Diff for /imach/src/imach.c between versions 1.49 and 1.203

version 1.49, 2002/06/20 14:03:39 version 1.203, 2015/09/30 17:45:14
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.203  2015/09/30 17:45:14  brouard
      Summary: looking at better estimation of the hessian
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Also a better criteria for convergence to the period prevalence And
   first survey ("cross") where individuals from different ages are    therefore adding the number of years needed to converge. (The
   interviewed on their health status or degree of disability (in the    prevalence in any alive state shold sum to one
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.202  2015/09/22 19:45:16  brouard
   (if any) in individual health status.  Health expectancies are    Summary: Adding some overall graph on contribution to likelihood. Might change
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.201  2015/09/15 17:34:58  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Summary: 0.98r0
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    - Some new graphs like suvival functions
   conditional to be observed in state i at the first wave. Therefore    - Some bugs fixed like model=1+age+V2.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.200  2015/09/09 16:53:55  brouard
   complex model than "constant and age", you should modify the program    Summary: Big bug thanks to Flavia
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Even model=1+age+V2. did not work anymore
   convergence.  
     Revision 1.199  2015/09/07 14:09:23  brouard
   The advantage of this computer programme, compared to a simple    Summary: 0.98q6 changing default small png format for graph to vectorized svg.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.198  2015/09/03 07:14:39  brouard
   intermediate interview, the information is lost, but taken into    Summary: 0.98q5 Flavia
   account using an interpolation or extrapolation.    
     Revision 1.197  2015/09/01 18:24:39  brouard
   hPijx is the probability to be observed in state i at age x+h    *** empty log message ***
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.196  2015/08/18 23:17:52  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: 0.98q5
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.195  2015/08/18 16:28:39  brouard
   and the contribution of each individual to the likelihood is simply    Summary: Adding a hack for testing purpose
   hPijx.  
     After reading the title, ftol and model lines, if the comment line has
   Also this programme outputs the covariance matrix of the parameters but also    a q, starting with #q, the answer at the end of the run is quit. It
   of the life expectancies. It also computes the prevalence limits.    permits to run test files in batch with ctest. The former workaround was
      $ echo q | imach foo.imach
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.194  2015/08/18 13:32:00  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.193  2015/08/04 07:17:42  brouard
   software can be distributed freely for non commercial use. Latest version    Summary: 0.98q4
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.192  2015/07/16 16:49:02  brouard
      Summary: Fixing some outputs
 #include <math.h>  
 #include <stdio.h>    Revision 1.191  2015/07/14 10:00:33  brouard
 #include <stdlib.h>    Summary: Some fixes
 #include <unistd.h>  
     Revision 1.190  2015/05/05 08:51:13  brouard
 #define MAXLINE 256    Summary: Adding digits in output parameters (7 digits instead of 6)
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Fix 1+age+.
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.189  2015/04/30 14:45:16  brouard
 #define windows    Summary: 0.98q2
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.188  2015/04/30 08:27:53  brouard
     *** empty log message ***
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.187  2015/04/29 09:11:15  brouard
     *** empty log message ***
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.186  2015/04/23 12:01:52  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Summary: V1*age is working now, version 0.98q1
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Some codes had been disabled in order to simplify and Vn*age was
 #define YEARM 12. /* Number of months per year */    working in the optimization phase, ie, giving correct MLE parameters,
 #define AGESUP 130    but, as usual, outputs were not correct and program core dumped.
 #define AGEBASE 40  
 #ifdef windows    Revision 1.185  2015/03/11 13:26:42  brouard
 #define DIRSEPARATOR '\\'    Summary: Inclusion of compile and links command line for Intel Compiler
 #else  
 #define DIRSEPARATOR '/'    Revision 1.184  2015/03/11 11:52:39  brouard
 #endif    Summary: Back from Windows 8. Intel Compiler
   
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    Revision 1.183  2015/03/10 20:34:32  brouard
 int erreur; /* Error number */    Summary: 0.98q0, trying with directest, mnbrak fixed
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    We use directest instead of original Powell test; probably no
 int npar=NPARMAX;    incidence on the results, but better justifications;
 int nlstate=2; /* Number of live states */    We fixed Numerical Recipes mnbrak routine which was wrong and gave
 int ndeath=1; /* Number of dead states */    wrong results.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.182  2015/02/12 08:19:57  brouard
     Summary: Trying to keep directest which seems simpler and more general
 int *wav; /* Number of waves for this individuual 0 is possible */    Author: Nicolas Brouard
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.181  2015/02/11 23:22:24  brouard
 int mle, weightopt;    Summary: Comments on Powell added
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Author:
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.180  2015/02/11 17:33:45  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Summary: Finishing move from main to function (hpijx and prevalence_limit)
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.179  2015/01/04 09:57:06  brouard
 FILE *fichtm; /* Html File */    Summary: back to OS/X
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.178  2015/01/04 09:35:48  brouard
 FILE  *ficresvij;    *** empty log message ***
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.177  2015/01/03 18:40:56  brouard
 char fileresvpl[FILENAMELENGTH];    Summary: Still testing ilc32 on OSX
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.176  2015/01/03 16:45:04  brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    *** empty log message ***
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.175  2015/01/03 16:33:42  brouard
     *** empty log message ***
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.174  2015/01/03 16:15:49  brouard
 char popfile[FILENAMELENGTH];    Summary: Still in cross-compilation
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.173  2015/01/03 12:06:26  brouard
     Summary: trying to detect cross-compilation
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.172  2014/12/27 12:07:47  brouard
 #define FTOL 1.0e-10    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   
 #define NRANSI    Revision 1.171  2014/12/23 13:26:59  brouard
 #define ITMAX 200    Summary: Back from Visual C
   
 #define TOL 2.0e-4    Still problem with utsname.h on Windows
   
 #define CGOLD 0.3819660    Revision 1.170  2014/12/23 11:17:12  brouard
 #define ZEPS 1.0e-10    Summary: Cleaning some \%% back to %%
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     The escape was mandatory for a specific compiler (which one?), but too many warnings.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.169  2014/12/22 23:08:31  brouard
 #define TINY 1.0e-20    Summary: 0.98p
   
 static double maxarg1,maxarg2;    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.168  2014/12/22 15:17:42  brouard
      Summary: update
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.167  2014/12/22 13:50:56  brouard
     Summary: Testing uname and compiler version and if compiled 32 or 64
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Testing on Linux 64
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.166  2014/12/22 11:40:47  brouard
 int imx;    *** empty log message ***
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    * imach.c (Module): Merging 1.61 to 1.162
   
 int m,nb;    Revision 1.164  2014/12/16 10:52:11  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    * imach.c (Module): Merging 1.61 to 1.162
 double dateintmean=0;  
     Revision 1.163  2014/12/16 10:30:11  brouard
 double *weight;    * imach.c (Module): Merging 1.61 to 1.162
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.162  2014/09/25 11:43:39  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Summary: temporary backup 0.99!
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.1  2014/09/16 11:06:58  brouard
 double ftolhess; /* Tolerance for computing hessian */    Summary: With some code (wrong) for nlopt
   
 /**************** split *************************/    Author:
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.161  2014/09/15 20:41:41  brouard
    char *s;                             /* pointer */    Summary: Problem with macro SQR on Intel compiler
    int  l1, l2;                         /* length counters */  
     Revision 1.160  2014/09/02 09:24:05  brouard
    l1 = strlen( path );                 /* length of path */    *** empty log message ***
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    Revision 1.159  2014/09/01 10:34:10  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    Summary: WIN32
 #if     defined(__bsd__)                /* get current working directory */    Author: Brouard
       extern char       *getwd( );  
     Revision 1.158  2014/08/27 17:11:51  brouard
       if ( getwd( dirc ) == NULL ) {    *** empty log message ***
 #else  
       extern char       *getcwd( );    Revision 1.157  2014/08/27 16:26:55  brouard
     Summary: Preparing windows Visual studio version
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Author: Brouard
 #endif  
          return( GLOCK_ERROR_GETCWD );    In order to compile on Visual studio, time.h is now correct and time_t
       }    and tm struct should be used. difftime should be used but sometimes I
       strcpy( name, path );             /* we've got it */    just make the differences in raw time format (time(&now).
    } else {                             /* strip direcotry from path */    Trying to suppress #ifdef LINUX
       s++;                              /* after this, the filename */    Add xdg-open for __linux in order to open default browser.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.156  2014/08/25 20:10:10  brouard
       strcpy( name, s );                /* save file name */    *** empty log message ***
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.155  2014/08/25 18:32:34  brouard
    }    Summary: New compile, minor changes
    l1 = strlen( dirc );                 /* length of directory */    Author: Brouard
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.154  2014/06/20 17:32:08  brouard
 #else    Summary: Outputs now all graphs of convergence to period prevalence
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.153  2014/06/20 16:45:46  brouard
    s = strrchr( name, '.' );            /* find last / */    Summary: If 3 live state, convergence to period prevalence on same graph
    s++;    Author: Brouard
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.152  2014/06/18 17:54:09  brouard
    l2= strlen( s)+1;    Summary: open browser, use gnuplot on same dir than imach if not found in the path
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.151  2014/06/18 16:43:30  brouard
    return( 0 );                         /* we're done */    *** empty log message ***
 }  
     Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 /******************************************/    Author: brouard
   
 void replace(char *s, char*t)    Revision 1.149  2014/06/18 15:51:14  brouard
 {    Summary: Some fixes in parameter files errors
   int i;    Author: Nicolas Brouard
   int lg=20;  
   i=0;    Revision 1.148  2014/06/17 17:38:48  brouard
   lg=strlen(t);    Summary: Nothing new
   for(i=0; i<= lg; i++) {    Author: Brouard
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Just a new packaging for OS/X version 0.98nS
   }  
 }    Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
 int nbocc(char *s, char occ)  
 {    Revision 1.146  2014/06/16 10:20:28  brouard
   int i,j=0;    Summary: Merge
   int lg=20;    Author: Brouard
   i=0;  
   lg=strlen(s);    Merge, before building revised version.
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.145  2014/06/10 21:23:15  brouard
   }    Summary: Debugging with valgrind
   return j;    Author: Nicolas Brouard
 }  
     Lot of changes in order to output the results with some covariates
 void cutv(char *u,char *v, char*t, char occ)    After the Edimburgh REVES conference 2014, it seems mandatory to
 {    improve the code.
   int i,lg,j,p=0;    No more memory valgrind error but a lot has to be done in order to
   i=0;    continue the work of splitting the code into subroutines.
   for(j=0; j<=strlen(t)-1; j++) {    Also, decodemodel has been improved. Tricode is still not
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    optimal. nbcode should be improved. Documentation has been added in
   }    the source code.
   
   lg=strlen(t);    Revision 1.143  2014/01/26 09:45:38  brouard
   for(j=0; j<p; j++) {    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
     (u[j] = t[j]);  
   }    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
      u[p]='\0';    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
    for(j=0; j<= lg; j++) {    Revision 1.142  2014/01/26 03:57:36  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   }  
 }    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
 /********************** nrerror ********************/    Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 void nrerror(char error_text[])  
 {    Revision 1.140  2011/09/02 10:37:54  brouard
   fprintf(stderr,"ERREUR ...\n");    Summary: times.h is ok with mingw32 now.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.139  2010/06/14 07:50:17  brouard
 }    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 /*********************** vector *******************/    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 double *vector(int nl, int nh)  
 {    Revision 1.138  2010/04/30 18:19:40  brouard
   double *v;    *** empty log message ***
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.137  2010/04/29 18:11:38  brouard
   return v-nl+NR_END;    (Module): Checking covariates for more complex models
 }    than V1+V2. A lot of change to be done. Unstable.
   
 /************************ free vector ******************/    Revision 1.136  2010/04/26 20:30:53  brouard
 void free_vector(double*v, int nl, int nh)    (Module): merging some libgsl code. Fixing computation
 {    of likelione (using inter/intrapolation if mle = 0) in order to
   free((FREE_ARG)(v+nl-NR_END));    get same likelihood as if mle=1.
 }    Some cleaning of code and comments added.
   
 /************************ivector *******************************/    Revision 1.135  2009/10/29 15:33:14  brouard
 int *ivector(long nl,long nh)    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 {  
   int *v;    Revision 1.134  2009/10/29 13:18:53  brouard
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.133  2009/07/06 10:21:25  brouard
 }    just nforces
   
 /******************free ivector **************************/    Revision 1.132  2009/07/06 08:22:05  brouard
 void free_ivector(int *v, long nl, long nh)    Many tings
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.131  2009/06/20 16:22:47  brouard
 }    Some dimensions resccaled
   
 /******************* imatrix *******************************/    Revision 1.130  2009/05/26 06:44:34  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    (Module): Max Covariate is now set to 20 instead of 8. A
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    lot of cleaning with variables initialized to 0. Trying to make
 {    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.129  2007/08/31 13:49:27  lievre
      Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.128  2006/06/30 13:02:05  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): Clarifications on computing e.j
   m += NR_END;  
   m -= nrl;    Revision 1.127  2006/04/28 18:11:50  brouard
      (Module): Yes the sum of survivors was wrong since
      imach-114 because nhstepm was no more computed in the age
   /* allocate rows and set pointers to them */    loop. Now we define nhstepma in the age loop.
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    (Module): In order to speed up (in case of numerous covariates) we
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    compute health expectancies (without variances) in a first step
   m[nrl] += NR_END;    and then all the health expectancies with variances or standard
   m[nrl] -= ncl;    deviation (needs data from the Hessian matrices) which slows the
      computation.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    In the future we should be able to stop the program is only health
      expectancies and graph are needed without standard deviations.
   /* return pointer to array of pointers to rows */  
   return m;    Revision 1.126  2006/04/28 17:23:28  brouard
 }    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 /****************** free_imatrix *************************/    loop. Now we define nhstepma in the age loop.
 void free_imatrix(m,nrl,nrh,ncl,nch)    Version 0.98h
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.125  2006/04/04 15:20:31  lievre
      /* free an int matrix allocated by imatrix() */    Errors in calculation of health expectancies. Age was not initialized.
 {    Forecasting file added.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    Revision 1.124  2006/03/22 17:13:53  lievre
 }    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    Revision 1.123  2006/03/20 10:52:43  brouard
 {    * imach.c (Module): <title> changed, corresponds to .htm file
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    name. <head> headers where missing.
   double **m;  
     * imach.c (Module): Weights can have a decimal point as for
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    English (a comma might work with a correct LC_NUMERIC environment,
   if (!m) nrerror("allocation failure 1 in matrix()");    otherwise the weight is truncated).
   m += NR_END;    Modification of warning when the covariates values are not 0 or
   m -= nrl;    1.
     Version 0.98g
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.122  2006/03/20 09:45:41  brouard
   m[nrl] += NR_END;    (Module): Weights can have a decimal point as for
   m[nrl] -= ncl;    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Modification of warning when the covariates values are not 0 or
   return m;    1.
 }    Version 0.98g
   
 /*************************free matrix ************************/    Revision 1.121  2006/03/16 17:45:01  lievre
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    * imach.c (Module): Comments concerning covariates added
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    * imach.c (Module): refinements in the computation of lli if
   free((FREE_ARG)(m+nrl-NR_END));    status=-2 in order to have more reliable computation if stepm is
 }    not 1 month. Version 0.98f
   
 /******************* ma3x *******************************/    Revision 1.120  2006/03/16 15:10:38  lievre
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    (Module): refinements in the computation of lli if
 {    status=-2 in order to have more reliable computation if stepm is
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    not 1 month. Version 0.98f
   double ***m;  
     Revision 1.119  2006/03/15 17:42:26  brouard
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (Module): Bug if status = -2, the loglikelihood was
   if (!m) nrerror("allocation failure 1 in matrix()");    computed as likelihood omitting the logarithm. Version O.98e
   m += NR_END;  
   m -= nrl;    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    table of variances if popbased=1 .
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   m[nrl] += NR_END;    (Module): Function pstamp added
   m[nrl] -= ncl;    (Module): Version 0.98d
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    table of variances if popbased=1 .
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   m[nrl][ncl] += NR_END;    (Module): Function pstamp added
   m[nrl][ncl] -= nll;    (Module): Version 0.98d
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    Revision 1.116  2006/03/06 10:29:27  brouard
      (Module): Variance-covariance wrong links and
   for (i=nrl+1; i<=nrh; i++) {    varian-covariance of ej. is needed (Saito).
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)    Revision 1.115  2006/02/27 12:17:45  brouard
       m[i][j]=m[i][j-1]+nlay;    (Module): One freematrix added in mlikeli! 0.98c
   }  
   return m;    Revision 1.114  2006/02/26 12:57:58  brouard
 }    (Module): Some improvements in processing parameter
     filename with strsep.
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    Revision 1.113  2006/02/24 14:20:24  brouard
 {    (Module): Memory leaks checks with valgrind and:
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    datafile was not closed, some imatrix were not freed and on matrix
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    allocation too.
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
 /***************** f1dim *************************/  
 extern int ncom;    Revision 1.111  2006/01/25 20:38:18  brouard
 extern double *pcom,*xicom;    (Module): Lots of cleaning and bugs added (Gompertz)
 extern double (*nrfunc)(double []);    (Module): Comments can be added in data file. Missing date values
      can be a simple dot '.'.
 double f1dim(double x)  
 {    Revision 1.110  2006/01/25 00:51:50  brouard
   int j;    (Module): Lots of cleaning and bugs added (Gompertz)
   double f;  
   double *xt;    Revision 1.109  2006/01/24 19:37:15  brouard
      (Module): Comments (lines starting with a #) are allowed in data.
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    Revision 1.108  2006/01/19 18:05:42  lievre
   f=(*nrfunc)(xt);    Gnuplot problem appeared...
   free_vector(xt,1,ncom);    To be fixed
   return f;  
 }    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    Revision 1.106  2006/01/19 13:24:36  brouard
 {    Some cleaning and links added in html output
   int iter;  
   double a,b,d,etemp;    Revision 1.105  2006/01/05 20:23:19  lievre
   double fu,fv,fw,fx;    *** empty log message ***
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    Revision 1.104  2005/09/30 16:11:43  lievre
   double e=0.0;    (Module): sump fixed, loop imx fixed, and simplifications.
      (Module): If the status is missing at the last wave but we know
   a=(ax < cx ? ax : cx);    that the person is alive, then we can code his/her status as -2
   b=(ax > cx ? ax : cx);    (instead of missing=-1 in earlier versions) and his/her
   x=w=v=bx;    contributions to the likelihood is 1 - Prob of dying from last
   fw=fv=fx=(*f)(x);    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   for (iter=1;iter<=ITMAX;iter++) {    the healthy state at last known wave). Version is 0.98
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    Revision 1.103  2005/09/30 15:54:49  lievre
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    (Module): sump fixed, loop imx fixed, and simplifications.
     printf(".");fflush(stdout);  
 #ifdef DEBUG    Revision 1.102  2004/09/15 17:31:30  brouard
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    Add the possibility to read data file including tab characters.
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    Revision 1.101  2004/09/15 10:38:38  brouard
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    Fix on curr_time
       *xmin=x;  
       return fx;    Revision 1.100  2004/07/12 18:29:06  brouard
     }    Add version for Mac OS X. Just define UNIX in Makefile
     ftemp=fu;  
     if (fabs(e) > tol1) {    Revision 1.99  2004/06/05 08:57:40  brouard
       r=(x-w)*(fx-fv);    *** empty log message ***
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    Revision 1.98  2004/05/16 15:05:56  brouard
       q=2.0*(q-r);    New version 0.97 . First attempt to estimate force of mortality
       if (q > 0.0) p = -p;    directly from the data i.e. without the need of knowing the health
       q=fabs(q);    state at each age, but using a Gompertz model: log u =a + b*age .
       etemp=e;    This is the basic analysis of mortality and should be done before any
       e=d;    other analysis, in order to test if the mortality estimated from the
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    cross-longitudinal survey is different from the mortality estimated
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    from other sources like vital statistic data.
       else {  
         d=p/q;    The same imach parameter file can be used but the option for mle should be -3.
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)    Agnès, who wrote this part of the code, tried to keep most of the
           d=SIGN(tol1,xm-x);    former routines in order to include the new code within the former code.
       }  
     } else {    The output is very simple: only an estimate of the intercept and of
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    the slope with 95% confident intervals.
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    Current limitations:
     fu=(*f)(u);    A) Even if you enter covariates, i.e. with the
     if (fu <= fx) {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
       if (u >= x) a=x; else b=x;    B) There is no computation of Life Expectancy nor Life Table.
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)    Revision 1.97  2004/02/20 13:25:42  lievre
         } else {    Version 0.96d. Population forecasting command line is (temporarily)
           if (u < x) a=u; else b=u;    suppressed.
           if (fu <= fw || w == x) {  
             v=w;    Revision 1.96  2003/07/15 15:38:55  brouard
             w=u;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
             fv=fw;    rewritten within the same printf. Workaround: many printfs.
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    Revision 1.95  2003/07/08 07:54:34  brouard
             v=u;    * imach.c (Repository):
             fv=fu;    (Repository): Using imachwizard code to output a more meaningful covariance
           }    matrix (cov(a12,c31) instead of numbers.
         }  
   }    Revision 1.94  2003/06/27 13:00:02  brouard
   nrerror("Too many iterations in brent");    Just cleaning
   *xmin=x;  
   return fx;    Revision 1.93  2003/06/25 16:33:55  brouard
 }    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 /****************** mnbrak ***********************/    (Module): Version 0.96b
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    Revision 1.92  2003/06/25 16:30:45  brouard
             double (*func)(double))    (Module): On windows (cygwin) function asctime_r doesn't
 {    exist so I changed back to asctime which exists.
   double ulim,u,r,q, dum;  
   double fu;    Revision 1.91  2003/06/25 15:30:29  brouard
      * imach.c (Repository): Duplicated warning errors corrected.
   *fa=(*func)(*ax);    (Repository): Elapsed time after each iteration is now output. It
   *fb=(*func)(*bx);    helps to forecast when convergence will be reached. Elapsed time
   if (*fb > *fa) {    is stamped in powell.  We created a new html file for the graphs
     SHFT(dum,*ax,*bx,dum)    concerning matrix of covariance. It has extension -cov.htm.
       SHFT(dum,*fb,*fa,dum)  
       }    Revision 1.90  2003/06/24 12:34:15  brouard
   *cx=(*bx)+GOLD*(*bx-*ax);    (Module): Some bugs corrected for windows. Also, when
   *fc=(*func)(*cx);    mle=-1 a template is output in file "or"mypar.txt with the design
   while (*fb > *fc) {    of the covariance matrix to be input.
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    Revision 1.89  2003/06/24 12:30:52  brouard
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    (Module): Some bugs corrected for windows. Also, when
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    mle=-1 a template is output in file "or"mypar.txt with the design
     ulim=(*bx)+GLIMIT*(*cx-*bx);    of the covariance matrix to be input.
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);    Revision 1.88  2003/06/23 17:54:56  brouard
     } else if ((*cx-u)*(u-ulim) > 0.0) {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
       fu=(*func)(u);  
       if (fu < *fc) {    Revision 1.87  2003/06/18 12:26:01  brouard
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    Version 0.96
           SHFT(*fb,*fc,fu,(*func)(u))  
           }    Revision 1.86  2003/06/17 20:04:08  brouard
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    (Module): Change position of html and gnuplot routines and added
       u=ulim;    routine fileappend.
       fu=(*func)(u);  
     } else {    Revision 1.85  2003/06/17 13:12:43  brouard
       u=(*cx)+GOLD*(*cx-*bx);    * imach.c (Repository): Check when date of death was earlier that
       fu=(*func)(u);    current date of interview. It may happen when the death was just
     }    prior to the death. In this case, dh was negative and likelihood
     SHFT(*ax,*bx,*cx,u)    was wrong (infinity). We still send an "Error" but patch by
       SHFT(*fa,*fb,*fc,fu)    assuming that the date of death was just one stepm after the
       }    interview.
 }    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 /*************** linmin ************************/    memory allocation. But we also truncated to 8 characters (left
     truncation)
 int ncom;    (Repository): No more line truncation errors.
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    Revision 1.84  2003/06/13 21:44:43  brouard
      * imach.c (Repository): Replace "freqsummary" at a correct
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    place. It differs from routine "prevalence" which may be called
 {    many times. Probs is memory consuming and must be used with
   double brent(double ax, double bx, double cx,    parcimony.
                double (*f)(double), double tol, double *xmin);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    Revision 1.83  2003/06/10 13:39:11  lievre
               double *fc, double (*func)(double));    *** empty log message ***
   int j;  
   double xx,xmin,bx,ax;    Revision 1.82  2003/06/05 15:57:20  brouard
   double fx,fb,fa;    Add log in  imach.c and  fullversion number is now printed.
    
   ncom=n;  */
   pcom=vector(1,n);  /*
   xicom=vector(1,n);     Interpolated Markov Chain
   nrfunc=func;  
   for (j=1;j<=n;j++) {    Short summary of the programme:
     pcom[j]=p[j];    
     xicom[j]=xi[j];    This program computes Healthy Life Expectancies from
   }    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   ax=0.0;    first survey ("cross") where individuals from different ages are
   xx=1.0;    interviewed on their health status or degree of disability (in the
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    case of a health survey which is our main interest) -2- at least a
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    second wave of interviews ("longitudinal") which measure each change
 #ifdef DEBUG    (if any) in individual health status.  Health expectancies are
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    computed from the time spent in each health state according to a
 #endif    model. More health states you consider, more time is necessary to reach the
   for (j=1;j<=n;j++) {    Maximum Likelihood of the parameters involved in the model.  The
     xi[j] *= xmin;    simplest model is the multinomial logistic model where pij is the
     p[j] += xi[j];    probability to be observed in state j at the second wave
   }    conditional to be observed in state i at the first wave. Therefore
   free_vector(xicom,1,n);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   free_vector(pcom,1,n);    'age' is age and 'sex' is a covariate. If you want to have a more
 }    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 /*************** powell ************************/    you to do it.  More covariates you add, slower the
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    convergence.
             double (*func)(double []))  
 {    The advantage of this computer programme, compared to a simple
   void linmin(double p[], double xi[], int n, double *fret,    multinomial logistic model, is clear when the delay between waves is not
               double (*func)(double []));    identical for each individual. Also, if a individual missed an
   int i,ibig,j;    intermediate interview, the information is lost, but taken into
   double del,t,*pt,*ptt,*xit;    account using an interpolation or extrapolation.  
   double fp,fptt;  
   double *xits;    hPijx is the probability to be observed in state i at age x+h
   pt=vector(1,n);    conditional to the observed state i at age x. The delay 'h' can be
   ptt=vector(1,n);    split into an exact number (nh*stepm) of unobserved intermediate
   xit=vector(1,n);    states. This elementary transition (by month, quarter,
   xits=vector(1,n);    semester or year) is modelled as a multinomial logistic.  The hPx
   *fret=(*func)(p);    matrix is simply the matrix product of nh*stepm elementary matrices
   for (j=1;j<=n;j++) pt[j]=p[j];    and the contribution of each individual to the likelihood is simply
   for (*iter=1;;++(*iter)) {    hPijx.
     fp=(*fret);  
     ibig=0;    Also this programme outputs the covariance matrix of the parameters but also
     del=0.0;    of the life expectancies. It also computes the period (stable) prevalence. 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    
     for (i=1;i<=n;i++)    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       printf(" %d %.12f",i, p[i]);             Institut national d'études démographiques, Paris.
     printf("\n");    This software have been partly granted by Euro-REVES, a concerted action
     for (i=1;i<=n;i++) {    from the European Union.
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    It is copyrighted identically to a GNU software product, ie programme and
       fptt=(*fret);    software can be distributed freely for non commercial use. Latest version
 #ifdef DEBUG    can be accessed at http://euroreves.ined.fr/imach .
       printf("fret=%lf \n",*fret);  
 #endif    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       printf("%d",i);fflush(stdout);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       linmin(p,xit,n,fret,func);    
       if (fabs(fptt-(*fret)) > del) {    **********************************************************************/
         del=fabs(fptt-(*fret));  /*
         ibig=i;    main
       }    read parameterfile
 #ifdef DEBUG    read datafile
       printf("%d %.12e",i,(*fret));    concatwav
       for (j=1;j<=n;j++) {    freqsummary
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    if (mle >= 1)
         printf(" x(%d)=%.12e",j,xit[j]);      mlikeli
       }    print results files
       for(j=1;j<=n;j++)    if mle==1 
         printf(" p=%.12e",p[j]);       computes hessian
       printf("\n");    read end of parameter file: agemin, agemax, bage, fage, estepm
 #endif        begin-prev-date,...
     }    open gnuplot file
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    open html file
 #ifdef DEBUG    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
       int k[2],l;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
       k[0]=1;                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       k[1]=-1;      freexexit2 possible for memory heap.
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)    h Pij x                         | pij_nom  ficrestpij
         printf(" %.12e",p[j]);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
       printf("\n");         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
       for(l=0;l<=1;l++) {         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
         }    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       }     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
 #endif  
     forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
       free_vector(xit,1,n);    Variance-covariance of DFLE
       free_vector(xits,1,n);    prevalence()
       free_vector(ptt,1,n);     movingaverage()
       free_vector(pt,1,n);    varevsij() 
       return;    if popbased==1 varevsij(,popbased)
     }    total life expectancies
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    Variance of period (stable) prevalence
     for (j=1;j<=n;j++) {   end
       ptt[j]=2.0*p[j]-pt[j];  */
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  /* #define DEBUG */
     }  /* #define DEBUGBRENT */
     fptt=(*func)(ptt);  /* #define DEBUGLINMIN */
     if (fptt < fp) {  /* #define DEBUGHESS */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  #define DEBUGHESSIJ
       if (t < 0.0) {  /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan)*\/ */
         linmin(p,xit,n,fret,func);  #define POWELL /* Instead of NLOPT */
         for (j=1;j<=n;j++) {  #define POWELLF1F3 /* Skip test */
           xi[j][ibig]=xi[j][n];  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
           xi[j][n]=xit[j];  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
         }  
 #ifdef DEBUG  #include <math.h>
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  #include <stdio.h>
         for(j=1;j<=n;j++)  #include <stdlib.h>
           printf(" %.12e",xit[j]);  #include <string.h>
         printf("\n");  
 #endif  #ifdef _WIN32
       }  #include <io.h>
     }  #include <windows.h>
   }  #include <tchar.h>
 }  #else
   #include <unistd.h>
 /**** Prevalence limit ****************/  #endif
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  #include <limits.h>
 {  #include <sys/types.h>
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  #if defined(__GNUC__)
   #include <sys/utsname.h> /* Doesn't work on Windows */
   int i, ii,j,k;  #endif
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  #include <sys/stat.h>
   double **out, cov[NCOVMAX], **pmij();  #include <errno.h>
   double **newm;  /* extern int errno; */
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /* #ifdef LINUX */
   for (ii=1;ii<=nlstate+ndeath;ii++)  /* #include <time.h> */
     for (j=1;j<=nlstate+ndeath;j++){  /* #include "timeval.h" */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /* #else */
     }  /* #include <sys/time.h> */
   /* #endif */
    cov[1]=1.;  
    #include <time.h>
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #ifdef GSL
     newm=savm;  #include <gsl/gsl_errno.h>
     /* Covariates have to be included here again */  #include <gsl/gsl_multimin.h>
      cov[2]=agefin;  #endif
    
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #ifdef NLOPT
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  #include <nlopt.h>
       }  typedef struct {
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double (* function)(double [] );
       for (k=1; k<=cptcovprod;k++)  } myfunc_data ;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #endif
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /* #include <libintl.h> */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /* #define _(String) gettext (String) */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   
     savm=oldm;  #define GNUPLOTPROGRAM "gnuplot"
     oldm=newm;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     maxmax=0.;  #define FILENAMELENGTH 132
     for(j=1;j<=nlstate;j++){  
       min=1.;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       max=0.;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  #define NINTERVMAX 8
         min=FMIN(min,prlim[i][j]);  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       }  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
       maxmin=max-min;  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       maxmax=FMAX(maxmax,maxmin);  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
     }  #define MAXN 20000
     if(maxmax < ftolpl){  #define YEARM 12. /**< Number of months per year */
       return prlim;  #define AGESUP 130
     }  #define AGEBASE 40
   }  #define AGEOVERFLOW 1.e20
 }  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
   #ifdef _WIN32
 /*************** transition probabilities ***************/  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #define ODIRSEPARATOR '/'
 {  #else
   double s1, s2;  #define DIRSEPARATOR '/'
   /*double t34;*/  #define CHARSEPARATOR "/"
   int i,j,j1, nc, ii, jj;  #define ODIRSEPARATOR '\\'
   #endif
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  /* $Id$ */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /* $State$ */
         /*s2 += param[i][j][nc]*cov[nc];*/  #include "version.h"
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  char version[]=__IMACH_VERSION__;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  char copyright[]="September 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
       }  char fullversion[]="$Revision$ $Date$"; 
       ps[i][j]=s2;  char strstart[80];
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     }  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     for(j=i+1; j<=nlstate+ndeath;j++){  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       }  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
       ps[i][j]=s2;  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
     }  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   }  int cptcoveff=0; /* Total number of covariates to vary for printing results */
     /*ps[3][2]=1;*/  int cptcov=0; /* Working variable */
   int npar=NPARMAX;
   for(i=1; i<= nlstate; i++){  int nlstate=2; /* Number of live states */
      s1=0;  int ndeath=1; /* Number of dead states */
     for(j=1; j<i; j++)  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       s1+=exp(ps[i][j]);  int popbased=0;
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  int *wav; /* Number of waves for this individuual 0 is possible */
     ps[i][i]=1./(s1+1.);  int maxwav=0; /* Maxim number of waves */
     for(j=1; j<i; j++)  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
     for(j=i+1; j<=nlstate+ndeath; j++)  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       ps[i][j]= exp(ps[i][j])*ps[i][i];                     to the likelihood and the sum of weights (done by funcone)*/
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  int mle=1, weightopt=0;
   } /* end i */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     for(jj=1; jj<= nlstate+ndeath; jj++){             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       ps[ii][jj]=0;  int countcallfunc=0;  /* Count the number of calls to func */
       ps[ii][ii]=1;  double jmean=1; /* Mean space between 2 waves */
     }  double **matprod2(); /* test */
   }  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   /*FILE *fic ; */ /* Used in readdata only */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     for(jj=1; jj<= nlstate+ndeath; jj++){  FILE *ficlog, *ficrespow;
      printf("%lf ",ps[ii][jj]);  int globpr=0; /* Global variable for printing or not */
    }  double fretone; /* Only one call to likelihood */
     printf("\n ");  long ipmx=0; /* Number of contributions */
     }  double sw; /* Sum of weights */
     printf("\n ");printf("%lf ",cov[2]);*/  char filerespow[FILENAMELENGTH];
 /*  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  FILE *ficresilk;
   goto end;*/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     return ps;  FILE *ficresprobmorprev;
 }  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 /**************** Product of 2 matrices ******************/  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  char fileresstde[FILENAMELENGTH];
 {  FILE *ficrescveij;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  char filerescve[FILENAMELENGTH];
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  FILE  *ficresvij;
   /* in, b, out are matrice of pointers which should have been initialized  char fileresv[FILENAMELENGTH];
      before: only the contents of out is modified. The function returns  FILE  *ficresvpl;
      a pointer to pointers identical to out */  char fileresvpl[FILENAMELENGTH];
   long i, j, k;  char title[MAXLINE];
   for(i=nrl; i<= nrh; i++)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     for(k=ncolol; k<=ncoloh; k++)  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
         out[i][k] +=in[i][j]*b[j][k];  char command[FILENAMELENGTH];
   int  outcmd=0;
   return out;  
 }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   char fileresu[FILENAMELENGTH]; /* fileres without r in front */
   char filelog[FILENAMELENGTH]; /* Log file */
 /************* Higher Matrix Product ***************/  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  char popfile[FILENAMELENGTH];
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /* struct timezone tzp; */
      (typically every 2 years instead of every month which is too big).  /* extern int gettimeofday(); */
      Model is determined by parameters x and covariates have to be  struct tm tml, *gmtime(), *localtime();
      included manually here.  
   extern time_t time();
      */  
   struct tm start_time, end_time, curr_time, last_time, forecast_time;
   int i, j, d, h, k;  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
   double **out, cov[NCOVMAX];  struct tm tm;
   double **newm;  
   char strcurr[80], strfor[80];
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  char *endptr;
     for (j=1;j<=nlstate+ndeath;j++){  long lval;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  double dval;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  
     }  #define NR_END 1
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #define FREE_ARG char*
   for(h=1; h <=nhstepm; h++){  #define FTOL 1.0e-10
     for(d=1; d <=hstepm; d++){  
       newm=savm;  #define NRANSI 
       /* Covariates have to be included here again */  #define ITMAX 200 
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  #define TOL 2.0e-4 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  #define CGOLD 0.3819660 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #define ZEPS 1.0e-10 
       for (k=1; k<=cptcovprod;k++)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   #define GOLD 1.618034 
   #define GLIMIT 100.0 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  #define TINY 1.0e-20 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  static double maxarg1,maxarg2;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       savm=oldm;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       oldm=newm;    
     }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     for(i=1; i<=nlstate+ndeath; i++)  #define rint(a) floor(a+0.5)
       for(j=1;j<=nlstate+ndeath;j++) {  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
         po[i][j][h]=newm[i][j];  #define mytinydouble 1.0e-16
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
          */  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
       }  /* static double dsqrarg; */
   } /* end h */  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
   return po;  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
 /*************** log-likelihood *************/  
 double func( double *x)  int imx; 
 {  int stepm=1;
   int i, ii, j, k, mi, d, kk;  /* Stepm, step in month: minimum step interpolation*/
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  int estepm;
   double sw; /* Sum of weights */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   double lli; /* Individual log likelihood */  
   long ipmx;  int m,nb;
   /*extern weight */  long *num;
   /* We are differentiating ll according to initial status */  int firstpass=0, lastpass=4,*cod, *cens;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
   /*for(i=1;i<imx;i++)                     covariate for which somebody answered excluding 
     printf(" %d\n",s[4][i]);                     undefined. Usually 2: 0 and 1. */
   */  int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
   cov[1]=1.;                               covariate for which somebody answered including 
                                undefined. Usually 3: -1, 0 and 1. */
   for(k=1; k<=nlstate; k++) ll[k]=0.;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  double **pmmij, ***probs;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  double *ageexmed,*agecens;
     for(mi=1; mi<= wav[i]-1; mi++){  double dateintmean=0;
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  double *weight;
       for(d=0; d<dh[mi][i]; d++){  int **s; /* Status */
         newm=savm;  double *agedc;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
         for (kk=1; kk<=cptcovage;kk++) {                    * covar=matrix(0,NCOVMAX,1,n); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
         }  double  idx; 
          int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  int *Tage;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  int *Ndum; /** Freq of modality (tricode */
         savm=oldm;  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
         oldm=newm;  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
          double *lsurv, *lpop, *tpop;
          
       } /* end mult */  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
        double ftolhess; /**< Tolerance for computing hessian */
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  /**************** split *************************/
       ipmx +=1;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       sw += weight[i];  {
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     } /* end of wave */       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   } /* end of individual */    */ 
     char  *ss;                            /* pointer */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    int   l1=0, l2=0;                             /* length counters */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    l1 = strlen(path );                   /* length of path */
   return -l;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
 /*********** Maximum Likelihood Estimation ***************/      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      /* get current working directory */
 {      /*    extern  char* getcwd ( char *buf , int len);*/
   int i,j, iter;  #ifdef WIN32
   double **xi,*delti;      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double fret;  #else
   xi=matrix(1,npar,1,npar);          if (getcwd(dirc, FILENAME_MAX) == NULL) {
   for (i=1;i<=npar;i++)  #endif
     for (j=1;j<=npar;j++)        return( GLOCK_ERROR_GETCWD );
       xi[i][j]=(i==j ? 1.0 : 0.0);      }
   printf("Powell\n");      /* got dirc from getcwd*/
   powell(p,xi,npar,ftol,&iter,&fret,func);      printf(" DIRC = %s \n",dirc);
     } else {                              /* strip direcotry from path */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      ss++;                               /* after this, the filename */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 }      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /**** Computes Hessian and covariance matrix ***/      dirc[l1-l2] = '\0';                 /* add zero */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      printf(" DIRC2 = %s \n",dirc);
 {    }
   double  **a,**y,*x,pd;    /* We add a separator at the end of dirc if not exists */
   double **hess;    l1 = strlen( dirc );                  /* length of directory */
   int i, j,jk;    if( dirc[l1-1] != DIRSEPARATOR ){
   int *indx;      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
   double hessii(double p[], double delta, int theta, double delti[]);      printf(" DIRC3 = %s \n",dirc);
   double hessij(double p[], double delti[], int i, int j);    }
   void lubksb(double **a, int npar, int *indx, double b[]) ;    ss = strrchr( name, '.' );            /* find last / */
   void ludcmp(double **a, int npar, int *indx, double *d) ;    if (ss >0){
       ss++;
   hess=matrix(1,npar,1,npar);      strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
   printf("\nCalculation of the hessian matrix. Wait...\n");      l2= strlen(ss)+1;
   for (i=1;i<=npar;i++){      strncpy( finame, name, l1-l2);
     printf("%d",i);fflush(stdout);      finame[l1-l2]= 0;
     hess[i][i]=hessii(p,ftolhess,i,delti);    }
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/    return( 0 );                          /* we're done */
   }  }
    
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {  /******************************************/
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  void replace_back_to_slash(char *s, char*t)
         hess[i][j]=hessij(p,delti,i,j);  {
         hess[j][i]=hess[i][j];        int i;
         /*printf(" %lf ",hess[i][j]);*/    int lg=0;
       }    i=0;
     }    lg=strlen(t);
   }    for(i=0; i<= lg; i++) {
   printf("\n");      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    }
    }
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);  char *trimbb(char *out, char *in)
   x=vector(1,npar);  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   indx=ivector(1,npar);    char *s;
   for (i=1;i<=npar;i++)    s=out;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    while (*in != '\0'){
   ludcmp(a,npar,indx,&pd);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         in++;
   for (j=1;j<=npar;j++) {      }
     for (i=1;i<=npar;i++) x[i]=0;      *out++ = *in++;
     x[j]=1;    }
     lubksb(a,npar,indx,x);    *out='\0';
     for (i=1;i<=npar;i++){    return s;
       matcov[i][j]=x[i];  }
     }  
   }  /* char *substrchaine(char *out, char *in, char *chain) */
   /* { */
   printf("\n#Hessian matrix#\n");  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
   for (i=1;i<=npar;i++) {  /*   char *s, *t; */
     for (j=1;j<=npar;j++) {  /*   t=in;s=out; */
       printf("%.3e ",hess[i][j]);  /*   while ((*in != *chain) && (*in != '\0')){ */
     }  /*     *out++ = *in++; */
     printf("\n");  /*   } */
   }  
   /*   /\* *in matches *chain *\/ */
   /* Recompute Inverse */  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
   for (i=1;i<=npar;i++)  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  /*   } */
   ludcmp(a,npar,indx,&pd);  /*   in--; chain--; */
   /*   while ( (*in != '\0')){ */
   /*  printf("\n#Hessian matrix recomputed#\n");  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   /*     *out++ = *in++; */
   for (j=1;j<=npar;j++) {  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
     for (i=1;i<=npar;i++) x[i]=0;  /*   } */
     x[j]=1;  /*   *out='\0'; */
     lubksb(a,npar,indx,x);  /*   out=s; */
     for (i=1;i<=npar;i++){  /*   return out; */
       y[i][j]=x[i];  /* } */
       printf("%.3e ",y[i][j]);  char *substrchaine(char *out, char *in, char *chain)
     }  {
     printf("\n");    /* Substract chain 'chain' from 'in', return and output 'out' */
   }    /* in="V1+V1*age+age*age+V2", chain="age*age" */
   */  
     char *strloc;
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);    strcpy (out, in); 
   free_vector(x,1,npar);    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
   free_ivector(indx,1,npar);    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
   free_matrix(hess,1,npar,1,npar);    if(strloc != NULL){ 
       /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
       memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
 }      /* strcpy (strloc, strloc +strlen(chain));*/
     }
 /*************** hessian matrix ****************/    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
 double hessii( double x[], double delta, int theta, double delti[])    return out;
 {  }
   int i;  
   int l=1, lmax=20;  
   double k1,k2;  char *cutl(char *blocc, char *alocc, char *in, char occ)
   double p2[NPARMAX+1];  {
   double res;    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   double fx;       gives blocc="abcdef" and alocc="ghi2j".
   int k=0,kmax=10;       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   double l1;    */
     char *s, *t;
   fx=func(x);    t=in;s=in;
   for (i=1;i<=npar;i++) p2[i]=x[i];    while ((*in != occ) && (*in != '\0')){
   for(l=0 ; l <=lmax; l++){      *alocc++ = *in++;
     l1=pow(10,l);    }
     delts=delt;    if( *in == occ){
     for(k=1 ; k <kmax; k=k+1){      *(alocc)='\0';
       delt = delta*(l1*k);      s=++in;
       p2[theta]=x[theta] +delt;    }
       k1=func(p2)-fx;   
       p2[theta]=x[theta]-delt;    if (s == t) {/* occ not found */
       k2=func(p2)-fx;      *(alocc-(in-s))='\0';
       /*res= (k1-2.0*fx+k2)/delt/delt; */      in=s;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    }
          while ( *in != '\0'){
 #ifdef DEBUG      *blocc++ = *in++;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    }
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    *blocc='\0';
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    return t;
         k=kmax;  }
       }  char *cutv(char *blocc, char *alocc, char *in, char occ)
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  {
         k=kmax; l=lmax*10.;    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
       }       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){       gives blocc="abcdef2ghi" and alocc="j".
         delts=delt;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       }    */
     }    char *s, *t;
   }    t=in;s=in;
   delti[theta]=delts;    while (*in != '\0'){
   return res;      while( *in == occ){
          *blocc++ = *in++;
 }        s=in;
       }
 double hessij( double x[], double delti[], int thetai,int thetaj)      *blocc++ = *in++;
 {    }
   int i;    if (s == t) /* occ not found */
   int l=1, l1, lmax=20;      *(blocc-(in-s))='\0';
   double k1,k2,k3,k4,res,fx;    else
   double p2[NPARMAX+1];      *(blocc-(in-s)-1)='\0';
   int k;    in=s;
     while ( *in != '\0'){
   fx=func(x);      *alocc++ = *in++;
   for (k=1; k<=2; k++) {    }
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;    *alocc='\0';
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    return s;
     k1=func(p2)-fx;  }
    
     p2[thetai]=x[thetai]+delti[thetai]/k;  int nbocc(char *s, char occ)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  {
     k2=func(p2)-fx;    int i,j=0;
      int lg=20;
     p2[thetai]=x[thetai]-delti[thetai]/k;    i=0;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    lg=strlen(s);
     k3=func(p2)-fx;    for(i=0; i<= lg; i++) {
      if  (s[i] == occ ) j++;
     p2[thetai]=x[thetai]-delti[thetai]/k;    }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    return j;
     k4=func(p2)-fx;  }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG  /* void cutv(char *u,char *v, char*t, char occ) */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /* { */
 #endif  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   }  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   return res;  /*      gives u="abcdef2ghi" and v="j" *\/ */
 }  /*   int i,lg,j,p=0; */
   /*   i=0; */
 /************** Inverse of matrix **************/  /*   lg=strlen(t); */
 void ludcmp(double **a, int n, int *indx, double *d)  /*   for(j=0; j<=lg-1; j++) { */
 {  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   int i,imax,j,k;  /*   } */
   double big,dum,sum,temp;  
   double *vv;  /*   for(j=0; j<p; j++) { */
    /*     (u[j] = t[j]); */
   vv=vector(1,n);  /*   } */
   *d=1.0;  /*      u[p]='\0'; */
   for (i=1;i<=n;i++) {  
     big=0.0;  /*    for(j=0; j<= lg; j++) { */
     for (j=1;j<=n;j++)  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
       if ((temp=fabs(a[i][j])) > big) big=temp;  /*   } */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /* } */
     vv[i]=1.0/big;  
   }  #ifdef _WIN32
   for (j=1;j<=n;j++) {  char * strsep(char **pp, const char *delim)
     for (i=1;i<j;i++) {  {
       sum=a[i][j];    char *p, *q;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           
       a[i][j]=sum;    if ((p = *pp) == NULL)
     }      return 0;
     big=0.0;    if ((q = strpbrk (p, delim)) != NULL)
     for (i=j;i<=n;i++) {    {
       sum=a[i][j];      *pp = q + 1;
       for (k=1;k<j;k++)      *q = '\0';
         sum -= a[i][k]*a[k][j];    }
       a[i][j]=sum;    else
       if ( (dum=vv[i]*fabs(sum)) >= big) {      *pp = 0;
         big=dum;    return p;
         imax=i;  }
       }  #endif
     }  
     if (j != imax) {  /********************** nrerror ********************/
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];  void nrerror(char error_text[])
         a[imax][k]=a[j][k];  {
         a[j][k]=dum;    fprintf(stderr,"ERREUR ...\n");
       }    fprintf(stderr,"%s\n",error_text);
       *d = -(*d);    exit(EXIT_FAILURE);
       vv[imax]=vv[j];  }
     }  /*********************** vector *******************/
     indx[j]=imax;  double *vector(int nl, int nh)
     if (a[j][j] == 0.0) a[j][j]=TINY;  {
     if (j != n) {    double *v;
       dum=1.0/(a[j][j]);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    if (!v) nrerror("allocation failure in vector");
     }    return v-nl+NR_END;
   }  }
   free_vector(vv,1,n);  /* Doesn't work */  
 ;  /************************ free vector ******************/
 }  void free_vector(double*v, int nl, int nh)
   {
 void lubksb(double **a, int n, int *indx, double b[])    free((FREE_ARG)(v+nl-NR_END));
 {  }
   int i,ii=0,ip,j;  
   double sum;  /************************ivector *******************************/
    int *ivector(long nl,long nh)
   for (i=1;i<=n;i++) {  {
     ip=indx[i];    int *v;
     sum=b[ip];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     b[ip]=b[i];    if (!v) nrerror("allocation failure in ivector");
     if (ii)    return v-nl+NR_END;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  }
     else if (sum) ii=i;  
     b[i]=sum;  /******************free ivector **************************/
   }  void free_ivector(int *v, long nl, long nh)
   for (i=n;i>=1;i--) {  {
     sum=b[i];    free((FREE_ARG)(v+nl-NR_END));
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  }
     b[i]=sum/a[i][i];  
   }  /************************lvector *******************************/
 }  long *lvector(long nl,long nh)
   {
 /************ Frequencies ********************/    long *v;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 {  /* Some frequencies */    if (!v) nrerror("allocation failure in ivector");
      return v-nl+NR_END;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  }
   double ***freq; /* Frequencies */  
   double *pp;  /******************free lvector **************************/
   double pos, k2, dateintsum=0,k2cpt=0;  void free_lvector(long *v, long nl, long nh)
   FILE *ficresp;  {
   char fileresp[FILENAMELENGTH];    free((FREE_ARG)(v+nl-NR_END));
    }
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /******************* imatrix *******************************/
   strcpy(fileresp,"p");  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   strcat(fileresp,fileres);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   if((ficresp=fopen(fileresp,"w"))==NULL) {  { 
     printf("Problem with prevalence resultfile: %s\n", fileresp);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     exit(0);    int **m; 
   }    
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /* allocate pointers to rows */ 
   j1=0;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
      if (!m) nrerror("allocation failure 1 in matrix()"); 
   j=cptcoveff;    m += NR_END; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    m -= nrl; 
      
   for(k1=1; k1<=j;k1++){    
     for(i1=1; i1<=ncodemax[k1];i1++){    /* allocate rows and set pointers to them */ 
       j1++;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         scanf("%d", i);*/    m[nrl] += NR_END; 
       for (i=-1; i<=nlstate+ndeath; i++)      m[nrl] -= ncl; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)      
           for(m=agemin; m <= agemax+3; m++)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
             freq[i][jk][m]=0;    
          /* return pointer to array of pointers to rows */ 
       dateintsum=0;    return m; 
       k2cpt=0;  } 
       for (i=1; i<=imx; i++) {  
         bool=1;  /****************** free_imatrix *************************/
         if  (cptcovn>0) {  void free_imatrix(m,nrl,nrh,ncl,nch)
           for (z1=1; z1<=cptcoveff; z1++)        int **m;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        long nch,ncl,nrh,nrl; 
               bool=0;       /* free an int matrix allocated by imatrix() */ 
         }  { 
         if (bool==1) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
           for(m=firstpass; m<=lastpass; m++){    free((FREE_ARG) (m+nrl-NR_END)); 
             k2=anint[m][i]+(mint[m][i]/12.);  } 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;  /******************* matrix *******************************/
               if(agev[m][i]==1) agev[m][i]=agemax+2;  double **matrix(long nrl, long nrh, long ncl, long nch)
               if (m<lastpass) {  {
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    double **m;
               }  
                  m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    if (!m) nrerror("allocation failure 1 in matrix()");
                 dateintsum=dateintsum+k2;    m += NR_END;
                 k2cpt++;    m -= nrl;
               }  
             }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         }    m[nrl] += NR_END;
       }    m[nrl] -= ncl;
          
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
       if  (cptcovn>0) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
         fprintf(ficresp, "\n#********** Variable ");  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
         fprintf(ficresp, "**********\n#");     */
       }  }
       for(i=1; i<=nlstate;i++)  
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  /*************************free matrix ************************/
       fprintf(ficresp, "\n");  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
        {
       for(i=(int)agemin; i <= (int)agemax+3; i++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         if(i==(int)agemax+3)    free((FREE_ARG)(m+nrl-NR_END));
           printf("Total");  }
         else  
           printf("Age %d", i);  /******************* ma3x *******************************/
         for(jk=1; jk <=nlstate ; jk++){  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  {
             pp[jk] += freq[jk][m][i];    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         }    double ***m;
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             pos += freq[jk][m][i];    if (!m) nrerror("allocation failure 1 in matrix()");
           if(pp[jk]>=1.e-10)    m += NR_END;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    m -= nrl;
           else  
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
         for(jk=1; jk <=nlstate ; jk++){    m[nrl] -= ncl;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         }  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         for(jk=1,pos=0; jk <=nlstate ; jk++)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
           pos += pp[jk];    m[nrl][ncl] += NR_END;
         for(jk=1; jk <=nlstate ; jk++){    m[nrl][ncl] -= nll;
           if(pos>=1.e-5)    for (j=ncl+1; j<=nch; j++) 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      m[nrl][j]=m[nrl][j-1]+nlay;
           else    
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    for (i=nrl+1; i<=nrh; i++) {
           if( i <= (int) agemax){      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
             if(pos>=1.e-5){      for (j=ncl+1; j<=nch; j++) 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        m[i][j]=m[i][j-1]+nlay;
               probs[i][jk][j1]= pp[jk]/pos;    }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    return m; 
             }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
             else             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    */
           }  }
         }  
          /*************************free ma3x ************************/
         for(jk=-1; jk <=nlstate+ndeath; jk++)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
           for(m=-1; m <=nlstate+ndeath; m++)  {
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         if(i <= (int) agemax)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           fprintf(ficresp,"\n");    free((FREE_ARG)(m+nrl-NR_END));
         printf("\n");  }
       }  
     }  /*************** function subdirf ***********/
   }  char *subdirf(char fileres[])
   dateintmean=dateintsum/k2cpt;  {
      /* Caution optionfilefiname is hidden */
   fclose(ficresp);    strcpy(tmpout,optionfilefiname);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    strcat(tmpout,"/"); /* Add to the right */
   free_vector(pp,1,nlstate);    strcat(tmpout,fileres);
      return tmpout;
   /* End of Freq */  }
 }  
   /*************** function subdirf2 ***********/
 /************ Prevalence ********************/  char *subdirf2(char fileres[], char *preop)
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  {
 {  /* Some frequencies */    
      /* Caution optionfilefiname is hidden */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    strcpy(tmpout,optionfilefiname);
   double ***freq; /* Frequencies */    strcat(tmpout,"/");
   double *pp;    strcat(tmpout,preop);
   double pos, k2;    strcat(tmpout,fileres);
     return tmpout;
   pp=vector(1,nlstate);  }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
    /*************** function subdirf3 ***********/
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  char *subdirf3(char fileres[], char *preop, char *preop2)
   j1=0;  {
      
   j=cptcoveff;    /* Caution optionfilefiname is hidden */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/");
   for(k1=1; k1<=j;k1++){    strcat(tmpout,preop);
     for(i1=1; i1<=ncodemax[k1];i1++){    strcat(tmpout,preop2);
       j1++;    strcat(tmpout,fileres);
          return tmpout;
       for (i=-1; i<=nlstate+ndeath; i++)    }
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  char *asc_diff_time(long time_sec, char ascdiff[])
             freq[i][jk][m]=0;  {
          long sec_left, days, hours, minutes;
       for (i=1; i<=imx; i++) {    days = (time_sec) / (60*60*24);
         bool=1;    sec_left = (time_sec) % (60*60*24);
         if  (cptcovn>0) {    hours = (sec_left) / (60*60) ;
           for (z1=1; z1<=cptcoveff; z1++)    sec_left = (sec_left) %(60*60);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    minutes = (sec_left) /60;
               bool=0;    sec_left = (sec_left) % (60);
         }    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
         if (bool==1) {    return ascdiff;
           for(m=firstpass; m<=lastpass; m++){  }
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /***************** f1dim *************************/
               if(agev[m][i]==0) agev[m][i]=agemax+1;  extern int ncom; 
               if(agev[m][i]==1) agev[m][i]=agemax+2;  extern double *pcom,*xicom;
               if (m<lastpass) {  extern double (*nrfunc)(double []); 
                 if (calagedate>0)   
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  double f1dim(double x) 
                 else  { 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    int j; 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    double f;
               }    double *xt; 
             }   
           }    xt=vector(1,ncom); 
         }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       }    f=(*nrfunc)(xt); 
       for(i=(int)agemin; i <= (int)agemax+3; i++){    free_vector(xt,1,ncom); 
         for(jk=1; jk <=nlstate ; jk++){    return f; 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  } 
             pp[jk] += freq[jk][m][i];  
         }  /*****************brent *************************/
         for(jk=1; jk <=nlstate ; jk++){  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
           for(m=-1, pos=0; m <=0 ; m++)  {
             pos += freq[jk][m][i];    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
         }     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
             * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
         for(jk=1; jk <=nlstate ; jk++){     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)     * returned function value. 
             pp[jk] += freq[jk][m][i];    */
         }    int iter; 
            double a,b,d,etemp;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    double fu=0,fv,fw,fx;
            double ftemp=0.;
         for(jk=1; jk <=nlstate ; jk++){        double p,q,r,tol1,tol2,u,v,w,x,xm; 
           if( i <= (int) agemax){    double e=0.0; 
             if(pos>=1.e-5){   
               probs[i][jk][j1]= pp[jk]/pos;    a=(ax < cx ? ax : cx); 
             }    b=(ax > cx ? ax : cx); 
           }    x=w=v=bx; 
         }    fw=fv=fx=(*f)(x); 
            for (iter=1;iter<=ITMAX;iter++) { 
       }      xm=0.5*(a+b); 
     }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
        fprintf(ficlog,".");fflush(ficlog);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  #ifdef DEBUGBRENT
   free_vector(pp,1,nlstate);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 }  /* End of Freq */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
 /************* Waves Concatenation ***************/      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        return fx; 
 {      } 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      ftemp=fu;
      Death is a valid wave (if date is known).      if (fabs(e) > tol1) { 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        r=(x-w)*(fx-fv); 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        q=(x-v)*(fx-fw); 
      and mw[mi+1][i]. dh depends on stepm.        p=(x-v)*q-(x-w)*r; 
      */        q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
   int i, mi, m;        q=fabs(q); 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        etemp=e; 
      double sum=0., jmean=0.;*/        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   int j, k=0,jk, ju, jl;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double sum=0.;        else { 
   jmin=1e+5;          d=p/q; 
   jmax=-1;          u=x+d; 
   jmean=0.;          if (u-a < tol2 || b-u < tol2) 
   for(i=1; i<=imx; i++){            d=SIGN(tol1,xm-x); 
     mi=0;        } 
     m=firstpass;      } else { 
     while(s[m][i] <= nlstate){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       if(s[m][i]>=1)      } 
         mw[++mi][i]=m;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       if(m >=lastpass)      fu=(*f)(u); 
         break;      if (fu <= fx) { 
       else        if (u >= x) a=x; else b=x; 
         m++;        SHFT(v,w,x,u) 
     }/* end while */        SHFT(fv,fw,fx,fu) 
     if (s[m][i] > nlstate){      } else { 
       mi++;     /* Death is another wave */        if (u < x) a=u; else b=u; 
       /* if(mi==0)  never been interviewed correctly before death */        if (fu <= fw || w == x) { 
          /* Only death is a correct wave */          v=w; 
       mw[mi][i]=m;          w=u; 
     }          fv=fw; 
           fw=fu; 
     wav[i]=mi;        } else if (fu <= fv || v == x || v == w) { 
     if(mi==0)          v=u; 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          fv=fu; 
   }        } 
       } 
   for(i=1; i<=imx; i++){    } 
     for(mi=1; mi<wav[i];mi++){    nrerror("Too many iterations in brent"); 
       if (stepm <=0)    *xmin=x; 
         dh[mi][i]=1;    return fx; 
       else{  } 
         if (s[mw[mi+1][i]][i] > nlstate) {  
           if (agedc[i] < 2*AGESUP) {  /****************** mnbrak ***********************/
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j==0) j=1;  /* Survives at least one month after exam */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
           k=k+1;              double (*func)(double)) 
           if (j >= jmax) jmax=j;  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
           if (j <= jmin) jmin=j;  the downhill direction (defined by the function as evaluated at the initial points) and returns
           sum=sum+j;  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
           }     */
         }    double ulim,u,r,q, dum;
         else{    double fu; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;    double scale=10.;
           if (j >= jmax) jmax=j;    int iterscale=0;
           else if (j <= jmin)jmin=j;  
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
           sum=sum+j;    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
         }  
         jk= j/stepm;  
         jl= j -jk*stepm;    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
         ju= j -(jk+1)*stepm;    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
         if(jl <= -ju)    /*   *bx = *ax - (*ax - *bx)/scale; */
           dh[mi][i]=jk;    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
         else    /* } */
           dh[mi][i]=jk+1;  
         if(dh[mi][i]==0)    if (*fb > *fa) { 
           dh[mi][i]=1; /* At least one step */      SHFT(dum,*ax,*bx,dum) 
       }      SHFT(dum,*fb,*fa,dum) 
     }    } 
   }    *cx=(*bx)+GOLD*(*bx-*ax); 
   jmean=sum/k;    *fc=(*func)(*cx); 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  #ifdef DEBUG
  }    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
 /*********** Tricode ****************************/    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
 void tricode(int *Tvar, int **nbcode, int imx)  #endif
 {    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
   int Ndum[20],ij=1, k, j, i;      r=(*bx-*ax)*(*fb-*fc); 
   int cptcode=0;      q=(*bx-*cx)*(*fb-*fa); 
   cptcoveff=0;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
          (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
   for (k=0; k<19; k++) Ndum[k]=0;      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
   for (k=1; k<=7; k++) ncodemax[k]=0;      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
         fu=(*func)(u); 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  #ifdef DEBUG
     for (i=1; i<=imx; i++) {        /* f(x)=A(x-u)**2+f(u) */
       ij=(int)(covar[Tvar[j]][i]);        double A, fparabu; 
       Ndum[ij]++;        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        fparabu= *fa - A*(*ax-u)*(*ax-u);
       if (ij > cptcode) cptcode=ij;        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
     }        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         /* And thus,it can be that fu > *fc even if fparabu < *fc */
     for (i=0; i<=cptcode; i++) {        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
       if(Ndum[i]!=0) ncodemax[j]++;          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
     }        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
     ij=1;  #endif 
   #ifdef MNBRAKORIGINAL
   #else
     for (i=1; i<=ncodemax[j]; i++) {  /*       if (fu > *fc) { */
       for (k=0; k<=19; k++) {  /* #ifdef DEBUG */
         if (Ndum[k] != 0) {  /*       printf("mnbrak4  fu > fc \n"); */
           nbcode[Tvar[j]][ij]=k;  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
            /* #endif */
           ij++;  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
         }  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
         if (ij > ncodemax[j]) break;  /*      dum=u; /\* Shifting c and u *\/ */
       }    /*      u = *cx; */
     }  /*      *cx = dum; */
   }    /*      dum = fu; */
   /*      fu = *fc; */
  for (k=0; k<19; k++) Ndum[k]=0;  /*      *fc =dum; */
   /*       } else { /\* end *\/ */
  for (i=1; i<=ncovmodel-2; i++) {  /* #ifdef DEBUG */
       ij=Tvar[i];  /*       printf("mnbrak3  fu < fc \n"); */
       Ndum[ij]++;  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
     }  /* #endif */
   /*      dum=u; /\* Shifting c and u *\/ */
  ij=1;  /*      u = *cx; */
  for (i=1; i<=10; i++) {  /*      *cx = dum; */
    if((Ndum[i]!=0) && (i<=ncovcol)){  /*      dum = fu; */
      Tvaraff[ij]=i;  /*      fu = *fc; */
      ij++;  /*      *fc =dum; */
    }  /*       } */
  }  #ifdef DEBUG
          printf("mnbrak34  fu < or >= fc \n");
     cptcoveff=ij-1;        fprintf(ficlog, "mnbrak34 fu < fc\n");
 }  #endif
         dum=u; /* Shifting c and u */
 /*********** Health Expectancies ****************/        u = *cx;
         *cx = dum;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        dum = fu;
         fu = *fc;
 {        *fc =dum;
   /* Health expectancies */  #endif
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
   double age, agelim, hf;  #ifdef DEBUG
   double ***p3mat,***varhe;        printf("mnbrak2  u after c but before ulim\n");
   double **dnewm,**doldm;        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
   double *xp;  #endif
   double **gp, **gm;        fu=(*func)(u); 
   double ***gradg, ***trgradg;        if (fu < *fc) { 
   int theta;  #ifdef DEBUG
         printf("mnbrak2  u after c but before ulim AND fu < fc\n");
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
   xp=vector(1,npar);  #endif
   dnewm=matrix(1,nlstate*2,1,npar);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   doldm=matrix(1,nlstate*2,1,nlstate*2);          SHFT(*fb,*fc,fu,(*func)(u)) 
          } 
   fprintf(ficreseij,"# Health expectancies\n");      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
   fprintf(ficreseij,"# Age");  #ifdef DEBUG
   for(i=1; i<=nlstate;i++)        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
     for(j=1; j<=nlstate;j++)        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  #endif
   fprintf(ficreseij,"\n");        u=ulim; 
         fu=(*func)(u); 
   if(estepm < stepm){      } else { /* u could be left to b (if r > q parabola has a maximum) */
     printf ("Problem %d lower than %d\n",estepm, stepm);  #ifdef DEBUG
   }        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
   else  hstepm=estepm;          fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
   /* We compute the life expectancy from trapezoids spaced every estepm months  #endif
    * This is mainly to measure the difference between two models: for example        u=(*cx)+GOLD*(*cx-*bx); 
    * if stepm=24 months pijx are given only every 2 years and by summing them        fu=(*func)(u); 
    * we are calculating an estimate of the Life Expectancy assuming a linear      } /* end tests */
    * progression inbetween and thus overestimating or underestimating according      SHFT(*ax,*bx,*cx,u) 
    * to the curvature of the survival function. If, for the same date, we      SHFT(*fa,*fb,*fc,fu) 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  #ifdef DEBUG
    * to compare the new estimate of Life expectancy with the same linear        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
    * hypothesis. A more precise result, taking into account a more precise        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
    * curvature will be obtained if estepm is as small as stepm. */  #endif
     } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
   /* For example we decided to compute the life expectancy with the smallest unit */  } 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim  /*************** linmin ************************/
      nstepm is the number of stepm from age to agelin.  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
      Look at hpijx to understand the reason of that which relies in memory size  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
      and note for a fixed period like estepm months */  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  the value of func at the returned location p . This is actually all accomplished by calling the
      survival function given by stepm (the optimization length). Unfortunately it  routines mnbrak and brent .*/
      means that if the survival funtion is printed only each two years of age and if  int ncom; 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  double *pcom,*xicom;
      results. So we changed our mind and took the option of the best precision.  double (*nrfunc)(double []); 
   */   
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   agelim=AGESUP;    double brent(double ax, double bx, double cx, 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                 double (*f)(double), double tol, double *xmin); 
     /* nhstepm age range expressed in number of stepm */    double f1dim(double x); 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */                double *fc, double (*func)(double)); 
     /* if (stepm >= YEARM) hstepm=1;*/    int j; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double xx,xmin,bx,ax; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double fx,fb,fa;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  
     gp=matrix(0,nhstepm,1,nlstate*2);  #ifdef LINMINORIGINAL
     gm=matrix(0,nhstepm,1,nlstate*2);  #else
     double scale=10., axs, xxs; /* Scale added for infinity */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  #endif
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      ncom=n; 
      pcom=vector(1,n); 
     xicom=vector(1,n); 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    nrfunc=func; 
     for (j=1;j<=n;j++) { 
     /* Computing Variances of health expectancies */      pcom[j]=p[j]; 
       xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
      for(theta=1; theta <=npar; theta++){    } 
       for(i=1; i<=npar; i++){  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  #ifdef LINMINORIGINAL
       }    xx=1.;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    #else
      axs=0.0;
       cptj=0;    xxs=1.;
       for(j=1; j<= nlstate; j++){    do{
         for(i=1; i<=nlstate; i++){      xx= xxs;
           cptj=cptj+1;  #endif
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      ax=0.;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
           }      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
         }      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
       }      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
            /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
            /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
       for(i=1; i<=npar; i++)      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  #ifdef LINMINORIGINAL
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    #else
            if (fx != fx){
       cptj=0;          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
       for(j=1; j<= nlstate; j++){          printf("|");
         for(i=1;i<=nlstate;i++){          fprintf(ficlog,"|");
           cptj=cptj+1;  #ifdef DEBUGLINMIN
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  #endif
           }      }
         }    }while(fx != fx);
       }  #endif
       for(j=1; j<= nlstate*2; j++)    
         for(h=0; h<=nhstepm-1; h++){  #ifdef DEBUGLINMIN
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
         }    fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
      }  #endif
        *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
 /* End theta */    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
     /* fmin = f(p[j] + xmin * xi[j]) */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
     /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
      for(h=0; h<=nhstepm-1; h++)  #ifdef DEBUG
       for(j=1; j<=nlstate*2;j++)    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for(theta=1; theta <=npar; theta++)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           trgradg[h][j][theta]=gradg[h][theta][j];  #endif
        #ifdef DEBUGLINMIN
     printf("linmin end ");
      for(i=1;i<=nlstate*2;i++)    fprintf(ficlog,"linmin end ");
       for(j=1;j<=nlstate*2;j++)  #endif
         varhe[i][j][(int)age] =0.;    for (j=1;j<=n;j++) { 
   #ifdef LINMINORIGINAL
      printf("%d|",(int)age);fflush(stdout);      xi[j] *= xmin; 
      for(h=0;h<=nhstepm-1;h++){  #else
       for(k=0;k<=nhstepm-1;k++){  #ifdef DEBUGLINMIN
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      if(xxs <1.0)
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        printf(" before xi[%d]=%12.8f", j,xi[j]);
         for(i=1;i<=nlstate*2;i++)  #endif
           for(j=1;j<=nlstate*2;j++)      xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  #ifdef DEBUGLINMIN
       }      if(xxs <1.0)
     }        printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
     /* Computing expectancies */  #endif
     for(i=1; i<=nlstate;i++)  #endif
       for(j=1; j<=nlstate;j++)      p[j] += xi[j]; /* Parameters values are updated accordingly */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    } 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  #ifdef DEBUGLINMIN
              printf("\n");
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
     fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
         }    for (j=1;j<=n;j++) { 
       printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
     fprintf(ficreseij,"%3.0f",age );      fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
     cptj=0;      if(j % ncovmodel == 0){
     for(i=1; i<=nlstate;i++)        printf("\n");
       for(j=1; j<=nlstate;j++){        fprintf(ficlog,"\n");
         cptj++;      }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    }
       }  #else
     fprintf(ficreseij,"\n");  #endif
        free_vector(xicom,1,n); 
     free_matrix(gm,0,nhstepm,1,nlstate*2);    free_vector(pcom,1,n); 
     free_matrix(gp,0,nhstepm,1,nlstate*2);  } 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*************** powell ************************/
   }  /*
   printf("\n");  Minimization of a function func of n variables. Input consists of an initial starting point
   p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
   free_vector(xp,1,npar);  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
   free_matrix(dnewm,1,nlstate*2,1,npar);  such that failure to decrease by more than this amount on one iteration signals doneness. On
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  function value at p , and iter is the number of iterations taken. The routine linmin is used.
 }   */
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 /************ Variance ******************/              double (*func)(double [])) 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  { 
 {    void linmin(double p[], double xi[], int n, double *fret, 
   /* Variance of health expectancies */                double (*func)(double [])); 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int i,ibig,j; 
   double **newm;    double del,t,*pt,*ptt,*xit;
   double **dnewm,**doldm;    double directest;
   int i, j, nhstepm, hstepm, h, nstepm ;    double fp,fptt;
   int k, cptcode;    double *xits;
   double *xp;    int niterf, itmp;
   double **gp, **gm;  
   double ***gradg, ***trgradg;    pt=vector(1,n); 
   double ***p3mat;    ptt=vector(1,n); 
   double age,agelim, hf;    xit=vector(1,n); 
   int theta;    xits=vector(1,n); 
     *fret=(*func)(p); 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    for (j=1;j<=n;j++) pt[j]=p[j]; 
   fprintf(ficresvij,"# Age");    rcurr_time = time(NULL);  
   for(i=1; i<=nlstate;i++)    for (*iter=1;;++(*iter)) { 
     for(j=1; j<=nlstate;j++)      fp=(*fret); /* From former iteration or initial value */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      ibig=0; 
   fprintf(ficresvij,"\n");      del=0.0; 
       rlast_time=rcurr_time;
   xp=vector(1,npar);      /* (void) gettimeofday(&curr_time,&tzp); */
   dnewm=matrix(1,nlstate,1,npar);      rcurr_time = time(NULL);  
   doldm=matrix(1,nlstate,1,nlstate);      curr_time = *localtime(&rcurr_time);
        printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
   if(estepm < stepm){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
     printf ("Problem %d lower than %d\n",estepm, stepm);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
   }      for (i=1;i<=n;i++) {
   else  hstepm=estepm;          printf(" %d %.12f",i, p[i]);
   /* For example we decided to compute the life expectancy with the smallest unit */        fprintf(ficlog," %d %.12lf",i, p[i]);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        fprintf(ficrespow," %.12lf", p[i]);
      nhstepm is the number of hstepm from age to agelim      }
      nstepm is the number of stepm from age to agelin.      printf("\n");
      Look at hpijx to understand the reason of that which relies in memory size      fprintf(ficlog,"\n");
      and note for a fixed period like k years */      fprintf(ficrespow,"\n");fflush(ficrespow);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      if(*iter <=3){
      survival function given by stepm (the optimization length). Unfortunately it        tml = *localtime(&rcurr_time);
      means that if the survival funtion is printed only each two years of age and if        strcpy(strcurr,asctime(&tml));
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        rforecast_time=rcurr_time; 
      results. So we changed our mind and took the option of the best precision.        itmp = strlen(strcurr);
   */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          strcurr[itmp-1]='\0';
   agelim = AGESUP;        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(niterf=10;niterf<=30;niterf+=10){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          forecast_time = *localtime(&rforecast_time);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          strcpy(strfor,asctime(&forecast_time));
     gp=matrix(0,nhstepm,1,nlstate);          itmp = strlen(strfor);
     gm=matrix(0,nhstepm,1,nlstate);          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
     for(theta=1; theta <=npar; theta++){          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       for(i=1; i<=npar; i++){ /* Computes gradient */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        }
       }      }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (i=1;i<=n;i++) { /* For each direction i */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
         fptt=(*fret); 
       if (popbased==1) {  #ifdef DEBUG
         for(i=1; i<=nlstate;i++)        printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
           prlim[i][i]=probs[(int)age][i][ij];        fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
       }  #endif
          printf("%d",i);fflush(stdout); /* print direction (parameter) i */
       for(j=1; j<= nlstate; j++){        fprintf(ficlog,"%d",i);fflush(ficlog);
         for(h=0; h<=nhstepm; h++){        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
         }          /* because that direction will be replaced unless the gain del is small */
       }          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
              /* Unless the n directions are conjugate some gain in the determinant may be obtained */
       for(i=1; i<=npar; i++) /* Computes gradient */          /* with the new direction. */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          del=fabs(fptt-(*fret)); 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            ibig=i; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } 
    #ifdef DEBUG
       if (popbased==1) {        printf("%d %.12e",i,(*fret));
         for(i=1; i<=nlstate;i++)        fprintf(ficlog,"%d %.12e",i,(*fret));
           prlim[i][i]=probs[(int)age][i][ij];        for (j=1;j<=n;j++) {
       }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
       for(j=1; j<= nlstate; j++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         for(h=0; h<=nhstepm; h++){        }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        for(j=1;j<=n;j++) {
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          printf(" p(%d)=%.12e",j,p[j]);
         }          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
       }        }
         printf("\n");
       for(j=1; j<= nlstate; j++)        fprintf(ficlog,"\n");
         for(h=0; h<=nhstepm; h++){  #endif
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      } /* end loop on each direction i */
         }      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
     } /* End theta */      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
       /* New value of last point Pn is not computed, P(n-1) */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
         /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
     for(h=0; h<=nhstepm; h++)        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
       for(j=1; j<=nlstate;j++)        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
         for(theta=1; theta <=npar; theta++)        /* decreased of more than 3.84  */
           trgradg[h][j][theta]=gradg[h][theta][j];        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
         /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        /* By adding 10 parameters more the gain should be 18.31 */
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)        /* Starting the program with initial values given by a former maximization will simply change */
         vareij[i][j][(int)age] =0.;        /* the scales of the directions and the directions, because the are reset to canonical directions */
         /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
     for(h=0;h<=nhstepm;h++){        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
       for(k=0;k<=nhstepm;k++){  #ifdef DEBUG
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        int k[2],l;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        k[0]=1;
         for(i=1;i<=nlstate;i++)        k[1]=-1;
           for(j=1;j<=nlstate;j++)        printf("Max: %.12e",(*func)(p));
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        fprintf(ficlog,"Max: %.12e",(*func)(p));
       }        for (j=1;j<=n;j++) {
     }          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
     fprintf(ficresvij,"%.0f ",age );        }
     for(i=1; i<=nlstate;i++)        printf("\n");
       for(j=1; j<=nlstate;j++){        fprintf(ficlog,"\n");
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        for(l=0;l<=1;l++) {
       }          for (j=1;j<=n;j++) {
     fprintf(ficresvij,"\n");            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     free_matrix(gp,0,nhstepm,1,nlstate);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     free_matrix(gm,0,nhstepm,1,nlstate);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   } /* End age */        }
    #endif
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);        free_vector(xit,1,n); 
         free_vector(xits,1,n); 
 }        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
 /************ Variance of prevlim ******************/        return; 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      } /* enough precision */ 
 {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   /* Variance of prevalence limit */      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        ptt[j]=2.0*p[j]-pt[j]; 
   double **newm;        xit[j]=p[j]-pt[j]; 
   double **dnewm,**doldm;        pt[j]=p[j]; 
   int i, j, nhstepm, hstepm;      } 
   int k, cptcode;      fptt=(*func)(ptt); /* f_3 */
   double *xp;  #ifdef POWELLF1F3
   double *gp, *gm;  #else
   double **gradg, **trgradg;      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
   double age,agelim;  #endif
   int theta;        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
            /* From x1 (P0) distance of x2 is at h and x3 is 2h */
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
   fprintf(ficresvpl,"# Age");        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
   for(i=1; i<=nlstate;i++)        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
       fprintf(ficresvpl," %1d-%1d",i,i);        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
   fprintf(ficresvpl,"\n");        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   #ifdef NRCORIGINAL
   xp=vector(1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
   dnewm=matrix(1,nlstate,1,npar);  #else
   doldm=matrix(1,nlstate,1,nlstate);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
          t= t- del*SQR(fp-fptt);
   hstepm=1*YEARM; /* Every year of age */  #endif
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
   agelim = AGESUP;  #ifdef DEBUG
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
     if (stepm >= YEARM) hstepm=1;        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
     gradg=matrix(1,npar,1,nlstate);        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
     gp=vector(1,nlstate);               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
     gm=vector(1,nlstate);        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
     for(theta=1; theta <=npar; theta++){  #endif
       for(i=1; i<=npar; i++){ /* Computes gradient */  #ifdef POWELLORIGINAL
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        if (t < 0.0) { /* Then we use it for new direction */
       }  #else
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if (directest*t < 0.0) { /* Contradiction between both tests */
       for(i=1;i<=nlstate;i++)          printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
         gp[i] = prlim[i][i];          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
              fprintf(ficlog,"directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
       for(i=1; i<=npar; i++) /* Computes gradient */          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if (directest < 0.0) { /* Then we use it for new direction */
       for(i=1;i<=nlstate;i++)  #endif
         gm[i] = prlim[i][i];  #ifdef DEBUGLINMIN
           printf("Before linmin in direction P%d-P0\n",n);
       for(i=1;i<=nlstate;i++)          for (j=1;j<=n;j++) { 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
     } /* End theta */            fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
             if(j % ncovmodel == 0){
     trgradg =matrix(1,nlstate,1,npar);              printf("\n");
               fprintf(ficlog,"\n");
     for(j=1; j<=nlstate;j++)            }
       for(theta=1; theta <=npar; theta++)          }
         trgradg[j][theta]=gradg[theta][j];  #endif
           linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
     for(i=1;i<=nlstate;i++)  #ifdef DEBUGLINMIN
       varpl[i][(int)age] =0.;          for (j=1;j<=n;j++) { 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
     for(i=1;i<=nlstate;i++)            if(j % ncovmodel == 0){
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              printf("\n");
               fprintf(ficlog,"\n");
     fprintf(ficresvpl,"%.0f ",age );            }
     for(i=1; i<=nlstate;i++)          }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  #endif
     fprintf(ficresvpl,"\n");          for (j=1;j<=n;j++) { 
     free_vector(gp,1,nlstate);            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
     free_vector(gm,1,nlstate);            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
     free_matrix(gradg,1,npar,1,nlstate);          }
     free_matrix(trgradg,1,nlstate,1,npar);          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   } /* End age */          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   
   free_vector(xp,1,npar);  #ifdef DEBUG
   free_matrix(doldm,1,nlstate,1,npar);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   free_matrix(dnewm,1,nlstate,1,nlstate);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
 }            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
 /************ Variance of one-step probabilities  ******************/          }
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          printf("\n");
 {          fprintf(ficlog,"\n");
   int i, j=0,  i1, k1, l1, t, tj;  #endif
   int k2, l2, j1,  z1;        } /* end of t or directest negative */
   int k=0,l, cptcode;  #ifdef POWELLF1F3
   int first=1;  #else
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;      } /* end if (fptt < fp)  */
   double **dnewm,**doldm;  #endif
   double *xp;    } /* loop iteration */ 
   double *gp, *gm;  } 
   double **gradg, **trgradg;  
   double **mu;  /**** Prevalence limit (stable or period prevalence)  ****************/
   double age,agelim, cov[NCOVMAX];  
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij)
   int theta;  {
   char fileresprob[FILENAMELENGTH];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   char fileresprobcov[FILENAMELENGTH];       matrix by transitions matrix until convergence is reached with precision ftolpl */
   char fileresprobcor[FILENAMELENGTH];    
     int i, ii,j,k;
   double ***varpij;    double min, max, maxmin, maxmax,sumnew=0.;
     /* double **matprod2(); */ /* test */
   strcpy(fileresprob,"prob");    double **out, cov[NCOVMAX+1], **pmij();
   strcat(fileresprob,fileres);    double **newm;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    double agefin, delaymax=100 ; /* Max number of years to converge */
     printf("Problem with resultfile: %s\n", fileresprob);    int ncvloop=0;
   }    
   strcpy(fileresprobcov,"probcov");    for (ii=1;ii<=nlstate+ndeath;ii++)
   strcat(fileresprobcov,fileres);      for (j=1;j<=nlstate+ndeath;j++){
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("Problem with resultfile: %s\n", fileresprobcov);      }
   }    
   strcpy(fileresprobcor,"probcor");    cov[1]=1.;
   strcat(fileresprobcor,fileres);    
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     printf("Problem with resultfile: %s\n", fileresprobcor);    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
   }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      ncvloop++;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      newm=savm;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      /* Covariates have to be included here again */
        cov[2]=agefin;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      if(nagesqr==1)
   fprintf(ficresprob,"# Age");        cov[3]= agefin*agefin;;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      for (k=1; k<=cptcovn;k++) {
   fprintf(ficresprobcov,"# Age");        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
   fprintf(ficresprobcov,"# Age");        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
       }
       /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   for(i=1; i<=nlstate;i++)      /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
     for(j=1; j<=(nlstate+ndeath);j++){      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      for (k=1; k<=cptcovprod;k++) /* Useless */
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
     }        
   fprintf(ficresprob,"\n");      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   fprintf(ficresprobcov,"\n");      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   fprintf(ficresprobcor,"\n");      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   xp=vector(1,npar);      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      savm=oldm;
   first=1;      oldm=newm;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      maxmax=0.;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      for(j=1;j<=nlstate;j++){
     exit(0);        min=1.;
   }        max=0.;
   else{        for(i=1; i<=nlstate; i++) {
     fprintf(ficgp,"\n# Routine varprob");          sumnew=0;
   }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          prlim[i][j]= newm[i][j]/(1-sumnew);
     printf("Problem with html file: %s\n", optionfilehtm);          max=FMAX(max,prlim[i][j]);
     exit(0);          min=FMIN(min,prlim[i][j]);
   }          /* printf(" age= %d prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d max=%f min=%f\n", (int)age, i, j, i, j, prlim[i][j],(int)agefin, max, min); */
   else{        }
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");        maxmin=(max-min)/(max+min)*2;
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        maxmax=FMAX(maxmax,maxmin);
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");      } /* j loop */
       *ncvyear= (int)age- (int)agefin;
   }      /* printf("maxmax=%lf maxmin=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
       if(maxmax < ftolpl){
          /* printf("maxmax=%lf maxmin=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
   cov[1]=1;        return prlim;
   tj=cptcoveff;      }
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    } /* age loop */
   j1=0;    printf("Warning: the stable prevalence at age %d did not converge with the required precision %g > ftolpl=%g. \n\
   for(t=1; t<=tj;t++){  Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
     for(i1=1; i1<=ncodemax[t];i1++){  /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
       j1++;    return prlim; /* should not reach here */
        }
       if  (cptcovn>0) {  
         fprintf(ficresprob, "\n#********** Variable ");  /*************** transition probabilities ***************/ 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprob, "**********\n#");  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         fprintf(ficresprobcov, "\n#********** Variable ");  {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* According to parameters values stored in x and the covariate's values stored in cov,
         fprintf(ficresprobcov, "**********\n#");       computes the probability to be observed in state j being in state i by appying the
               model to the ncovmodel covariates (including constant and age).
         fprintf(ficgp, "\n#********** Variable ");       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         fprintf(ficgp, "**********\n#");       ncth covariate in the global vector x is given by the formula:
               j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
               j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");       Outputs ps[i][j] the probability to be observed in j being in j according to
               the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         fprintf(ficresprobcor, "\n#********** Variable ");        */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double s1, lnpijopii;
         fprintf(ficgp, "**********\n#");        /*double t34;*/
       }    int i,j, nc, ii, jj;
        
       for (age=bage; age<=fage; age ++){      for(i=1; i<= nlstate; i++){
         cov[2]=age;        for(j=1; j<i;j++){
         for (k=1; k<=cptcovn;k++) {          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            /*lnpijopii += param[i][j][nc]*cov[nc];*/
         }            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         for (k=1; k<=cptcovprod;k++)          }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
          /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        }
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        for(j=i+1; j<=nlstate+ndeath;j++){
         gp=vector(1,(nlstate)*(nlstate+ndeath));          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         gm=vector(1,(nlstate)*(nlstate+ndeath));            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
                lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
         for(theta=1; theta <=npar; theta++){  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           for(i=1; i<=npar; i++)          }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                  }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      }
                
           k=0;      for(i=1; i<= nlstate; i++){
           for(i=1; i<= (nlstate); i++){        s1=0;
             for(j=1; j<=(nlstate+ndeath);j++){        for(j=1; j<i; j++){
               k=k+1;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
               gp[k]=pmmij[i][j];          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             }        }
           }        for(j=i+1; j<=nlstate+ndeath; j++){
                    s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           for(i=1; i<=npar; i++)          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
            /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        ps[i][i]=1./(s1+1.);
           k=0;        /* Computing other pijs */
           for(i=1; i<=(nlstate); i++){        for(j=1; j<i; j++)
             for(j=1; j<=(nlstate+ndeath);j++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
               k=k+1;        for(j=i+1; j<=nlstate+ndeath; j++)
               gm[k]=pmmij[i][j];          ps[i][j]= exp(ps[i][j])*ps[i][i];
             }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           }      } /* end i */
            
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          for(jj=1; jj<= nlstate+ndeath; jj++){
         }          ps[ii][jj]=0;
           ps[ii][ii]=1;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        }
           for(theta=1; theta <=npar; theta++)      }
             trgradg[j][theta]=gradg[theta][j];      
              
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
              /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
         pmij(pmmij,cov,ncovmodel,x,nlstate);      /*   } */
              /*   printf("\n "); */
         k=0;      /* } */
         for(i=1; i<=(nlstate); i++){      /* printf("\n ");printf("%lf ",cov[2]);*/
           for(j=1; j<=(nlstate+ndeath);j++){      /*
             k=k+1;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
             mu[k][(int) age]=pmmij[i][j];        goto end;*/
           }      return ps;
         }  }
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  /**************** Product of 2 matrices ******************/
             varpij[i][j][(int)age] = doldm[i][j];  
   double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
         /*printf("\n%d ",(int)age);  {
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
      }*/    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
         fprintf(ficresprob,"\n%d ",(int)age);       a pointer to pointers identical to out */
         fprintf(ficresprobcov,"\n%d ",(int)age);    int i, j, k;
         fprintf(ficresprobcor,"\n%d ",(int)age);    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        out[i][k]=0.;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        for(j=ncl; j<=nch; j++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          out[i][k] +=in[i][j]*b[j][k];
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      }
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    return out;
         }  }
         i=0;  
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){  /************* Higher Matrix Product ***************/
             i=i++;  
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  {
             for (j=1; j<=i;j++){    /* Computes the transition matrix starting at age 'age' over 
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);       'nhstepm*hstepm*stepm' months (i.e. until
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
             }       nhstepm*hstepm matrices. 
           }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         }/* end of loop for state */       (typically every 2 years instead of every month which is too big 
       } /* end of loop for age */       for the memory).
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/       Model is determined by parameters x and covariates have to be 
       for (k1=1; k1<=(nlstate);k1++){       included manually here. 
         for (l1=1; l1<=(nlstate+ndeath);l1++){  
           if(l1==k1) continue;       */
           i=(k1-1)*(nlstate+ndeath)+l1;  
           for (k2=1; k2<=(nlstate);k2++){    int i, j, d, h, k;
             for (l2=1; l2<=(nlstate+ndeath);l2++){    double **out, cov[NCOVMAX+1];
               if(l2==k2) continue;    double **newm;
               j=(k2-1)*(nlstate+ndeath)+l2;    double agexact;
               if(j<=i) continue;  
               for (age=bage; age<=fage; age ++){    /* Hstepm could be zero and should return the unit matrix */
                 if ((int)age %5==0){    for (i=1;i<=nlstate+ndeath;i++)
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;      for (j=1;j<=nlstate+ndeath;j++){
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;        oldm[i][j]=(i==j ? 1.0 : 0.0);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;        po[i][j][0]=(i==j ? 1.0 : 0.0);
                   mu1=mu[i][(int) age]/stepm*YEARM ;      }
                   mu2=mu[j][(int) age]/stepm*YEARM;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   /* Computing eigen value of matrix of covariance */    for(h=1; h <=nhstepm; h++){
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));      for(d=1; d <=hstepm; d++){
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));        newm=savm;
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);        /* Covariates have to be included here again */
                   /* Eigen vectors */        cov[1]=1.;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
                   v21=sqrt(1.-v11*v11);        cov[2]=agexact;
                   v12=-v21;        if(nagesqr==1)
                   v22=v11;          cov[3]= agexact*agexact;
                   /*printf(fignu*/        for (k=1; k<=cptcovn;k++) 
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */          /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
                   if(first==1){        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
                     first=0;          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
                     fprintf(ficgp,"\nset parametric;set nolabel");          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);          /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);          /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
                   }else{        savm=oldm;
                     first=0;        oldm=newm;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);      for(i=1; i<=nlstate+ndeath; i++)
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\        for(j=1;j<=nlstate+ndeath;j++) {
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          po[i][j][h]=newm[i][j];
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
                   }/* if first */        }
                 } /* age mod 5 */      /*printf("h=%d ",h);*/
               } /* end loop age */    } /* end h */
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);  /*     printf("\n H=%d \n",h); */
               first=1;    return po;
             } /*l12 */  }
           } /* k12 */  
         } /*l1 */  #ifdef NLOPT
       }/* k1 */    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
     } /* loop covariates */    double fret;
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    double *xt;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    int j;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    myfunc_data *d2 = (myfunc_data *) pd;
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  /* xt = (p1-1); */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    xt=vector(1,n); 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   }  
   free_vector(xp,1,npar);    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
   fclose(ficresprob);    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
   fclose(ficresprobcov);    printf("Function = %.12lf ",fret);
   fclose(ficresprobcor);    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
   fclose(ficgp);    printf("\n");
   fclose(fichtm);   free_vector(xt,1,n);
 }    return fret;
   }
   #endif
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  /*************** log-likelihood *************/
                   int lastpass, int stepm, int weightopt, char model[],\  double func( double *x)
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  {
                   int popforecast, int estepm ,\    int i, ii, j, k, mi, d, kk;
                   double jprev1, double mprev1,double anprev1, \    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
                   double jprev2, double mprev2,double anprev2){    double **out;
   int jj1, k1, i1, cpt;    double sw; /* Sum of weights */
   /*char optionfilehtm[FILENAMELENGTH];*/    double lli; /* Individual log likelihood */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    int s1, s2;
     printf("Problem with %s \n",optionfilehtm), exit(0);    double bbh, survp;
   }    long ipmx;
     double agexact;
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    /*extern weight */
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    /* We are differentiating ll according to initial status */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    /*for(i=1;i<imx;i++) 
  - Life expectancies by age and initial health status (estepm=%2d months):      printf(" %d\n",s[4][i]);
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
     ++countcallfunc;
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n  
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    cov[1]=1.;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    for(k=1; k<=nlstate; k++) ll[k]=0.;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    if(mle==1){
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        /* Computes the values of the ncovmodel covariates of the model
            depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
  if(popforecast==1) fprintf(fichtm,"\n           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n           to be observed in j being in i according to the model.
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n         */
         <br>",fileres,fileres,fileres,fileres);        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
  else            cov[2+nagesqr+k]=covar[Tvar[k]][i];
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        }
 fprintf(fichtm," <li><b>Graphs</b></li><p>");        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
            is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
  m=cptcoveff;           has been calculated etc */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
  jj1=0;            for (j=1;j<=nlstate+ndeath;j++){
  for(k1=1; k1<=m;k1++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    for(i1=1; i1<=ncodemax[k1];i1++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      jj1++;            }
      if (cptcovn > 0) {          for(d=0; d<dh[mi][i]; d++){
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            newm=savm;
        for (cpt=1; cpt<=cptcoveff;cpt++)            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            cov[2]=agexact;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            if(nagesqr==1)
      }              cov[3]= agexact*agexact;
      /* Pij */            for (kk=1; kk<=cptcovage;kk++) {
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                }
      /* Quasi-incidences */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            savm=oldm;
        /* Stable prevalence in each health state */            oldm=newm;
        for(cpt=1; cpt<nlstate;cpt++){          } /* end mult */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
        }          /* But now since version 0.9 we anticipate for bias at large stepm.
     for(cpt=1; cpt<=nlstate;cpt++) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident           * (in months) between two waves is not a multiple of stepm, we rounded to 
 interval) in state (%d): v%s%d%d.png <br>           * the nearest (and in case of equal distance, to the lowest) interval but now
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);             * we keep into memory the bias bh[mi][i] and also the previous matrix product
      }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
      for(cpt=1; cpt<=nlstate;cpt++) {           * probability in order to take into account the bias as a fraction of the way
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);           * -stepm/2 to stepm/2 .
      }           * For stepm=1 the results are the same as for previous versions of Imach.
      fprintf(fichtm,"\n<br>- Total life expectancy by age and           * For stepm > 1 the results are less biased than in previous versions. 
 health expectancies in states (1) and (2): e%s%d.png<br>           */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          s1=s[mw[mi][i]][i];
    }          s2=s[mw[mi+1][i]][i];
  }          bbh=(double)bh[mi][i]/(double)stepm; 
 fclose(fichtm);          /* bias bh is positive if real duration
 }           * is higher than the multiple of stepm and negative otherwise.
            */
 /******************* Gnuplot file **************/          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;               then the contribution to the likelihood is the probability to 
   int ng;               die between last step unit time and current  step unit time, 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {               which is also equal to probability to die before dh 
     printf("Problem with file %s",optionfilegnuplot);               minus probability to die before dh-stepm . 
   }               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
 #ifdef windows          health state: the date of the interview describes the actual state
     fprintf(ficgp,"cd \"%s\" \n",pathc);          and not the date of a change in health state. The former idea was
 #endif          to consider that at each interview the state was recorded
 m=pow(2,cptcoveff);          (healthy, disable or death) and IMaCh was corrected; but when we
            introduced the exact date of death then we should have modified
  /* 1eme*/          the contribution of an exact death to the likelihood. This new
   for (cpt=1; cpt<= nlstate ; cpt ++) {          contribution is smaller and very dependent of the step unit
    for (k1=1; k1<= m ; k1 ++) {          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
 #ifdef windows          interview up to one month before death multiplied by the
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          probability to die within a month. Thanks to Chris
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          Jackson for correcting this bug.  Former versions increased
 #endif          mortality artificially. The bad side is that we add another loop
 #ifdef unix          which slows down the processing. The difference can be up to 10%
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          lower mortality.
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);            */
 #endif          /* If, at the beginning of the maximization mostly, the
              cumulative probability or probability to be dead is
 for (i=1; i<= nlstate ; i ++) {             constant (ie = 1) over time d, the difference is equal to
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");             0.  out[s1][3] = savm[s1][3]: probability, being at state
   else fprintf(ficgp," \%%*lf (\%%*lf)");             s1 at precedent wave, to be dead a month before current
 }             wave is equal to probability, being at state s1 at
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);             precedent wave, to be dead at mont of the current
     for (i=1; i<= nlstate ; i ++) {             wave. Then the observed probability (that this person died)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");             is null according to current estimated parameter. In fact,
   else fprintf(ficgp," \%%*lf (\%%*lf)");             it should be very low but not zero otherwise the log go to
 }             infinity.
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          */
      for (i=1; i<= nlstate ; i ++) {  /* #ifdef INFINITYORIGINAL */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /* #else */
 }    /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  /*          lli=log(mytinydouble); */
 #ifdef unix  /*        else */
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
 #endif  /* #endif */
    }              lli=log(out[s1][s2] - savm[s1][s2]);
   }  
   /*2 eme*/          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
   for (k1=1; k1<= m ; k1 ++) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);            /*survp += out[s1][j]; */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);            lli= log(survp);
              }
     for (i=1; i<= nlstate+1 ; i ++) {          
       k=2*i;          else if  (s2==-4) { 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            for (j=3,survp=0. ; j<=nlstate; j++)  
       for (j=1; j<= nlstate+1 ; j ++) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            lli= log(survp); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          } 
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          else if  (s2==-5) { 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            for (j=1,survp=0. ; j<=2; j++)  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for (j=1; j<= nlstate+1 ; j ++) {            lli= log(survp); 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          } 
         else fprintf(ficgp," \%%*lf (\%%*lf)");          
 }            else{
       fprintf(ficgp,"\" t\"\" w l 0,");            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       for (j=1; j<= nlstate+1 ; j ++) {          } 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");          /*if(lli ==000.0)*/
 }            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          ipmx +=1;
       else fprintf(ficgp,"\" t\"\" w l 0,");          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }          /* if (lli < log(mytinydouble)){ */
            /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
   /*3eme*/          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
           /* } */
   for (k1=1; k1<= m ; k1 ++) {        } /* end of wave */
     for (cpt=1; cpt<= nlstate ; cpt ++) {      } /* end of individual */
       k=2+nlstate*(2*cpt-2);    }  else if(mle==2){
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        for(mi=1; mi<= wav[i]-1; mi++){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          for (ii=1;ii<=nlstate+ndeath;ii++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            for (j=1;j<=nlstate+ndeath;j++){
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            }
           for(d=0; d<=dh[mi][i]; d++){
 */            newm=savm;
       for (i=1; i< nlstate ; i ++) {            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            cov[2]=agexact;
             if(nagesqr==1)
       }              cov[3]= agexact*agexact;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
              }
   /* CV preval stat */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (k1=1; k1<= m ; k1 ++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (cpt=1; cpt<nlstate ; cpt ++) {            savm=oldm;
       k=3;            oldm=newm;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          } /* end mult */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        
           s1=s[mw[mi][i]][i];
       for (i=1; i< nlstate ; i ++)          s2=s[mw[mi+1][i]][i];
         fprintf(ficgp,"+$%d",k+i+1);          bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                ipmx +=1;
       l=3+(nlstate+ndeath)*cpt;          sw += weight[i];
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (i=1; i< nlstate ; i ++) {        } /* end of wave */
         l=3+(nlstate+ndeath)*cpt;      } /* end of individual */
         fprintf(ficgp,"+$%d",l+i+1);    }  else if(mle==3){  /* exponential inter-extrapolation */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
   }            for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   /* proba elementaires */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    for(i=1,jk=1; i <=nlstate; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(k=1; k <=(nlstate+ndeath); k++){            }
       if (k != i) {          for(d=0; d<dh[mi][i]; d++){
         for(j=1; j <=ncovmodel; j++){            newm=savm;
                    agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            cov[2]=agexact;
           jk++;            if(nagesqr==1)
           fprintf(ficgp,"\n");              cov[3]= agexact*agexact;
         }            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
     }            }
    }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/            savm=oldm;
      for(jk=1; jk <=m; jk++) {            oldm=newm;
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          } /* end mult */
        if (ng==2)        
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          s1=s[mw[mi][i]][i];
        else          s2=s[mw[mi+1][i]][i];
          fprintf(ficgp,"\nset title \"Probability\"\n");          bbh=(double)bh[mi][i]/(double)stepm; 
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
        i=1;          ipmx +=1;
        for(k2=1; k2<=nlstate; k2++) {          sw += weight[i];
          k3=i;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          for(k=1; k<=(nlstate+ndeath); k++) {        } /* end of wave */
            if (k != k2){      } /* end of individual */
              if(ng==2)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              else        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        for(mi=1; mi<= wav[i]-1; mi++){
              ij=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for(j=3; j <=ncovmodel; j++) {            for (j=1;j<=nlstate+ndeath;j++){
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                  ij++;            }
                }          for(d=0; d<dh[mi][i]; d++){
                else            newm=savm;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
              }            cov[2]=agexact;
              fprintf(ficgp,")/(1");            if(nagesqr==1)
                            cov[3]= agexact*agexact;
              for(k1=1; k1 <=nlstate; k1++){              for (kk=1; kk<=cptcovage;kk++) {
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                ij=1;            }
                for(j=3; j <=ncovmodel; j++){          
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                    ij++;            savm=oldm;
                  }            oldm=newm;
                  else          } /* end mult */
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        
                }          s1=s[mw[mi][i]][i];
                fprintf(ficgp,")");          s2=s[mw[mi+1][i]][i];
              }          if( s2 > nlstate){ 
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);            lli=log(out[s1][s2] - savm[s1][s2]);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          }else{
              i=i+ncovmodel;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            }          }
          }          ipmx +=1;
        }          sw += weight[i];
      }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    fclose(ficgp);        } /* end of wave */
 }  /* end gnuplot */      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /*************** Moving average **************/        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, cpt, cptcod;            for (j=1;j<=nlstate+ndeath;j++){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=1; i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            }
           mobaverage[(int)agedeb][i][cptcod]=0.;          for(d=0; d<dh[mi][i]; d++){
                newm=savm;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for (i=1; i<=nlstate;i++){            cov[2]=agexact;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            if(nagesqr==1)
           for (cpt=0;cpt<=4;cpt++){              cov[3]= agexact*agexact;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;            }
         }          
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                savm=oldm;
 }            oldm=newm;
           } /* end mult */
         
 /************** Forecasting ******************/          s1=s[mw[mi][i]][i];
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          s2=s[mw[mi+1][i]][i];
            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          ipmx +=1;
   int *popage;          sw += weight[i];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double *popeffectif,*popcount;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double ***p3mat;        } /* end of wave */
   char fileresf[FILENAMELENGTH];      } /* end of individual */
     } /* End of if */
  agelim=AGESUP;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    return -l;
    }
    
   strcpy(fileresf,"f");  /*************** log-likelihood *************/
   strcat(fileresf,fileres);  double funcone( double *x)
   if((ficresf=fopen(fileresf,"w"))==NULL) {  {
     printf("Problem with forecast resultfile: %s\n", fileresf);    /* Same as likeli but slower because of a lot of printf and if */
   }    int i, ii, j, k, mi, d, kk;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double lli; /* Individual log likelihood */
     double llt;
   if (mobilav==1) {    int s1, s2;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double bbh, survp;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    double agexact;
   }    /*extern weight */
     /* We are differentiating ll according to initial status */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   if (stepm<=12) stepsize=1;    /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
   agelim=AGESUP;    */
      cov[1]=1.;
   hstepm=1;  
   hstepm=hstepm/stepm;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   yp2=modf((yp1*12),&yp);      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   mprojmean=yp;      for(mi=1; mi<= wav[i]-1; mi++){
   yp1=modf((yp2*30.5),&yp);        for (ii=1;ii<=nlstate+ndeath;ii++)
   jprojmean=yp;          for (j=1;j<=nlstate+ndeath;j++){
   if(jprojmean==0) jprojmean=1;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if(mprojmean==0) jprojmean=1;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
            }
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        for(d=0; d<dh[mi][i]; d++){
            newm=savm;
   for(cptcov=1;cptcov<=i2;cptcov++){          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          cov[2]=agexact;
       k=k+1;          if(nagesqr==1)
       fprintf(ficresf,"\n#******");            cov[3]= agexact*agexact;
       for(j=1;j<=cptcoveff;j++) {          for (kk=1; kk<=cptcovage;kk++) {
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
       }          }
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# StartingAge FinalAge");          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                             1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
         fprintf(ficresf,"\n");          savm=oldm;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            oldm=newm;
         } /* end mult */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        s1=s[mw[mi][i]][i];
           nhstepm = nhstepm/hstepm;        s2=s[mw[mi+1][i]][i];
                  bbh=(double)bh[mi][i]/(double)stepm; 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* bias is positive if real duration
           oldm=oldms;savm=savms;         * is higher than the multiple of stepm and negative otherwise.
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);           */
                if( s2 > nlstate && (mle <5) ){  /* Jackson */
           for (h=0; h<=nhstepm; h++){          lli=log(out[s1][s2] - savm[s1][s2]);
             if (h==(int) (calagedate+YEARM*cpt)) {        } else if  (s2==-2) {
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          for (j=1,survp=0. ; j<=nlstate; j++) 
             }            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             for(j=1; j<=nlstate+ndeath;j++) {          lli= log(survp);
               kk1=0.;kk2=0;        }else if (mle==1){
               for(i=1; i<=nlstate;i++) {                        lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                 if (mobilav==1)        } else if(mle==2){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                 else {        } else if(mle==3){  /* exponential inter-extrapolation */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                 }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
                          lli=log(out[s1][s2]); /* Original formula */
               }        } else{  /* mle=0 back to 1 */
               if (h==(int)(calagedate+12*cpt)){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                 fprintf(ficresf," %.3f", kk1);          /*lli=log(out[s1][s2]); */ /* Original formula */
                                } /* End of if */
               }        ipmx +=1;
             }        sw += weight[i];
           }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        if(globpr){
       }          fprintf(ficresilk,"%9ld %6.1f %6d %2d %2d %2d %2d %3d %11.6f %8.4f\
     }   %11.6f %11.6f %11.6f ", \
   }                  num[i], agexact, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                          2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
   fclose(ficresf);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 }          }
 /************** Forecasting ******************/          fprintf(ficresilk," %10.6f\n", -llt);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        }
        } /* end of wave */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    } /* end of individual */
   int *popage;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double *popeffectif,*popcount;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double ***p3mat,***tabpop,***tabpopprev;    if(globpr==0){ /* First time we count the contributions and weights */
   char filerespop[FILENAMELENGTH];      gipmx=ipmx;
       gsw=sw;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    return -l;
   agelim=AGESUP;  }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
    
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  /*************** function likelione ***********/
    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
    {
   strcpy(filerespop,"pop");    /* This routine should help understanding what is done with 
   strcat(filerespop,fileres);       the selection of individuals/waves and
   if((ficrespop=fopen(filerespop,"w"))==NULL) {       to check the exact contribution to the likelihood.
     printf("Problem with forecast resultfile: %s\n", filerespop);       Plotting could be done.
   }     */
   printf("Computing forecasting: result on file '%s' \n", filerespop);    int k;
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ILK_"); 
   if (mobilav==1) {      strcat(fileresilk,fileresu);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     movingaverage(agedeb, fage, ageminpar, mobaverage);        printf("Problem with resultfile: %s\n", fileresilk);
   }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   if (stepm<=12) stepsize=1;      fprintf(ficresilk, "#num_i age i s1 s2 mi mw dh likeli weight 2wlli out sav ");
        /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   agelim=AGESUP;      for(k=1; k<=nlstate; k++) 
          fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   hstepm=1;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   hstepm=hstepm/stepm;    }
    
   if (popforecast==1) {    *fretone=(*funcone)(p);
     if((ficpop=fopen(popfile,"r"))==NULL) {    if(*globpri !=0){
       printf("Problem with population file : %s\n",popfile);exit(0);      fclose(ficresilk);
     }      fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle >= 1. You should at least run with mle >= 1 and starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     popage=ivector(0,AGESUP);      fprintf(fichtm,"<br>- The first 3 individuals are drawn with lines. The function drawn is -2Log(L) in log scale: <a href=\"%s.png\">%s.png</a><br> \
     popeffectif=vector(0,AGESUP);  <img src=\"%s.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
     popcount=vector(0,AGESUP);      fflush(fichtm);
        } 
     i=1;      return;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  }
      
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  /*********** Maximum Likelihood Estimation ***************/
   }  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   for(cptcov=1;cptcov<=i2;cptcov++){  {
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int i,j, iter=0;
       k=k+1;    double **xi;
       fprintf(ficrespop,"\n#******");    double fret;
       for(j=1;j<=cptcoveff;j++) {    double fretone; /* Only one call to likelihood */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*  char filerespow[FILENAMELENGTH];*/
       }  
       fprintf(ficrespop,"******\n");  #ifdef NLOPT
       fprintf(ficrespop,"# Age");    int creturn;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    nlopt_opt opt;
       if (popforecast==1)  fprintf(ficrespop," [Population]");    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
          double *lb;
       for (cpt=0; cpt<=0;cpt++) {    double minf; /* the minimum objective value, upon return */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      double * p1; /* Shifted parameters from 0 instead of 1 */
            myfunc_data dinst, *d = &dinst;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  #endif
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  
              xi=matrix(1,npar,1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++)
           oldm=oldms;savm=savms;      for (j=1;j<=npar;j++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          xi[i][j]=(i==j ? 1.0 : 0.0);
            printf("Powell\n");  fprintf(ficlog,"Powell\n");
           for (h=0; h<=nhstepm; h++){    strcpy(filerespow,"POW_"); 
             if (h==(int) (calagedate+YEARM*cpt)) {    strcat(filerespow,fileres);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
             }      printf("Problem with resultfile: %s\n", filerespow);
             for(j=1; j<=nlstate+ndeath;j++) {      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
               kk1=0.;kk2=0;    }
               for(i=1; i<=nlstate;i++) {                  fprintf(ficrespow,"# Powell\n# iter -2*LL");
                 if (mobilav==1)    for (i=1;i<=nlstate;i++)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      for(j=1;j<=nlstate+ndeath;j++)
                 else {        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fprintf(ficrespow,"\n");
                 }  #ifdef POWELL
               }    powell(p,xi,npar,ftol,&iter,&fret,func);
               if (h==(int)(calagedate+12*cpt)){  #endif
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);  #ifdef NLOPT
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  #ifdef NEWUOA
               }    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
             }  #else
             for(i=1; i<=nlstate;i++){    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
               kk1=0.;  #endif
                 for(j=1; j<=nlstate;j++){    lb=vector(0,npar-1);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
                 }    nlopt_set_lower_bounds(opt, lb);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    nlopt_set_initial_step1(opt, 0.1);
             }    
     p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    d->function = func;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
           }    nlopt_set_min_objective(opt, myfunc, d);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    nlopt_set_xtol_rel(opt, ftol);
         }    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
       }      printf("nlopt failed! %d\n",creturn); 
      }
   /******/    else {
       printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        iter=1; /* not equal */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    nlopt_destroy(opt);
           nhstepm = nhstepm/hstepm;  #endif
              free_matrix(xi,1,npar,1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fclose(ficrespow);
           oldm=oldms;savm=savms;    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
           for (h=0; h<=nhstepm; h++){    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  }
             }  
             for(j=1; j<=nlstate+ndeath;j++) {  /**** Computes Hessian and covariance matrix ***/
               kk1=0.;kk2=0;  void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
               for(i=1; i<=nlstate;i++) {                {
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        double  **a,**y,*x,pd;
               }    /* double **hess; */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    int i, j;
             }    int *indx;
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         }    double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
       }    void lubksb(double **a, int npar, int *indx, double b[]) ;
    }    void ludcmp(double **a, int npar, int *indx, double *d) ;
   }    double gompertz(double p[]);
      /* hess=matrix(1,npar,1,npar); */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     printf("\nCalculation of the hessian matrix. Wait...\n");
   if (popforecast==1) {    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     free_ivector(popage,0,AGESUP);    for (i=1;i<=npar;i++){
     free_vector(popeffectif,0,AGESUP);      printf("%d-",i);fflush(stdout);
     free_vector(popcount,0,AGESUP);      fprintf(ficlog,"%d-",i);fflush(ficlog);
   }     
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      
   fclose(ficrespop);      /*  printf(" %f ",p[i]);
 }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
 /***********************************************/    
 /**************** Main Program *****************/    for (i=1;i<=npar;i++) {
 /***********************************************/      for (j=1;j<=npar;j++)  {
         if (j>i) { 
 int main(int argc, char *argv[])          printf(".%d-%d",i,j);fflush(stdout);
 {          fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          
   double agedeb, agefin,hf;          hess[j][i]=hess[i][j];    
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          /*printf(" %lf ",hess[i][j]);*/
         }
   double fret;      }
   double **xi,tmp,delta;    }
     printf("\n");
   double dum; /* Dummy variable */    fprintf(ficlog,"\n");
   double ***p3mat;  
   int *indx;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   char line[MAXLINE], linepar[MAXLINE];    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    
   int firstobs=1, lastobs=10;    a=matrix(1,npar,1,npar);
   int sdeb, sfin; /* Status at beginning and end */    y=matrix(1,npar,1,npar);
   int c,  h , cpt,l;    x=vector(1,npar);
   int ju,jl, mi;    indx=ivector(1,npar);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    for (i=1;i<=npar;i++)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   int mobilav=0,popforecast=0;    ludcmp(a,npar,indx,&pd);
   int hstepm, nhstepm;  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   double bage, fage, age, agelim, agebase;      x[j]=1;
   double ftolpl=FTOL;      lubksb(a,npar,indx,x);
   double **prlim;      for (i=1;i<=npar;i++){ 
   double *severity;        matcov[i][j]=x[i];
   double ***param; /* Matrix of parameters */      }
   double  *p;    }
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */    printf("\n#Hessian matrix#\n");
   double *delti; /* Scale */    fprintf(ficlog,"\n#Hessian matrix#\n");
   double ***eij, ***vareij;    for (i=1;i<=npar;i++) { 
   double **varpl; /* Variances of prevalence limits by age */      for (j=1;j<=npar;j++) { 
   double *epj, vepp;        printf("%.6e ",hess[i][j]);
   double kk1, kk2;        fprintf(ficlog,"%.6e ",hess[i][j]);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      }
        printf("\n");
       fprintf(ficlog,"\n");
   char *alph[]={"a","a","b","c","d","e"}, str[4];    }
   
     /* printf("\n#Covariance matrix#\n"); */
   char z[1]="c", occ;    /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
 #include <sys/time.h>    /* for (i=1;i<=npar;i++) {  */
 #include <time.h>    /*   for (j=1;j<=npar;j++) {  */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    /*     printf("%.6e ",matcov[i][j]); */
      /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
   /* long total_usecs;    /*   } */
   struct timeval start_time, end_time;    /*   printf("\n"); */
      /*   fprintf(ficlog,"\n"); */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    /* } */
   getcwd(pathcd, size);  
     /* Recompute Inverse */
   printf("\n%s",version);    /* for (i=1;i<=npar;i++) */
   if(argc <=1){    /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
     printf("\nEnter the parameter file name: ");    /* ludcmp(a,npar,indx,&pd); */
     scanf("%s",pathtot);  
   }    /*  printf("\n#Hessian matrix recomputed#\n"); */
   else{  
     strcpy(pathtot,argv[1]);    /* for (j=1;j<=npar;j++) { */
   }    /*   for (i=1;i<=npar;i++) x[i]=0; */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    /*   x[j]=1; */
   /*cygwin_split_path(pathtot,path,optionfile);    /*   lubksb(a,npar,indx,x); */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    /*   for (i=1;i<=npar;i++){  */
   /* cutv(path,optionfile,pathtot,'\\');*/    /*     y[i][j]=x[i]; */
     /*     printf("%.3e ",y[i][j]); */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    /*     fprintf(ficlog,"%.3e ",y[i][j]); */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    /*   } */
   chdir(path);    /*   printf("\n"); */
   replace(pathc,path);    /*   fprintf(ficlog,"\n"); */
     /* } */
 /*-------- arguments in the command line --------*/  
     /* Verifying the inverse matrix */
   strcpy(fileres,"r");  #ifdef DEBUGHESS
   strcat(fileres, optionfilefiname);    y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
   strcat(fileres,".txt");    /* Other files have txt extension */  
      printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
   /*---------arguments file --------*/     fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    for (j=1;j<=npar;j++) {
     printf("Problem with optionfile %s\n",optionfile);      for (i=1;i<=npar;i++){ 
     goto end;        printf("%.2f ",y[i][j]);
   }        fprintf(ficlog,"%.2f ",y[i][j]);
       }
   strcpy(filereso,"o");      printf("\n");
   strcat(filereso,fileres);      fprintf(ficlog,"\n");
   if((ficparo=fopen(filereso,"w"))==NULL) {    }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  #endif
   }  
     free_matrix(a,1,npar,1,npar);
   /* Reads comments: lines beginning with '#' */    free_matrix(y,1,npar,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(x,1,npar);
     ungetc(c,ficpar);    free_ivector(indx,1,npar);
     fgets(line, MAXLINE, ficpar);    /* free_matrix(hess,1,npar,1,npar); */
     puts(line);  
     fputs(line,ficparo);  
   }  }
   ungetc(c,ficpar);  
   /*************** hessian matrix ****************/
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  { /* Around values of x, computes the function func and returns the scales delti and hessian */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    int i;
 while((c=getc(ficpar))=='#' && c!= EOF){    int l=1, lmax=20;
     ungetc(c,ficpar);    double k1,k2, res, fx;
     fgets(line, MAXLINE, ficpar);    double p2[MAXPARM+1]; /* identical to x */
     puts(line);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     fputs(line,ficparo);    int k=0,kmax=10;
   }    double l1;
   ungetc(c,ficpar);  
      fx=func(x);
        for (i=1;i<=npar;i++) p2[i]=x[i];
   covar=matrix(0,NCOVMAX,1,n);    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   cptcovn=0;      l1=pow(10,l);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
   ncovmodel=2+cptcovn;        delt = delta*(l1*k);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        p2[theta]=x[theta] +delt;
          k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
   /* Read guess parameters */        p2[theta]=x[theta]-delt;
   /* Reads comments: lines beginning with '#' */        k2=func(p2)-fx;
   while((c=getc(ficpar))=='#' && c!= EOF){        /*res= (k1-2.0*fx+k2)/delt/delt; */
     ungetc(c,ficpar);        res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
     fgets(line, MAXLINE, ficpar);        
     puts(line);  #ifdef DEBUGHESSII
     fputs(line,ficparo);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   ungetc(c,ficpar);  #endif
          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     for(i=1; i <=nlstate; i++)          k=kmax;
     for(j=1; j <=nlstate+ndeath-1; j++){        }
       fscanf(ficpar,"%1d%1d",&i1,&j1);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       fprintf(ficparo,"%1d%1d",i1,j1);          k=kmax; l=lmax*10;
       printf("%1d%1d",i,j);        }
       for(k=1; k<=ncovmodel;k++){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         fscanf(ficpar," %lf",&param[i][j][k]);          delts=delt;
         printf(" %lf",param[i][j][k]);        }
         fprintf(ficparo," %lf",param[i][j][k]);      } /* End loop k */
       }    }
       fscanf(ficpar,"\n");    delti[theta]=delts;
       printf("\n");    return res; 
       fprintf(ficparo,"\n");    
     }  }
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
   p=param[1][1];    int i;
      int l=1, lmax=20;
   /* Reads comments: lines beginning with '#' */    double k1,k2,k3,k4,res,fx;
   while((c=getc(ficpar))=='#' && c!= EOF){    double p2[MAXPARM+1];
     ungetc(c,ficpar);    int k, kmax=1;
     fgets(line, MAXLINE, ficpar);    double v1, v2, cv12, lc1, lc2;
     puts(line);    
     fputs(line,ficparo);    fx=func(x);
   }    for (k=1; k<=kmax; k=k+10) {
   ungetc(c,ficpar);      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]*k;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      k1=func(p2)-fx;
   for(i=1; i <=nlstate; i++){    
     for(j=1; j <=nlstate+ndeath-1; j++){      p2[thetai]=x[thetai]+delti[thetai]*k;
       fscanf(ficpar,"%1d%1d",&i1,&j1);      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
       printf("%1d%1d",i,j);      k2=func(p2)-fx;
       fprintf(ficparo,"%1d%1d",i1,j1);    
       for(k=1; k<=ncovmodel;k++){      p2[thetai]=x[thetai]-delti[thetai]*k;
         fscanf(ficpar,"%le",&delti3[i][j][k]);      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
         printf(" %le",delti3[i][j][k]);      k3=func(p2)-fx;
         fprintf(ficparo," %le",delti3[i][j][k]);    
       }      p2[thetai]=x[thetai]-delti[thetai]*k;
       fscanf(ficpar,"\n");      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
       printf("\n");      k4=func(p2)-fx;
       fprintf(ficparo,"\n");      res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
     }      if(k1*k2*k3*k4 <0.){
   }        kmax=kmax+10;
   delti=delti3[1][1];        if(kmax >=10){
          printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
   /* Reads comments: lines beginning with '#' */        fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
   while((c=getc(ficpar))=='#' && c!= EOF){        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     ungetc(c,ficpar);        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      }
     fputs(line,ficparo);  #ifdef DEBUGHESSIJ
   }      v1=hess[thetai][thetai];
   ungetc(c,ficpar);      v2=hess[thetaj][thetaj];
        cv12=res;
   matcov=matrix(1,npar,1,npar);      /* Computing eigen value of Hessian matrix */
   for(i=1; i <=npar; i++){      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     fscanf(ficpar,"%s",&str);      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     printf("%s",str);      if ((lc2 <0) || (lc1 <0) ){
     fprintf(ficparo,"%s",str);        printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
     for(j=1; j <=i; j++){        fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
       fscanf(ficpar," %le",&matcov[i][j]);        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       printf(" %.5le",matcov[i][j]);        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficparo," %.5le",matcov[i][j]);      }
     }  #endif
     fscanf(ficpar,"\n");    }
     printf("\n");    return res;
     fprintf(ficparo,"\n");  }
   }  
   for(i=1; i <=npar; i++)      /* Not done yet: Was supposed to fix if not exactly at the maximum */
     for(j=i+1;j<=npar;j++)  /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
       matcov[i][j]=matcov[j][i];  /* { */
      /*   int i; */
   printf("\n");  /*   int l=1, lmax=20; */
   /*   double k1,k2,k3,k4,res,fx; */
   /*   double p2[MAXPARM+1]; */
     /*-------- Rewriting paramater file ----------*/  /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
      strcpy(rfileres,"r");    /* "Rparameterfile */  /*   int k=0,kmax=10; */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  /*   double l1; */
      strcat(rfileres,".");    /* */    
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  /*   fx=func(x); */
     if((ficres =fopen(rfileres,"w"))==NULL) {  /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  /*     l1=pow(10,l); */
     }  /*     delts=delt; */
     fprintf(ficres,"#%s\n",version);  /*     for(k=1 ; k <kmax; k=k+1){ */
      /*       delt = delti*(l1*k); */
     /*-------- data file ----------*/  /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
     if((fic=fopen(datafile,"r"))==NULL)    {  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
       printf("Problem with datafile: %s\n", datafile);goto end;  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
     }  /*       k1=func(p2)-fx; */
         
     n= lastobs;  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
     severity = vector(1,maxwav);  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
     outcome=imatrix(1,maxwav+1,1,n);  /*       k2=func(p2)-fx; */
     num=ivector(1,n);        
     moisnais=vector(1,n);  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
     annais=vector(1,n);  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
     moisdc=vector(1,n);  /*       k3=func(p2)-fx; */
     andc=vector(1,n);        
     agedc=vector(1,n);  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
     cod=ivector(1,n);  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
     weight=vector(1,n);  /*       k4=func(p2)-fx; */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
     mint=matrix(1,maxwav,1,n);  /* #ifdef DEBUGHESSIJ */
     anint=matrix(1,maxwav,1,n);  /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
     s=imatrix(1,maxwav+1,1,n);  /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
     adl=imatrix(1,maxwav+1,1,n);      /* #endif */
     tab=ivector(1,NCOVMAX);  /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
     ncodemax=ivector(1,8);  /*      k=kmax; */
   /*       } */
     i=1;  /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
     while (fgets(line, MAXLINE, fic) != NULL)    {  /*      k=kmax; l=lmax*10; */
       if ((i >= firstobs) && (i <=lastobs)) {  /*       } */
          /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
         for (j=maxwav;j>=1;j--){  /*      delts=delt; */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  /*       } */
           strcpy(line,stra);  /*     } /\* End loop k *\/ */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /*   } */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /*   delti[theta]=delts; */
         }  /*   return res;  */
          /* } */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
   /************** Inverse of matrix **************/
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  void ludcmp(double **a, int n, int *indx, double *d) 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  { 
     int i,imax,j,k; 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    double big,dum,sum,temp; 
         for (j=ncovcol;j>=1;j--){    double *vv; 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);   
         }    vv=vector(1,n); 
         num[i]=atol(stra);    *d=1.0; 
            for (i=1;i<=n;i++) { 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      big=0.0; 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
         i=i+1;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       }      vv[i]=1.0/big; 
     }    } 
     /* printf("ii=%d", ij);    for (j=1;j<=n;j++) { 
        scanf("%d",i);*/      for (i=1;i<j;i++) { 
   imx=i-1; /* Number of individuals */        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   /* for (i=1; i<=imx; i++){        a[i][j]=sum; 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      } 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      big=0.0; 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      for (i=j;i<=n;i++) { 
     }*/        sum=a[i][j]; 
    /*  for (i=1; i<=imx; i++){        for (k=1;k<j;k++) 
      if (s[4][i]==9)  s[4][i]=-1;          sum -= a[i][k]*a[k][j]; 
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        a[i][j]=sum; 
          if ( (dum=vv[i]*fabs(sum)) >= big) { 
            big=dum; 
   /* Calculation of the number of parameter from char model*/          imax=i; 
   Tvar=ivector(1,15);        } 
   Tprod=ivector(1,15);      } 
   Tvaraff=ivector(1,15);      if (j != imax) { 
   Tvard=imatrix(1,15,1,2);        for (k=1;k<=n;k++) { 
   Tage=ivector(1,15);                dum=a[imax][k]; 
              a[imax][k]=a[j][k]; 
   if (strlen(model) >1){          a[j][k]=dum; 
     j=0, j1=0, k1=1, k2=1;        } 
     j=nbocc(model,'+');        *d = -(*d); 
     j1=nbocc(model,'*');        vv[imax]=vv[j]; 
     cptcovn=j+1;      } 
     cptcovprod=j1;      indx[j]=imax; 
          if (a[j][j] == 0.0) a[j][j]=TINY; 
     strcpy(modelsav,model);      if (j != n) { 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        dum=1.0/(a[j][j]); 
       printf("Error. Non available option model=%s ",model);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       goto end;      } 
     }    } 
        free_vector(vv,1,n);  /* Doesn't work */
     for(i=(j+1); i>=1;i--){  ;
       cutv(stra,strb,modelsav,'+');  } 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  void lubksb(double **a, int n, int *indx, double b[]) 
       /*scanf("%d",i);*/  { 
       if (strchr(strb,'*')) {    int i,ii=0,ip,j; 
         cutv(strd,strc,strb,'*');    double sum; 
         if (strcmp(strc,"age")==0) {   
           cptcovprod--;    for (i=1;i<=n;i++) { 
           cutv(strb,stre,strd,'V');      ip=indx[i]; 
           Tvar[i]=atoi(stre);      sum=b[ip]; 
           cptcovage++;      b[ip]=b[i]; 
             Tage[cptcovage]=i;      if (ii) 
             /*printf("stre=%s ", stre);*/        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         }      else if (sum) ii=i; 
         else if (strcmp(strd,"age")==0) {      b[i]=sum; 
           cptcovprod--;    } 
           cutv(strb,stre,strc,'V');    for (i=n;i>=1;i--) { 
           Tvar[i]=atoi(stre);      sum=b[i]; 
           cptcovage++;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           Tage[cptcovage]=i;      b[i]=sum/a[i][i]; 
         }    } 
         else {  } 
           cutv(strb,stre,strc,'V');  
           Tvar[i]=ncovcol+k1;  void pstamp(FILE *fichier)
           cutv(strb,strc,strd,'V');  {
           Tprod[k1]=i;    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
           Tvard[k1][1]=atoi(strc);  }
           Tvard[k1][2]=atoi(stre);  
           Tvar[cptcovn+k2]=Tvard[k1][1];  /************ Frequencies ********************/
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           for (k=1; k<=lastobs;k++)  {  /* Some frequencies */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    
           k1++;    int i, m, jk, j1, bool, z1,j;
           k2=k2+2;    int first;
         }    double ***freq; /* Frequencies */
       }    double *pp, **prop;
       else {    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    char fileresp[FILENAMELENGTH];
        /*  scanf("%d",i);*/    
       cutv(strd,strc,strb,'V');    pp=vector(1,nlstate);
       Tvar[i]=atoi(strc);    prop=matrix(1,nlstate,iagemin,iagemax+3);
       }    strcpy(fileresp,"P_");
       strcpy(modelsav,stra);      strcat(fileresp,fileresu);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    if((ficresp=fopen(fileresp,"w"))==NULL) {
         scanf("%d",i);*/      printf("Problem with prevalence resultfile: %s\n", fileresp);
     }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 }      exit(0);
      }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   printf("cptcovprod=%d ", cptcovprod);    j1=0;
   scanf("%d ",i);*/    
     fclose(fic);    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/    first=1;
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
     /*-calculation of age at interview from date of interview and age at death -*/    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
     agev=matrix(1,maxwav,1,imx);    /*    j1++; */
     for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
     for (i=1; i<=imx; i++) {        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       for(m=2; (m<= maxwav); m++) {          scanf("%d", i);*/
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        for (i=-5; i<=nlstate+ndeath; i++)  
          anint[m][i]=9999;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
          s[m][i]=-1;            for(m=iagemin; m <= iagemax+3; m++)
        }              freq[i][jk][m]=0;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        
       }        for (i=1; i<=nlstate; i++)  
     }          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0;
     for (i=1; i<=imx; i++)  {        
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        dateintsum=0;
       for(m=1; (m<= maxwav); m++){        k2cpt=0;
         if(s[m][i] >0){        for (i=1; i<=imx; i++) {
           if (s[m][i] >= nlstate+1) {          bool=1;
             if(agedc[i]>0)          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
               if(moisdc[i]!=99 && andc[i]!=9999)            for (z1=1; z1<=cptcoveff; z1++)       
                 agev[m][i]=agedc[i];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
            else {                bool=0;
               if (andc[i]!=9999){                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
               agev[m][i]=-1;                  j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
               }                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
             }              } 
           }          }
           else if(s[m][i] !=9){ /* Should no more exist */   
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          if (bool==1){
             if(mint[m][i]==99 || anint[m][i]==9999)            for(m=firstpass; m<=lastpass; m++){
               agev[m][i]=1;              k2=anint[m][i]+(mint[m][i]/12.);
             else if(agev[m][i] <agemin){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
               agemin=agev[m][i];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
             else if(agev[m][i] >agemax){                if (m<lastpass) {
               agemax=agev[m][i];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
             }                }
             /*agev[m][i]=anint[m][i]-annais[i];*/                
             /*   agev[m][i] = age[i]+2*m;*/                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           }                  dateintsum=dateintsum+k2;
           else { /* =9 */                  k2cpt++;
             agev[m][i]=1;                }
             s[m][i]=-1;                /*}*/
           }            }
         }          }
         else /*= 0 Unknown */        } /* end i */
           agev[m][i]=1;         
       }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
            pstamp(ficresp);
     }        if  (cptcovn>0) {
     for (i=1; i<=imx; i++)  {          fprintf(ficresp, "\n#********** Variable "); 
       for(m=1; (m<= maxwav); m++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         if (s[m][i] > (nlstate+ndeath)) {          fprintf(ficresp, "**********\n#");
           printf("Error: Wrong value in nlstate or ndeath\n");            fprintf(ficlog, "\n#********** Variable "); 
           goto end;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         }          fprintf(ficlog, "**********\n#");
       }        }
     }        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        fprintf(ficresp, "\n");
         
     free_vector(severity,1,maxwav);        for(i=iagemin; i <= iagemax+3; i++){
     free_imatrix(outcome,1,maxwav+1,1,n);          if(i==iagemax+3){
     free_vector(moisnais,1,n);            fprintf(ficlog,"Total");
     free_vector(annais,1,n);          }else{
     /* free_matrix(mint,1,maxwav,1,n);            if(first==1){
        free_matrix(anint,1,maxwav,1,n);*/              first=0;
     free_vector(moisdc,1,n);              printf("See log file for details...\n");
     free_vector(andc,1,n);            }
             fprintf(ficlog,"Age %d", i);
              }
     wav=ivector(1,imx);          for(jk=1; jk <=nlstate ; jk++){
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);              pp[jk] += freq[jk][m][i]; 
              }
     /* Concatenates waves */          for(jk=1; jk <=nlstate ; jk++){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
       Tcode=ivector(1,100);              if(first==1){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       ncodemax[1]=1;              }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                  }else{
    codtab=imatrix(1,100,1,10);              if(first==1)
    h=0;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
    m=pow(2,cptcoveff);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
              }
    for(k=1;k<=cptcoveff; k++){          }
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){          for(jk=1; jk <=nlstate ; jk++){
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
            h++;              pp[jk] += freq[jk][m][i];
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          }       
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
          }            pos += pp[jk];
        }            posprop += prop[jk][i];
      }          }
    }          for(jk=1; jk <=nlstate ; jk++){
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);            if(pos>=1.e-5){
       codtab[1][2]=1;codtab[2][2]=2; */              if(first==1)
    /* for(i=1; i <=m ;i++){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for(k=1; k <=cptcovn; k++){              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);            }else{
       }              if(first==1)
       printf("\n");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       scanf("%d",i);*/            }
                if( i <= iagemax){
    /* Calculates basic frequencies. Computes observed prevalence at single age              if(pos>=1.e-5){
        and prints on file fileres'p'. */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
                    /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                  }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              else
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          
                for(jk=-1; jk <=nlstate+ndeath; jk++)
     /* For Powell, parameters are in a vector p[] starting at p[1]            for(m=-1; m <=nlstate+ndeath; m++)
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */              if(freq[jk][m][i] !=0 ) {
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     if(mle==1){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              }
     }          if(i <= iagemax)
                fprintf(ficresp,"\n");
     /*--------- results files --------------*/          if(first==1)
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);            printf("Others in log...\n");
            fprintf(ficlog,"\n");
         }
    jk=1;        /*}*/
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    }
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    dateintmean=dateintsum/k2cpt; 
    for(i=1,jk=1; i <=nlstate; i++){   
      for(k=1; k <=(nlstate+ndeath); k++){    fclose(ficresp);
        if (k != i)    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
          {    free_vector(pp,1,nlstate);
            printf("%d%d ",i,k);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
            fprintf(ficres,"%1d%1d ",i,k);    /* End of Freq */
            for(j=1; j <=ncovmodel; j++){  }
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);  /************ Prevalence ********************/
              jk++;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
            }  {  
            printf("\n");    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
            fprintf(ficres,"\n");       in each health status at the date of interview (if between dateprev1 and dateprev2).
          }       We still use firstpass and lastpass as another selection.
      }    */
    }   
  if(mle==1){    int i, m, jk, j1, bool, z1,j;
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */    double **prop;
     hesscov(matcov, p, npar, delti, ftolhess, func);    double posprop; 
  }    double  y2; /* in fractional years */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    int iagemin, iagemax;
     printf("# Scales (for hessian or gradient estimation)\n");    int first; /** to stop verbosity which is redirected to log file */
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){    iagemin= (int) agemin;
         if (j!=i) {    iagemax= (int) agemax;
           fprintf(ficres,"%1d%1d",i,j);    /*pp=vector(1,nlstate);*/
           printf("%1d%1d",i,j);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
           for(k=1; k<=ncovmodel;k++){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
             printf(" %.5e",delti[jk]);    j1=0;
             fprintf(ficres," %.5e",delti[jk]);    
             jk++;    /*j=cptcoveff;*/
           }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           printf("\n");    
           fprintf(ficres,"\n");    first=1;
         }    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
       }      /*for(i1=1; i1<=ncodemax[k1];i1++){
      }        j1++;*/
            
     k=1;        for (i=1; i<=nlstate; i++)  
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          for(m=iagemin; m <= iagemax+3; m++)
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            prop[i][m]=0.0;
     for(i=1;i<=npar;i++){       
       /*  if (k>nlstate) k=1;        for (i=1; i<=imx; i++) { /* Each individual */
       i1=(i-1)/(ncovmodel*nlstate)+1;          bool=1;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          if  (cptcovn>0) {
       printf("%s%d%d",alph[k],i1,tab[i]);*/            for (z1=1; z1<=cptcoveff; z1++) 
       fprintf(ficres,"%3d",i);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) 
       printf("%3d",i);                bool=0;
       for(j=1; j<=i;j++){          } 
         fprintf(ficres," %.5e",matcov[i][j]);          if (bool==1) { 
         printf(" %.5e",matcov[i][j]);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       fprintf(ficres,"\n");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       printf("\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       k++;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                    if (s[m][i]>0 && s[m][i]<=nlstate) { 
     while((c=getc(ficpar))=='#' && c!= EOF){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       ungetc(c,ficpar);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fgets(line, MAXLINE, ficpar);                  prop[s[m][i]][iagemax+3] += weight[i]; 
       puts(line);                } 
       fputs(line,ficparo);              }
     }            } /* end selection of waves */
     ungetc(c,ficpar);          }
     estepm=0;        }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        for(i=iagemin; i <= iagemax+3; i++){  
     if (estepm==0 || estepm < stepm) estepm=stepm;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     if (fage <= 2) {            posprop += prop[jk][i]; 
       bage = ageminpar;          } 
       fage = agemaxpar;          
     }          for(jk=1; jk <=nlstate ; jk++){     
                if( i <=  iagemax){ 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");              if(posprop>=1.e-5){ 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                probs[i][jk][j1]= prop[jk][i]/posprop;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              } else{
                  if(first==1){
     while((c=getc(ficpar))=='#' && c!= EOF){                  first=0;
     ungetc(c,ficpar);                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
     fgets(line, MAXLINE, ficpar);                }
     puts(line);              }
     fputs(line,ficparo);            } 
   }          }/* end jk */ 
   ungetc(c,ficpar);        }/* end i */ 
        /*} *//* end i1 */
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    } /* end j1 */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
          /*free_vector(pp,1,nlstate);*/
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     ungetc(c,ficpar);  }  /* End of prevalence */
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /************* Waves Concatenation ***************/
     fputs(line,ficparo);  
   }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   ungetc(c,ficpar);  {
      /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
    dateprev1=anprev1+mprev1/12.+jprev1/365.;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
    dateprev2=anprev2+mprev2/12.+jprev2/365.;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
   fscanf(ficpar,"pop_based=%d\n",&popbased);       */
   fprintf(ficparo,"pop_based=%d\n",popbased);    
   fprintf(ficres,"pop_based=%d\n",popbased);      int i, mi, m;
      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   while((c=getc(ficpar))=='#' && c!= EOF){       double sum=0., jmean=0.;*/
     ungetc(c,ficpar);    int first;
     fgets(line, MAXLINE, ficpar);    int j, k=0,jk, ju, jl;
     puts(line);    double sum=0.;
     fputs(line,ficparo);    first=0;
   }    jmin=100000;
   ungetc(c,ficpar);    jmax=-1;
     jmean=0.;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    for(i=1; i<=imx; i++){
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      mi=0;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      m=firstpass;
       while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 while((c=getc(ficpar))=='#' && c!= EOF){          mw[++mi][i]=m;
     ungetc(c,ficpar);        if(m >=lastpass)
     fgets(line, MAXLINE, ficpar);          break;
     puts(line);        else
     fputs(line,ficparo);          m++;
   }      }/* end while */
   ungetc(c,ficpar);      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        /* if(mi==0)  never been interviewed correctly before death */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);           /* Only death is a correct wave */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        mw[mi][i]=m;
       }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
       wav[i]=mi;
 /*------------ gnuplot -------------*/      if(mi==0){
   strcpy(optionfilegnuplot,optionfilefiname);        nbwarn++;
   strcat(optionfilegnuplot,".gp");        if(first==0){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     printf("Problem with file %s",optionfilegnuplot);          first=1;
   }        }
   fclose(ficgp);        if(first==1){
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 /*--------- index.htm --------*/        }
       } /* end mi==0 */
   strcpy(optionfilehtm,optionfile);    } /* End individuals */
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    for(i=1; i<=imx; i++){
     printf("Problem with %s \n",optionfilehtm), exit(0);      for(mi=1; mi<wav[i];mi++){
   }        if (stepm <=0)
           dh[mi][i]=1;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        else{
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 \n            if (agedc[i] < 2*AGESUP) {
 Total number of observations=%d <br>\n              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n              if(j==0) j=1;  /* Survives at least one month after exam */
 <hr  size=\"2\" color=\"#EC5E5E\">              else if(j<0){
  <ul><li><h4>Parameter files</h4>\n                nberr++;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);                j=1; /* Temporary Dangerous patch */
   fclose(fichtm);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                }
 /*------------ free_vector  -------------*/              k=k+1;
  chdir(path);              if (j >= jmax){
                  jmax=j;
  free_ivector(wav,1,imx);                ijmax=i;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);              }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                if (j <= jmin){
  free_ivector(num,1,n);                jmin=j;
  free_vector(agedc,1,n);                ijmin=i;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/              }
  fclose(ficparo);              sum=sum+j;
  fclose(ficres);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
   /*--------------- Prevalence limit --------------*/          }
            else{
   strcpy(filerespl,"pl");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   strcat(filerespl,fileres);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            k=k+1;
   }            if (j >= jmax) {
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);              jmax=j;
   fprintf(ficrespl,"#Prevalence limit\n");              ijmax=i;
   fprintf(ficrespl,"#Age ");            }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            else if (j <= jmin){
   fprintf(ficrespl,"\n");              jmin=j;
                ijmin=i;
   prlim=matrix(1,nlstate,1,nlstate);            }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            if(j<0){
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              nberr++;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   k=0;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   agebase=ageminpar;            }
   agelim=agemaxpar;            sum=sum+j;
   ftolpl=1.e-10;          }
   i1=cptcoveff;          jk= j/stepm;
   if (cptcovn < 1){i1=1;}          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
   for(cptcov=1;cptcov<=i1;cptcov++){          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            if(jl==0){
         k=k+1;              dh[mi][i]=jk;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              bh[mi][i]=0;
         fprintf(ficrespl,"\n#******");            }else{ /* We want a negative bias in order to only have interpolation ie
         for(j=1;j<=cptcoveff;j++)                    * to avoid the price of an extra matrix product in likelihood */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              dh[mi][i]=jk+1;
         fprintf(ficrespl,"******\n");              bh[mi][i]=ju;
                    }
         for (age=agebase; age<=agelim; age++){          }else{
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            if(jl <= -ju){
           fprintf(ficrespl,"%.0f",age );              dh[mi][i]=jk;
           for(i=1; i<=nlstate;i++)              bh[mi][i]=jl;       /* bias is positive if real duration
           fprintf(ficrespl," %.5f", prlim[i][i]);                                   * is higher than the multiple of stepm and negative otherwise.
           fprintf(ficrespl,"\n");                                   */
         }            }
       }            else{
     }              dh[mi][i]=jk+1;
   fclose(ficrespl);              bh[mi][i]=ju;
             }
   /*------------- h Pij x at various ages ------------*/            if(dh[mi][i]==0){
                dh[mi][i]=1; /* At least one step */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);              bh[mi][i]=ju; /* At least one step */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            }
   }          } /* end if mle */
   printf("Computing pij: result on file '%s' \n", filerespij);        }
        } /* end wave */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    }
   /*if (stepm<=24) stepsize=2;*/    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   agelim=AGESUP;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   hstepm=stepsize*YEARM; /* Every year of age */   }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
   /*********** Tricode ****************************/
   /* hstepm=1;   aff par mois*/  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   {
   k=0;    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   for(cptcov=1;cptcov<=i1;cptcov++){    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     * Boring subroutine which should only output nbcode[Tvar[j]][k]
       k=k+1;     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
         fprintf(ficrespij,"\n#****** ");     * nbcode[Tvar[j]][1]= 
         for(j=1;j<=cptcoveff;j++)    */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
            int modmaxcovj=0; /* Modality max of covariates j */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    int cptcode=0; /* Modality max of covariates j */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int modmincovj=0; /* Modality min of covariates j */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
   
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    cptcoveff=0; 
    
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* Loop on covariates without age and products */
           fprintf(ficrespij,"# Age");    for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
           for(i=1; i<=nlstate;i++)      for (k=-1; k < maxncov; k++) Ndum[k]=0;
             for(j=1; j<=nlstate+ndeath;j++)      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
               fprintf(ficrespij," %1d-%1d",i,j);                                 modality of this covariate Vj*/ 
           fprintf(ficrespij,"\n");        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
            for (h=0; h<=nhstepm; h++){                                      * If product of Vn*Vm, still boolean *:
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
             for(i=1; i<=nlstate;i++)                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
               for(j=1; j<=nlstate+ndeath;j++)        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                                        modality of the nth covariate of individual i. */
             fprintf(ficrespij,"\n");        if (ij > modmaxcovj)
              }          modmaxcovj=ij; 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        else if (ij < modmincovj) 
           fprintf(ficrespij,"\n");          modmincovj=ij; 
         }        if ((ij < -1) && (ij > NCOVMAX)){
     }          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
   }          exit(1);
         }else
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   fclose(ficrespij);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         /* getting the maximum value of the modality of the covariate
            (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   /*---------- Forecasting ------------------*/           female is 1, then modmaxcovj=1.*/
   if((stepm == 1) && (strcmp(model,".")==0)){      } /* end for loop on individuals i */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   }      cptcode=modmaxcovj;
   else{      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
     erreur=108;     /*for (i=0; i<=cptcode; i++) {*/
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
   }        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
          fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
         if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
   /*---------- Health expectancies and variances ------------*/          if( k != -1){
             ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
   strcpy(filerest,"t");                               covariate for which somebody answered excluding 
   strcat(filerest,fileres);                               undefined. Usually 2: 0 and 1. */
   if((ficrest=fopen(filerest,"w"))==NULL) {          }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
   }                               covariate for which somebody answered including 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                               undefined. Usually 3: -1, 0 and 1. */
         }
         /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
   strcpy(filerese,"e");           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
   strcat(filerese,fileres);      } /* Ndum[-1] number of undefined modalities */
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
   }      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
          modmincovj=3; modmaxcovj = 7;
  strcpy(fileresv,"v");         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
   strcat(fileresv,fileres);         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {         defining two dummy variables: variables V1_1 and V1_2.
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);         nbcode[Tvar[j]][ij]=k;
   }         nbcode[Tvar[j]][1]=0;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);         nbcode[Tvar[j]][2]=1;
   calagedate=-1;         nbcode[Tvar[j]][3]=2;
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);         To be continued (not working yet).
       */
   k=0;      ij=0; /* ij is similar to i but can jump over null modalities */
   for(cptcov=1;cptcov<=i1;cptcov++){      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          if (Ndum[i] == 0) { /* If nobody responded to this modality k */
       k=k+1;            break;
       fprintf(ficrest,"\n#****** ");          }
       for(j=1;j<=cptcoveff;j++)          ij++;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
       fprintf(ficrest,"******\n");          cptcode = ij; /* New max modality for covar j */
       } /* end of loop on modality i=-1 to 1 or more */
       fprintf(ficreseij,"\n#****** ");        
       for(j=1;j<=cptcoveff;j++)      /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /*  /\*recode from 0 *\/ */
       fprintf(ficreseij,"******\n");      /*                               k is a modality. If we have model=V1+V1*sex  */
       /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       fprintf(ficresvij,"\n#****** ");      /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
       for(j=1;j<=cptcoveff;j++)      /*  } */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
       fprintf(ficresvij,"******\n");      /*  if (ij > ncodemax[j]) { */
       /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
       oldm=oldms;savm=savms;      /*    break; */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        /*  } */
        /*   }  /\* end of loop on modality k *\/ */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
       oldm=oldms;savm=savms;    
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
        
     for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
       /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);     Ndum[ij]++; /* Might be supersed V1 + V1*age */
       fprintf(ficrest,"\n");   } 
   
       epj=vector(1,nlstate+1);   ij=0;
       for(age=bage; age <=fage ;age++){   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
         if (popbased==1) {     if((Ndum[i]!=0) && (i<=ncovcol)){
           for(i=1; i<=nlstate;i++)       ij++;
             prlim[i][i]=probs[(int)age][i][k];       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
         }       Tvaraff[ij]=i; /*For printing (unclear) */
             }else{
         fprintf(ficrest," %4.0f",age);         /* Tvaraff[ij]=0; */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){     }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {   }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];   /* ij--; */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/   cptcoveff=ij; /*Number of total covariates*/
           }  
           epj[nlstate+1] +=epj[j];  }
         }  
   
         for(i=1, vepp=0.;i <=nlstate;i++)  /*********** Health Expectancies ****************/
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){  {
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    /* Health expectancies, no variances */
         }    int i, j, nhstepm, hstepm, h, nstepm;
         fprintf(ficrest,"\n");    int nhstepma, nstepma; /* Decreasing with age */
       }    double age, agelim, hf;
     }    double ***p3mat;
   }    double eip;
 free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    pstamp(ficreseij);
     free_vector(weight,1,n);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   fclose(ficreseij);    fprintf(ficreseij,"# Age");
   fclose(ficresvij);    for(i=1; i<=nlstate;i++){
   fclose(ficrest);      for(j=1; j<=nlstate;j++){
   fclose(ficpar);        fprintf(ficreseij," e%1d%1d ",i,j);
   free_vector(epj,1,nlstate+1);      }
        fprintf(ficreseij," e%1d. ",i);
   /*------- Variance limit prevalence------*/      }
     fprintf(ficreseij,"\n");
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);    
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    if(estepm < stepm){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      printf ("Problem %d lower than %d\n",estepm, stepm);
     exit(0);    }
   }    else  hstepm=estepm;   
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   k=0;     * if stepm=24 months pijx are given only every 2 years and by summing them
   for(cptcov=1;cptcov<=i1;cptcov++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     * progression in between and thus overestimating or underestimating according
       k=k+1;     * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficresvpl,"\n#****** ");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       for(j=1;j<=cptcoveff;j++)     * to compare the new estimate of Life expectancy with the same linear 
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     * hypothesis. A more precise result, taking into account a more precise
       fprintf(ficresvpl,"******\n");     * curvature will be obtained if estepm is as small as stepm. */
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    /* For example we decided to compute the life expectancy with the smallest unit */
       oldm=oldms;savm=savms;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
  }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
   fclose(ficresvpl);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   /*---------- End : free ----------------*/       means that if the survival funtion is printed only each two years of age and if
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
      agelim=AGESUP;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    /* If stepm=6 months */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      
    /* nhstepm age range expressed in number of stepm */
   free_matrix(matcov,1,npar,1,npar);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   free_vector(delti,1,npar);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   free_matrix(agev,1,maxwav,1,imx);    /* if (stepm >= YEARM) hstepm=1;*/
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(fichtm,"\n</body>");  
   fclose(fichtm);    for (age=bage; age<=fage; age ++){ 
   fclose(ficgp);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
   if(erreur >0)      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     printf("End of Imach with error or warning %d\n",erreur);  
   else   printf("End of Imach\n");      /* If stepm=6 months */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      
   /*printf("Total time was %d uSec.\n", total_usecs);*/      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   /*------ End -----------*/      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
  end:      printf("%d|",(int)age);fflush(stdout);
 #ifdef windows      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   /* chdir(pathcd);*/      
 #endif      /* Computing expectancies */
  /*system("wgnuplot graph.plt");*/      for(i=1; i<=nlstate;i++)
  /*system("../gp37mgw/wgnuplot graph.plt");*/        for(j=1; j<=nlstate;j++)
  /*system("cd ../gp37mgw");*/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
  strcpy(plotcmd,GNUPLOTPROGRAM);            
  strcat(plotcmd," ");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);          }
   
 #ifdef windows      fprintf(ficreseij,"%3.0f",age );
   while (z[0] != 'q') {      for(i=1; i<=nlstate;i++){
     /* chdir(path); */        eip=0;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        for(j=1; j<=nlstate;j++){
     scanf("%s",z);          eip +=eij[i][j][(int)age];
     if (z[0] == 'c') system("./imach");          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     else if (z[0] == 'e') system(optionfilehtm);        }
     else if (z[0] == 'g') system(plotcmd);        fprintf(ficreseij,"%9.4f", eip );
     else if (z[0] == 'q') exit(0);      }
   }      fprintf(ficreseij,"\n");
 #endif      
 }    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
    void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyear, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
     int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-POPULBASED-MOBILAV_");
       else strcpy(digitp,"-POPULBASED-NOMOBIL_");
     }
     else 
       strcpy(digitp,"-STABLBASED_");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"PRMORPREV-"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileresu);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     fprintf(ficgp,"\nunset title \n");
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear, ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyear,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
     fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyear, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"PROB_"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"PROBCOV_"); 
     strcat(fileresprobcov,fileresu);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"PROBCOR_"); 
     strcat(fileresprobcor,fileresu);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
             /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter svg size 640, 480");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">\
   %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
            printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
          }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* aij, bij */
        fprintf(fichtm,"<br>- Logit model, for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
   <img src=\"%s_%d-1.svg\">",subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
        /* Pij */
        fprintf(fichtm,"<br>\n- Pij or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
   <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>\n- Iij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\
    incidence (rates) are the limit when h tends to zero of the ratio of the probability hPij \
   divided by h: hPij/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
   <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
        /* Survival functions (period) in state j */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
        }
        /* State specific survival functions (period) */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions from state %d in any different live states and total.\
    Or probability to survive in various states (1 to %d) being in state %d at different ages.\
    <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
        }
        /* Period (stable) prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s%d%d.svg\">%s%d%d.svg</a> <br> \
   <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
        }
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
   But because parameters are usually highly correlated (a higher incidence of disability \
   and a higher incidence of recovery can give very close observed transition) it might \
   be very useful to look not only at linear confidence intervals estimated from the \
   variances but at the covariance matrix. And instead of looking at the estimated coefficients \
   (parameters) of the logistic regression, it might be more meaningful to visualize the \
   covariance matrix of the one-step probabilities. \
   See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
   
    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.svg <br>\
   <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s_%d.svg<br>\
   <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
     int vpopbased;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     /* Contribution to likelihood */
     /* Plot the probability implied in the likelihood */
       fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
       fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
       /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
       fprintf(ficgp,"\nset ter png size 640, 480");
   /* good for mle=4 plot by number of matrix products.
      replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
   /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
       /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
       fprintf(ficgp,"\nset out \"%s.png\";",subdirf2(optionfilefiname,"ILK_"));
       fprintf(ficgp,"\nplot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk));
       fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk));
       fprintf(ficgp,"\nset out;unset log\n");
       /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
        fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
        fprintf(ficgp,"\nset out \n");
       } /* k1 */
     } /* cpt */
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
         if(vpopbased==0)
           fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
         else
           fprintf(ficgp,"\nreplot ");
         for (i=1; i<= nlstate+1 ; i ++) {
           k=2*i;
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
           else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           fprintf(ficgp,"\" t\"\" w l lt 0,");
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
           else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
         } /* state */
       } /* vpopbased */
       fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
     } /* k1 */
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
         fprintf(ficgp,"set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* Survival functions (period) from state i in state j by initial state i */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'lij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate+ndeath ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
         k=3;
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           if(j==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(cpt-1) +j;
           fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
           /* for (i=2; i<= nlstate+ndeath ; i ++) */
           /*   fprintf(ficgp,"+$%d",k+l+i-1); */
           fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
         } /* nlstate */
         fprintf(ficgp,", '' ");
         fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           l=(nlstate+ndeath)*(cpt-1) +j;
           if(j < nlstate)
             fprintf(ficgp,"$%d +",k+l);
           else
             fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
         }
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* CV preval stable (period) for each covariate */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
          fprintf(ficgp,"\nset ter svg size 640, 480 ");
          if (ng==1){
            fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
            fprintf(ficgp,"\nunset log y");
          }else if (ng==2){
            fprintf(ficgp,"\nset ylabel \"Probability\"\n");
            fprintf(ficgp,"\nset log y");
          }else if (ng==3){
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
            fprintf(ficgp,"\nset log y");
          }else
            fprintf(ficgp,"\nunset title ");
          fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                switch( ng) {
                case 1:
                  if(nagesqr==0)
                    fprintf(ficgp," p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 2: /* ng=2 */
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                      fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 3:
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                  break;
                }
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                  if(ij <=cptcovage) { /* Bug valgrind */
                    if((j-2)==Tage[ij]) { /* Bug valgrind */
                      fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                      /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                      ij++;
                    }
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                }
                if(ng != 1){
                  fprintf(ficgp,")/(1");
                
                  for(k1=1; k1 <=nlstate; k1++){ 
                    if(nagesqr==0)
                      fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                    else /* nagesqr =1 */
                      fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
                    
                    ij=1;
                    for(j=3; j <=ncovmodel-nagesqr; j++){
                      if(ij <=cptcovage) { /* Bug valgrind */
                        if((j-2)==Tage[ij]) { /* Bug valgrind */
                          fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                          /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                          ij++;
                        }
                      }
                      else
                        fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                    }
                    fprintf(ficgp,")");
                  }
                  fprintf(ficgp,")");
                  if(ng ==2)
                    fprintf(ficgp," t \"p%d%d\" ", k2,k);
                  else /* ng= 3 */
                    fprintf(ficgp," t \"i%d%d\" ", k2,k);
                }else{ /* end ng <> 1 */
                  fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
                }
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
          fprintf(ficgp,"\n set out\n");
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"F_"); 
     strcat(fileresf,fileresu);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"POP_"); 
     strcat(filerespop,fileresu);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
    int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyear){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
   
     strcpy(filerespl,"PL_");
     strcat(filerespl,fileresu);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     }
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     pstamp(ficrespl);
     fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
           fprintf(ficrespl,"#******");
           printf("#******");
           fprintf(ficlog,"#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
           fprintf(ficrespl,"Total Years_to_converge\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyear, k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             tot=0.;
             for(i=1; i<=nlstate;i++){
               tot +=  prlim[i][i];
               fprintf(ficrespl," %.5f", prlim[i][i]);
             }
             fprintf(ficrespl," %.3f %d\n", tot, *ncvyear);
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
     int ncvyearnp=0;
     int *ncvyear=&ncvyearnp; /* Number of years needed for the period prevalence to converge */
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char model[MAXLINE], modeltemp[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double **hess; /* Hessian matrix */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 8) {
         printf("Not 8\n");
       }
       printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     ftolpl=6.e-3; /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled == 0)
               model[0]='\0';
       else if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
       printf("model=1+age+%s\n",model);fflush(stdout);
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else
         if(mle==1)
           printf("%1d%1d%1d",i1,j1,jk);
         fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", rfileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     /* /\* for(h=1; h <=100 ;h++){  *\/ */
     /*   /\* printf("h=%2d ", h); *\/ */
     /*    /\* for(k=1; k <=10; k++){ *\/ */
     /*      /\* printf("k=%d %d ",k,codtabm(h,k)); *\/ */
     /*    /\*   codtab[h][k]=codtabm(h,k); *\/ */
     /*    /\* } *\/ */
     /*    /\* printf("\n"); *\/ */
     /* } */
     /* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */
     /*   for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/  */
     /*     for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */
     /*    for(cpt=1; cpt <=pow(2,k-1); cpt++){  /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/  */
     /*      h++; */
     /*      if (h>m)  */
     /*        h=1; */
     /*      codtab[h][k]=j; */
     /*      /\* codtab[12][3]=1; *\/ */
     /*      /\*codtab[h][Tvar[k]]=j;*\/ */
     /*      /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */
     /*    }  */
     /*     } */
     /*   } */
     /* }  */
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){  */
     /*    for(k=1; k <=cptcovn; k++){ */
     /*      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */
     /*    } */
     /*    printf("\n"); */
     /* } */
     /*   scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       fprintf(ficlog,"\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
           fprintf(ficlog,"%f ",matcov[i][j]);
         }
         printf("\n ");  fprintf(ficlog,"\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard maximisation */
     else{ /* For mle !=- 3 */
       globpr=0;/* debug */
       /* Computes likelihood for initial parameters */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* again, to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle != 0){
         /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, hess, p, npar, delti, ftolhess, func);
         printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         for(i=1,jk=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(j=1; j <=ncovmodel; j++){
                 printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 jk++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         }
       } /* end of hesscov and Wald tests */
   
       /*  */
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle >= 1) /* To big for the screen */
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.7e",matcov[jj][ll]); 
                           fprintf(ficlog," %.7e",matcov[jj][ll]); 
                           fprintf(ficres," %.7e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, ncvyear);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* ZZ Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
             /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyear, k); /*ZZ Is it the correct prevalim */
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
               /* printf(" age %4.0f ",age); */
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                   /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
                 }
                 epj[nlstate+1] +=epj[j];
               }
               /* printf(" age %4.0f \n",age); */
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyear, k, strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       free_matrix(hess,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.49  
changed lines
  Added in v.1.203


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>