Diff for /imach/src/imach.c between versions 1.52 and 1.200

version 1.52, 2002/07/19 18:49:30 version 1.200, 2015/09/09 16:53:55
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.200  2015/09/09 16:53:55  brouard
      Summary: Big bug thanks to Flavia
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Even model=1+age+V2. did not work anymore
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.199  2015/09/07 14:09:23  brouard
   case of a health survey which is our main interest) -2- at least a    Summary: 0.98q6 changing default small png format for graph to vectorized svg.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.198  2015/09/03 07:14:39  brouard
   computed from the time spent in each health state according to a    Summary: 0.98q5 Flavia
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.197  2015/09/01 18:24:39  brouard
   simplest model is the multinomial logistic model where pij is the    *** empty log message ***
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.196  2015/08/18 23:17:52  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Summary: 0.98q5
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.195  2015/08/18 16:28:39  brouard
   where the markup *Covariates have to be included here again* invites    Summary: Adding a hack for testing purpose
   you to do it.  More covariates you add, slower the  
   convergence.    After reading the title, ftol and model lines, if the comment line has
     a q, starting with #q, the answer at the end of the run is quit. It
   The advantage of this computer programme, compared to a simple    permits to run test files in batch with ctest. The former workaround was
   multinomial logistic model, is clear when the delay between waves is not    $ echo q | imach foo.imach
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.194  2015/08/18 13:32:00  brouard
   account using an interpolation or extrapolation.      Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.193  2015/08/04 07:17:42  brouard
   conditional to the observed state i at age x. The delay 'h' can be    Summary: 0.98q4
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.192  2015/07/16 16:49:02  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Summary: Fixing some outputs
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.191  2015/07/14 10:00:33  brouard
   hPijx.    Summary: Some fixes
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.190  2015/05/05 08:51:13  brouard
   of the life expectancies. It also computes the prevalence limits.    Summary: Adding digits in output parameters (7 digits instead of 6)
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Fix 1+age+.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.189  2015/04/30 14:45:16  brouard
   from the European Union.    Summary: 0.98q2
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.188  2015/04/30 08:27:53  brouard
   can be accessed at http://euroreves.ined.fr/imach .    *** empty log message ***
   **********************************************************************/  
      Revision 1.187  2015/04/29 09:11:15  brouard
 #include <math.h>    *** empty log message ***
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.186  2015/04/23 12:01:52  brouard
 #include <unistd.h>    Summary: V1*age is working now, version 0.98q1
   
 #define MAXLINE 256    Some codes had been disabled in order to simplify and Vn*age was
 #define GNUPLOTPROGRAM "gnuplot"    working in the optimization phase, ie, giving correct MLE parameters,
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    but, as usual, outputs were not correct and program core dumped.
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.185  2015/03/11 13:26:42  brouard
 #define windows    Summary: Inclusion of compile and links command line for Intel Compiler
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.184  2015/03/11 11:52:39  brouard
     Summary: Back from Windows 8. Intel Compiler
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.183  2015/03/10 20:34:32  brouard
     Summary: 0.98q0, trying with directest, mnbrak fixed
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    We use directest instead of original Powell test; probably no
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    incidence on the results, but better justifications;
 #define NCOVMAX 8 /* Maximum number of covariates */    We fixed Numerical Recipes mnbrak routine which was wrong and gave
 #define MAXN 20000    wrong results.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.182  2015/02/12 08:19:57  brouard
 #define AGEBASE 40    Summary: Trying to keep directest which seems simpler and more general
 #ifdef windows    Author: Nicolas Brouard
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.181  2015/02/11 23:22:24  brouard
 #else    Summary: Comments on Powell added
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Author:
 #endif  
     Revision 1.180  2015/02/11 17:33:45  brouard
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Summary: Finishing move from main to function (hpijx and prevalence_limit)
 int erreur; /* Error number */  
 int nvar;    Revision 1.179  2015/01/04 09:57:06  brouard
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Summary: back to OS/X
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.178  2015/01/04 09:35:48  brouard
 int ndeath=1; /* Number of dead states */    *** empty log message ***
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.177  2015/01/03 18:40:56  brouard
     Summary: Still testing ilc32 on OSX
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.176  2015/01/03 16:45:04  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    *** empty log message ***
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.175  2015/01/03 16:33:42  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    *** empty log message ***
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.174  2015/01/03 16:15:49  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Summary: Still in cross-compilation
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog;    Revision 1.173  2015/01/03 12:06:26  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Summary: trying to detect cross-compilation
 FILE *ficresprobmorprev;  
 FILE *fichtm; /* Html File */    Revision 1.172  2014/12/27 12:07:47  brouard
 FILE *ficreseij;    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.171  2014/12/23 13:26:59  brouard
 char fileresv[FILENAMELENGTH];    Summary: Back from Visual C
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Still problem with utsname.h on Windows
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.170  2014/12/23 11:17:12  brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Summary: Cleaning some \%% back to %%
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    The escape was mandatory for a specific compiler (which one?), but too many warnings.
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];    Revision 1.169  2014/12/22 23:08:31  brouard
 char fileregp[FILENAMELENGTH];    Summary: 0.98p
 char popfile[FILENAMELENGTH];  
     Outputs some informations on compiler used, OS etc. Testing on different platforms.
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.168  2014/12/22 15:17:42  brouard
 #define NR_END 1    Summary: update
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.167  2014/12/22 13:50:56  brouard
     Summary: Testing uname and compiler version and if compiled 32 or 64
 #define NRANSI  
 #define ITMAX 200    Testing on Linux 64
   
 #define TOL 2.0e-4    Revision 1.166  2014/12/22 11:40:47  brouard
     *** empty log message ***
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.165  2014/12/16 11:20:36  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Summary: After compiling on Visual C
   
 #define GOLD 1.618034    * imach.c (Module): Merging 1.61 to 1.162
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.164  2014/12/16 10:52:11  brouard
     Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Module): Merging 1.61 to 1.162
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.163  2014/12/16 10:30:11  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    * imach.c (Module): Merging 1.61 to 1.162
 #define rint(a) floor(a+0.5)  
     Revision 1.162  2014/09/25 11:43:39  brouard
 static double sqrarg;    Summary: temporary backup 0.99!
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.1  2014/09/16 11:06:58  brouard
     Summary: With some code (wrong) for nlopt
 int imx;  
 int stepm;    Author:
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.161  2014/09/15 20:41:41  brouard
 int estepm;    Summary: Problem with macro SQR on Intel compiler
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.160  2014/09/02 09:24:05  brouard
 int m,nb;    *** empty log message ***
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.159  2014/09/01 10:34:10  brouard
 double **pmmij, ***probs, ***mobaverage;    Summary: WIN32
 double dateintmean=0;    Author: Brouard
   
 double *weight;    Revision 1.158  2014/08/27 17:11:51  brouard
 int **s; /* Status */    *** empty log message ***
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.157  2014/08/27 16:26:55  brouard
     Summary: Preparing windows Visual studio version
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Author: Brouard
 double ftolhess; /* Tolerance for computing hessian */  
     In order to compile on Visual studio, time.h is now correct and time_t
 /**************** split *************************/    and tm struct should be used. difftime should be used but sometimes I
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    just make the differences in raw time format (time(&now).
 {    Trying to suppress #ifdef LINUX
    char *s;                             /* pointer */    Add xdg-open for __linux in order to open default browser.
    int  l1, l2;                         /* length counters */  
     Revision 1.156  2014/08/25 20:10:10  brouard
    l1 = strlen( path );                 /* length of path */    *** empty log message ***
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    Revision 1.155  2014/08/25 18:32:34  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    Summary: New compile, minor changes
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Author: Brouard
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.154  2014/06/20 17:32:08  brouard
       extern char       *getwd( );    Summary: Outputs now all graphs of convergence to period prevalence
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.153  2014/06/20 16:45:46  brouard
 #else    Summary: If 3 live state, convergence to period prevalence on same graph
       extern char       *getcwd( );    Author: Brouard
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.152  2014/06/18 17:54:09  brouard
 #endif    Summary: open browser, use gnuplot on same dir than imach if not found in the path
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.151  2014/06/18 16:43:30  brouard
       strcpy( name, path );             /* we've got it */    *** empty log message ***
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.150  2014/06/18 16:42:35  brouard
       l2 = strlen( s );                 /* length of filename */    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Author: brouard
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.149  2014/06/18 15:51:14  brouard
       dirc[l1-l2] = 0;                  /* add zero */    Summary: Some fixes in parameter files errors
    }    Author: Nicolas Brouard
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.148  2014/06/17 17:38:48  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Summary: Nothing new
 #else    Author: Brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Just a new packaging for OS/X version 0.98nS
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.147  2014/06/16 10:33:11  brouard
    strcpy(ext,s);                       /* save extension */    *** empty log message ***
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.146  2014/06/16 10:20:28  brouard
    strncpy( finame, name, l1-l2);    Summary: Merge
    finame[l1-l2]= 0;    Author: Brouard
    return( 0 );                         /* we're done */  
 }    Merge, before building revised version.
   
     Revision 1.145  2014/06/10 21:23:15  brouard
 /******************************************/    Summary: Debugging with valgrind
     Author: Nicolas Brouard
 void replace(char *s, char*t)  
 {    Lot of changes in order to output the results with some covariates
   int i;    After the Edimburgh REVES conference 2014, it seems mandatory to
   int lg=20;    improve the code.
   i=0;    No more memory valgrind error but a lot has to be done in order to
   lg=strlen(t);    continue the work of splitting the code into subroutines.
   for(i=0; i<= lg; i++) {    Also, decodemodel has been improved. Tricode is still not
     (s[i] = t[i]);    optimal. nbcode should be improved. Documentation has been added in
     if (t[i]== '\\') s[i]='/';    the source code.
   }  
 }    Revision 1.143  2014/01/26 09:45:38  brouard
     Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 int nbocc(char *s, char occ)  
 {    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   int i,j=0;    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   int lg=20;  
   i=0;    Revision 1.142  2014/01/26 03:57:36  brouard
   lg=strlen(s);    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   }  
   return j;    Revision 1.141  2014/01/26 02:42:01  brouard
 }    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.140  2011/09/02 10:37:54  brouard
 {    Summary: times.h is ok with mingw32 now.
   /* cuts string t into u and v where u is ended by char occ excluding it  
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    Revision 1.139  2010/06/14 07:50:17  brouard
      gives u="abcedf" and v="ghi2j" */    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   int i,lg,j,p=0;    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.138  2010/04/30 18:19:40  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    *** empty log message ***
   }  
     Revision 1.137  2010/04/29 18:11:38  brouard
   lg=strlen(t);    (Module): Checking covariates for more complex models
   for(j=0; j<p; j++) {    than V1+V2. A lot of change to be done. Unstable.
     (u[j] = t[j]);  
   }    Revision 1.136  2010/04/26 20:30:53  brouard
      u[p]='\0';    (Module): merging some libgsl code. Fixing computation
     of likelione (using inter/intrapolation if mle = 0) in order to
    for(j=0; j<= lg; j++) {    get same likelihood as if mle=1.
     if (j>=(p+1))(v[j-p-1] = t[j]);    Some cleaning of code and comments added.
   }  
 }    Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 /********************** nrerror ********************/  
     Revision 1.134  2009/10/29 13:18:53  brouard
 void nrerror(char error_text[])    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.133  2009/07/06 10:21:25  brouard
   fprintf(stderr,"%s\n",error_text);    just nforces
   exit(1);  
 }    Revision 1.132  2009/07/06 08:22:05  brouard
 /*********************** vector *******************/    Many tings
 double *vector(int nl, int nh)  
 {    Revision 1.131  2009/06/20 16:22:47  brouard
   double *v;    Some dimensions resccaled
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.130  2009/05/26 06:44:34  brouard
   return v-nl+NR_END;    (Module): Max Covariate is now set to 20 instead of 8. A
 }    lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.129  2007/08/31 13:49:27  lievre
 {    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.127  2006/04/28 18:11:50  brouard
 {    (Module): Yes the sum of survivors was wrong since
   int *v;    imach-114 because nhstepm was no more computed in the age
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    loop. Now we define nhstepma in the age loop.
   if (!v) nrerror("allocation failure in ivector");    (Module): In order to speed up (in case of numerous covariates) we
   return v-nl+NR_END;    compute health expectancies (without variances) in a first step
 }    and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
 /******************free ivector **************************/    computation.
 void free_ivector(int *v, long nl, long nh)    In the future we should be able to stop the program is only health
 {    expectancies and graph are needed without standard deviations.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
 /******************* imatrix *******************************/    imach-114 because nhstepm was no more computed in the age
 int **imatrix(long nrl, long nrh, long ncl, long nch)    loop. Now we define nhstepma in the age loop.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Version 0.98h
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Revision 1.125  2006/04/04 15:20:31  lievre
   int **m;    Errors in calculation of health expectancies. Age was not initialized.
      Forecasting file added.
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.124  2006/03/22 17:13:53  lievre
   if (!m) nrerror("allocation failure 1 in matrix()");    Parameters are printed with %lf instead of %f (more numbers after the comma).
   m += NR_END;    The log-likelihood is printed in the log file
   m -= nrl;  
      Revision 1.123  2006/03/20 10:52:43  brouard
      * imach.c (Module): <title> changed, corresponds to .htm file
   /* allocate rows and set pointers to them */    name. <head> headers where missing.
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    * imach.c (Module): Weights can have a decimal point as for
   m[nrl] += NR_END;    English (a comma might work with a correct LC_NUMERIC environment,
   m[nrl] -= ncl;    otherwise the weight is truncated).
      Modification of warning when the covariates values are not 0 or
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    1.
      Version 0.98g
   /* return pointer to array of pointers to rows */  
   return m;    Revision 1.122  2006/03/20 09:45:41  brouard
 }    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 /****************** free_imatrix *************************/    otherwise the weight is truncated).
 void free_imatrix(m,nrl,nrh,ncl,nch)    Modification of warning when the covariates values are not 0 or
       int **m;    1.
       long nch,ncl,nrh,nrl;    Version 0.98g
      /* free an int matrix allocated by imatrix() */  
 {    Revision 1.121  2006/03/16 17:45:01  lievre
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    * imach.c (Module): Comments concerning covariates added
   free((FREE_ARG) (m+nrl-NR_END));  
 }    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 /******************* matrix *******************************/    not 1 month. Version 0.98f
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.120  2006/03/16 15:10:38  lievre
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    (Module): refinements in the computation of lli if
   double **m;    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.119  2006/03/15 17:42:26  brouard
   m += NR_END;    (Module): Bug if status = -2, the loglikelihood was
   m -= nrl;    computed as likelihood omitting the logarithm. Version O.98e
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.118  2006/03/14 18:20:07  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Module): varevsij Comments added explaining the second
   m[nrl] += NR_END;    table of variances if popbased=1 .
   m[nrl] -= ncl;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    (Module): Version 0.98d
   return m;  
 }    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
 /*************************free matrix ************************/    table of variances if popbased=1 .
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 {    (Module): Function pstamp added
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Module): Version 0.98d
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 /******************* ma3x *******************************/    varian-covariance of ej. is needed (Saito).
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    Revision 1.115  2006/02/27 12:17:45  brouard
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    (Module): One freematrix added in mlikeli! 0.98c
   double ***m;  
     Revision 1.114  2006/02/26 12:57:58  brouard
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (Module): Some improvements in processing parameter
   if (!m) nrerror("allocation failure 1 in matrix()");    filename with strsep.
   m += NR_END;  
   m -= nrl;    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    datafile was not closed, some imatrix were not freed and on matrix
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    allocation too.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     Revision 1.111  2006/01/25 20:38:18  brouard
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    (Module): Lots of cleaning and bugs added (Gompertz)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    (Module): Comments can be added in data file. Missing date values
   m[nrl][ncl] += NR_END;    can be a simple dot '.'.
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)    Revision 1.110  2006/01/25 00:51:50  brouard
     m[nrl][j]=m[nrl][j-1]+nlay;    (Module): Lots of cleaning and bugs added (Gompertz)
    
   for (i=nrl+1; i<=nrh; i++) {    Revision 1.109  2006/01/24 19:37:15  brouard
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    (Module): Comments (lines starting with a #) are allowed in data.
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;    Revision 1.108  2006/01/19 18:05:42  lievre
   }    Gnuplot problem appeared...
   return m;    To be fixed
 }  
     Revision 1.107  2006/01/19 16:20:37  brouard
 /*************************free ma3x ************************/    Test existence of gnuplot in imach path
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {    Revision 1.106  2006/01/19 13:24:36  brouard
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    Some cleaning and links added in html output
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.105  2006/01/05 20:23:19  lievre
 }    *** empty log message ***
   
 /***************** f1dim *************************/    Revision 1.104  2005/09/30 16:11:43  lievre
 extern int ncom;    (Module): sump fixed, loop imx fixed, and simplifications.
 extern double *pcom,*xicom;    (Module): If the status is missing at the last wave but we know
 extern double (*nrfunc)(double []);    that the person is alive, then we can code his/her status as -2
      (instead of missing=-1 in earlier versions) and his/her
 double f1dim(double x)    contributions to the likelihood is 1 - Prob of dying from last
 {    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   int j;    the healthy state at last known wave). Version is 0.98
   double f;  
   double *xt;    Revision 1.103  2005/09/30 15:54:49  lievre
      (Module): sump fixed, loop imx fixed, and simplifications.
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    Revision 1.102  2004/09/15 17:31:30  brouard
   f=(*nrfunc)(xt);    Add the possibility to read data file including tab characters.
   free_vector(xt,1,ncom);  
   return f;    Revision 1.101  2004/09/15 10:38:38  brouard
 }    Fix on curr_time
   
 /*****************brent *************************/    Revision 1.100  2004/07/12 18:29:06  brouard
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    Add version for Mac OS X. Just define UNIX in Makefile
 {  
   int iter;    Revision 1.99  2004/06/05 08:57:40  brouard
   double a,b,d,etemp;    *** empty log message ***
   double fu,fv,fw,fx;  
   double ftemp;    Revision 1.98  2004/05/16 15:05:56  brouard
   double p,q,r,tol1,tol2,u,v,w,x,xm;    New version 0.97 . First attempt to estimate force of mortality
   double e=0.0;    directly from the data i.e. without the need of knowing the health
      state at each age, but using a Gompertz model: log u =a + b*age .
   a=(ax < cx ? ax : cx);    This is the basic analysis of mortality and should be done before any
   b=(ax > cx ? ax : cx);    other analysis, in order to test if the mortality estimated from the
   x=w=v=bx;    cross-longitudinal survey is different from the mortality estimated
   fw=fv=fx=(*f)(x);    from other sources like vital statistic data.
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    The same imach parameter file can be used but the option for mle should be -3.
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    Agnès, who wrote this part of the code, tried to keep most of the
     printf(".");fflush(stdout);    former routines in order to include the new code within the former code.
     fprintf(ficlog,".");fflush(ficlog);  
 #ifdef DEBUG    The output is very simple: only an estimate of the intercept and of
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    the slope with 95% confident intervals.
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    Current limitations:
 #endif    A) Even if you enter covariates, i.e. with the
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
       *xmin=x;    B) There is no computation of Life Expectancy nor Life Table.
       return fx;  
     }    Revision 1.97  2004/02/20 13:25:42  lievre
     ftemp=fu;    Version 0.96d. Population forecasting command line is (temporarily)
     if (fabs(e) > tol1) {    suppressed.
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);    Revision 1.96  2003/07/15 15:38:55  brouard
       p=(x-v)*q-(x-w)*r;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       q=2.0*(q-r);    rewritten within the same printf. Workaround: many printfs.
       if (q > 0.0) p = -p;  
       q=fabs(q);    Revision 1.95  2003/07/08 07:54:34  brouard
       etemp=e;    * imach.c (Repository):
       e=d;    (Repository): Using imachwizard code to output a more meaningful covariance
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    matrix (cov(a12,c31) instead of numbers.
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {    Revision 1.94  2003/06/27 13:00:02  brouard
         d=p/q;    Just cleaning
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)    Revision 1.93  2003/06/25 16:33:55  brouard
           d=SIGN(tol1,xm-x);    (Module): On windows (cygwin) function asctime_r doesn't
       }    exist so I changed back to asctime which exists.
     } else {    (Module): Version 0.96b
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }    Revision 1.92  2003/06/25 16:30:45  brouard
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    (Module): On windows (cygwin) function asctime_r doesn't
     fu=(*f)(u);    exist so I changed back to asctime which exists.
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;    Revision 1.91  2003/06/25 15:30:29  brouard
       SHFT(v,w,x,u)    * imach.c (Repository): Duplicated warning errors corrected.
         SHFT(fv,fw,fx,fu)    (Repository): Elapsed time after each iteration is now output. It
         } else {    helps to forecast when convergence will be reached. Elapsed time
           if (u < x) a=u; else b=u;    is stamped in powell.  We created a new html file for the graphs
           if (fu <= fw || w == x) {    concerning matrix of covariance. It has extension -cov.htm.
             v=w;  
             w=u;    Revision 1.90  2003/06/24 12:34:15  brouard
             fv=fw;    (Module): Some bugs corrected for windows. Also, when
             fw=fu;    mle=-1 a template is output in file "or"mypar.txt with the design
           } else if (fu <= fv || v == x || v == w) {    of the covariance matrix to be input.
             v=u;  
             fv=fu;    Revision 1.89  2003/06/24 12:30:52  brouard
           }    (Module): Some bugs corrected for windows. Also, when
         }    mle=-1 a template is output in file "or"mypar.txt with the design
   }    of the covariance matrix to be input.
   nrerror("Too many iterations in brent");  
   *xmin=x;    Revision 1.88  2003/06/23 17:54:56  brouard
   return fx;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 }  
     Revision 1.87  2003/06/18 12:26:01  brouard
 /****************** mnbrak ***********************/    Version 0.96
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    Revision 1.86  2003/06/17 20:04:08  brouard
             double (*func)(double))    (Module): Change position of html and gnuplot routines and added
 {    routine fileappend.
   double ulim,u,r,q, dum;  
   double fu;    Revision 1.85  2003/06/17 13:12:43  brouard
      * imach.c (Repository): Check when date of death was earlier that
   *fa=(*func)(*ax);    current date of interview. It may happen when the death was just
   *fb=(*func)(*bx);    prior to the death. In this case, dh was negative and likelihood
   if (*fb > *fa) {    was wrong (infinity). We still send an "Error" but patch by
     SHFT(dum,*ax,*bx,dum)    assuming that the date of death was just one stepm after the
       SHFT(dum,*fb,*fa,dum)    interview.
       }    (Repository): Because some people have very long ID (first column)
   *cx=(*bx)+GOLD*(*bx-*ax);    we changed int to long in num[] and we added a new lvector for
   *fc=(*func)(*cx);    memory allocation. But we also truncated to 8 characters (left
   while (*fb > *fc) {    truncation)
     r=(*bx-*ax)*(*fb-*fc);    (Repository): No more line truncation errors.
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    Revision 1.84  2003/06/13 21:44:43  brouard
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    * imach.c (Repository): Replace "freqsummary" at a correct
     ulim=(*bx)+GLIMIT*(*cx-*bx);    place. It differs from routine "prevalence" which may be called
     if ((*bx-u)*(u-*cx) > 0.0) {    many times. Probs is memory consuming and must be used with
       fu=(*func)(u);    parcimony.
     } else if ((*cx-u)*(u-ulim) > 0.0) {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
       fu=(*func)(u);  
       if (fu < *fc) {    Revision 1.83  2003/06/10 13:39:11  lievre
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    *** empty log message ***
           SHFT(*fb,*fc,fu,(*func)(u))  
           }    Revision 1.82  2003/06/05 15:57:20  brouard
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    Add log in  imach.c and  fullversion number is now printed.
       u=ulim;  
       fu=(*func)(u);  */
     } else {  /*
       u=(*cx)+GOLD*(*cx-*bx);     Interpolated Markov Chain
       fu=(*func)(u);  
     }    Short summary of the programme:
     SHFT(*ax,*bx,*cx,u)    
       SHFT(*fa,*fb,*fc,fu)    This program computes Healthy Life Expectancies from
       }    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 }    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 /*************** linmin ************************/    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 int ncom;    (if any) in individual health status.  Health expectancies are
 double *pcom,*xicom;    computed from the time spent in each health state according to a
 double (*nrfunc)(double []);    model. More health states you consider, more time is necessary to reach the
      Maximum Likelihood of the parameters involved in the model.  The
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    simplest model is the multinomial logistic model where pij is the
 {    probability to be observed in state j at the second wave
   double brent(double ax, double bx, double cx,    conditional to be observed in state i at the first wave. Therefore
                double (*f)(double), double tol, double *xmin);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   double f1dim(double x);    'age' is age and 'sex' is a covariate. If you want to have a more
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    complex model than "constant and age", you should modify the program
               double *fc, double (*func)(double));    where the markup *Covariates have to be included here again* invites
   int j;    you to do it.  More covariates you add, slower the
   double xx,xmin,bx,ax;    convergence.
   double fx,fb,fa;  
      The advantage of this computer programme, compared to a simple
   ncom=n;    multinomial logistic model, is clear when the delay between waves is not
   pcom=vector(1,n);    identical for each individual. Also, if a individual missed an
   xicom=vector(1,n);    intermediate interview, the information is lost, but taken into
   nrfunc=func;    account using an interpolation or extrapolation.  
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];    hPijx is the probability to be observed in state i at age x+h
     xicom[j]=xi[j];    conditional to the observed state i at age x. The delay 'h' can be
   }    split into an exact number (nh*stepm) of unobserved intermediate
   ax=0.0;    states. This elementary transition (by month, quarter,
   xx=1.0;    semester or year) is modelled as a multinomial logistic.  The hPx
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    matrix is simply the matrix product of nh*stepm elementary matrices
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    and the contribution of each individual to the likelihood is simply
 #ifdef DEBUG    hPijx.
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    Also this programme outputs the covariance matrix of the parameters but also
 #endif    of the life expectancies. It also computes the period (stable) prevalence. 
   for (j=1;j<=n;j++) {    
     xi[j] *= xmin;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
     p[j] += xi[j];             Institut national d'études démographiques, Paris.
   }    This software have been partly granted by Euro-REVES, a concerted action
   free_vector(xicom,1,n);    from the European Union.
   free_vector(pcom,1,n);    It is copyrighted identically to a GNU software product, ie programme and
 }    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
             double (*func)(double []))    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 {    
   void linmin(double p[], double xi[], int n, double *fret,    **********************************************************************/
               double (*func)(double []));  /*
   int i,ibig,j;    main
   double del,t,*pt,*ptt,*xit;    read parameterfile
   double fp,fptt;    read datafile
   double *xits;    concatwav
   pt=vector(1,n);    freqsummary
   ptt=vector(1,n);    if (mle >= 1)
   xit=vector(1,n);      mlikeli
   xits=vector(1,n);    print results files
   *fret=(*func)(p);    if mle==1 
   for (j=1;j<=n;j++) pt[j]=p[j];       computes hessian
   for (*iter=1;;++(*iter)) {    read end of parameter file: agemin, agemax, bage, fage, estepm
     fp=(*fret);        begin-prev-date,...
     ibig=0;    open gnuplot file
     del=0.0;    open html file
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     for (i=1;i<=n;i++)                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       printf(" %d %.12f",i, p[i]);      freexexit2 possible for memory heap.
     fprintf(ficlog," %d %.12f",i, p[i]);  
     printf("\n");    h Pij x                         | pij_nom  ficrestpij
     fprintf(ficlog,"\n");     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
     for (i=1;i<=n;i++) {         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
       for (j=1;j<=n;j++) xit[j]=xi[j][i];         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
       fptt=(*fret);  
 #ifdef DEBUG         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
       printf("fret=%lf \n",*fret);         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
       fprintf(ficlog,"fret=%lf \n",*fret);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
 #endif     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       printf("%d",i);fflush(stdout);     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
       fprintf(ficlog,"%d",i);fflush(ficlog);  
       linmin(p,xit,n,fret,func);    forecasting if prevfcast==1 prevforecast call prevalence()
       if (fabs(fptt-(*fret)) > del) {    health expectancies
         del=fabs(fptt-(*fret));    Variance-covariance of DFLE
         ibig=i;    prevalence()
       }     movingaverage()
 #ifdef DEBUG    varevsij() 
       printf("%d %.12e",i,(*fret));    if popbased==1 varevsij(,popbased)
       fprintf(ficlog,"%d %.12e",i,(*fret));    total life expectancies
       for (j=1;j<=n;j++) {    Variance of period (stable) prevalence
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);   end
         printf(" x(%d)=%.12e",j,xit[j]);  */
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  
       }  /* #define DEBUG */
       for(j=1;j<=n;j++) {  /* #define DEBUGBRENT */
         printf(" p=%.12e",p[j]);  #define POWELL /* Instead of NLOPT */
         fprintf(ficlog," p=%.12e",p[j]);  #define POWELLF1F3 /* Skip test */
       }  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
       printf("\n");  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
       fprintf(ficlog,"\n");  
 #endif  #include <math.h>
     }  #include <stdio.h>
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #include <stdlib.h>
 #ifdef DEBUG  #include <string.h>
       int k[2],l;  
       k[0]=1;  #ifdef _WIN32
       k[1]=-1;  #include <io.h>
       printf("Max: %.12e",(*func)(p));  #include <windows.h>
       fprintf(ficlog,"Max: %.12e",(*func)(p));  #include <tchar.h>
       for (j=1;j<=n;j++) {  #else
         printf(" %.12e",p[j]);  #include <unistd.h>
         fprintf(ficlog," %.12e",p[j]);  #endif
       }  
       printf("\n");  #include <limits.h>
       fprintf(ficlog,"\n");  #include <sys/types.h>
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  #if defined(__GNUC__)
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #include <sys/utsname.h> /* Doesn't work on Windows */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #endif
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  #include <sys/stat.h>
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #include <errno.h>
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /* extern int errno; */
       }  
 #endif  /* #ifdef LINUX */
   /* #include <time.h> */
   /* #include "timeval.h" */
       free_vector(xit,1,n);  /* #else */
       free_vector(xits,1,n);  /* #include <sys/time.h> */
       free_vector(ptt,1,n);  /* #endif */
       free_vector(pt,1,n);  
       return;  #include <time.h>
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #ifdef GSL
     for (j=1;j<=n;j++) {  #include <gsl/gsl_errno.h>
       ptt[j]=2.0*p[j]-pt[j];  #include <gsl/gsl_multimin.h>
       xit[j]=p[j]-pt[j];  #endif
       pt[j]=p[j];  
     }  
     fptt=(*func)(ptt);  #ifdef NLOPT
     if (fptt < fp) {  #include <nlopt.h>
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  typedef struct {
       if (t < 0.0) {    double (* function)(double [] );
         linmin(p,xit,n,fret,func);  } myfunc_data ;
         for (j=1;j<=n;j++) {  #endif
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  /* #include <libintl.h> */
         }  /* #define _(String) gettext (String) */
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++){  #define GNUPLOTPROGRAM "gnuplot"
           printf(" %.12e",xit[j]);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
           fprintf(ficlog," %.12e",xit[j]);  #define FILENAMELENGTH 132
         }  
         printf("\n");  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
         fprintf(ficlog,"\n");  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #endif  
       }  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     }  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   }  
 }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 /**** Prevalence limit ****************/  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
 {  #define MAXN 20000
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  #define YEARM 12. /**< Number of months per year */
      matrix by transitions matrix until convergence is reached */  #define AGESUP 130
   #define AGEBASE 40
   int i, ii,j,k;  #define AGEOVERFLOW 1.e20
   double min, max, maxmin, maxmax,sumnew=0.;  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
   double **matprod2();  #ifdef _WIN32
   double **out, cov[NCOVMAX], **pmij();  #define DIRSEPARATOR '\\'
   double **newm;  #define CHARSEPARATOR "\\"
   double agefin, delaymax=50 ; /* Max number of years to converge */  #define ODIRSEPARATOR '/'
   #else
   for (ii=1;ii<=nlstate+ndeath;ii++)  #define DIRSEPARATOR '/'
     for (j=1;j<=nlstate+ndeath;j++){  #define CHARSEPARATOR "/"
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #define ODIRSEPARATOR '\\'
     }  #endif
   
    cov[1]=1.;  /* $Id$ */
    /* $State$ */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #include "version.h"
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  char version[]=__IMACH_VERSION__;
     newm=savm;  char copyright[]="September 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
     /* Covariates have to be included here again */  char fullversion[]="$Revision$ $Date$"; 
      cov[2]=agefin;  char strstart[80];
    char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       for (k=1; k<=cptcovn;k++) {  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       }  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       for (k=1; k<=cptcovprod;k++)  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   int cptcovprodnoage=0; /**< Number of covariate products without age */   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  int cptcoveff=0; /* Total number of covariates to vary for printing results */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  int cptcov=0; /* Working variable */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  int npar=NPARMAX;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
     savm=oldm;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     oldm=newm;  int popbased=0;
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  int *wav; /* Number of waves for this individuual 0 is possible */
       min=1.;  int maxwav=0; /* Maxim number of waves */
       max=0.;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       for(i=1; i<=nlstate; i++) {  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
         sumnew=0;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];                     to the likelihood and the sum of weights (done by funcone)*/
         prlim[i][j]= newm[i][j]/(1-sumnew);  int mle=1, weightopt=0;
         max=FMAX(max,prlim[i][j]);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
         min=FMIN(min,prlim[i][j]);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       maxmin=max-min;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       maxmax=FMAX(maxmax,maxmin);  int countcallfunc=0;  /* Count the number of calls to func */
     }  double jmean=1; /* Mean space between 2 waves */
     if(maxmax < ftolpl){  double **matprod2(); /* test */
       return prlim;  double **oldm, **newm, **savm; /* Working pointers to matrices */
     }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   }  /*FILE *fic ; */ /* Used in readdata only */
 }  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 /*************** transition probabilities ***************/  int globpr=0; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  long ipmx=0; /* Number of contributions */
 {  double sw; /* Sum of weights */
   double s1, s2;  char filerespow[FILENAMELENGTH];
   /*double t34;*/  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   int i,j,j1, nc, ii, jj;  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     for(i=1; i<= nlstate; i++){  FILE *ficresprobmorprev;
     for(j=1; j<i;j++){  FILE *fichtm, *fichtmcov; /* Html File */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  FILE *ficreseij;
         /*s2 += param[i][j][nc]*cov[nc];*/  char filerese[FILENAMELENGTH];
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  FILE *ficresstdeij;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  char fileresstde[FILENAMELENGTH];
       }  FILE *ficrescveij;
       ps[i][j]=s2;  char filerescve[FILENAMELENGTH];
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  FILE  *ficresvij;
     }  char fileresv[FILENAMELENGTH];
     for(j=i+1; j<=nlstate+ndeath;j++){  FILE  *ficresvpl;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char fileresvpl[FILENAMELENGTH];
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  char title[MAXLINE];
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       ps[i][j]=s2;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     }  char command[FILENAMELENGTH];
   }  int  outcmd=0;
     /*ps[3][2]=1;*/  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   for(i=1; i<= nlstate; i++){  
      s1=0;  char filelog[FILENAMELENGTH]; /* Log file */
     for(j=1; j<i; j++)  char filerest[FILENAMELENGTH];
       s1+=exp(ps[i][j]);  char fileregp[FILENAMELENGTH];
     for(j=i+1; j<=nlstate+ndeath; j++)  char popfile[FILENAMELENGTH];
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
     for(j=i+1; j<=nlstate+ndeath; j++)  /* struct timezone tzp; */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /* extern int gettimeofday(); */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  struct tm tml, *gmtime(), *localtime();
   } /* end i */  
   extern time_t time();
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  struct tm start_time, end_time, curr_time, last_time, forecast_time;
       ps[ii][jj]=0;  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
       ps[ii][ii]=1;  struct tm tm;
     }  
   }  char strcurr[80], strfor[80];
   
   char *endptr;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  long lval;
     for(jj=1; jj<= nlstate+ndeath; jj++){  double dval;
      printf("%lf ",ps[ii][jj]);  
    }  #define NR_END 1
     printf("\n ");  #define FREE_ARG char*
     }  #define FTOL 1.0e-10
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  #define NRANSI 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  #define ITMAX 200 
   goto end;*/  
     return ps;  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /**************** Product of 2 matrices ******************/  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {  #define GOLD 1.618034 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  #define GLIMIT 100.0 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  #define TINY 1.0e-20 
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  static double maxarg1,maxarg2;
      a pointer to pointers identical to out */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   long i, j, k;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   for(i=nrl; i<= nrh; i++)    
     for(k=ncolol; k<=ncoloh; k++)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  #define rint(a) floor(a+0.5)
         out[i][k] +=in[i][j]*b[j][k];  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   #define mytinydouble 1.0e-16
   return out;  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
 }  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   /* static double dsqrarg; */
   /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
 /************* Higher Matrix Product ***************/  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 {  int agegomp= AGEGOMP;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until  int imx; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  int stepm=1;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /* Stepm, step in month: minimum step interpolation*/
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  int estepm;
      included manually here.  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
      */  int m,nb;
   long *num;
   int i, j, d, h, k;  int firstpass=0, lastpass=4,*cod, *cens;
   double **out, cov[NCOVMAX];  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
   double **newm;                     covariate for which somebody answered excluding 
                      undefined. Usually 2: 0 and 1. */
   /* Hstepm could be zero and should return the unit matrix */  int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
   for (i=1;i<=nlstate+ndeath;i++)                               covariate for which somebody answered including 
     for (j=1;j<=nlstate+ndeath;j++){                               undefined. Usually 3: -1, 0 and 1. */
       oldm[i][j]=(i==j ? 1.0 : 0.0);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  double **pmmij, ***probs;
     }  double *ageexmed,*agecens;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  double dateintmean=0;
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  double *weight;
       newm=savm;  int **s; /* Status */
       /* Covariates have to be included here again */  double *agedc;
       cov[1]=1.;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;                    * covar=matrix(0,NCOVMAX,1,n); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
       for (k=1; k<=cptcovage;k++)  double  idx; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
       for (k=1; k<=cptcovprod;k++)  int *Tage;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  int *Ndum; /** Freq of modality (tricode */
   /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
   int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  double *lsurv, *lpop, *tpop;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  double ftolhess; /**< Tolerance for computing hessian */
       savm=oldm;  
       oldm=newm;  /**************** split *************************/
     }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     for(i=1; i<=nlstate+ndeath; i++)  {
       for(j=1;j<=nlstate+ndeath;j++) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         po[i][j][h]=newm[i][j];       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    */ 
          */    char  *ss;                            /* pointer */
       }    int   l1=0, l2=0;                             /* length counters */
   } /* end h */  
   return po;    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so determine current directory */
 /*************** log-likelihood *************/      strcpy( name, path );               /* we got the fullname name because no directory */
 double func( double *x)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   int i, ii, j, k, mi, d, kk;      /* get current working directory */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      /*    extern  char* getcwd ( char *buf , int len);*/
   double **out;  #ifdef WIN32
   double sw; /* Sum of weights */      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double lli; /* Individual log likelihood */  #else
   long ipmx;          if (getcwd(dirc, FILENAME_MAX) == NULL) {
   /*extern weight */  #endif
   /* We are differentiating ll according to initial status */        return( GLOCK_ERROR_GETCWD );
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      }
   /*for(i=1;i<imx;i++)      /* got dirc from getcwd*/
     printf(" %d\n",s[4][i]);      printf(" DIRC = %s \n",dirc);
   */    } else {                              /* strip direcotry from path */
   cov[1]=1.;      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
   for(k=1; k<=nlstate; k++) ll[k]=0.;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      strcpy( name, ss );         /* save file name */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     for(mi=1; mi<= wav[i]-1; mi++){      dirc[l1-l2] = '\0';                 /* add zero */
       for (ii=1;ii<=nlstate+ndeath;ii++)      printf(" DIRC2 = %s \n",dirc);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    }
       for(d=0; d<dh[mi][i]; d++){    /* We add a separator at the end of dirc if not exists */
         newm=savm;    l1 = strlen( dirc );                  /* length of directory */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    if( dirc[l1-1] != DIRSEPARATOR ){
         for (kk=1; kk<=cptcovage;kk++) {      dirc[l1] =  DIRSEPARATOR;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      dirc[l1+1] = 0; 
         }      printf(" DIRC3 = %s \n",dirc);
            }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    ss = strrchr( name, '.' );            /* find last / */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    if (ss >0){
         savm=oldm;      ss++;
         oldm=newm;      strcpy(ext,ss);                     /* save extension */
              l1= strlen( name);
              l2= strlen(ss)+1;
       } /* end mult */      strncpy( finame, name, l1-l2);
            finame[l1-l2]= 0;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       ipmx +=1;    return( 0 );                          /* we're done */
       sw += weight[i];  }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  
   } /* end of individual */  /******************************************/
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  void replace_back_to_slash(char *s, char*t)
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    int i;
   return -l;    int lg=0;
 }    i=0;
     lg=strlen(t);
     for(i=0; i<= lg; i++) {
 /*********** Maximum Likelihood Estimation ***************/      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    }
 {  }
   int i,j, iter;  
   double **xi,*delti;  char *trimbb(char *out, char *in)
   double fret;  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   xi=matrix(1,npar,1,npar);    char *s;
   for (i=1;i<=npar;i++)    s=out;
     for (j=1;j<=npar;j++)    while (*in != '\0'){
       xi[i][j]=(i==j ? 1.0 : 0.0);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        in++;
   powell(p,xi,npar,ftol,&iter,&fret,func);      }
       *out++ = *in++;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    }
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    *out='\0';
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    return s;
   }
 }  
   /* char *substrchaine(char *out, char *in, char *chain) */
 /**** Computes Hessian and covariance matrix ***/  /* { */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
 {  /*   char *s, *t; */
   double  **a,**y,*x,pd;  /*   t=in;s=out; */
   double **hess;  /*   while ((*in != *chain) && (*in != '\0')){ */
   int i, j,jk;  /*     *out++ = *in++; */
   int *indx;  /*   } */
   
   double hessii(double p[], double delta, int theta, double delti[]);  /*   /\* *in matches *chain *\/ */
   double hessij(double p[], double delti[], int i, int j);  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /*   } */
   /*   in--; chain--; */
   hess=matrix(1,npar,1,npar);  /*   while ( (*in != '\0')){ */
   /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*     *out++ = *in++; */
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   for (i=1;i<=npar;i++){  /*   } */
     printf("%d",i);fflush(stdout);  /*   *out='\0'; */
     fprintf(ficlog,"%d",i);fflush(ficlog);  /*   out=s; */
     hess[i][i]=hessii(p,ftolhess,i,delti);  /*   return out; */
     /*printf(" %f ",p[i]);*/  /* } */
     /*printf(" %lf ",hess[i][i]);*/  char *substrchaine(char *out, char *in, char *chain)
   }  {
      /* Substract chain 'chain' from 'in', return and output 'out' */
   for (i=1;i<=npar;i++) {    /* in="V1+V1*age+age*age+V2", chain="age*age" */
     for (j=1;j<=npar;j++)  {  
       if (j>i) {    char *strloc;
         printf(".%d%d",i,j);fflush(stdout);  
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    strcpy (out, in); 
         hess[i][j]=hessij(p,delti,i,j);    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
         hess[j][i]=hess[i][j];        printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
         /*printf(" %lf ",hess[i][j]);*/    if(strloc != NULL){ 
       }      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
     }      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
   }      /* strcpy (strloc, strloc +strlen(chain));*/
   printf("\n");    }
   fprintf(ficlog,"\n");    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
     return out;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  }
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  
    
   a=matrix(1,npar,1,npar);  char *cutl(char *blocc, char *alocc, char *in, char occ)
   y=matrix(1,npar,1,npar);  {
   x=vector(1,npar);    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
   indx=ivector(1,npar);       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   for (i=1;i<=npar;i++)       gives blocc="abcdef" and alocc="ghi2j".
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   ludcmp(a,npar,indx,&pd);    */
     char *s, *t;
   for (j=1;j<=npar;j++) {    t=in;s=in;
     for (i=1;i<=npar;i++) x[i]=0;    while ((*in != occ) && (*in != '\0')){
     x[j]=1;      *alocc++ = *in++;
     lubksb(a,npar,indx,x);    }
     for (i=1;i<=npar;i++){    if( *in == occ){
       matcov[i][j]=x[i];      *(alocc)='\0';
     }      s=++in;
   }    }
    
   printf("\n#Hessian matrix#\n");    if (s == t) {/* occ not found */
   fprintf(ficlog,"\n#Hessian matrix#\n");      *(alocc-(in-s))='\0';
   for (i=1;i<=npar;i++) {      in=s;
     for (j=1;j<=npar;j++) {    }
       printf("%.3e ",hess[i][j]);    while ( *in != '\0'){
       fprintf(ficlog,"%.3e ",hess[i][j]);      *blocc++ = *in++;
     }    }
     printf("\n");  
     fprintf(ficlog,"\n");    *blocc='\0';
   }    return t;
   }
   /* Recompute Inverse */  char *cutv(char *blocc, char *alocc, char *in, char occ)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
   ludcmp(a,npar,indx,&pd);       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
   /*  printf("\n#Hessian matrix recomputed#\n");       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     */
   for (j=1;j<=npar;j++) {    char *s, *t;
     for (i=1;i<=npar;i++) x[i]=0;    t=in;s=in;
     x[j]=1;    while (*in != '\0'){
     lubksb(a,npar,indx,x);      while( *in == occ){
     for (i=1;i<=npar;i++){        *blocc++ = *in++;
       y[i][j]=x[i];        s=in;
       printf("%.3e ",y[i][j]);      }
       fprintf(ficlog,"%.3e ",y[i][j]);      *blocc++ = *in++;
     }    }
     printf("\n");    if (s == t) /* occ not found */
     fprintf(ficlog,"\n");      *(blocc-(in-s))='\0';
   }    else
   */      *(blocc-(in-s)-1)='\0';
     in=s;
   free_matrix(a,1,npar,1,npar);    while ( *in != '\0'){
   free_matrix(y,1,npar,1,npar);      *alocc++ = *in++;
   free_vector(x,1,npar);    }
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);    *alocc='\0';
     return s;
   }
 }  
   int nbocc(char *s, char occ)
 /*************** hessian matrix ****************/  {
 double hessii( double x[], double delta, int theta, double delti[])    int i,j=0;
 {    int lg=20;
   int i;    i=0;
   int l=1, lmax=20;    lg=strlen(s);
   double k1,k2;    for(i=0; i<= lg; i++) {
   double p2[NPARMAX+1];    if  (s[i] == occ ) j++;
   double res;    }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    return j;
   double fx;  }
   int k=0,kmax=10;  
   double l1;  /* void cutv(char *u,char *v, char*t, char occ) */
   /* { */
   fx=func(x);  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   for (i=1;i<=npar;i++) p2[i]=x[i];  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   for(l=0 ; l <=lmax; l++){  /*      gives u="abcdef2ghi" and v="j" *\/ */
     l1=pow(10,l);  /*   int i,lg,j,p=0; */
     delts=delt;  /*   i=0; */
     for(k=1 ; k <kmax; k=k+1){  /*   lg=strlen(t); */
       delt = delta*(l1*k);  /*   for(j=0; j<=lg-1; j++) { */
       p2[theta]=x[theta] +delt;  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       k1=func(p2)-fx;  /*   } */
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;  /*   for(j=0; j<p; j++) { */
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /*     (u[j] = t[j]); */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /*   } */
        /*      u[p]='\0'; */
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  /*    for(j=0; j<= lg; j++) { */
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
 #endif  /*   } */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  /* } */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;  #ifdef _WIN32
       }  char * strsep(char **pp, const char *delim)
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  {
         k=kmax; l=lmax*10.;    char *p, *q;
       }           
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    if ((p = *pp) == NULL)
         delts=delt;      return 0;
       }    if ((q = strpbrk (p, delim)) != NULL)
     }    {
   }      *pp = q + 1;
   delti[theta]=delts;      *q = '\0';
   return res;    }
      else
 }      *pp = 0;
     return p;
 double hessij( double x[], double delti[], int thetai,int thetaj)  }
 {  #endif
   int i;  
   int l=1, l1, lmax=20;  /********************** nrerror ********************/
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];  void nrerror(char error_text[])
   int k;  {
     fprintf(stderr,"ERREUR ...\n");
   fx=func(x);    fprintf(stderr,"%s\n",error_text);
   for (k=1; k<=2; k++) {    exit(EXIT_FAILURE);
     for (i=1;i<=npar;i++) p2[i]=x[i];  }
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*********************** vector *******************/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  double *vector(int nl, int nh)
     k1=func(p2)-fx;  {
      double *v;
     p2[thetai]=x[thetai]+delti[thetai]/k;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    if (!v) nrerror("allocation failure in vector");
     k2=func(p2)-fx;    return v-nl+NR_END;
    }
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /************************ free vector ******************/
     k3=func(p2)-fx;  void free_vector(double*v, int nl, int nh)
    {
     p2[thetai]=x[thetai]-delti[thetai]/k;    free((FREE_ARG)(v+nl-NR_END));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  }
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  /************************ivector *******************************/
 #ifdef DEBUG  int *ivector(long nl,long nh)
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  {
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    int *v;
 #endif    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   }    if (!v) nrerror("allocation failure in ivector");
   return res;    return v-nl+NR_END;
 }  }
   
 /************** Inverse of matrix **************/  /******************free ivector **************************/
 void ludcmp(double **a, int n, int *indx, double *d)  void free_ivector(int *v, long nl, long nh)
 {  {
   int i,imax,j,k;    free((FREE_ARG)(v+nl-NR_END));
   double big,dum,sum,temp;  }
   double *vv;  
    /************************lvector *******************************/
   vv=vector(1,n);  long *lvector(long nl,long nh)
   *d=1.0;  {
   for (i=1;i<=n;i++) {    long *v;
     big=0.0;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     for (j=1;j<=n;j++)    if (!v) nrerror("allocation failure in ivector");
       if ((temp=fabs(a[i][j])) > big) big=temp;    return v-nl+NR_END;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  }
     vv[i]=1.0/big;  
   }  /******************free lvector **************************/
   for (j=1;j<=n;j++) {  void free_lvector(long *v, long nl, long nh)
     for (i=1;i<j;i++) {  {
       sum=a[i][j];    free((FREE_ARG)(v+nl-NR_END));
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  }
       a[i][j]=sum;  
     }  /******************* imatrix *******************************/
     big=0.0;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     for (i=j;i<=n;i++) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       sum=a[i][j];  { 
       for (k=1;k<j;k++)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         sum -= a[i][k]*a[k][j];    int **m; 
       a[i][j]=sum;    
       if ( (dum=vv[i]*fabs(sum)) >= big) {    /* allocate pointers to rows */ 
         big=dum;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         imax=i;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       }    m += NR_END; 
     }    m -= nrl; 
     if (j != imax) {    
       for (k=1;k<=n;k++) {    
         dum=a[imax][k];    /* allocate rows and set pointers to them */ 
         a[imax][k]=a[j][k];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         a[j][k]=dum;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       }    m[nrl] += NR_END; 
       *d = -(*d);    m[nrl] -= ncl; 
       vv[imax]=vv[j];    
     }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     indx[j]=imax;    
     if (a[j][j] == 0.0) a[j][j]=TINY;    /* return pointer to array of pointers to rows */ 
     if (j != n) {    return m; 
       dum=1.0/(a[j][j]);  } 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  
     }  /****************** free_imatrix *************************/
   }  void free_imatrix(m,nrl,nrh,ncl,nch)
   free_vector(vv,1,n);  /* Doesn't work */        int **m;
 ;        long nch,ncl,nrh,nrl; 
 }       /* free an int matrix allocated by imatrix() */ 
   { 
 void lubksb(double **a, int n, int *indx, double b[])    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 {    free((FREE_ARG) (m+nrl-NR_END)); 
   int i,ii=0,ip,j;  } 
   double sum;  
    /******************* matrix *******************************/
   for (i=1;i<=n;i++) {  double **matrix(long nrl, long nrh, long ncl, long nch)
     ip=indx[i];  {
     sum=b[ip];    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     b[ip]=b[i];    double **m;
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     else if (sum) ii=i;    if (!m) nrerror("allocation failure 1 in matrix()");
     b[i]=sum;    m += NR_END;
   }    m -= nrl;
   for (i=n;i>=1;i--) {  
     sum=b[i];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     b[i]=sum/a[i][i];    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
 }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 /************ Frequencies ********************/    return m;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 {  /* Some frequencies */  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
    that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;     */
   int first;  }
   double ***freq; /* Frequencies */  
   double *pp;  /*************************free matrix ************************/
   double pos, k2, dateintsum=0,k2cpt=0;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   FILE *ficresp;  {
   char fileresp[FILENAMELENGTH];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      free((FREE_ARG)(m+nrl-NR_END));
   pp=vector(1,nlstate);  }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   strcpy(fileresp,"p");  /******************* ma3x *******************************/
   strcat(fileresp,fileres);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   if((ficresp=fopen(fileresp,"w"))==NULL) {  {
     printf("Problem with prevalence resultfile: %s\n", fileresp);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    double ***m;
     exit(0);  
   }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    if (!m) nrerror("allocation failure 1 in matrix()");
   j1=0;    m += NR_END;
      m -= nrl;
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   first=1;    m[nrl] += NR_END;
     m[nrl] -= ncl;
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       j1++;  
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         scanf("%d", i);*/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       for (i=-1; i<=nlstate+ndeath; i++)      m[nrl][ncl] += NR_END;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      m[nrl][ncl] -= nll;
           for(m=agemin; m <= agemax+3; m++)    for (j=ncl+1; j<=nch; j++) 
             freq[i][jk][m]=0;      m[nrl][j]=m[nrl][j-1]+nlay;
          
       dateintsum=0;    for (i=nrl+1; i<=nrh; i++) {
       k2cpt=0;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (i=1; i<=imx; i++) {      for (j=ncl+1; j<=nch; j++) 
         bool=1;        m[i][j]=m[i][j-1]+nlay;
         if  (cptcovn>0) {    }
           for (z1=1; z1<=cptcoveff; z1++)    return m; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
               bool=0;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         }    */
         if (bool==1) {  }
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  /*************************free ma3x ************************/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
               if(agev[m][i]==0) agev[m][i]=agemax+1;  {
               if(agev[m][i]==1) agev[m][i]=agemax+2;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
               if (m<lastpass) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    free((FREE_ARG)(m+nrl-NR_END));
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  }
               }  
                /*************** function subdirf ***********/
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  char *subdirf(char fileres[])
                 dateintsum=dateintsum+k2;  {
                 k2cpt++;    /* Caution optionfilefiname is hidden */
               }    strcpy(tmpout,optionfilefiname);
             }    strcat(tmpout,"/"); /* Add to the right */
           }    strcat(tmpout,fileres);
         }    return tmpout;
       }  }
          
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
       if  (cptcovn>0) {  {
         fprintf(ficresp, "\n#********** Variable ");    
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* Caution optionfilefiname is hidden */
         fprintf(ficresp, "**********\n#");    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/");
       for(i=1; i<=nlstate;i++)    strcat(tmpout,preop);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    strcat(tmpout,fileres);
       fprintf(ficresp, "\n");    return tmpout;
        }
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         if(i==(int)agemax+3){  /*************** function subdirf3 ***********/
           fprintf(ficlog,"Total");  char *subdirf3(char fileres[], char *preop, char *preop2)
         }else{  {
           if(first==1){    
             first=0;    /* Caution optionfilefiname is hidden */
             printf("See log file for details...\n");    strcpy(tmpout,optionfilefiname);
           }    strcat(tmpout,"/");
           fprintf(ficlog,"Age %d", i);    strcat(tmpout,preop);
         }    strcat(tmpout,preop2);
         for(jk=1; jk <=nlstate ; jk++){    strcat(tmpout,fileres);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    return tmpout;
             pp[jk] += freq[jk][m][i];  }
         }  
         for(jk=1; jk <=nlstate ; jk++){  char *asc_diff_time(long time_sec, char ascdiff[])
           for(m=-1, pos=0; m <=0 ; m++)  {
             pos += freq[jk][m][i];    long sec_left, days, hours, minutes;
           if(pp[jk]>=1.e-10){    days = (time_sec) / (60*60*24);
             if(first==1){    sec_left = (time_sec) % (60*60*24);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    hours = (sec_left) / (60*60) ;
             }    sec_left = (sec_left) %(60*60);
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    minutes = (sec_left) /60;
           }else{    sec_left = (sec_left) % (60);
             if(first==1)    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    return ascdiff;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  }
           }  
         }  /***************** f1dim *************************/
   extern int ncom; 
         for(jk=1; jk <=nlstate ; jk++){  extern double *pcom,*xicom;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  extern double (*nrfunc)(double []); 
             pp[jk] += freq[jk][m][i];   
         }  double f1dim(double x) 
   { 
         for(jk=1,pos=0; jk <=nlstate ; jk++)    int j; 
           pos += pp[jk];    double f;
         for(jk=1; jk <=nlstate ; jk++){    double *xt; 
           if(pos>=1.e-5){   
             if(first==1)    xt=vector(1,ncom); 
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    f=(*nrfunc)(xt); 
           }else{    free_vector(xt,1,ncom); 
             if(first==1)    return f; 
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  } 
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
           }  /*****************brent *************************/
           if( i <= (int) agemax){  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
             if(pos>=1.e-5){  {
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
               probs[i][jk][j1]= pp[jk]/pos;     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
             }     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
             else     * returned function value. 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    */
           }    int iter; 
         }    double a,b,d,etemp;
            double fu=0,fv,fw,fx;
         for(jk=-1; jk <=nlstate+ndeath; jk++)    double ftemp=0.;
           for(m=-1; m <=nlstate+ndeath; m++)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
             if(freq[jk][m][i] !=0 ) {    double e=0.0; 
             if(first==1)   
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    a=(ax < cx ? ax : cx); 
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    b=(ax > cx ? ax : cx); 
             }    x=w=v=bx; 
         if(i <= (int) agemax)    fw=fv=fx=(*f)(x); 
           fprintf(ficresp,"\n");    for (iter=1;iter<=ITMAX;iter++) { 
         if(first==1)      xm=0.5*(a+b); 
           printf("Others in log...\n");      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         fprintf(ficlog,"\n");      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       }      printf(".");fflush(stdout);
     }      fprintf(ficlog,".");fflush(ficlog);
   }  #ifdef DEBUGBRENT
   dateintmean=dateintsum/k2cpt;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   fclose(ficresp);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  #endif
   free_vector(pp,1,nlstate);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
          *xmin=x; 
   /* End of Freq */        return fx; 
 }      } 
       ftemp=fu;
 /************ Prevalence ********************/      if (fabs(e) > tol1) { 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        r=(x-w)*(fx-fv); 
 {  /* Some frequencies */        q=(x-v)*(fx-fw); 
          p=(x-v)*q-(x-w)*r; 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        q=2.0*(q-r); 
   double ***freq; /* Frequencies */        if (q > 0.0) p = -p; 
   double *pp;        q=fabs(q); 
   double pos, k2;        etemp=e; 
         e=d; 
   pp=vector(1,nlstate);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
          else { 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          d=p/q; 
   j1=0;          u=x+d; 
            if (u-a < tol2 || b-u < tol2) 
   j=cptcoveff;            d=SIGN(tol1,xm-x); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        } 
        } else { 
   for(k1=1; k1<=j;k1++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(i1=1; i1<=ncodemax[k1];i1++){      } 
       j1++;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
            fu=(*f)(u); 
       for (i=-1; i<=nlstate+ndeath; i++)        if (fu <= fx) { 
         for (jk=-1; jk<=nlstate+ndeath; jk++)          if (u >= x) a=x; else b=x; 
           for(m=agemin; m <= agemax+3; m++)        SHFT(v,w,x,u) 
             freq[i][jk][m]=0;        SHFT(fv,fw,fx,fu) 
            } else { 
       for (i=1; i<=imx; i++) {        if (u < x) a=u; else b=u; 
         bool=1;        if (fu <= fw || w == x) { 
         if  (cptcovn>0) {          v=w; 
           for (z1=1; z1<=cptcoveff; z1++)          w=u; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          fv=fw; 
               bool=0;          fw=fu; 
         }        } else if (fu <= fv || v == x || v == w) { 
         if (bool==1) {          v=u; 
           for(m=firstpass; m<=lastpass; m++){          fv=fu; 
             k2=anint[m][i]+(mint[m][i]/12.);        } 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      } 
               if(agev[m][i]==0) agev[m][i]=agemax+1;    } 
               if(agev[m][i]==1) agev[m][i]=agemax+2;    nrerror("Too many iterations in brent"); 
               if (m<lastpass) {    *xmin=x; 
                 if (calagedate>0)    return fx; 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  } 
                 else  
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /****************** mnbrak ***********************/
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  
               }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
             }              double (*func)(double)) 
           }  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
         }  the downhill direction (defined by the function as evaluated at the initial points) and returns
       }  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
       for(i=(int)agemin; i <= (int)agemax+3; i++){  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
         for(jk=1; jk <=nlstate ; jk++){     */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double ulim,u,r,q, dum;
             pp[jk] += freq[jk][m][i];    double fu; 
         }  
         for(jk=1; jk <=nlstate ; jk++){    double scale=10.;
           for(m=-1, pos=0; m <=0 ; m++)    int iterscale=0;
             pos += freq[jk][m][i];  
         }    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
            *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
         }    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
            /*   *bx = *ax - (*ax - *bx)/scale; */
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
            /* } */
         for(jk=1; jk <=nlstate ; jk++){      
           if( i <= (int) agemax){    if (*fb > *fa) { 
             if(pos>=1.e-5){      SHFT(dum,*ax,*bx,dum) 
               probs[i][jk][j1]= pp[jk]/pos;      SHFT(dum,*fb,*fa,dum) 
             }    } 
           }    *cx=(*bx)+GOLD*(*bx-*ax); 
         }/* end jk */    *fc=(*func)(*cx); 
       }/* end i */  #ifdef DEBUG
     } /* end i1 */    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
   } /* end k1 */    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
   #endif
      while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      r=(*bx-*ax)*(*fb-*fc); 
   free_vector(pp,1,nlstate);      q=(*bx-*cx)*(*fb-*fa); 
        u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 }  /* End of Freq */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
       ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
 /************* Waves Concatenation ***************/      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
         fu=(*func)(u); 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  #ifdef DEBUG
 {        /* f(x)=A(x-u)**2+f(u) */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        double A, fparabu; 
      Death is a valid wave (if date is known).        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        fparabu= *fa - A*(*ax-u)*(*ax-u);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
      and mw[mi+1][i]. dh depends on stepm.        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
      */        /* And thus,it can be that fu > *fc even if fparabu < *fc */
         /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
   int i, mi, m;          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
      double sum=0., jmean=0.;*/  #endif 
   int first;  #ifdef MNBRAKORIGINAL
   int j, k=0,jk, ju, jl;  #else
   double sum=0.;  /*       if (fu > *fc) { */
   first=0;  /* #ifdef DEBUG */
   jmin=1e+5;  /*       printf("mnbrak4  fu > fc \n"); */
   jmax=-1;  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
   jmean=0.;  /* #endif */
   for(i=1; i<=imx; i++){  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
     mi=0;  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
     m=firstpass;  /*      dum=u; /\* Shifting c and u *\/ */
     while(s[m][i] <= nlstate){  /*      u = *cx; */
       if(s[m][i]>=1)  /*      *cx = dum; */
         mw[++mi][i]=m;  /*      dum = fu; */
       if(m >=lastpass)  /*      fu = *fc; */
         break;  /*      *fc =dum; */
       else  /*       } else { /\* end *\/ */
         m++;  /* #ifdef DEBUG */
     }/* end while */  /*       printf("mnbrak3  fu < fc \n"); */
     if (s[m][i] > nlstate){  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
       mi++;     /* Death is another wave */  /* #endif */
       /* if(mi==0)  never been interviewed correctly before death */  /*      dum=u; /\* Shifting c and u *\/ */
          /* Only death is a correct wave */  /*      u = *cx; */
       mw[mi][i]=m;  /*      *cx = dum; */
     }  /*      dum = fu; */
   /*      fu = *fc; */
     wav[i]=mi;  /*      *fc =dum; */
     if(mi==0){  /*       } */
       if(first==0){  #ifdef DEBUG
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);        printf("mnbrak34  fu < or >= fc \n");
         first=1;        fprintf(ficlog, "mnbrak34 fu < fc\n");
       }  #endif
       if(first==1){        dum=u; /* Shifting c and u */
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);        u = *cx;
       }        *cx = dum;
     } /* end mi==0 */        dum = fu;
   }        fu = *fc;
         *fc =dum;
   for(i=1; i<=imx; i++){  #endif
     for(mi=1; mi<wav[i];mi++){      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
       if (stepm <=0)  #ifdef DEBUG
         dh[mi][i]=1;        printf("mnbrak2  u after c but before ulim\n");
       else{        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
         if (s[mw[mi+1][i]][i] > nlstate) {  #endif
           if (agedc[i] < 2*AGESUP) {        fu=(*func)(u); 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        if (fu < *fc) { 
           if(j==0) j=1;  /* Survives at least one month after exam */  #ifdef DEBUG
           k=k+1;        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
           if (j >= jmax) jmax=j;        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
           if (j <= jmin) jmin=j;  #endif
           sum=sum+j;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          SHFT(*fb,*fc,fu,(*func)(u)) 
           }        } 
         }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
         else{  #ifdef DEBUG
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
           k=k+1;        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
           if (j >= jmax) jmax=j;  #endif
           else if (j <= jmin)jmin=j;        u=ulim; 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        fu=(*func)(u); 
           sum=sum+j;      } else { /* u could be left to b (if r > q parabola has a maximum) */
         }  #ifdef DEBUG
         jk= j/stepm;        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
         jl= j -jk*stepm;        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
         ju= j -(jk+1)*stepm;  #endif
         if(jl <= -ju)        u=(*cx)+GOLD*(*cx-*bx); 
           dh[mi][i]=jk;        fu=(*func)(u); 
         else      } /* end tests */
           dh[mi][i]=jk+1;      SHFT(*ax,*bx,*cx,u) 
         if(dh[mi][i]==0)      SHFT(*fa,*fb,*fc,fu) 
           dh[mi][i]=1; /* At least one step */  #ifdef DEBUG
       }        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
     }        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
   }  #endif
   jmean=sum/k;    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  } 
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  
  }  /*************** linmin ************************/
   /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
 /*********** Tricode ****************************/  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
 void tricode(int *Tvar, int **nbcode, int imx)  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
 {  the value of func at the returned location p . This is actually all accomplished by calling the
   int Ndum[20],ij=1, k, j, i;  routines mnbrak and brent .*/
   int cptcode=0;  int ncom; 
   cptcoveff=0;  double *pcom,*xicom;
    double (*nrfunc)(double []); 
   for (k=0; k<19; k++) Ndum[k]=0;   
   for (k=1; k<=7; k++) ncodemax[k]=0;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    double brent(double ax, double bx, double cx, 
     for (i=1; i<=imx; i++) {                 double (*f)(double), double tol, double *xmin); 
       ij=(int)(covar[Tvar[j]][i]);    double f1dim(double x); 
       Ndum[ij]++;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/                double *fc, double (*func)(double)); 
       if (ij > cptcode) cptcode=ij;    int j; 
     }    double xx,xmin,bx,ax; 
     double fx,fb,fa;
     for (i=0; i<=cptcode; i++) {  
       if(Ndum[i]!=0) ncodemax[j]++;    double scale=10., axs, xxs, xxss; /* Scale added for infinity */
     }   
     ij=1;    ncom=n; 
     pcom=vector(1,n); 
     xicom=vector(1,n); 
     for (i=1; i<=ncodemax[j]; i++) {    nrfunc=func; 
       for (k=0; k<=19; k++) {    for (j=1;j<=n;j++) { 
         if (Ndum[k] != 0) {      pcom[j]=p[j]; 
           nbcode[Tvar[j]][ij]=k;      xicom[j]=xi[j]; 
              } 
           ij++;  
         }    /* axs=0.0; */
         if (ij > ncodemax[j]) break;    /* xxss=1; /\* 1 and using scale *\/ */
       }      xxs=1;
     }    /* do{ */
   }        ax=0.;
       xx= xxs;
  for (k=0; k<19; k++) Ndum[k]=0;      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
       /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
  for (i=1; i<=ncovmodel-2; i++) {      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
    ij=Tvar[i];      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
    Ndum[ij]++;      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
  }      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
       /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
  ij=1;    /*   if (fx != fx){ */
  for (i=1; i<=10; i++) {    /*    xxs=xxs/scale; /\* Trying a smaller xx, closer to initial ax=0 *\/ */
    if((Ndum[i]!=0) && (i<=ncovcol)){    /*    printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx); */
      Tvaraff[ij]=i;    /*   } */
      ij++;    /* }while(fx != fx); */
    }  
  }  #ifdef DEBUGLINMIN
      printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
  cptcoveff=ij-1;  #endif
 }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
     /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
 /*********** Health Expectancies ****************/    /* fmin = f(p[j] + xmin * xi[j]) */
     /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
   #ifdef DEBUG
 {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /* Health expectancies */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  #endif
   double age, agelim, hf;  #ifdef DEBUGLINMIN
   double ***p3mat,***varhe;    printf("linmin end ");
   double **dnewm,**doldm;  #endif
   double *xp;    for (j=1;j<=n;j++) { 
   double **gp, **gm;      /* printf(" before xi[%d]=%12.8f", j,xi[j]); */
   double ***gradg, ***trgradg;      xi[j] *= xmin; /* xi rescaled by xmin: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
   int theta;      /* if(xxs <1.0) */
       /*   printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs ); */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);      p[j] += xi[j]; /* Parameters values are updated accordingly */
   xp=vector(1,npar);    } 
   dnewm=matrix(1,nlstate*2,1,npar);    /* printf("\n"); */
   doldm=matrix(1,nlstate*2,1,nlstate*2);  #ifdef DEBUGLINMIN
      printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
   fprintf(ficreseij,"# Health expectancies\n");    for (j=1;j<=n;j++) { 
   fprintf(ficreseij,"# Age");      printf(" xi[%d]= %12.7f p[%d]= %12.7f",j,xi[j],j,p[j]);
   for(i=1; i<=nlstate;i++)      if(j % ncovmodel == 0)
     for(j=1; j<=nlstate;j++)        printf("\n");
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    }
   fprintf(ficreseij,"\n");  #endif
     free_vector(xicom,1,n); 
   if(estepm < stepm){    free_vector(pcom,1,n); 
     printf ("Problem %d lower than %d\n",estepm, stepm);  } 
   }  
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months  /*************** powell ************************/
    * This is mainly to measure the difference between two models: for example  /*
    * if stepm=24 months pijx are given only every 2 years and by summing them  Minimization of a function func of n variables. Input consists of an initial starting point
    * we are calculating an estimate of the Life Expectancy assuming a linear  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
    * progression inbetween and thus overestimating or underestimating according  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
    * to the curvature of the survival function. If, for the same date, we  such that failure to decrease by more than this amount on one iteration signals doneness. On
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
    * to compare the new estimate of Life expectancy with the same linear  function value at p , and iter is the number of iterations taken. The routine linmin is used.
    * hypothesis. A more precise result, taking into account a more precise   */
    * curvature will be obtained if estepm is as small as stepm. */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
   /* For example we decided to compute the life expectancy with the smallest unit */  { 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    void linmin(double p[], double xi[], int n, double *fret, 
      nhstepm is the number of hstepm from age to agelim                double (*func)(double [])); 
      nstepm is the number of stepm from age to agelin.    int i,ibig,j; 
      Look at hpijx to understand the reason of that which relies in memory size    double del,t,*pt,*ptt,*xit;
      and note for a fixed period like estepm months */    double directest;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double fp,fptt;
      survival function given by stepm (the optimization length). Unfortunately it    double *xits;
      means that if the survival funtion is printed only each two years of age and if    int niterf, itmp;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.    pt=vector(1,n); 
   */    ptt=vector(1,n); 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    xit=vector(1,n); 
     xits=vector(1,n); 
   agelim=AGESUP;    *fret=(*func)(p); 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (j=1;j<=n;j++) pt[j]=p[j]; 
     /* nhstepm age range expressed in number of stepm */      rcurr_time = time(NULL);  
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    for (*iter=1;;++(*iter)) { 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      fp=(*fret); /* From former iteration or initial value */
     /* if (stepm >= YEARM) hstepm=1;*/      ibig=0; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      del=0.0; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      rlast_time=rcurr_time;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      /* (void) gettimeofday(&curr_time,&tzp); */
     gp=matrix(0,nhstepm,1,nlstate*2);      rcurr_time = time(NULL);  
     gm=matrix(0,nhstepm,1,nlstate*2);      curr_time = *localtime(&rcurr_time);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        for (i=1;i<=n;i++) {
          printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        fprintf(ficrespow," %.12lf", p[i]);
       }
     /* Computing Variances of health expectancies */      printf("\n");
       fprintf(ficlog,"\n");
      for(theta=1; theta <=npar; theta++){      fprintf(ficrespow,"\n");fflush(ficrespow);
       for(i=1; i<=npar; i++){      if(*iter <=3){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        tml = *localtime(&rcurr_time);
       }        strcpy(strcurr,asctime(&tml));
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          rforecast_time=rcurr_time; 
          itmp = strlen(strcurr);
       cptj=0;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       for(j=1; j<= nlstate; j++){          strcurr[itmp-1]='\0';
         for(i=1; i<=nlstate; i++){        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           cptj=cptj+1;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        for(niterf=10;niterf<=30;niterf+=10){
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
           }          forecast_time = *localtime(&rforecast_time);
         }          strcpy(strfor,asctime(&forecast_time));
       }          itmp = strlen(strfor);
                if(strfor[itmp-1]=='\n')
                strfor[itmp-1]='\0';
       for(i=1; i<=npar; i++)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
            }
       cptj=0;      for (i=1;i<=n;i++) { /* For each direction i */
       for(j=1; j<= nlstate; j++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
         for(i=1;i<=nlstate;i++){        fptt=(*fret); 
           cptj=cptj+1;  #ifdef DEBUG
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
           }  #endif
         }            printf("%d",i);fflush(stdout); /* print direction (parameter) i */
       }        fprintf(ficlog,"%d",i);fflush(ficlog);
       for(j=1; j<= nlstate*2; j++)        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
         for(h=0; h<=nhstepm-1; h++){                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
         }          /* because that direction will be replaced unless the gain del is small */
      }          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
              /* Unless the n directions are conjugate some gain in the determinant may be obtained */
 /* End theta */          /* with the new direction. */
           del=fabs(fptt-(*fret)); 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          ibig=i; 
         } 
      for(h=0; h<=nhstepm-1; h++)  #ifdef DEBUG
       for(j=1; j<=nlstate*2;j++)        printf("%d %.12e",i,(*fret));
         for(theta=1; theta <=npar; theta++)        fprintf(ficlog,"%d %.12e",i,(*fret));
           trgradg[h][j][theta]=gradg[h][theta][j];        for (j=1;j<=n;j++) {
                xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
      for(i=1;i<=nlstate*2;i++)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       for(j=1;j<=nlstate*2;j++)        }
         varhe[i][j][(int)age] =0.;        for(j=1;j<=n;j++) {
           printf(" p(%d)=%.12e",j,p[j]);
      printf("%d|",(int)age);fflush(stdout);          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        }
      for(h=0;h<=nhstepm-1;h++){        printf("\n");
       for(k=0;k<=nhstepm-1;k++){        fprintf(ficlog,"\n");
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  #endif
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      } /* end loop on each direction i */
         for(i=1;i<=nlstate*2;i++)      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
           for(j=1;j<=nlstate*2;j++)      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      /* New value of last point Pn is not computed, P(n-1) */
       }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
     }        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
     /* Computing expectancies */        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
     for(i=1; i<=nlstate;i++)        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
       for(j=1; j<=nlstate;j++)        /* decreased of more than 3.84  */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
                  /* By adding 10 parameters more the gain should be 18.31 */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
         /* Starting the program with initial values given by a former maximization will simply change */
         }        /* the scales of the directions and the directions, because the are reset to canonical directions */
         /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
     fprintf(ficreseij,"%3.0f",age );        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
     cptj=0;  #ifdef DEBUG
     for(i=1; i<=nlstate;i++)        int k[2],l;
       for(j=1; j<=nlstate;j++){        k[0]=1;
         cptj++;        k[1]=-1;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        printf("Max: %.12e",(*func)(p));
       }        fprintf(ficlog,"Max: %.12e",(*func)(p));
     fprintf(ficreseij,"\n");        for (j=1;j<=n;j++) {
              printf(" %.12e",p[j]);
     free_matrix(gm,0,nhstepm,1,nlstate*2);          fprintf(ficlog," %.12e",p[j]);
     free_matrix(gp,0,nhstepm,1,nlstate*2);        }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        printf("\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        fprintf(ficlog,"\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(l=0;l<=1;l++) {
   }          for (j=1;j<=n;j++) {
   printf("\n");            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   fprintf(ficlog,"\n");            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   free_vector(xp,1,npar);          }
   free_matrix(dnewm,1,nlstate*2,1,npar);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        }
 }  #endif
   
 /************ Variance ******************/  
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)        free_vector(xit,1,n); 
 {        free_vector(xits,1,n); 
   /* Variance of health expectancies */        free_vector(ptt,1,n); 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        free_vector(pt,1,n); 
   /* double **newm;*/        return; 
   double **dnewm,**doldm;      } /* enough precision */ 
   double **dnewmp,**doldmp;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   int i, j, nhstepm, hstepm, h, nstepm ;      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
   int k, cptcode;        ptt[j]=2.0*p[j]-pt[j]; 
   double *xp;        xit[j]=p[j]-pt[j]; 
   double **gp, **gm;  /* for var eij */        pt[j]=p[j]; 
   double ***gradg, ***trgradg; /*for var eij */      } 
   double **gradgp, **trgradgp; /* for var p point j */      fptt=(*func)(ptt); /* f_3 */
   double *gpp, *gmp; /* for var p point j */  #ifdef POWELLF1F3
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */  #else
   double ***p3mat;      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
   double age,agelim, hf;  #endif
   int theta;        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
   char digit[4];        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
   char digitp[16];        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
   char fileresprobmorprev[FILENAMELENGTH];        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
         /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
   if(popbased==1)        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
     strcpy(digitp,"-populbased-");  #ifdef NRCORIGINAL
   else        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
     strcpy(digitp,"-stablbased-");  #else
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
   strcpy(fileresprobmorprev,"prmorprev");        t= t- del*SQR(fp-fptt);
   sprintf(digit,"%-d",ij);  #endif
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
   strcat(fileresprobmorprev,digit); /* Tvar to be done */  #ifdef DEBUG
   strcat(fileresprobmorprev,digitp); /* Popbased or not */        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   strcat(fileresprobmorprev,fileres);        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
     printf("Problem with resultfile: %s\n", fileresprobmorprev);               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   }               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");  #endif
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  #ifdef POWELLORIGINAL
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){        if (t < 0.0) { /* Then we use it for new direction */
     fprintf(ficresprobmorprev," p.%-d SE",j);  #else
     for(i=1; i<=nlstate;i++)        if (directest*t < 0.0) { /* Contradiction between both tests */
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);          printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
   }            printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
   fprintf(ficresprobmorprev,"\n");          fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        } 
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);        if (directest < 0.0) { /* Then we use it for new direction */
     exit(0);  #endif
   }  #ifdef DEBUGLINMIN
   else{          printf("Before linmin in direction P%d-P0\n",n);
     fprintf(ficgp,"\n# Routine varevsij");          for (j=1;j<=n;j++) { 
   }            printf("Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {            if(j % ncovmodel == 0)
     printf("Problem with html file: %s\n", optionfilehtm);              printf("\n");
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          }
     exit(0);  #endif
   }          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
   else{  #ifdef DEBUGLINMIN
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");          for (j=1;j<=n;j++) { 
   }            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            if(j % ncovmodel == 0)
               printf("\n");
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          }
   fprintf(ficresvij,"# Age");  #endif
   for(i=1; i<=nlstate;i++)          for (j=1;j<=n;j++) { 
     for(j=1; j<=nlstate;j++)            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
   fprintf(ficresvij,"\n");          }
           printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   xp=vector(1,npar);          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  #ifdef DEBUG
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);            printf(" %.12e",xit[j]);
   gpp=vector(nlstate+1,nlstate+ndeath);            fprintf(ficlog," %.12e",xit[j]);
   gmp=vector(nlstate+1,nlstate+ndeath);          }
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          printf("\n");
            fprintf(ficlog,"\n");
   if(estepm < stepm){  #endif
     printf ("Problem %d lower than %d\n",estepm, stepm);        } /* end of t or directest negative */
   }  #ifdef POWELLF1F3
   else  hstepm=estepm;    #else
   /* For example we decided to compute the life expectancy with the smallest unit */      } /* end if (fptt < fp)  */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  #endif
      nhstepm is the number of hstepm from age to agelim    } /* loop iteration */ 
      nstepm is the number of stepm from age to agelin.  } 
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */  /**** Prevalence limit (stable or period prevalence)  ****************/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
      means that if the survival funtion is printed only each two years of age and if  {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
      results. So we changed our mind and took the option of the best precision.       matrix by transitions matrix until convergence is reached */
   */    
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    int i, ii,j,k;
   agelim = AGESUP;    double min, max, maxmin, maxmax,sumnew=0.;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* double **matprod2(); */ /* test */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double **out, cov[NCOVMAX+1], **pmij();
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double **newm;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double agefin, delaymax=50 ; /* Max number of years to converge */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    
     gp=matrix(0,nhstepm,1,nlstate);    for (ii=1;ii<=nlstate+ndeath;ii++)
     gm=matrix(0,nhstepm,1,nlstate);      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
     for(theta=1; theta <=npar; theta++){    
       for(i=1; i<=npar; i++){ /* Computes gradient */    cov[1]=1.;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    
       }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      newm=savm;
       /* Covariates have to be included here again */
       if (popbased==1) {      cov[2]=agefin;
         for(i=1; i<=nlstate;i++)      if(nagesqr==1)
           prlim[i][i]=probs[(int)age][i][ij];        cov[3]= agefin*agefin;;
       }      for (k=1; k<=cptcovn;k++) {
          /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
       for(j=1; j<= nlstate; j++){        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
         for(h=0; h<=nhstepm; h++){        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
         }      /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
       }      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
       /* This for computing forces of mortality (h=1)as a weighted average */      for (k=1; k<=cptcovprod;k++) /* Useless */
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
         for(i=1; i<= nlstate; i++)        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      
       }          /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /* end force of mortality */      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       for(i=1; i<=npar; i++) /* Computes gradient */      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      
        savm=oldm;
       if (popbased==1) {      oldm=newm;
         for(i=1; i<=nlstate;i++)      maxmax=0.;
           prlim[i][i]=probs[(int)age][i][ij];      for(j=1;j<=nlstate;j++){
       }        min=1.;
         max=0.;
       for(j=1; j<= nlstate; j++){        for(i=1; i<=nlstate; i++) {
         for(h=0; h<=nhstepm; h++){          sumnew=0;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          prlim[i][j]= newm[i][j]/(1-sumnew);
         }          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
       }          max=FMAX(max,prlim[i][j]);
       /* This for computing force of mortality (h=1)as a weighted average */          min=FMIN(min,prlim[i][j]);
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){        }
         for(i=1; i<= nlstate; i++)        maxmin=max-min;
           gmp[j] += prlim[i][i]*p3mat[i][j][1];        maxmax=FMAX(maxmax,maxmin);
       }          } /* j loop */
       /* end force of mortality */      if(maxmax < ftolpl){
         return prlim;
       for(j=1; j<= nlstate; j++) /* vareij */      }
         for(h=0; h<=nhstepm; h++){    } /* age loop */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    return prlim; /* should not reach here */
         }  }
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */  
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];  /*************** transition probabilities ***************/ 
       }  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     } /* End theta */  {
     /* According to parameters values stored in x and the covariate's values stored in cov,
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */       computes the probability to be observed in state j being in state i by appying the
        model to the ncovmodel covariates (including constant and age).
     for(h=0; h<=nhstepm; h++) /* veij */       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
       for(j=1; j<=nlstate;j++)       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         for(theta=1; theta <=npar; theta++)       ncth covariate in the global vector x is given by the formula:
           trgradg[h][j][theta]=gradg[h][theta][j];       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
        j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
       for(theta=1; theta <=npar; theta++)       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         trgradgp[j][theta]=gradgp[theta][j];       Outputs ps[i][j] the probability to be observed in j being in j according to
        the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    */
     for(i=1;i<=nlstate;i++)    double s1, lnpijopii;
       for(j=1;j<=nlstate;j++)    /*double t34;*/
         vareij[i][j][(int)age] =0.;    int i,j, nc, ii, jj;
   
     for(h=0;h<=nhstepm;h++){      for(i=1; i<= nlstate; i++){
       for(k=0;k<=nhstepm;k++){        for(j=1; j<i;j++){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            /*lnpijopii += param[i][j][nc]*cov[nc];*/
         for(i=1;i<=nlstate;i++)            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
           for(j=1;j<=nlstate;j++)  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          }
       }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     }  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }
     /* pptj */        for(j=i+1; j<=nlstate+ndeath;j++){
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
     for(j=nlstate+1;j<=nlstate+ndeath;j++)            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
       for(i=nlstate+1;i<=nlstate+ndeath;i++)  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         varppt[j][i]=doldmp[j][i];          }
     /* end ppptj */          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          }
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);      }
        
     if (popbased==1) {      for(i=1; i<= nlstate; i++){
       for(i=1; i<=nlstate;i++)        s1=0;
         prlim[i][i]=probs[(int)age][i][ij];        for(j=1; j<i; j++){
     }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
              /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     /* This for computing force of mortality (h=1)as a weighted average */        }
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){        for(j=i+1; j<=nlstate+ndeath; j++){
       for(i=1; i<= nlstate; i++)          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         gmp[j] += prlim[i][i]*p3mat[i][j][1];          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     }            }
     /* end force of mortality */        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         ps[i][i]=1./(s1+1.);
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);        /* Computing other pijs */
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        for(j=1; j<i; j++)
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(i=1; i<=nlstate;i++){        for(j=i+1; j<=nlstate+ndeath; j++)
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);          ps[i][j]= exp(ps[i][j])*ps[i][i];
       }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     }      } /* end i */
     fprintf(ficresprobmorprev,"\n");      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     fprintf(ficresvij,"%.0f ",age );        for(jj=1; jj<= nlstate+ndeath; jj++){
     for(i=1; i<=nlstate;i++)          ps[ii][jj]=0;
       for(j=1; j<=nlstate;j++){          ps[ii][ii]=1;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        }
       }      }
     fprintf(ficresvij,"\n");      
     free_matrix(gp,0,nhstepm,1,nlstate);      
     free_matrix(gm,0,nhstepm,1,nlstate);      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*   } */
   } /* End age */      /*   printf("\n "); */
   free_vector(gpp,nlstate+1,nlstate+ndeath);      /* } */
   free_vector(gmp,nlstate+1,nlstate+ndeath);      /* printf("\n ");printf("%lf ",cov[2]);*/
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      /*
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        goto end;*/
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */      return ps;
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");  }
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);  /**************** Product of 2 matrices ******************/
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);  
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);  {
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
   free_vector(xp,1,npar);       a pointer to pointers identical to out */
   free_matrix(doldm,1,nlstate,1,nlstate);    int i, j, k;
   free_matrix(dnewm,1,nlstate,1,npar);    for(i=nrl; i<= nrh; i++)
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      for(k=ncolol; k<=ncoloh; k++){
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);        out[i][k]=0.;
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        for(j=ncl; j<=nch; j++)
   fclose(ficresprobmorprev);          out[i][k] +=in[i][j]*b[j][k];
   fclose(ficgp);      }
   fclose(fichtm);    return out;
   }
 }  
   
 /************ Variance of prevlim ******************/  /************* Higher Matrix Product ***************/
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   /* Variance of prevalence limit */  {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    /* Computes the transition matrix starting at age 'age' over 
   double **newm;       'nhstepm*hstepm*stepm' months (i.e. until
   double **dnewm,**doldm;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   int i, j, nhstepm, hstepm;       nhstepm*hstepm matrices. 
   int k, cptcode;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double *xp;       (typically every 2 years instead of every month which is too big 
   double *gp, *gm;       for the memory).
   double **gradg, **trgradg;       Model is determined by parameters x and covariates have to be 
   double age,agelim;       included manually here. 
   int theta;  
           */
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");  
   fprintf(ficresvpl,"# Age");    int i, j, d, h, k;
   for(i=1; i<=nlstate;i++)    double **out, cov[NCOVMAX+1];
       fprintf(ficresvpl," %1d-%1d",i,i);    double **newm;
   fprintf(ficresvpl,"\n");    double agexact;
   
   xp=vector(1,npar);    /* Hstepm could be zero and should return the unit matrix */
   dnewm=matrix(1,nlstate,1,npar);    for (i=1;i<=nlstate+ndeath;i++)
   doldm=matrix(1,nlstate,1,nlstate);      for (j=1;j<=nlstate+ndeath;j++){
          oldm[i][j]=(i==j ? 1.0 : 0.0);
   hstepm=1*YEARM; /* Every year of age */        po[i][j][0]=(i==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      }
   agelim = AGESUP;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for(h=1; h <=nhstepm; h++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for(d=1; d <=hstepm; d++){
     if (stepm >= YEARM) hstepm=1;        newm=savm;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        /* Covariates have to be included here again */
     gradg=matrix(1,npar,1,nlstate);        cov[1]=1.;
     gp=vector(1,nlstate);        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     gm=vector(1,nlstate);        cov[2]=agexact;
         if(nagesqr==1)
     for(theta=1; theta <=npar; theta++){          cov[3]= agexact*agexact;
       for(i=1; i<=npar; i++){ /* Computes gradient */        for (k=1; k<=cptcovn;k++) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
       }          /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
       for(i=1;i<=nlstate;i++)          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
         gp[i] = prlim[i][i];          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
              /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
       for(i=1; i<=npar; i++) /* Computes gradient */        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
       for(i=1;i<=nlstate;i++)  
         gm[i] = prlim[i][i];  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       for(i=1;i<=nlstate;i++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     } /* End theta */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
     trgradg =matrix(1,nlstate,1,npar);        oldm=newm;
       }
     for(j=1; j<=nlstate;j++)      for(i=1; i<=nlstate+ndeath; i++)
       for(theta=1; theta <=npar; theta++)        for(j=1;j<=nlstate+ndeath;j++) {
         trgradg[j][theta]=gradg[theta][j];          po[i][j][h]=newm[i][j];
           /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     for(i=1;i<=nlstate;i++)        }
       varpl[i][(int)age] =0.;      /*printf("h=%d ",h);*/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    } /* end h */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  /*     printf("\n H=%d \n",h); */
     for(i=1;i<=nlstate;i++)    return po;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  }
   
     fprintf(ficresvpl,"%.0f ",age );  #ifdef NLOPT
     for(i=1; i<=nlstate;i++)    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double fret;
     fprintf(ficresvpl,"\n");    double *xt;
     free_vector(gp,1,nlstate);    int j;
     free_vector(gm,1,nlstate);    myfunc_data *d2 = (myfunc_data *) pd;
     free_matrix(gradg,1,npar,1,nlstate);  /* xt = (p1-1); */
     free_matrix(trgradg,1,nlstate,1,npar);    xt=vector(1,n); 
   } /* End age */    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   
   free_vector(xp,1,npar);    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
   free_matrix(doldm,1,nlstate,1,npar);    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
   free_matrix(dnewm,1,nlstate,1,nlstate);    printf("Function = %.12lf ",fret);
     for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
 }    printf("\n");
    free_vector(xt,1,n);
 /************ Variance of one-step probabilities  ******************/    return fret;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  }
 {  #endif
   int i, j=0,  i1, k1, l1, t, tj;  
   int k2, l2, j1,  z1;  /*************** log-likelihood *************/
   int k=0,l, cptcode;  double func( double *x)
   int first=1, first1;  {
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    int i, ii, j, k, mi, d, kk;
   double **dnewm,**doldm;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   double *xp;    double **out;
   double *gp, *gm;    double sw; /* Sum of weights */
   double **gradg, **trgradg;    double lli; /* Individual log likelihood */
   double **mu;    int s1, s2;
   double age,agelim, cov[NCOVMAX];    double bbh, survp;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    long ipmx;
   int theta;    double agexact;
   char fileresprob[FILENAMELENGTH];    /*extern weight */
   char fileresprobcov[FILENAMELENGTH];    /* We are differentiating ll according to initial status */
   char fileresprobcor[FILENAMELENGTH];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   double ***varpij;      printf(" %d\n",s[4][i]);
     */
   strcpy(fileresprob,"prob");  
   strcat(fileresprob,fileres);    ++countcallfunc;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);    cov[1]=1.;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  
   }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   strcpy(fileresprobcov,"probcov");  
   strcat(fileresprobcov,fileres);    if(mle==1){
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     printf("Problem with resultfile: %s\n", fileresprobcov);        /* Computes the values of the ncovmodel covariates of the model
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
   }           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   strcpy(fileresprobcor,"probcor");           to be observed in j being in i according to the model.
   strcat(fileresprobcor,fileres);         */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
     printf("Problem with resultfile: %s\n", fileresprobcor);            cov[2+nagesqr+k]=covar[Tvar[k]][i];
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);        }
   }        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);           has been calculated etc */
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          for (ii=1;ii<=nlstate+ndeath;ii++)
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");            }
   fprintf(ficresprob,"# Age");          for(d=0; d<dh[mi][i]; d++){
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");            newm=savm;
   fprintf(ficresprobcov,"# Age");            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");            cov[2]=agexact;
   fprintf(ficresprobcov,"# Age");            if(nagesqr==1)
               cov[3]= agexact*agexact;
             for (kk=1; kk<=cptcovage;kk++) {
   for(i=1; i<=nlstate;i++)              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
     for(j=1; j<=(nlstate+ndeath);j++){            }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficresprobcov," p%1d-%1d ",i,j);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresprobcor," p%1d-%1d ",i,j);            savm=oldm;
     }              oldm=newm;
   fprintf(ficresprob,"\n");          } /* end mult */
   fprintf(ficresprobcov,"\n");        
   fprintf(ficresprobcor,"\n");          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   xp=vector(1,npar);          /* But now since version 0.9 we anticipate for bias at large stepm.
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));           * (in months) between two waves is not a multiple of stepm, we rounded to 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);           * the nearest (and in case of equal distance, to the lowest) interval but now
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   first=1;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {           * probability in order to take into account the bias as a fraction of the way
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);           * -stepm/2 to stepm/2 .
     exit(0);           * For stepm=1 the results are the same as for previous versions of Imach.
   }           * For stepm > 1 the results are less biased than in previous versions. 
   else{           */
     fprintf(ficgp,"\n# Routine varprob");          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          bbh=(double)bh[mi][i]/(double)stepm; 
     printf("Problem with html file: %s\n", optionfilehtm);          /* bias bh is positive if real duration
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);           * is higher than the multiple of stepm and negative otherwise.
     exit(0);           */
   }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   else{          if( s2 > nlstate){ 
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");            /* i.e. if s2 is a death state and if the date of death is known 
     fprintf(fichtm,"\n");               then the contribution to the likelihood is the probability to 
                die between last step unit time and current  step unit time, 
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");               which is also equal to probability to die before dh 
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");               minus probability to die before dh-stepm . 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
   }          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
            to consider that at each interview the state was recorded
   cov[1]=1;          (healthy, disable or death) and IMaCh was corrected; but when we
   tj=cptcoveff;          introduced the exact date of death then we should have modified
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}          the contribution of an exact death to the likelihood. This new
   j1=0;          contribution is smaller and very dependent of the step unit
   for(t=1; t<=tj;t++){          stepm. It is no more the probability to die between last interview
     for(i1=1; i1<=ncodemax[t];i1++){          and month of death but the probability to survive from last
       j1++;          interview up to one month before death multiplied by the
                probability to die within a month. Thanks to Chris
       if  (cptcovn>0) {          Jackson for correcting this bug.  Former versions increased
         fprintf(ficresprob, "\n#********** Variable ");          mortality artificially. The bad side is that we add another loop
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          which slows down the processing. The difference can be up to 10%
         fprintf(ficresprob, "**********\n#");          lower mortality.
         fprintf(ficresprobcov, "\n#********** Variable ");            */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          /* If, at the beginning of the maximization mostly, the
         fprintf(ficresprobcov, "**********\n#");             cumulative probability or probability to be dead is
                     constant (ie = 1) over time d, the difference is equal to
         fprintf(ficgp, "\n#********** Variable ");             0.  out[s1][3] = savm[s1][3]: probability, being at state
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);             s1 at precedent wave, to be dead a month before current
         fprintf(ficgp, "**********\n#");             wave is equal to probability, being at state s1 at
                     precedent wave, to be dead at mont of the current
                     wave. Then the observed probability (that this person died)
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");             is null according to current estimated parameter. In fact,
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);             it should be very low but not zero otherwise the log go to
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");             infinity.
                  */
         fprintf(ficresprobcor, "\n#********** Variable ");      /* #ifdef INFINITYORIGINAL */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
         fprintf(ficgp, "**********\n#");      /* #else */
       }  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
        /*          lli=log(mytinydouble); */
       for (age=bage; age<=fage; age ++){  /*        else */
         cov[2]=age;  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
         for (k=1; k<=cptcovn;k++) {  /* #endif */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];              lli=log(out[s1][s2] - savm[s1][s2]);
         }  
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          } else if  (s2==-2) {
         for (k=1; k<=cptcovprod;k++)            for (j=1,survp=0. ; j<=nlstate; j++) 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                    /*survp += out[s1][j]; */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));            lli= log(survp);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          }
         gp=vector(1,(nlstate)*(nlstate+ndeath));          
         gm=vector(1,(nlstate)*(nlstate+ndeath));          else if  (s2==-4) { 
                for (j=3,survp=0. ; j<=nlstate; j++)  
         for(theta=1; theta <=npar; theta++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           for(i=1; i<=npar; i++)            lli= log(survp); 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          } 
            
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          else if  (s2==-5) { 
                      for (j=1,survp=0. ; j<=2; j++)  
           k=0;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           for(i=1; i<= (nlstate); i++){            lli= log(survp); 
             for(j=1; j<=(nlstate+ndeath);j++){          } 
               k=k+1;          
               gp[k]=pmmij[i][j];          else{
             }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                    } 
           for(i=1; i<=npar; i++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          /*if(lli ==000.0)*/
              /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          ipmx +=1;
           k=0;          sw += weight[i];
           for(i=1; i<=(nlstate); i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             for(j=1; j<=(nlstate+ndeath);j++){          /* if (lli < log(mytinydouble)){ */
               k=k+1;          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
               gm[k]=pmmij[i][j];          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
             }          /* } */
           }        } /* end of wave */
            } /* end of individual */
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    }  else if(mle==2){
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(theta=1; theta <=npar; theta++)            for (j=1;j<=nlstate+ndeath;j++){
             trgradg[j][theta]=gradg[theta][j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);            }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);          for(d=0; d<=dh[mi][i]; d++){
                    newm=savm;
         pmij(pmmij,cov,ncovmodel,x,nlstate);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    cov[2]=agexact;
         k=0;            if(nagesqr==1)
         for(i=1; i<=(nlstate); i++){              cov[3]= agexact*agexact;
           for(j=1; j<=(nlstate+ndeath);j++){            for (kk=1; kk<=cptcovage;kk++) {
             k=k+1;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             mu[k][(int) age]=pmmij[i][j];            }
           }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)            savm=oldm;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)            oldm=newm;
             varpij[i][j][(int)age] = doldm[i][j];          } /* end mult */
         
         /*printf("\n%d ",(int)age);          s1=s[mw[mi][i]][i];
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          s2=s[mw[mi+1][i]][i];
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          bbh=(double)bh[mi][i]/(double)stepm; 
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      }*/          ipmx +=1;
           sw += weight[i];
         fprintf(ficresprob,"\n%d ",(int)age);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         fprintf(ficresprobcov,"\n%d ",(int)age);        } /* end of wave */
         fprintf(ficresprobcor,"\n%d ",(int)age);      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(mi=1; mi<= wav[i]-1; mi++){
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          for (ii=1;ii<=nlstate+ndeath;ii++)
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         i=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (k=1; k<=(nlstate);k++){            }
           for (l=1; l<=(nlstate+ndeath);l++){          for(d=0; d<dh[mi][i]; d++){
             i=i++;            newm=savm;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);            cov[2]=agexact;
             for (j=1; j<=i;j++){            if(nagesqr==1)
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);              cov[3]= agexact*agexact;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            for (kk=1; kk<=cptcovage;kk++) {
             }              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
           }            }
         }/* end of loop for state */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       } /* end of loop for age */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
       /* Confidence intervalle of pij  */            oldm=newm;
       /*          } /* end mult */
       fprintf(ficgp,"\nset noparametric;unset label");        
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          s1=s[mw[mi][i]][i];
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          s2=s[mw[mi+1][i]][i];
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);          ipmx +=1;
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);          sw += weight[i];
       */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      } /* end of individual */
       first1=1;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (k2=1; k2<=(nlstate);k2++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (l2=1; l2<=(nlstate+ndeath);l2++){        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
           if(l2==k2) continue;        for(mi=1; mi<= wav[i]-1; mi++){
           j=(k2-1)*(nlstate+ndeath)+l2;          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (k1=1; k1<=(nlstate);k1++){            for (j=1;j<=nlstate+ndeath;j++){
             for (l1=1; l1<=(nlstate+ndeath);l1++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(l1==k1) continue;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               i=(k1-1)*(nlstate+ndeath)+l1;            }
               if(i<=j) continue;          for(d=0; d<dh[mi][i]; d++){
               for (age=bage; age<=fage; age ++){            newm=savm;
                 if ((int)age %5==0){            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            cov[2]=agexact;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;            if(nagesqr==1)
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;              cov[3]= agexact*agexact;
                   mu1=mu[i][(int) age]/stepm*YEARM ;            for (kk=1; kk<=cptcovage;kk++) {
                   mu2=mu[j][(int) age]/stepm*YEARM;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   c12=cv12/sqrt(v1*v2);            }
                   /* Computing eigen value of matrix of covariance */          
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   /* Eigen vectors */            savm=oldm;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            oldm=newm;
                   /*v21=sqrt(1.-v11*v11); *//* error */          } /* end mult */
                   v21=(lc1-v1)/cv12*v11;        
                   v12=-v21;          s1=s[mw[mi][i]][i];
                   v22=v11;          s2=s[mw[mi+1][i]][i];
                   tnalp=v21/v11;          if( s2 > nlstate){ 
                   if(first1==1){            lli=log(out[s1][s2] - savm[s1][s2]);
                     first1=0;          }else{
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   }          }
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          ipmx +=1;
                   /*printf(fignu*/          sw += weight[i];
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                   if(first==1){        } /* end of wave */
                     first=0;      } /* end of individual */
                     fprintf(ficgp,"\nset parametric;unset label");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);        for(mi=1; mi<= wav[i]-1; mi++){
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);          for (ii=1;ii<=nlstate+ndeath;ii++)
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);            for (j=1;j<=nlstate+ndeath;j++){
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);            }
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          for(d=0; d<dh[mi][i]; d++){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            newm=savm;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   }else{            cov[2]=agexact;
                     first=0;            if(nagesqr==1)
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);              cov[3]= agexact*agexact;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);            for (kk=1; kk<=cptcovage;kk++) {
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\            }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\          
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   }/* if first */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 } /* age mod 5 */            savm=oldm;
               } /* end loop age */            oldm=newm;
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);          } /* end mult */
               first=1;        
             } /*l12 */          s1=s[mw[mi][i]][i];
           } /* k12 */          s2=s[mw[mi+1][i]][i];
         } /*l1 */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }/* k1 */          ipmx +=1;
     } /* loop covariates */          sw += weight[i];
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        } /* end of wave */
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      } /* end of individual */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    } /* End of if */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   free_vector(xp,1,npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   fclose(ficresprob);    return -l;
   fclose(ficresprobcov);  }
   fclose(ficresprobcor);  
   fclose(ficgp);  /*************** log-likelihood *************/
   fclose(fichtm);  double funcone( double *x)
 }  {
     /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
 /******************* Printing html file ***********/    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    double **out;
                   int lastpass, int stepm, int weightopt, char model[],\    double lli; /* Individual log likelihood */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    double llt;
                   int popforecast, int estepm ,\    int s1, s2;
                   double jprev1, double mprev1,double anprev1, \    double bbh, survp;
                   double jprev2, double mprev2,double anprev2){    double agexact;
   int jj1, k1, i1, cpt;    /*extern weight */
   /*char optionfilehtm[FILENAMELENGTH];*/    /* We are differentiating ll according to initial status */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     printf("Problem with %s \n",optionfilehtm), exit(0);    /*for(i=1;i<imx;i++) 
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);      printf(" %d\n",s[4][i]);
   }    */
     cov[1]=1.;
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n  
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    for(k=1; k<=nlstate; k++) ll[k]=0.;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n  
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  - Life expectancies by age and initial health status (estepm=%2d months):      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      for(mi=1; mi<= wav[i]-1; mi++){
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
  m=cptcoveff;          }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
  jj1=0;          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
  for(k1=1; k1<=m;k1++){          cov[2]=agexact;
    for(i1=1; i1<=ncodemax[k1];i1++){          if(nagesqr==1)
      jj1++;            cov[3]= agexact*agexact;
      if (cptcovn > 0) {          for (kk=1; kk<=cptcovage;kk++) {
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
        for (cpt=1; cpt<=cptcoveff;cpt++)          }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
      }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      /* Pij */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
      /* Quasi-incidences */          savm=oldm;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>          oldm=newm;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        } /* end mult */
        /* Stable prevalence in each health state */        
        for(cpt=1; cpt<nlstate;cpt++){        s1=s[mw[mi][i]][i];
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        s2=s[mw[mi+1][i]][i];
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        bbh=(double)bh[mi][i]/(double)stepm; 
        }        /* bias is positive if real duration
      for(cpt=1; cpt<=nlstate;cpt++) {         * is higher than the multiple of stepm and negative otherwise.
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>         */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
      }          lli=log(out[s1][s2] - savm[s1][s2]);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        } else if  (s2==-2) {
 health expectancies in states (1) and (2): e%s%d.png<br>          for (j=1,survp=0. ; j<=nlstate; j++) 
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
    } /* end i1 */          lli= log(survp);
  }/* End k1 */        }else if (mle==1){
  fprintf(fichtm,"</ul>");          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n        } else if(mle==3){  /* exponential inter-extrapolation */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        } else if (mle==4){  /* mle=4 no inter-extrapolation */
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n          lli=log(out[s1][s2]); /* Original formula */
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n        } else{  /* mle=0 back to 1 */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n          /*lli=log(out[s1][s2]); */ /* Original formula */
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        } /* End of if */
         ipmx +=1;
  if(popforecast==1) fprintf(fichtm,"\n        sw += weight[i];
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         <br>",fileres,fileres,fileres,fileres);        if(globpr){
  else          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);   %11.6f %11.6f %11.6f ", \
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
  m=cptcoveff;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
  jj1=0;          }
  for(k1=1; k1<=m;k1++){          fprintf(ficresilk," %10.6f\n", -llt);
    for(i1=1; i1<=ncodemax[k1];i1++){        }
      jj1++;      } /* end of wave */
      if (cptcovn > 0) {    } /* end of individual */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
        for (cpt=1; cpt<=cptcoveff;cpt++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    if(globpr==0){ /* First time we count the contributions and weights */
      }      gipmx=ipmx;
      for(cpt=1; cpt<=nlstate;cpt++) {      gsw=sw;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    }
 interval) in state (%d): v%s%d%d.png <br>    return -l;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    }
      }  
    } /* end i1 */  
  }/* End k1 */  /*************** function likelione ***********/
  fprintf(fichtm,"</ul>");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 fclose(fichtm);  {
 }    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
 /******************* Gnuplot file **************/       to check the exact contribution to the likelihood.
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){       Plotting could be done.
      */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    int k;
   int ng;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    if(*globpri !=0){ /* Just counts and sums, no printings */
     printf("Problem with file %s",optionfilegnuplot);      strcpy(fileresilk,"ilk"); 
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);      strcat(fileresilk,fileres);
   }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
 #ifdef windows        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     fprintf(ficgp,"cd \"%s\" \n",pathc);      }
 #endif      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 m=pow(2,cptcoveff);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
        /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
  /* 1eme*/      for(k=1; k<=nlstate; k++) 
   for (cpt=1; cpt<= nlstate ; cpt ++) {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
    for (k1=1; k1<= m ; k1 ++) {      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
 #ifdef windows  
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    *fretone=(*funcone)(p);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    if(*globpri !=0){
 #endif      fclose(ficresilk);
 #ifdef unix      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      fflush(fichtm); 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    } 
 #endif    return;
   }
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /*********** Maximum Likelihood Estimation ***************/
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     for (i=1; i<= nlstate ; i ++) {  {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    int i,j, iter=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double **xi;
 }    double fret;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    double fretone; /* Only one call to likelihood */
      for (i=1; i<= nlstate ; i ++) {    /*  char filerespow[FILENAMELENGTH];*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  #ifdef NLOPT
 }      int creturn;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    nlopt_opt opt;
 #ifdef unix    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    double *lb;
 #endif    double minf; /* the minimum objective value, upon return */
    }    double * p1; /* Shifted parameters from 0 instead of 1 */
   }    myfunc_data dinst, *d = &dinst;
   /*2 eme*/  #endif
   
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    xi=matrix(1,npar,1,npar);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    for (i=1;i<=npar;i++)
          for (j=1;j<=npar;j++)
     for (i=1; i<= nlstate+1 ; i ++) {        xi[i][j]=(i==j ? 1.0 : 0.0);
       k=2*i;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    strcpy(filerespow,"pow"); 
       for (j=1; j<= nlstate+1 ; j ++) {    strcat(filerespow,fileres);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");      printf("Problem with resultfile: %s\n", filerespow);
 }        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    for (i=1;i<=nlstate;i++)
       for (j=1; j<= nlstate+1 ; j ++) {      for(j=1;j<=nlstate+ndeath;j++)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficrespow,"\n");
 }    #ifdef POWELL
       fprintf(ficgp,"\" t\"\" w l 0,");    powell(p,xi,npar,ftol,&iter,&fret,func);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  #endif
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  #ifdef NLOPT
   else fprintf(ficgp," \%%*lf (\%%*lf)");  #ifdef NEWUOA
 }      opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  #else
       else fprintf(ficgp,"\" t\"\" w l 0,");    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
     }  #endif
   }    lb=vector(0,npar-1);
      for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
   /*3eme*/    nlopt_set_lower_bounds(opt, lb);
     nlopt_set_initial_step1(opt, 0.1);
   for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<= nlstate ; cpt ++) {    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
       k=2+nlstate*(2*cpt-2);    d->function = func;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    nlopt_set_min_objective(opt, myfunc, d);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    nlopt_set_xtol_rel(opt, ftol);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      printf("nlopt failed! %d\n",creturn); 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    else {
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
 */      iter=1; /* not equal */
       for (i=1; i< nlstate ; i ++) {    }
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    nlopt_destroy(opt);
   #endif
       }    free_matrix(xi,1,npar,1,npar);
     }    fclose(ficrespow);
   }    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
      fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   /* CV preval stat */    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {  }
       k=3;  
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  /**** Computes Hessian and covariance matrix ***/
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
       for (i=1; i< nlstate ; i ++)    double  **a,**y,*x,pd;
         fprintf(ficgp,"+$%d",k+i+1);    double **hess;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    int i, j;
          int *indx;
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       for (i=1; i< nlstate ; i ++) {    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         l=3+(nlstate+ndeath)*cpt;    void lubksb(double **a, int npar, int *indx, double b[]) ;
         fprintf(ficgp,"+$%d",l+i+1);    void ludcmp(double **a, int npar, int *indx, double *d) ;
       }    double gompertz(double p[]);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      hess=matrix(1,npar,1,npar);
     }  
   }      printf("\nCalculation of the hessian matrix. Wait...\n");
      fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   /* proba elementaires */    for (i=1;i<=npar;i++){
    for(i=1,jk=1; i <=nlstate; i++){      printf("%d",i);fflush(stdout);
     for(k=1; k <=(nlstate+ndeath); k++){      fprintf(ficlog,"%d",i);fflush(ficlog);
       if (k != i) {     
         for(j=1; j <=ncovmodel; j++){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      
           jk++;      /*  printf(" %f ",p[i]);
           fprintf(ficgp,"\n");          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         }    }
       }    
     }    for (i=1;i<=npar;i++) {
    }      for (j=1;j<=npar;j++)  {
         if (j>i) { 
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          printf(".%d%d",i,j);fflush(stdout);
      for(jk=1; jk <=m; jk++) {          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          hess[i][j]=hessij(p,delti,i,j,func,npar);
        if (ng==2)          
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          hess[j][i]=hess[i][j];    
        else          /*printf(" %lf ",hess[i][j]);*/
          fprintf(ficgp,"\nset title \"Probability\"\n");        }
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      }
        i=1;    }
        for(k2=1; k2<=nlstate; k2++) {    printf("\n");
          k3=i;    fprintf(ficlog,"\n");
          for(k=1; k<=(nlstate+ndeath); k++) {  
            if (k != k2){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
              if(ng==2)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    
              else    a=matrix(1,npar,1,npar);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    y=matrix(1,npar,1,npar);
              ij=1;    x=vector(1,npar);
              for(j=3; j <=ncovmodel; j++) {    indx=ivector(1,npar);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    for (i=1;i<=npar;i++)
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
                  ij++;    ludcmp(a,npar,indx,&pd);
                }  
                else    for (j=1;j<=npar;j++) {
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for (i=1;i<=npar;i++) x[i]=0;
              }      x[j]=1;
              fprintf(ficgp,")/(1");      lubksb(a,npar,indx,x);
                    for (i=1;i<=npar;i++){ 
              for(k1=1; k1 <=nlstate; k1++){          matcov[i][j]=x[i];
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      }
                ij=1;    }
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    printf("\n#Hessian matrix#\n");
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    fprintf(ficlog,"\n#Hessian matrix#\n");
                    ij++;    for (i=1;i<=npar;i++) { 
                  }      for (j=1;j<=npar;j++) { 
                  else        printf("%.3e ",hess[i][j]);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        fprintf(ficlog,"%.3e ",hess[i][j]);
                }      }
                fprintf(ficgp,")");      printf("\n");
              }      fprintf(ficlog,"\n");
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    }
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
              i=i+ncovmodel;    /* Recompute Inverse */
            }    for (i=1;i<=npar;i++)
          } /* end k */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
        } /* end k2 */    ludcmp(a,npar,indx,&pd);
      } /* end jk */  
    } /* end ng */    /*  printf("\n#Hessian matrix recomputed#\n");
    fclose(ficgp);  
 }  /* end gnuplot */    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
 /*************** Moving average **************/      lubksb(a,npar,indx,x);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
   int i, cpt, cptcod;        printf("%.3e ",y[i][j]);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        fprintf(ficlog,"%.3e ",y[i][j]);
       for (i=1; i<=nlstate;i++)      }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      printf("\n");
           mobaverage[(int)agedeb][i][cptcod]=0.;      fprintf(ficlog,"\n");
        }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    */
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    free_matrix(a,1,npar,1,npar);
           for (cpt=0;cpt<=4;cpt++){    free_matrix(y,1,npar,1,npar);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    free_vector(x,1,npar);
           }    free_ivector(indx,1,npar);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    free_matrix(hess,1,npar,1,npar);
         }  
       }  
     }  }
      
 }  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
 /************** Forecasting ******************/    int i;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    int l=1, lmax=20;
      double k1,k2;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double p2[MAXPARM+1]; /* identical to x */
   int *popage;    double res;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   double *popeffectif,*popcount;    double fx;
   double ***p3mat;    int k=0,kmax=10;
   char fileresf[FILENAMELENGTH];    double l1;
   
  agelim=AGESUP;    fx=func(x);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      l1=pow(10,l);
        delts=delt;
        for(k=1 ; k <kmax; k=k+1){
   strcpy(fileresf,"f");        delt = delta*(l1*k);
   strcat(fileresf,fileres);        p2[theta]=x[theta] +delt;
   if((ficresf=fopen(fileresf,"w"))==NULL) {        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
     printf("Problem with forecast resultfile: %s\n", fileresf);        p2[theta]=x[theta]-delt;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);        k2=func(p2)-fx;
   }        /*res= (k1-2.0*fx+k2)/delt/delt; */
   printf("Computing forecasting: result on file '%s' \n", fileresf);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);        
   #ifdef DEBUGHESS
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   if (mobilav==1) {  #endif
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     movingaverage(agedeb, fage, ageminpar, mobaverage);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   }          k=kmax;
         }
   stepsize=(int) (stepm+YEARM-1)/YEARM;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   if (stepm<=12) stepsize=1;          k=kmax; l=lmax*10;
          }
   agelim=AGESUP;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
            delts=delt;
   hstepm=1;        }
   hstepm=hstepm/stepm;      }
   yp1=modf(dateintmean,&yp);    }
   anprojmean=yp;    delti[theta]=delts;
   yp2=modf((yp1*12),&yp);    return res; 
   mprojmean=yp;    
   yp1=modf((yp2*30.5),&yp);  }
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   if(mprojmean==0) jprojmean=1;  {
      int i;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    int l=1, lmax=20;
      double k1,k2,k3,k4,res,fx;
   for(cptcov=1;cptcov<=i2;cptcov++){    double p2[MAXPARM+1];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int k;
       k=k+1;  
       fprintf(ficresf,"\n#******");    fx=func(x);
       for(j=1;j<=cptcoveff;j++) {    for (k=1; k<=2; k++) {
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for (i=1;i<=npar;i++) p2[i]=x[i];
       }      p2[thetai]=x[thetai]+delti[thetai]/k;
       fprintf(ficresf,"******\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       fprintf(ficresf,"# StartingAge FinalAge");      k1=func(p2)-fx;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    
            p2[thetai]=x[thetai]+delti[thetai]/k;
            p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      k2=func(p2)-fx;
         fprintf(ficresf,"\n");    
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      k3=func(p2)-fx;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    
           nhstepm = nhstepm/hstepm;      p2[thetai]=x[thetai]-delti[thetai]/k;
                p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      k4=func(p2)-fx;
           oldm=oldms;savm=savms;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    #ifdef DEBUG
              printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           for (h=0; h<=nhstepm; h++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             if (h==(int) (calagedate+YEARM*cpt)) {  #endif
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    }
             }    return res;
             for(j=1; j<=nlstate+ndeath;j++) {  }
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                /************** Inverse of matrix **************/
                 if (mobilav==1)  void ludcmp(double **a, int n, int *indx, double *d) 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  { 
                 else {    int i,imax,j,k; 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    double big,dum,sum,temp; 
                 }    double *vv; 
                   
               }    vv=vector(1,n); 
               if (h==(int)(calagedate+12*cpt)){    *d=1.0; 
                 fprintf(ficresf," %.3f", kk1);    for (i=1;i<=n;i++) { 
                              big=0.0; 
               }      for (j=1;j<=n;j++) 
             }        if ((temp=fabs(a[i][j])) > big) big=temp; 
           }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      vv[i]=1.0/big; 
         }    } 
       }    for (j=1;j<=n;j++) { 
     }      for (i=1;i<j;i++) { 
   }        sum=a[i][j]; 
                for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        a[i][j]=sum; 
       } 
   fclose(ficresf);      big=0.0; 
 }      for (i=j;i<=n;i++) { 
 /************** Forecasting ******************/        sum=a[i][j]; 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        for (k=1;k<j;k++) 
            sum -= a[i][k]*a[k][j]; 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        a[i][j]=sum; 
   int *popage;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          big=dum; 
   double *popeffectif,*popcount;          imax=i; 
   double ***p3mat,***tabpop,***tabpopprev;        } 
   char filerespop[FILENAMELENGTH];      } 
       if (j != imax) { 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for (k=1;k<=n;k++) { 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          dum=a[imax][k]; 
   agelim=AGESUP;          a[imax][k]=a[j][k]; 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          a[j][k]=dum; 
          } 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        *d = -(*d); 
          vv[imax]=vv[j]; 
        } 
   strcpy(filerespop,"pop");      indx[j]=imax; 
   strcat(filerespop,fileres);      if (a[j][j] == 0.0) a[j][j]=TINY; 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      if (j != n) { 
     printf("Problem with forecast resultfile: %s\n", filerespop);        dum=1.0/(a[j][j]); 
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   }      } 
   printf("Computing forecasting: result on file '%s' \n", filerespop);    } 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    free_vector(vv,1,n);  /* Doesn't work */
   ;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  } 
   
   if (mobilav==1) {  void lubksb(double **a, int n, int *indx, double b[]) 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  { 
     movingaverage(agedeb, fage, ageminpar, mobaverage);    int i,ii=0,ip,j; 
   }    double sum; 
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;    for (i=1;i<=n;i++) { 
   if (stepm<=12) stepsize=1;      ip=indx[i]; 
        sum=b[ip]; 
   agelim=AGESUP;      b[ip]=b[i]; 
        if (ii) 
   hstepm=1;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   hstepm=hstepm/stepm;      else if (sum) ii=i; 
        b[i]=sum; 
   if (popforecast==1) {    } 
     if((ficpop=fopen(popfile,"r"))==NULL) {    for (i=n;i>=1;i--) { 
       printf("Problem with population file : %s\n",popfile);exit(0);      sum=b[i]; 
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     }      b[i]=sum/a[i][i]; 
     popage=ivector(0,AGESUP);    } 
     popeffectif=vector(0,AGESUP);  } 
     popcount=vector(0,AGESUP);  
      void pstamp(FILE *fichier)
     i=1;    {
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
      }
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  /************ Frequencies ********************/
   }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
   for(cptcov=1;cptcov<=i2;cptcov++){    
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int i, m, jk, j1, bool, z1,j;
       k=k+1;    int first;
       fprintf(ficrespop,"\n#******");    double ***freq; /* Frequencies */
       for(j=1;j<=cptcoveff;j++) {    double *pp, **prop;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       }    char fileresp[FILENAMELENGTH];
       fprintf(ficrespop,"******\n");    
       fprintf(ficrespop,"# Age");    pp=vector(1,nlstate);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    prop=matrix(1,nlstate,iagemin,iagemax+3);
       if (popforecast==1)  fprintf(ficrespop," [Population]");    strcpy(fileresp,"p");
          strcat(fileresp,fileres);
       for (cpt=0; cpt<=0;cpt++) {    if((ficresp=fopen(fileresp,"w"))==NULL) {
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        printf("Problem with prevalence resultfile: %s\n", fileresp);
              fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      exit(0);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    }
           nhstepm = nhstepm/hstepm;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
              j1=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;    j=cptcoveff;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if (cptcovn<1) {j=1;ncodemax[1]=1;}
          
           for (h=0; h<=nhstepm; h++){    first=1;
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
             }    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
             for(j=1; j<=nlstate+ndeath;j++) {    /*    j1++; */
               kk1=0.;kk2=0;    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
               for(i=1; i<=nlstate;i++) {                      /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
                 if (mobilav==1)          scanf("%d", i);*/
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for (i=-5; i<=nlstate+ndeath; i++)  
                 else {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            for(m=iagemin; m <= iagemax+3; m++)
                 }              freq[i][jk][m]=0;
               }        
               if (h==(int)(calagedate+12*cpt)){        for (i=1; i<=nlstate; i++)  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          for(m=iagemin; m <= iagemax+3; m++)
                   /*fprintf(ficrespop," %.3f", kk1);            prop[i][m]=0;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        
               }        dateintsum=0;
             }        k2cpt=0;
             for(i=1; i<=nlstate;i++){        for (i=1; i<=imx; i++) {
               kk1=0.;          bool=1;
                 for(j=1; j<=nlstate;j++){          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            for (z1=1; z1<=cptcoveff; z1++)       
                 }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
             }                bool=0;
                 /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                  j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
           }                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              } 
         }          }
       }   
            if (bool==1){
   /******/            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           nhstepm = nhstepm/hstepm;                if (m<lastpass) {
                            freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           oldm=oldms;savm=savms;                }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  
           for (h=0; h<=nhstepm; h++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             if (h==(int) (calagedate+YEARM*cpt)) {                  dateintsum=dateintsum+k2;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                  k2cpt++;
             }                }
             for(j=1; j<=nlstate+ndeath;j++) {                /*}*/
               kk1=0.;kk2=0;            }
               for(i=1; i<=nlstate;i++) {                        }
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            } /* end i */
               }         
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
             }        pstamp(ficresp);
           }        if  (cptcovn>0) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresp, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
       }          fprintf(ficresp, "**********\n#");
    }          fprintf(ficlog, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
            fprintf(ficlog, "**********\n#");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
         for(i=1; i<=nlstate;i++) 
   if (popforecast==1) {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     free_ivector(popage,0,AGESUP);        fprintf(ficresp, "\n");
     free_vector(popeffectif,0,AGESUP);        
     free_vector(popcount,0,AGESUP);        for(i=iagemin; i <= iagemax+3; i++){
   }          if(i==iagemax+3){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficlog,"Total");
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }else{
   fclose(ficrespop);            if(first==1){
 }              first=0;
               printf("See log file for details...\n");
 /***********************************************/            }
 /**************** Main Program *****************/            fprintf(ficlog,"Age %d", i);
 /***********************************************/          }
           for(jk=1; jk <=nlstate ; jk++){
 int main(int argc, char *argv[])            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 {              pp[jk] += freq[jk][m][i]; 
           }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          for(jk=1; jk <=nlstate ; jk++){
   double agedeb, agefin,hf;            for(m=-1, pos=0; m <=0 ; m++)
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
   double fret;              if(first==1){
   double **xi,tmp,delta;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
   double dum; /* Dummy variable */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double ***p3mat;            }else{
   int *indx;              if(first==1)
   char line[MAXLINE], linepar[MAXLINE];                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int firstobs=1, lastobs=10;            }
   int sdeb, sfin; /* Status at beginning and end */          }
   int c,  h , cpt,l;  
   int ju,jl, mi;          for(jk=1; jk <=nlstate ; jk++){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;              pp[jk] += freq[jk][m][i];
   int mobilav=0,popforecast=0;          }       
   int hstepm, nhstepm;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;            pos += pp[jk];
             posprop += prop[jk][i];
   double bage, fage, age, agelim, agebase;          }
   double ftolpl=FTOL;          for(jk=1; jk <=nlstate ; jk++){
   double **prlim;            if(pos>=1.e-5){
   double *severity;              if(first==1)
   double ***param; /* Matrix of parameters */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   double  *p;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   double **matcov; /* Matrix of covariance */            }else{
   double ***delti3; /* Scale */              if(first==1)
   double *delti; /* Scale */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   double ***eij, ***vareij;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   double **varpl; /* Variances of prevalence limits by age */            }
   double *epj, vepp;            if( i <= iagemax){
   double kk1, kk2;              if(pos>=1.e-5){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                  /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   char *alph[]={"a","a","b","c","d","e"}, str[4];              }
               else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   char z[1]="c", occ;            }
 #include <sys/time.h>          }
 #include <time.h>          
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          for(jk=-1; jk <=nlstate+ndeath; jk++)
              for(m=-1; m <=nlstate+ndeath; m++)
   /* long total_usecs;              if(freq[jk][m][i] !=0 ) {
   struct timeval start_time, end_time;              if(first==1)
                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   getcwd(pathcd, size);              }
           if(i <= iagemax)
   printf("\n%s",version);            fprintf(ficresp,"\n");
   if(argc <=1){          if(first==1)
     printf("\nEnter the parameter file name: ");            printf("Others in log...\n");
     scanf("%s",pathtot);          fprintf(ficlog,"\n");
   }        }
   else{        /*}*/
     strcpy(pathtot,argv[1]);    }
   }    dateintmean=dateintsum/k2cpt; 
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/   
   /*cygwin_split_path(pathtot,path,optionfile);    fclose(ficresp);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   /* cutv(path,optionfile,pathtot,'\\');*/    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    /* End of Freq */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  }
   chdir(path);  
   replace(pathc,path);  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 /*-------- arguments in the command line --------*/  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   /* Log file */       in each health status at the date of interview (if between dateprev1 and dateprev2).
   strcat(filelog, optionfilefiname);       We still use firstpass and lastpass as another selection.
   strcat(filelog,".log");    /* */    */
   if((ficlog=fopen(filelog,"w"))==NULL)    {   
     printf("Problem with logfile %s\n",filelog);    int i, m, jk, j1, bool, z1,j;
     goto end;  
   }    double **prop;
   fprintf(ficlog,"Log filename:%s\n",filelog);    double posprop; 
   fprintf(ficlog,"\n%s",version);    double  y2; /* in fractional years */
   fprintf(ficlog,"\nEnter the parameter file name: ");    int iagemin, iagemax;
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    int first; /** to stop verbosity which is redirected to log file */
   fflush(ficlog);  
     iagemin= (int) agemin;
   /* */    iagemax= (int) agemax;
   strcpy(fileres,"r");    /*pp=vector(1,nlstate);*/
   strcat(fileres, optionfilefiname);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   strcat(fileres,".txt");    /* Other files have txt extension */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
   /*---------arguments file --------*/    
     /*j=cptcoveff;*/
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     printf("Problem with optionfile %s\n",optionfile);    
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    first=1;
     goto end;    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   }      /*for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;*/
   strcpy(filereso,"o");        
   strcat(filereso,fileres);        for (i=1; i<=nlstate; i++)  
   if((ficparo=fopen(filereso,"w"))==NULL) {          for(m=iagemin; m <= iagemax+3; m++)
     printf("Problem with Output resultfile: %s\n", filereso);            prop[i][m]=0.0;
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);       
     goto end;        for (i=1; i<=imx; i++) { /* Each individual */
   }          bool=1;
           if  (cptcovn>0) {
   /* Reads comments: lines beginning with '#' */            for (z1=1; z1<=cptcoveff; z1++) 
   while((c=getc(ficpar))=='#' && c!= EOF){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) 
     ungetc(c,ficpar);                bool=0;
     fgets(line, MAXLINE, ficpar);          } 
     puts(line);          if (bool==1) { 
     fputs(line,ficparo);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   ungetc(c,ficpar);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 while((c=getc(ficpar))=='#' && c!= EOF){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     ungetc(c,ficpar);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     fgets(line, MAXLINE, ficpar);                  prop[s[m][i]][iagemax+3] += weight[i]; 
     puts(line);                } 
     fputs(line,ficparo);              }
   }            } /* end selection of waves */
   ungetc(c,ficpar);          }
          }
            for(i=iagemin; i <= iagemax+3; i++){  
   covar=matrix(0,NCOVMAX,1,n);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   cptcovn=0;            posprop += prop[jk][i]; 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          } 
           
   ncovmodel=2+cptcovn;          for(jk=1; jk <=nlstate ; jk++){     
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            if( i <=  iagemax){ 
                if(posprop>=1.e-5){ 
   /* Read guess parameters */                probs[i][jk][j1]= prop[jk][i]/posprop;
   /* Reads comments: lines beginning with '#' */              } else{
   while((c=getc(ficpar))=='#' && c!= EOF){                if(first==1){
     ungetc(c,ficpar);                  first=0;
     fgets(line, MAXLINE, ficpar);                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
     puts(line);                }
     fputs(line,ficparo);              }
   }            } 
   ungetc(c,ficpar);          }/* end jk */ 
          }/* end i */ 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      /*} *//* end i1 */
     for(i=1; i <=nlstate; i++)    } /* end j1 */
     for(j=1; j <=nlstate+ndeath-1; j++){    
       fscanf(ficpar,"%1d%1d",&i1,&j1);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       fprintf(ficparo,"%1d%1d",i1,j1);    /*free_vector(pp,1,nlstate);*/
       if(mle==1)    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         printf("%1d%1d",i,j);  }  /* End of prevalence */
       fprintf(ficlog,"%1d%1d",i,j);  
       for(k=1; k<=ncovmodel;k++){  /************* Waves Concatenation ***************/
         fscanf(ficpar," %lf",&param[i][j][k]);  
         if(mle==1){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           printf(" %lf",param[i][j][k]);  {
           fprintf(ficlog," %lf",param[i][j][k]);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         }       Death is a valid wave (if date is known).
         else       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           fprintf(ficlog," %lf",param[i][j][k]);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         fprintf(ficparo," %lf",param[i][j][k]);       and mw[mi+1][i]. dh depends on stepm.
       }       */
       fscanf(ficpar,"\n");  
       if(mle==1)    int i, mi, m;
         printf("\n");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       fprintf(ficlog,"\n");       double sum=0., jmean=0.;*/
       fprintf(ficparo,"\n");    int first;
     }    int j, k=0,jk, ju, jl;
      double sum=0.;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    first=0;
     jmin=100000;
   p=param[1][1];    jmax=-1;
      jmean=0.;
   /* Reads comments: lines beginning with '#' */    for(i=1; i<=imx; i++){
   while((c=getc(ficpar))=='#' && c!= EOF){      mi=0;
     ungetc(c,ficpar);      m=firstpass;
     fgets(line, MAXLINE, ficpar);      while(s[m][i] <= nlstate){
     puts(line);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     fputs(line,ficparo);          mw[++mi][i]=m;
   }        if(m >=lastpass)
   ungetc(c,ficpar);          break;
         else
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          m++;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      }/* end while */
   for(i=1; i <=nlstate; i++){      if (s[m][i] > nlstate){
     for(j=1; j <=nlstate+ndeath-1; j++){        mi++;     /* Death is another wave */
       fscanf(ficpar,"%1d%1d",&i1,&j1);        /* if(mi==0)  never been interviewed correctly before death */
       printf("%1d%1d",i,j);           /* Only death is a correct wave */
       fprintf(ficparo,"%1d%1d",i1,j1);        mw[mi][i]=m;
       for(k=1; k<=ncovmodel;k++){      }
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);      wav[i]=mi;
         fprintf(ficparo," %le",delti3[i][j][k]);      if(mi==0){
       }        nbwarn++;
       fscanf(ficpar,"\n");        if(first==0){
       printf("\n");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       fprintf(ficparo,"\n");          first=1;
     }        }
   }        if(first==1){
   delti=delti3[1][1];          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
          }
   /* Reads comments: lines beginning with '#' */      } /* end mi==0 */
   while((c=getc(ficpar))=='#' && c!= EOF){    } /* End individuals */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    for(i=1; i<=imx; i++){
     puts(line);      for(mi=1; mi<wav[i];mi++){
     fputs(line,ficparo);        if (stepm <=0)
   }          dh[mi][i]=1;
   ungetc(c,ficpar);        else{
            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   matcov=matrix(1,npar,1,npar);            if (agedc[i] < 2*AGESUP) {
   for(i=1; i <=npar; i++){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     fscanf(ficpar,"%s",&str);              if(j==0) j=1;  /* Survives at least one month after exam */
     if(mle==1)              else if(j<0){
       printf("%s",str);                nberr++;
     fprintf(ficlog,"%s",str);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficparo,"%s",str);                j=1; /* Temporary Dangerous patch */
     for(j=1; j <=i; j++){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       fscanf(ficpar," %le",&matcov[i][j]);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       if(mle==1){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         printf(" %.5le",matcov[i][j]);              }
         fprintf(ficlog," %.5le",matcov[i][j]);              k=k+1;
       }              if (j >= jmax){
       else                jmax=j;
         fprintf(ficlog," %.5le",matcov[i][j]);                ijmax=i;
       fprintf(ficparo," %.5le",matcov[i][j]);              }
     }              if (j <= jmin){
     fscanf(ficpar,"\n");                jmin=j;
     if(mle==1)                ijmin=i;
       printf("\n");              }
     fprintf(ficlog,"\n");              sum=sum+j;
     fprintf(ficparo,"\n");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   for(i=1; i <=npar; i++)            }
     for(j=i+1;j<=npar;j++)          }
       matcov[i][j]=matcov[j][i];          else{
                j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   if(mle==1)  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     printf("\n");  
   fprintf(ficlog,"\n");            k=k+1;
             if (j >= jmax) {
               jmax=j;
     /*-------- Rewriting paramater file ----------*/              ijmax=i;
      strcpy(rfileres,"r");    /* "Rparameterfile */            }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            else if (j <= jmin){
      strcat(rfileres,".");    /* */              jmin=j;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */              ijmin=i;
     if((ficres =fopen(rfileres,"w"))==NULL) {            }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     }            if(j<0){
     fprintf(ficres,"#%s\n",version);              nberr++;
                  printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     /*-------- data file ----------*/              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     if((fic=fopen(datafile,"r"))==NULL)    {            }
       printf("Problem with datafile: %s\n", datafile);goto end;            sum=sum+j;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;          }
     }          jk= j/stepm;
           jl= j -jk*stepm;
     n= lastobs;          ju= j -(jk+1)*stepm;
     severity = vector(1,maxwav);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     outcome=imatrix(1,maxwav+1,1,n);            if(jl==0){
     num=ivector(1,n);              dh[mi][i]=jk;
     moisnais=vector(1,n);              bh[mi][i]=0;
     annais=vector(1,n);            }else{ /* We want a negative bias in order to only have interpolation ie
     moisdc=vector(1,n);                    * to avoid the price of an extra matrix product in likelihood */
     andc=vector(1,n);              dh[mi][i]=jk+1;
     agedc=vector(1,n);              bh[mi][i]=ju;
     cod=ivector(1,n);            }
     weight=vector(1,n);          }else{
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            if(jl <= -ju){
     mint=matrix(1,maxwav,1,n);              dh[mi][i]=jk;
     anint=matrix(1,maxwav,1,n);              bh[mi][i]=jl;       /* bias is positive if real duration
     s=imatrix(1,maxwav+1,1,n);                                   * is higher than the multiple of stepm and negative otherwise.
     adl=imatrix(1,maxwav+1,1,n);                                       */
     tab=ivector(1,NCOVMAX);            }
     ncodemax=ivector(1,8);            else{
               dh[mi][i]=jk+1;
     i=1;              bh[mi][i]=ju;
     while (fgets(line, MAXLINE, fic) != NULL)    {            }
       if ((i >= firstobs) && (i <=lastobs)) {            if(dh[mi][i]==0){
                      dh[mi][i]=1; /* At least one step */
         for (j=maxwav;j>=1;j--){              bh[mi][i]=ju; /* At least one step */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           strcpy(line,stra);            }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          } /* end if mle */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        }
         }      } /* end wave */
            }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    jmean=sum/k;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);   }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
   /*********** Tricode ****************************/
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
         for (j=ncovcol;j>=1;j--){  {
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
         }    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
         num[i]=atol(stra);     * Boring subroutine which should only output nbcode[Tvar[j]][k]
             * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){     * nbcode[Tvar[j]][1]= 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    */
   
         i=i+1;    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
       }    int modmaxcovj=0; /* Modality max of covariates j */
     }    int cptcode=0; /* Modality max of covariates j */
     /* printf("ii=%d", ij);    int modmincovj=0; /* Modality min of covariates j */
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */  
     cptcoveff=0; 
   /* for (i=1; i<=imx; i++){   
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    /* Loop on covariates without age and products */
     }*/    for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
    /*  for (i=1; i<=imx; i++){      for (k=-1; k < maxncov; k++) Ndum[k]=0;
      if (s[4][i]==9)  s[4][i]=-1;      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                                 modality of this covariate Vj*/ 
          ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                                        * If product of Vn*Vm, still boolean *:
   /* Calculation of the number of parameter from char model*/                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   Tprod=ivector(1,15);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
   Tvaraff=ivector(1,15);                                        modality of the nth covariate of individual i. */
   Tvard=imatrix(1,15,1,2);        if (ij > modmaxcovj)
   Tage=ivector(1,15);                modmaxcovj=ij; 
            else if (ij < modmincovj) 
   if (strlen(model) >1){          modmincovj=ij; 
     j=0, j1=0, k1=1, k2=1;        if ((ij < -1) && (ij > NCOVMAX)){
     j=nbocc(model,'+');          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
     j1=nbocc(model,'*');          exit(1);
     cptcovn=j+1;        }else
     cptcovprod=j1;        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
            /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
     strcpy(modelsav,model);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        /* getting the maximum value of the modality of the covariate
       printf("Error. Non available option model=%s ",model);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
       fprintf(ficlog,"Error. Non available option model=%s ",model);           female is 1, then modmaxcovj=1.*/
       goto end;      } /* end for loop on individuals i */
     }      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
          fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
     for(i=(j+1); i>=1;i--){      cptcode=modmaxcovj;
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */     /*for (i=0; i<=cptcode; i++) {*/
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
       /*scanf("%d",i);*/        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
       if (strchr(strb,'*')) {  /* Model includes a product */        fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/        if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
         if (strcmp(strc,"age")==0) { /* Vn*age */          if( k != -1){
           cptcovprod--;            ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
           cutv(strb,stre,strd,'V');                               covariate for which somebody answered excluding 
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/                               undefined. Usually 2: 0 and 1. */
           cptcovage++;          }
             Tage[cptcovage]=i;          ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
             /*printf("stre=%s ", stre);*/                               covariate for which somebody answered including 
         }                               undefined. Usually 3: -1, 0 and 1. */
         else if (strcmp(strd,"age")==0) { /* or age*Vn */        }
           cptcovprod--;        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
           cutv(strb,stre,strc,'V');           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
           Tvar[i]=atoi(stre);      } /* Ndum[-1] number of undefined modalities */
           cptcovage++;  
           Tage[cptcovage]=i;      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
         }      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
         else {  /* Age is not in the model */         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/         modmincovj=3; modmaxcovj = 7;
           Tvar[i]=ncovcol+k1;         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
           Tprod[k1]=i;         defining two dummy variables: variables V1_1 and V1_2.
           Tvard[k1][1]=atoi(strc); /* m*/         nbcode[Tvar[j]][ij]=k;
           Tvard[k1][2]=atoi(stre); /* n */         nbcode[Tvar[j]][1]=0;
           Tvar[cptcovn+k2]=Tvard[k1][1];         nbcode[Tvar[j]][2]=1;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];         nbcode[Tvar[j]][3]=2;
           for (k=1; k<=lastobs;k++)         To be continued (not working yet).
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      */
           k1++;      ij=0; /* ij is similar to i but can jump over null modalities */
           k2=k2+2;      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
         }          if (Ndum[i] == 0) { /* If nobody responded to this modality k */
       }            break;
       else { /* no more sum */          }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          ij++;
        /*  scanf("%d",i);*/          nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
       cutv(strd,strc,strb,'V');          cptcode = ij; /* New max modality for covar j */
       Tvar[i]=atoi(strc);      } /* end of loop on modality i=-1 to 1 or more */
       }        
       strcpy(modelsav,stra);        /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      /*  /\*recode from 0 *\/ */
         scanf("%d",i);*/      /*                               k is a modality. If we have model=V1+V1*sex  */
     } /* end of loop + */      /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   } /* end model */      /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
        /*  } */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
   printf("cptcovprod=%d ", cptcovprod);      /*  if (ij > ncodemax[j]) { */
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);      /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
   scanf("%d ",i);*/      /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
     fclose(fic);      /*    break; */
       /*  } */
     /*  if(mle==1){*/      /*   }  /\* end of loop on modality k *\/ */
     if (weightopt != 1) { /* Maximisation without weights*/    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
       for(i=1;i<=n;i++) weight[i]=1.0;    
     }   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     /*-calculation of age at interview from date of interview and age at death -*/    
     agev=matrix(1,maxwav,1,imx);    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
     for (i=1; i<=imx; i++) {     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
       for(m=2; (m<= maxwav); m++) {     Ndum[ij]++; /* Might be supersed V1 + V1*age */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){   } 
          anint[m][i]=9999;  
          s[m][i]=-1;   ij=0;
        }   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
       }     if((Ndum[i]!=0) && (i<=ncovcol)){
     }       ij++;
        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     for (i=1; i<=imx; i++)  {       Tvaraff[ij]=i; /*For printing (unclear) */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);     }else{
       for(m=1; (m<= maxwav); m++){         /* Tvaraff[ij]=0; */
         if(s[m][i] >0){     }
           if (s[m][i] >= nlstate+1) {   }
             if(agedc[i]>0)   /* ij--; */
               if(moisdc[i]!=99 && andc[i]!=9999)   cptcoveff=ij; /*Number of total covariates*/
                 agev[m][i]=agedc[i];  
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  }
            else {  
               if (andc[i]!=9999){  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  /*********** Health Expectancies ****************/
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
               }  
             }  {
           }    /* Health expectancies, no variances */
           else if(s[m][i] !=9){ /* Should no more exist */    int i, j, nhstepm, hstepm, h, nstepm;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    int nhstepma, nstepma; /* Decreasing with age */
             if(mint[m][i]==99 || anint[m][i]==9999)    double age, agelim, hf;
               agev[m][i]=1;    double ***p3mat;
             else if(agev[m][i] <agemin){    double eip;
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    pstamp(ficreseij);
             }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
             else if(agev[m][i] >agemax){    fprintf(ficreseij,"# Age");
               agemax=agev[m][i];    for(i=1; i<=nlstate;i++){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      for(j=1; j<=nlstate;j++){
             }        fprintf(ficreseij," e%1d%1d ",i,j);
             /*agev[m][i]=anint[m][i]-annais[i];*/      }
             /*   agev[m][i] = age[i]+2*m;*/      fprintf(ficreseij," e%1d. ",i);
           }    }
           else { /* =9 */    fprintf(ficreseij,"\n");
             agev[m][i]=1;  
             s[m][i]=-1;    
           }    if(estepm < stepm){
         }      printf ("Problem %d lower than %d\n",estepm, stepm);
         else /*= 0 Unknown */    }
           agev[m][i]=1;    else  hstepm=estepm;   
       }    /* We compute the life expectancy from trapezoids spaced every estepm months
         * This is mainly to measure the difference between two models: for example
     }     * if stepm=24 months pijx are given only every 2 years and by summing them
     for (i=1; i<=imx; i++)  {     * we are calculating an estimate of the Life Expectancy assuming a linear 
       for(m=1; (m<= maxwav); m++){     * progression in between and thus overestimating or underestimating according
         if (s[m][i] > (nlstate+ndeath)) {     * to the curvature of the survival function. If, for the same date, we 
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);       * estimate the model with stepm=1 month, we can keep estepm to 24 months
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);       * to compare the new estimate of Life expectancy with the same linear 
           goto end;     * hypothesis. A more precise result, taking into account a more precise
         }     * curvature will be obtained if estepm is as small as stepm. */
       }  
     }    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       nhstepm is the number of hstepm from age to agelim 
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
     free_vector(severity,1,maxwav);       and note for a fixed period like estepm months */
     free_imatrix(outcome,1,maxwav+1,1,n);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     free_vector(moisnais,1,n);       survival function given by stepm (the optimization length). Unfortunately it
     free_vector(annais,1,n);       means that if the survival funtion is printed only each two years of age and if
     /* free_matrix(mint,1,maxwav,1,n);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        free_matrix(anint,1,maxwav,1,n);*/       results. So we changed our mind and took the option of the best precision.
     free_vector(moisdc,1,n);    */
     free_vector(andc,1,n);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
        agelim=AGESUP;
     wav=ivector(1,imx);    /* If stepm=6 months */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     mw=imatrix(1,lastpass-firstpass+1,1,imx);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
          
     /* Concatenates waves */  /* nhstepm age range expressed in number of stepm */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
       Tcode=ivector(1,100);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    for (age=bage; age<=fage; age ++){ 
            nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
    codtab=imatrix(1,100,1,10);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
    h=0;      /* if (stepm >= YEARM) hstepm=1;*/
    m=pow(2,cptcoveff);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
    
    for(k=1;k<=cptcoveff; k++){      /* If stepm=6 months */
      for(i=1; i <=(m/pow(2,k));i++){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
        for(j=1; j <= ncodemax[k]; j++){         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      
            h++;      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          }      
        }      printf("%d|",(int)age);fflush(stdout);
      }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
    }      
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      /* Computing expectancies */
       codtab[1][2]=1;codtab[2][2]=2; */      for(i=1; i<=nlstate;i++)
    /* for(i=1; i <=m ;i++){        for(j=1; j<=nlstate;j++)
       for(k=1; k <=cptcovn; k++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       }            
       printf("\n");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       }  
       scanf("%d",i);*/          }
      
    /* Calculates basic frequencies. Computes observed prevalence at single age      fprintf(ficreseij,"%3.0f",age );
        and prints on file fileres'p'. */      for(i=1; i<=nlstate;i++){
         eip=0;
            for(j=1; j<=nlstate;j++){
              eip +=eij[i][j][(int)age];
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficreseij,"%9.4f", eip );
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      fprintf(ficreseij,"\n");
            
     /* For Powell, parameters are in a vector p[] starting at p[1]    }
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    printf("\n");
     fprintf(ficlog,"\n");
     if(mle==1){    
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  }
     }  
      void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  {
      /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
    jk=1;    */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    int nhstepma, nstepma; /* Decreasing with age */
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    double age, agelim, hf;
    for(i=1,jk=1; i <=nlstate; i++){    double ***p3matp, ***p3matm, ***varhe;
      for(k=1; k <=(nlstate+ndeath); k++){    double **dnewm,**doldm;
        if (k != i)    double *xp, *xm;
          {    double **gp, **gm;
            printf("%d%d ",i,k);    double ***gradg, ***trgradg;
            fprintf(ficlog,"%d%d ",i,k);    int theta;
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){    double eip, vip;
              printf("%f ",p[jk]);  
              fprintf(ficlog,"%f ",p[jk]);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
              fprintf(ficres,"%f ",p[jk]);    xp=vector(1,npar);
              jk++;    xm=vector(1,npar);
            }    dnewm=matrix(1,nlstate*nlstate,1,npar);
            printf("\n");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
            fprintf(ficlog,"\n");    
            fprintf(ficres,"\n");    pstamp(ficresstdeij);
          }    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
      }    fprintf(ficresstdeij,"# Age");
    }    for(i=1; i<=nlstate;i++){
    if(mle==1){      for(j=1; j<=nlstate;j++)
      /* Computing hessian and covariance matrix */        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
      ftolhess=ftol; /* Usually correct */      fprintf(ficresstdeij," e%1d. ",i);
      hesscov(matcov, p, npar, delti, ftolhess, func);    }
    }    fprintf(ficresstdeij,"\n");
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
    printf("# Scales (for hessian or gradient estimation)\n");    pstamp(ficrescveij);
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficrescveij,"# Age");
      for(j=1; j <=nlstate+ndeath; j++){    for(i=1; i<=nlstate;i++)
        if (j!=i) {      for(j=1; j<=nlstate;j++){
          fprintf(ficres,"%1d%1d",i,j);        cptj= (j-1)*nlstate+i;
          printf("%1d%1d",i,j);        for(i2=1; i2<=nlstate;i2++)
          fprintf(ficlog,"%1d%1d",i,j);          for(j2=1; j2<=nlstate;j2++){
          for(k=1; k<=ncovmodel;k++){            cptj2= (j2-1)*nlstate+i2;
            printf(" %.5e",delti[jk]);            if(cptj2 <= cptj)
            fprintf(ficlog," %.5e",delti[jk]);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
            fprintf(ficres," %.5e",delti[jk]);          }
            jk++;      }
          }    fprintf(ficrescveij,"\n");
          printf("\n");    
          fprintf(ficlog,"\n");    if(estepm < stepm){
          fprintf(ficres,"\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
        }    }
      }    else  hstepm=estepm;   
    }    /* We compute the life expectancy from trapezoids spaced every estepm months
         * This is mainly to measure the difference between two models: for example
    k=1;     * if stepm=24 months pijx are given only every 2 years and by summing them
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     * we are calculating an estimate of the Life Expectancy assuming a linear 
    if(mle==1)     * progression in between and thus overestimating or underestimating according
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     * to the curvature of the survival function. If, for the same date, we 
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
    for(i=1;i<=npar;i++){     * to compare the new estimate of Life expectancy with the same linear 
      /*  if (k>nlstate) k=1;     * hypothesis. A more precise result, taking into account a more precise
          i1=(i-1)/(ncovmodel*nlstate)+1;     * curvature will be obtained if estepm is as small as stepm. */
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
          printf("%s%d%d",alph[k],i1,tab[i]);*/    /* For example we decided to compute the life expectancy with the smallest unit */
      fprintf(ficres,"%3d",i);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      if(mle==1)       nhstepm is the number of hstepm from age to agelim 
        printf("%3d",i);       nstepm is the number of stepm from age to agelin. 
      fprintf(ficlog,"%3d",i);       Look at hpijx to understand the reason of that which relies in memory size
      for(j=1; j<=i;j++){       and note for a fixed period like estepm months */
        fprintf(ficres," %.5e",matcov[i][j]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        if(mle==1)       survival function given by stepm (the optimization length). Unfortunately it
          printf(" %.5e",matcov[i][j]);       means that if the survival funtion is printed only each two years of age and if
        fprintf(ficlog," %.5e",matcov[i][j]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      }       results. So we changed our mind and took the option of the best precision.
      fprintf(ficres,"\n");    */
      if(mle==1)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        printf("\n");  
      fprintf(ficlog,"\n");    /* If stepm=6 months */
      k++;    /* nhstepm age range expressed in number of stepm */
    }    agelim=AGESUP;
        nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
    while((c=getc(ficpar))=='#' && c!= EOF){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      ungetc(c,ficpar);    /* if (stepm >= YEARM) hstepm=1;*/
      fgets(line, MAXLINE, ficpar);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      puts(line);    
      fputs(line,ficparo);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    ungetc(c,ficpar);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
    estepm=0;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
    if (estepm==0 || estepm < stepm) estepm=stepm;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
    if (fage <= 2) {  
      bage = ageminpar;    for (age=bage; age<=fage; age ++){ 
      fage = agemaxpar;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
    }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
          /* if (stepm >= YEARM) hstepm=1;*/
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      /* If stepm=6 months */
          /* Computed by stepm unit matrices, product of hstepma matrices, stored
    while((c=getc(ficpar))=='#' && c!= EOF){         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
      ungetc(c,ficpar);      
      fgets(line, MAXLINE, ficpar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      puts(line);  
      fputs(line,ficparo);      /* Computing  Variances of health expectancies */
    }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
    ungetc(c,ficpar);         decrease memory allocation */
        for(theta=1; theta <=npar; theta++){
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        for(i=1; i<=npar; i++){ 
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
            }
    while((c=getc(ficpar))=='#' && c!= EOF){        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
      ungetc(c,ficpar);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
      fgets(line, MAXLINE, ficpar);    
      puts(line);        for(j=1; j<= nlstate; j++){
      fputs(line,ficparo);          for(i=1; i<=nlstate; i++){
    }            for(h=0; h<=nhstepm-1; h++){
    ungetc(c,ficpar);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        }
        
   fscanf(ficpar,"pop_based=%d\n",&popbased);        for(ij=1; ij<= nlstate*nlstate; ij++)
   fprintf(ficparo,"pop_based=%d\n",popbased);            for(h=0; h<=nhstepm-1; h++){
   fprintf(ficres,"pop_based=%d\n",popbased);              gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
            }
   while((c=getc(ficpar))=='#' && c!= EOF){      }/* End theta */
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);      
     puts(line);      for(h=0; h<=nhstepm-1; h++)
     fputs(line,ficparo);        for(j=1; j<=nlstate*nlstate;j++)
   }          for(theta=1; theta <=npar; theta++)
   ungetc(c,ficpar);            trgradg[h][j][theta]=gradg[h][theta][j];
       
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       for(ij=1;ij<=nlstate*nlstate;ij++)
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
 while((c=getc(ficpar))=='#' && c!= EOF){       printf("%d|",(int)age);fflush(stdout);
     ungetc(c,ficpar);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fgets(line, MAXLINE, ficpar);       for(h=0;h<=nhstepm-1;h++){
     puts(line);        for(k=0;k<=nhstepm-1;k++){
     fputs(line,ficparo);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   ungetc(c,ficpar);          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      }
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 /*------------ gnuplot -------------*/      for(i=1; i<=nlstate;i++)
   strcpy(optionfilegnuplot,optionfilefiname);        for(j=1; j<=nlstate;j++)
   strcat(optionfilegnuplot,".gp");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     printf("Problem with file %s",optionfilegnuplot);            
   }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   fclose(ficgp);  
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);          }
 /*--------- index.htm --------*/  
       fprintf(ficresstdeij,"%3.0f",age );
   strcpy(optionfilehtm,optionfile);      for(i=1; i<=nlstate;i++){
   strcat(optionfilehtm,".htm");        eip=0.;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        vip=0.;
     printf("Problem with %s \n",optionfilehtm), exit(0);        for(j=1; j<=nlstate;j++){
   }          eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
 \n        }
 Total number of observations=%d <br>\n        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      }
 <hr  size=\"2\" color=\"#EC5E5E\">      fprintf(ficresstdeij,"\n");
  <ul><li><h4>Parameter files</h4>\n  
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      fprintf(ficrescveij,"%3.0f",age );
  - Log file of the run: <a href=\"%s\">%s</a><br>\n      for(i=1; i<=nlstate;i++)
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);        for(j=1; j<=nlstate;j++){
   fclose(fichtm);          cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);            for(j2=1; j2<=nlstate;j2++){
                cptj2= (j2-1)*nlstate+i2;
 /*------------ free_vector  -------------*/              if(cptj2 <= cptj)
  chdir(path);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
              }
  free_ivector(wav,1,imx);        }
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      fprintf(ficrescveij,"\n");
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       
  free_ivector(num,1,n);    }
  free_vector(agedc,1,n);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
  fclose(ficparo);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
  fclose(ficres);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*--------------- Prevalence limit --------------*/    printf("\n");
      fprintf(ficlog,"\n");
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);    free_vector(xm,1,npar);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    free_vector(xp,1,npar);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  }
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");  /************ Variance ******************/
   fprintf(ficrespl,"#Age ");  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  {
   fprintf(ficrespl,"\n");    /* Variance of health expectancies */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   prlim=matrix(1,nlstate,1,nlstate);    /* double **newm;*/
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int movingaverage();
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double **dnewm,**doldm;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double **dnewmp,**doldmp;
   k=0;    int i, j, nhstepm, hstepm, h, nstepm ;
   agebase=ageminpar;    int k;
   agelim=agemaxpar;    double *xp;
   ftolpl=1.e-10;    double **gp, **gm;  /* for var eij */
   i1=cptcoveff;    double ***gradg, ***trgradg; /*for var eij */
   if (cptcovn < 1){i1=1;}    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
   for(cptcov=1;cptcov<=i1;cptcov++){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double ***p3mat;
         k=k+1;    double age,agelim, hf;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    double ***mobaverage;
         fprintf(ficrespl,"\n#******");    int theta;
         printf("\n#******");    char digit[4];
         fprintf(ficlog,"\n#******");    char digitp[25];
         for(j=1;j<=cptcoveff;j++) {  
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    char fileresprobmorprev[FILENAMELENGTH];
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if(popbased==1){
         }      if(mobilav!=0)
         fprintf(ficrespl,"******\n");        strcpy(digitp,"-populbased-mobilav-");
         printf("******\n");      else strcpy(digitp,"-populbased-nomobil-");
         fprintf(ficlog,"******\n");    }
            else 
         for (age=agebase; age<=agelim; age++){      strcpy(digitp,"-stablbased-");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );    if (mobilav!=0) {
           for(i=1; i<=nlstate;i++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrespl," %.5f", prlim[i][i]);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficrespl,"\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }      }
     }    }
   fclose(ficrespl);  
     strcpy(fileresprobmorprev,"prmorprev"); 
   /*------------- h Pij x at various ages ------------*/    sprintf(digit,"%-d",ij);
      /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    strcat(fileresprobmorprev,fileres);
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   printf("Computing pij: result on file '%s' \n", filerespij);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    }
      printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   stepsize=(int) (stepm+YEARM-1)/YEARM;   
   /*if (stepm<=24) stepsize=2;*/    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
   agelim=AGESUP;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   hstepm=stepsize*YEARM; /* Every year of age */    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
   /* hstepm=1;   aff par mois*/      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   k=0;    }  
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresprobmorprev,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficgp,"\n# Routine varevsij");
       k=k+1;    fprintf(ficgp,"\nunset title \n");
         fprintf(ficrespij,"\n#****** ");  /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         for(j=1;j<=cptcoveff;j++)    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         fprintf(ficrespij,"******\n");  /*   } */
            varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    pstamp(ficresvij);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresvij,"# Age");
           oldm=oldms;savm=savms;    for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(j=1; j<=nlstate;j++)
           fprintf(ficrespij,"# Age");        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
           for(i=1; i<=nlstate;i++)    fprintf(ficresvij,"\n");
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);    xp=vector(1,npar);
           fprintf(ficrespij,"\n");    dnewm=matrix(1,nlstate,1,npar);
            for (h=0; h<=nhstepm; h++){    doldm=matrix(1,nlstate,1,nlstate);
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
             for(i=1; i<=nlstate;i++)    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
             fprintf(ficrespij,"\n");    gpp=vector(nlstate+1,nlstate+ndeath);
              }    gmp=vector(nlstate+1,nlstate+ndeath);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           fprintf(ficrespij,"\n");    
         }    if(estepm < stepm){
     }      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
     else  hstepm=estepm;   
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   fclose(ficrespij);       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
   /*---------- Forecasting ------------------*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if((stepm == 1) && (strcmp(model,".")==0)){       survival function given by stepm (the optimization length). Unfortunately it
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);       means that if the survival funtion is printed every two years of age and if
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
   else{    */
     erreur=108;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    agelim = AGESUP;
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*---------- Health expectancies and variances ------------*/      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
   strcpy(filerest,"t");      gm=matrix(0,nhstepm,1,nlstate);
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      for(theta=1; theta <=npar; theta++){
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        }
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
   strcpy(filerese,"e");        if (popbased==1) {
   strcat(filerese,fileres);          if(mobilav ==0){
   if((ficreseij=fopen(filerese,"w"))==NULL) {            for(i=1; i<=nlstate;i++)
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              prlim[i][i]=probs[(int)age][i][ij];
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);              prlim[i][i]=mobaverage[(int)age][i][ij];
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);          }
         }
   strcpy(fileresv,"v");    
   strcat(fileresv,fileres);        for(j=1; j<= nlstate; j++){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          for(h=0; h<=nhstepm; h++){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   }          }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        }
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        /* This for computing probability of death (h=1 means
   calagedate=-1;           computed over hstepm matrices product = hstepm*stepm months) 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);           as a weighted average of prlim.
         */
   k=0;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   for(cptcov=1;cptcov<=i1;cptcov++){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       k=k+1;        }    
       fprintf(ficrest,"\n#****** ");        /* end probability of death */
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       fprintf(ficrest,"******\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficreseij,"\n#****** ");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(j=1;j<=cptcoveff;j++)   
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if (popbased==1) {
       fprintf(ficreseij,"******\n");          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
       fprintf(ficresvij,"\n#****** ");              prlim[i][i]=probs[(int)age][i][ij];
       for(j=1;j<=cptcoveff;j++)          }else{ /* mobilav */ 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(i=1; i<=nlstate;i++)
       fprintf(ficresvij,"******\n");              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
            for(h=0; h<=nhstepm; h++){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       oldm=oldms;savm=savms;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);          }
       if(popbased==1){        }
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);        /* This for computing probability of death (h=1 means
        }           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
          */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       fprintf(ficrest,"\n");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
       epj=vector(1,nlstate+1);        /* end probability of death */
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for(j=1; j<= nlstate; j++) /* vareij */
         if (popbased==1) {          for(h=0; h<=nhstepm; h++){
           for(i=1; i<=nlstate;i++)            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
             prlim[i][i]=probs[(int)age][i][k];          }
         }  
                for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         fprintf(ficrest," %4.0f",age);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      } /* End theta */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           epj[nlstate+1] +=epj[j];  
         }      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
         for(i=1, vepp=0.;i <=nlstate;i++)          for(theta=1; theta <=npar; theta++)
           for(j=1;j <=nlstate;j++)            trgradg[h][j][theta]=gradg[h][theta][j];
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(j=1;j <=nlstate;j++){        for(theta=1; theta <=npar; theta++)
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          trgradgp[j][theta]=gradgp[theta][j];
         }    
         fprintf(ficrest,"\n");  
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     }      for(i=1;i<=nlstate;i++)
   }        for(j=1;j<=nlstate;j++)
 free_matrix(mint,1,maxwav,1,n);          vareij[i][j][(int)age] =0.;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);      for(h=0;h<=nhstepm;h++){
   fclose(ficreseij);        for(k=0;k<=nhstepm;k++){
   fclose(ficresvij);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   fclose(ficrest);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   fclose(ficpar);          for(i=1;i<=nlstate;i++)
   free_vector(epj,1,nlstate+1);            for(j=1;j<=nlstate;j++)
                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   /*------- Variance limit prevalence------*/          }
       }
   strcpy(fileresvpl,"vpl");    
   strcat(fileresvpl,fileres);      /* pptj */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     exit(0);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          varppt[j][i]=doldmp[j][i];
       /* end ppptj */
   k=0;      /*  x centered again */
   for(cptcov=1;cptcov<=i1;cptcov++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       k=k+1;   
       fprintf(ficresvpl,"\n#****** ");      if (popbased==1) {
       for(j=1;j<=cptcoveff;j++)        if(mobilav ==0){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(i=1; i<=nlstate;i++)
       fprintf(ficresvpl,"******\n");            prlim[i][i]=probs[(int)age][i][ij];
              }else{ /* mobilav */ 
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          for(i=1; i<=nlstate;i++)
       oldm=oldms;savm=savms;            prlim[i][i]=mobaverage[(int)age][i][ij];
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        }
     }      }
  }               
       /* This for computing probability of death (h=1 means
   fclose(ficresvpl);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
   /*---------- End : free ----------------*/      */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      }    
        /* end probability of death */
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(i=1; i<=nlstate;i++){
            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   free_matrix(matcov,1,npar,1,npar);        }
   free_vector(delti,1,npar);      } 
   free_matrix(agev,1,maxwav,1,imx);      fprintf(ficresprobmorprev,"\n");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
       fprintf(ficresvij,"%.0f ",age );
   fprintf(fichtm,"\n</body>");      for(i=1; i<=nlstate;i++)
   fclose(fichtm);        for(j=1; j<=nlstate;j++){
   fclose(ficgp);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
       fprintf(ficresvij,"\n");
   if(erreur >0){      free_matrix(gp,0,nhstepm,1,nlstate);
     printf("End of Imach with error or warning %d\n",erreur);      free_matrix(gm,0,nhstepm,1,nlstate);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   }else{      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
    printf("End of Imach\n");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    fprintf(ficlog,"End of Imach\n");    } /* End age */
   }    free_vector(gpp,nlstate+1,nlstate+ndeath);
   printf("See log file on %s\n",filelog);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   fclose(ficlog);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
   /*printf("Total time was %d uSec.\n", total_usecs);*/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   /*------ End -----------*/    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
  end:  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 #ifdef windows  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /* chdir(pathcd);*/    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
 #endif    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
  /*system("wgnuplot graph.plt");*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
  /*system("../gp37mgw/wgnuplot graph.plt");*/    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
  /*system("cd ../gp37mgw");*/    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
  strcpy(plotcmd,GNUPLOTPROGRAM);  */
  strcat(plotcmd," ");  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
  strcat(plotcmd,optionfilegnuplot);    fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
  system(plotcmd);  
     free_vector(xp,1,npar);
 #ifdef windows    free_matrix(doldm,1,nlstate,1,nlstate);
   while (z[0] != 'q') {    free_matrix(dnewm,1,nlstate,1,npar);
     /* chdir(path); */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     scanf("%s",z);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (z[0] == 'c') system("./imach");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     else if (z[0] == 'e') system(optionfilehtm);    fclose(ficresprobmorprev);
     else if (z[0] == 'g') system(plotcmd);    fflush(ficgp);
     else if (z[0] == 'q') exit(0);    fflush(fichtm); 
   }  }  /* end varevsij */
 #endif  
 }  /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
             /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter svg size 640, 480");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.svg\">\
   %s%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out;\nset out \"%s%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
            printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
          }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.svg\">%s%d_1.svg</a><br> \
   <img src=\"%s%d_1.svg\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.svg\">%s%d_2.svg</a><br> \
   <img src=\"%s%d_2.svg\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s%d_%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.svg\">%s%d%d.svg</a> <br> \
   <img src=\"%s%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file.<br> \
   But because parameters are usually highly correlated (a higher incidence of disability \
   and a higher incidence of recovery can give very close observed transition) it might \
   be very useful to look not only at linear confidence intervals estimated from the \
   variances but at the covariance matrix. And instead of looking at the estimated coefficients \
   (parameters) of the logistic regression, it might be more meaningful to visualize the \
   covariance matrix of the one-step probabilities. \
   See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
   
    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.svg <br>\
   <img src=\"%s%d_%d.svg\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.svg<br>\
   <img src=\"%s%d.svg\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.svg\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.svg\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.svg\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.svg\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.svg\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s%d_%d.svg\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nunset title \n");
          fprintf(ficgp,"\nset ter svg size 640, 480\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                else
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                  if(ij <=cptcovage) { /* Bug valgrind */
                    if((j-2)==Tage[ij]) { /* Bug valgrind */
                      fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                      /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                      ij++;
                    }
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){ 
                  if(nagesqr==0)
                    fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
     
                  ij=1;
                  for(j=3; j <=ncovmodel-nagesqr; j++){
                    if(ij <=cptcovage) { /* Bug valgrind */
                      if((j-2)==Tage[ij]) { /* Bug valgrind */
                        fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                        /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                        ij++;
                      }
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
     double age, agebase, agelim;
   
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
           fprintf(ficrespl,"#******");
           printf("#******");
           fprintf(ficlog,"#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char model[MAXLINE], modeltemp[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 8) {
         printf("Not 8\n");
       }
       printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt);
     }
   
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]\n", model)) !=EOF){
       if (num_filled != 1) {
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
         }
         strcpy(model,modeltemp); 
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     if(model[strlen(model)-1]=='.') /* Suppressing leading dot in the model */
       model[strlen(model)-1]='\0';
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else
         if(mle==1)
           printf("%1d%1d%1d",i1,j1,jk);
         fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     for(h=1; h <=100 ;h++){ 
       /* printf("h=%2d ", h); */
        /* for(k=1; k <=10; k++){ */
          /* printf("k=%d %d ",k,codtabm(h,k)); */
        /*   codtab[h][k]=codtabm(h,k); */
        /* } */
        /* printf("\n"); */
     }
     /* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */
     /*   for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/  */
     /*     for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */
     /*    for(cpt=1; cpt <=pow(2,k-1); cpt++){  /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/  */
     /*      h++; */
     /*      if (h>m)  */
     /*        h=1; */
     /*      codtab[h][k]=j; */
     /*      /\* codtab[12][3]=1; *\/ */
     /*      /\*codtab[h][Tvar[k]]=j;*\/ */
     /*      /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */
     /*    }  */
     /*     } */
     /*   } */
     /* }  */
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){  */
     /*    for(k=1; k <=cptcovn; k++){ */
     /*      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */
     /*    } */
     /*    printf("\n"); */
     /* } */
     /*   scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard maximisation */
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       /* Computes likelihood for initial parameters */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* again, to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
       fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
               fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
           }
         }
       }
   
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* ZZ Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
             /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); /*ZZ Is it the correct prevalim */
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               /* printf(" age %4.0f ",age); */
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                   /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
                 }
                 epj[nlstate+1] +=epj[j];
               }
               /* printf(" age %4.0f \n",age); */
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.52  
changed lines
  Added in v.1.200


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>