  
 #ifdef windows        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
  chdir(pathcd);        first1=1;
 #endif        for (k2=1; k2<=(nlstate);k2++){
            for (l2=1; l2<=(nlstate+ndeath);l2++){ 
  system("..\\gp37mgw\\wgnuplot graph.plt");            if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
 #ifdef windows            for (k1=1; k1<=(nlstate);k1++){
   while (z[0] != 'q') {              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     chdir(pathcd);                if(l1==k1) continue;
     printf("\nType e to edit output files, c to start again, and q for exiting: ");                i=(k1-1)*(nlstate+ndeath)+l1;
     scanf("%s",z);                if(i<=j) continue;
     if (z[0] == 'c') system("./imach");                for (age=bage; age<=fage; age ++){ 
     else if (z[0] == 'e') {                  if ((int)age %5==0){
       chdir(path);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       system(optionfilehtm);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     else if (z[0] == 'q') exit(0);                    mu1=mu[i][(int) age]/stepm*YEARM ;
   }                    mu2=mu[j][(int) age]/stepm*YEARM;
 #endif                    c12=cv12/sqrt(v1*v2);
 }                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   lx     qx    dx    Lx     Tx     e(x)<br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.19  
changed lines
  Added in v.1.105


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>