Diff for /imach/src/imach.c between versions 1.51 and 1.204

version 1.51, 2002/07/19 12:22:25 version 1.204, 2015/10/01 16:20:26
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.204  2015/10/01 16:20:26  brouard
      Summary: Some new graphs of contribution to likelihood
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.203  2015/09/30 17:45:14  brouard
   first survey ("cross") where individuals from different ages are    Summary: looking at better estimation of the hessian
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Also a better criteria for convergence to the period prevalence And
   second wave of interviews ("longitudinal") which measure each change    therefore adding the number of years needed to converge. (The
   (if any) in individual health status.  Health expectancies are    prevalence in any alive state shold sum to one
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.202  2015/09/22 19:45:16  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Summary: Adding some overall graph on contribution to likelihood. Might change
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.201  2015/09/15 17:34:58  brouard
   conditional to be observed in state i at the first wave. Therefore    Summary: 0.98r0
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    - Some new graphs like suvival functions
   complex model than "constant and age", you should modify the program    - Some bugs fixed like model=1+age+V2.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.200  2015/09/09 16:53:55  brouard
   convergence.    Summary: Big bug thanks to Flavia
   
   The advantage of this computer programme, compared to a simple    Even model=1+age+V2. did not work anymore
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.199  2015/09/07 14:09:23  brouard
   intermediate interview, the information is lost, but taken into    Summary: 0.98q6 changing default small png format for graph to vectorized svg.
   account using an interpolation or extrapolation.    
     Revision 1.198  2015/09/03 07:14:39  brouard
   hPijx is the probability to be observed in state i at age x+h    Summary: 0.98q5 Flavia
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.197  2015/09/01 18:24:39  brouard
   states. This elementary transition (by month or quarter trimester,    *** empty log message ***
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.196  2015/08/18 23:17:52  brouard
   and the contribution of each individual to the likelihood is simply    Summary: 0.98q5
   hPijx.  
     Revision 1.195  2015/08/18 16:28:39  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Summary: Adding a hack for testing purpose
   of the life expectancies. It also computes the prevalence limits.  
      After reading the title, ftol and model lines, if the comment line has
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    a q, starting with #q, the answer at the end of the run is quit. It
            Institut national d'études démographiques, Paris.    permits to run test files in batch with ctest. The former workaround was
   This software have been partly granted by Euro-REVES, a concerted action    $ echo q | imach foo.imach
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.194  2015/08/18 13:32:00  brouard
   software can be distributed freely for non commercial use. Latest version    Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.193  2015/08/04 07:17:42  brouard
      Summary: 0.98q4
 #include <math.h>  
 #include <stdio.h>    Revision 1.192  2015/07/16 16:49:02  brouard
 #include <stdlib.h>    Summary: Fixing some outputs
 #include <unistd.h>  
     Revision 1.191  2015/07/14 10:00:33  brouard
 #define MAXLINE 256    Summary: Some fixes
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.190  2015/05/05 08:51:13  brouard
 #define FILENAMELENGTH 80    Summary: Adding digits in output parameters (7 digits instead of 6)
 /*#define DEBUG*/  
 #define windows    Fix 1+age+.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.189  2015/04/30 14:45:16  brouard
     Summary: 0.98q2
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.188  2015/04/30 08:27:53  brouard
     *** empty log message ***
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.187  2015/04/29 09:11:15  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    *** empty log message ***
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.186  2015/04/23 12:01:52  brouard
 #define YEARM 12. /* Number of months per year */    Summary: V1*age is working now, version 0.98q1
 #define AGESUP 130  
 #define AGEBASE 40    Some codes had been disabled in order to simplify and Vn*age was
 #ifdef windows    working in the optimization phase, ie, giving correct MLE parameters,
 #define DIRSEPARATOR '\\'    but, as usual, outputs were not correct and program core dumped.
 #define ODIRSEPARATOR '/'  
 #else    Revision 1.185  2015/03/11 13:26:42  brouard
 #define DIRSEPARATOR '/'    Summary: Inclusion of compile and links command line for Intel Compiler
 #define ODIRSEPARATOR '\\'  
 #endif    Revision 1.184  2015/03/11 11:52:39  brouard
     Summary: Back from Windows 8. Intel Compiler
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.183  2015/03/10 20:34:32  brouard
 int nvar;    Summary: 0.98q0, trying with directest, mnbrak fixed
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    We use directest instead of original Powell test; probably no
 int nlstate=2; /* Number of live states */    incidence on the results, but better justifications;
 int ndeath=1; /* Number of dead states */    We fixed Numerical Recipes mnbrak routine which was wrong and gave
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    wrong results.
 int popbased=0;  
     Revision 1.182  2015/02/12 08:19:57  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Summary: Trying to keep directest which seems simpler and more general
 int maxwav; /* Maxim number of waves */    Author: Nicolas Brouard
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.181  2015/02/11 23:22:24  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Summary: Comments on Powell added
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Author:
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.180  2015/02/11 17:33:45  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Summary: Finishing move from main to function (hpijx and prevalence_limit)
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.179  2015/01/04 09:57:06  brouard
 FILE *ficresprobmorprev;    Summary: back to OS/X
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.178  2015/01/04 09:35:48  brouard
 char filerese[FILENAMELENGTH];    *** empty log message ***
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.177  2015/01/03 18:40:56  brouard
 FILE  *ficresvpl;    Summary: Still testing ilc32 on OSX
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.176  2015/01/03 16:45:04  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    *** empty log message ***
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.175  2015/01/03 16:33:42  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    *** empty log message ***
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];    Revision 1.174  2015/01/03 16:15:49  brouard
 char fileregp[FILENAMELENGTH];    Summary: Still in cross-compilation
 char popfile[FILENAMELENGTH];  
     Revision 1.173  2015/01/03 12:06:26  brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Summary: trying to detect cross-compilation
   
 #define NR_END 1    Revision 1.172  2014/12/27 12:07:47  brouard
 #define FREE_ARG char*    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
 #define FTOL 1.0e-10  
     Revision 1.171  2014/12/23 13:26:59  brouard
 #define NRANSI    Summary: Back from Visual C
 #define ITMAX 200  
     Still problem with utsname.h on Windows
 #define TOL 2.0e-4  
     Revision 1.170  2014/12/23 11:17:12  brouard
 #define CGOLD 0.3819660    Summary: Cleaning some \%% back to %%
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    The escape was mandatory for a specific compiler (which one?), but too many warnings.
   
 #define GOLD 1.618034    Revision 1.169  2014/12/22 23:08:31  brouard
 #define GLIMIT 100.0    Summary: 0.98p
 #define TINY 1.0e-20  
     Outputs some informations on compiler used, OS etc. Testing on different platforms.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.168  2014/12/22 15:17:42  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Summary: update
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.167  2014/12/22 13:50:56  brouard
 #define rint(a) floor(a+0.5)    Summary: Testing uname and compiler version and if compiled 32 or 64
   
 static double sqrarg;    Testing on Linux 64
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.166  2014/12/22 11:40:47  brouard
     *** empty log message ***
 int imx;  
 int stepm;    Revision 1.165  2014/12/16 11:20:36  brouard
 /* Stepm, step in month: minimum step interpolation*/    Summary: After compiling on Visual C
   
 int estepm;    * imach.c (Module): Merging 1.61 to 1.162
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.164  2014/12/16 10:52:11  brouard
 int m,nb;    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    * imach.c (Module): Merging 1.61 to 1.162
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.163  2014/12/16 10:30:11  brouard
     * imach.c (Module): Merging 1.61 to 1.162
 double *weight;  
 int **s; /* Status */    Revision 1.162  2014/09/25 11:43:39  brouard
 double *agedc, **covar, idx;    Summary: temporary backup 0.99!
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.1  2014/09/16 11:06:58  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Summary: With some code (wrong) for nlopt
 double ftolhess; /* Tolerance for computing hessian */  
     Author:
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.161  2014/09/15 20:41:41  brouard
 {    Summary: Problem with macro SQR on Intel compiler
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.160  2014/09/02 09:24:05  brouard
     *** empty log message ***
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.159  2014/09/01 10:34:10  brouard
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    Summary: WIN32
    if ( s == NULL ) {                   /* no directory, so use current */    Author: Brouard
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Revision 1.158  2014/08/27 17:11:51  brouard
 #if     defined(__bsd__)                /* get current working directory */    *** empty log message ***
       extern char       *getwd( );  
     Revision 1.157  2014/08/27 16:26:55  brouard
       if ( getwd( dirc ) == NULL ) {    Summary: Preparing windows Visual studio version
 #else    Author: Brouard
       extern char       *getcwd( );  
     In order to compile on Visual studio, time.h is now correct and time_t
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    and tm struct should be used. difftime should be used but sometimes I
 #endif    just make the differences in raw time format (time(&now).
          return( GLOCK_ERROR_GETCWD );    Trying to suppress #ifdef LINUX
       }    Add xdg-open for __linux in order to open default browser.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.156  2014/08/25 20:10:10  brouard
       s++;                              /* after this, the filename */    *** empty log message ***
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.155  2014/08/25 18:32:34  brouard
       strcpy( name, s );                /* save file name */    Summary: New compile, minor changes
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Author: Brouard
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.154  2014/06/20 17:32:08  brouard
    l1 = strlen( dirc );                 /* length of directory */    Summary: Outputs now all graphs of convergence to period prevalence
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.153  2014/06/20 16:45:46  brouard
 #else    Summary: If 3 live state, convergence to period prevalence on same graph
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Author: Brouard
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.152  2014/06/18 17:54:09  brouard
    s++;    Summary: open browser, use gnuplot on same dir than imach if not found in the path
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.151  2014/06/18 16:43:30  brouard
    l2= strlen( s)+1;    *** empty log message ***
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.150  2014/06/18 16:42:35  brouard
    return( 0 );                         /* we're done */    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 }    Author: brouard
   
     Revision 1.149  2014/06/18 15:51:14  brouard
 /******************************************/    Summary: Some fixes in parameter files errors
     Author: Nicolas Brouard
 void replace(char *s, char*t)  
 {    Revision 1.148  2014/06/17 17:38:48  brouard
   int i;    Summary: Nothing new
   int lg=20;    Author: Brouard
   i=0;  
   lg=strlen(t);    Just a new packaging for OS/X version 0.98nS
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.147  2014/06/16 10:33:11  brouard
     if (t[i]== '\\') s[i]='/';    *** empty log message ***
   }  
 }    Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
 int nbocc(char *s, char occ)    Author: Brouard
 {  
   int i,j=0;    Merge, before building revised version.
   int lg=20;  
   i=0;    Revision 1.145  2014/06/10 21:23:15  brouard
   lg=strlen(s);    Summary: Debugging with valgrind
   for(i=0; i<= lg; i++) {    Author: Nicolas Brouard
   if  (s[i] == occ ) j++;  
   }    Lot of changes in order to output the results with some covariates
   return j;    After the Edimburgh REVES conference 2014, it seems mandatory to
 }    improve the code.
     No more memory valgrind error but a lot has to be done in order to
 void cutv(char *u,char *v, char*t, char occ)    continue the work of splitting the code into subroutines.
 {    Also, decodemodel has been improved. Tricode is still not
   /* cuts string t into u and v where u is ended by char occ excluding it    optimal. nbcode should be improved. Documentation has been added in
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    the source code.
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;    Revision 1.143  2014/01/26 09:45:38  brouard
   i=0;    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   }    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
   lg=strlen(t);    Revision 1.142  2014/01/26 03:57:36  brouard
   for(j=0; j<p; j++) {    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
     (u[j] = t[j]);  
   }    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
      u[p]='\0';  
     Revision 1.141  2014/01/26 02:42:01  brouard
    for(j=0; j<= lg; j++) {    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.140  2011/09/02 10:37:54  brouard
 }    Summary: times.h is ok with mingw32 now.
   
 /********************** nrerror ********************/    Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 void nrerror(char error_text[])    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.138  2010/04/30 18:19:40  brouard
   fprintf(stderr,"%s\n",error_text);    *** empty log message ***
   exit(1);  
 }    Revision 1.137  2010/04/29 18:11:38  brouard
 /*********************** vector *******************/    (Module): Checking covariates for more complex models
 double *vector(int nl, int nh)    than V1+V2. A lot of change to be done. Unstable.
 {  
   double *v;    Revision 1.136  2010/04/26 20:30:53  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    (Module): merging some libgsl code. Fixing computation
   if (!v) nrerror("allocation failure in vector");    of likelione (using inter/intrapolation if mle = 0) in order to
   return v-nl+NR_END;    get same likelihood as if mle=1.
 }    Some cleaning of code and comments added.
   
 /************************ free vector ******************/    Revision 1.135  2009/10/29 15:33:14  brouard
 void free_vector(double*v, int nl, int nh)    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.134  2009/10/29 13:18:53  brouard
 }    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
 /************************ivector *******************************/    Revision 1.133  2009/07/06 10:21:25  brouard
 int *ivector(long nl,long nh)    just nforces
 {  
   int *v;    Revision 1.132  2009/07/06 08:22:05  brouard
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Many tings
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.131  2009/06/20 16:22:47  brouard
 }    Some dimensions resccaled
   
 /******************free ivector **************************/    Revision 1.130  2009/05/26 06:44:34  brouard
 void free_ivector(int *v, long nl, long nh)    (Module): Max Covariate is now set to 20 instead of 8. A
 {    lot of cleaning with variables initialized to 0. Trying to make
   free((FREE_ARG)(v+nl-NR_END));    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 }  
     Revision 1.129  2007/08/31 13:49:27  lievre
 /******************* imatrix *******************************/    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Revision 1.128  2006/06/30 13:02:05  brouard
 {    (Module): Clarifications on computing e.j
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.127  2006/04/28 18:11:50  brouard
      (Module): Yes the sum of survivors was wrong since
   /* allocate pointers to rows */    imach-114 because nhstepm was no more computed in the age
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    loop. Now we define nhstepma in the age loop.
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): In order to speed up (in case of numerous covariates) we
   m += NR_END;    compute health expectancies (without variances) in a first step
   m -= nrl;    and then all the health expectancies with variances or standard
      deviation (needs data from the Hessian matrices) which slows the
      computation.
   /* allocate rows and set pointers to them */    In the future we should be able to stop the program is only health
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    expectancies and graph are needed without standard deviations.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.126  2006/04/28 17:23:28  brouard
   m[nrl] -= ncl;    (Module): Yes the sum of survivors was wrong since
      imach-114 because nhstepm was no more computed in the age
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    loop. Now we define nhstepma in the age loop.
      Version 0.98h
   /* return pointer to array of pointers to rows */  
   return m;    Revision 1.125  2006/04/04 15:20:31  lievre
 }    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Revision 1.124  2006/03/22 17:13:53  lievre
       int **m;    Parameters are printed with %lf instead of %f (more numbers after the comma).
       long nch,ncl,nrh,nrl;    The log-likelihood is printed in the log file
      /* free an int matrix allocated by imatrix() */  
 {    Revision 1.123  2006/03/20 10:52:43  brouard
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    * imach.c (Module): <title> changed, corresponds to .htm file
   free((FREE_ARG) (m+nrl-NR_END));    name. <head> headers where missing.
 }  
     * imach.c (Module): Weights can have a decimal point as for
 /******************* matrix *******************************/    English (a comma might work with a correct LC_NUMERIC environment,
 double **matrix(long nrl, long nrh, long ncl, long nch)    otherwise the weight is truncated).
 {    Modification of warning when the covariates values are not 0 or
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    1.
   double **m;    Version 0.98g
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.122  2006/03/20 09:45:41  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): Weights can have a decimal point as for
   m += NR_END;    English (a comma might work with a correct LC_NUMERIC environment,
   m -= nrl;    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    1.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Version 0.98g
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    * imach.c (Module): refinements in the computation of lli if
 }    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Revision 1.120  2006/03/16 15:10:38  lievre
 {    (Module): refinements in the computation of lli if
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    status=-2 in order to have more reliable computation if stepm is
   free((FREE_ARG)(m+nrl-NR_END));    not 1 month. Version 0.98f
 }  
     Revision 1.119  2006/03/15 17:42:26  brouard
 /******************* ma3x *******************************/    (Module): Bug if status = -2, the loglikelihood was
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    computed as likelihood omitting the logarithm. Version O.98e
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Revision 1.118  2006/03/14 18:20:07  brouard
   double ***m;    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): Function pstamp added
   m += NR_END;    (Module): Version 0.98d
   m -= nrl;  
     Revision 1.117  2006/03/14 17:16:22  brouard
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Module): varevsij Comments added explaining the second
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    table of variances if popbased=1 .
   m[nrl] += NR_END;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   m[nrl] -= ncl;    (Module): Function pstamp added
     (Module): Version 0.98d
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     Revision 1.116  2006/03/06 10:29:27  brouard
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    (Module): Variance-covariance wrong links and
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    varian-covariance of ej. is needed (Saito).
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    Revision 1.115  2006/02/27 12:17:45  brouard
   for (j=ncl+1; j<=nch; j++)    (Module): One freematrix added in mlikeli! 0.98c
     m[nrl][j]=m[nrl][j-1]+nlay;  
      Revision 1.114  2006/02/26 12:57:58  brouard
   for (i=nrl+1; i<=nrh; i++) {    (Module): Some improvements in processing parameter
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    filename with strsep.
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;    Revision 1.113  2006/02/24 14:20:24  brouard
   }    (Module): Memory leaks checks with valgrind and:
   return m;    datafile was not closed, some imatrix were not freed and on matrix
 }    allocation too.
   
 /*************************free ma3x ************************/    Revision 1.112  2006/01/30 09:55:26  brouard
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    Revision 1.111  2006/01/25 20:38:18  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Module): Lots of cleaning and bugs added (Gompertz)
   free((FREE_ARG)(m+nrl-NR_END));    (Module): Comments can be added in data file. Missing date values
 }    can be a simple dot '.'.
   
 /***************** f1dim *************************/    Revision 1.110  2006/01/25 00:51:50  brouard
 extern int ncom;    (Module): Lots of cleaning and bugs added (Gompertz)
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);    Revision 1.109  2006/01/24 19:37:15  brouard
      (Module): Comments (lines starting with a #) are allowed in data.
 double f1dim(double x)  
 {    Revision 1.108  2006/01/19 18:05:42  lievre
   int j;    Gnuplot problem appeared...
   double f;    To be fixed
   double *xt;  
      Revision 1.107  2006/01/19 16:20:37  brouard
   xt=vector(1,ncom);    Test existence of gnuplot in imach path
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    Revision 1.106  2006/01/19 13:24:36  brouard
   free_vector(xt,1,ncom);    Some cleaning and links added in html output
   return f;  
 }    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    Revision 1.104  2005/09/30 16:11:43  lievre
 {    (Module): sump fixed, loop imx fixed, and simplifications.
   int iter;    (Module): If the status is missing at the last wave but we know
   double a,b,d,etemp;    that the person is alive, then we can code his/her status as -2
   double fu,fv,fw,fx;    (instead of missing=-1 in earlier versions) and his/her
   double ftemp;    contributions to the likelihood is 1 - Prob of dying from last
   double p,q,r,tol1,tol2,u,v,w,x,xm;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   double e=0.0;    the healthy state at last known wave). Version is 0.98
    
   a=(ax < cx ? ax : cx);    Revision 1.103  2005/09/30 15:54:49  lievre
   b=(ax > cx ? ax : cx);    (Module): sump fixed, loop imx fixed, and simplifications.
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);    Revision 1.102  2004/09/15 17:31:30  brouard
   for (iter=1;iter<=ITMAX;iter++) {    Add the possibility to read data file including tab characters.
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    Revision 1.101  2004/09/15 10:38:38  brouard
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    Fix on curr_time
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);    Revision 1.100  2004/07/12 18:29:06  brouard
 #ifdef DEBUG    Add version for Mac OS X. Just define UNIX in Makefile
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    Revision 1.99  2004/06/05 08:57:40  brouard
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    *** empty log message ***
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    Revision 1.98  2004/05/16 15:05:56  brouard
       *xmin=x;    New version 0.97 . First attempt to estimate force of mortality
       return fx;    directly from the data i.e. without the need of knowing the health
     }    state at each age, but using a Gompertz model: log u =a + b*age .
     ftemp=fu;    This is the basic analysis of mortality and should be done before any
     if (fabs(e) > tol1) {    other analysis, in order to test if the mortality estimated from the
       r=(x-w)*(fx-fv);    cross-longitudinal survey is different from the mortality estimated
       q=(x-v)*(fx-fw);    from other sources like vital statistic data.
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);    The same imach parameter file can be used but the option for mle should be -3.
       if (q > 0.0) p = -p;  
       q=fabs(q);    Agnès, who wrote this part of the code, tried to keep most of the
       etemp=e;    former routines in order to include the new code within the former code.
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    The output is very simple: only an estimate of the intercept and of
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    the slope with 95% confident intervals.
       else {  
         d=p/q;    Current limitations:
         u=x+d;    A) Even if you enter covariates, i.e. with the
         if (u-a < tol2 || b-u < tol2)    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
           d=SIGN(tol1,xm-x);    B) There is no computation of Life Expectancy nor Life Table.
       }  
     } else {    Revision 1.97  2004/02/20 13:25:42  lievre
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    Version 0.96d. Population forecasting command line is (temporarily)
     }    suppressed.
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);    Revision 1.96  2003/07/15 15:38:55  brouard
     if (fu <= fx) {    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       if (u >= x) a=x; else b=x;    rewritten within the same printf. Workaround: many printfs.
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)    Revision 1.95  2003/07/08 07:54:34  brouard
         } else {    * imach.c (Repository):
           if (u < x) a=u; else b=u;    (Repository): Using imachwizard code to output a more meaningful covariance
           if (fu <= fw || w == x) {    matrix (cov(a12,c31) instead of numbers.
             v=w;  
             w=u;    Revision 1.94  2003/06/27 13:00:02  brouard
             fv=fw;    Just cleaning
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    Revision 1.93  2003/06/25 16:33:55  brouard
             v=u;    (Module): On windows (cygwin) function asctime_r doesn't
             fv=fu;    exist so I changed back to asctime which exists.
           }    (Module): Version 0.96b
         }  
   }    Revision 1.92  2003/06/25 16:30:45  brouard
   nrerror("Too many iterations in brent");    (Module): On windows (cygwin) function asctime_r doesn't
   *xmin=x;    exist so I changed back to asctime which exists.
   return fx;  
 }    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 /****************** mnbrak ***********************/    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    is stamped in powell.  We created a new html file for the graphs
             double (*func)(double))    concerning matrix of covariance. It has extension -cov.htm.
 {  
   double ulim,u,r,q, dum;    Revision 1.90  2003/06/24 12:34:15  brouard
   double fu;    (Module): Some bugs corrected for windows. Also, when
      mle=-1 a template is output in file "or"mypar.txt with the design
   *fa=(*func)(*ax);    of the covariance matrix to be input.
   *fb=(*func)(*bx);  
   if (*fb > *fa) {    Revision 1.89  2003/06/24 12:30:52  brouard
     SHFT(dum,*ax,*bx,dum)    (Module): Some bugs corrected for windows. Also, when
       SHFT(dum,*fb,*fa,dum)    mle=-1 a template is output in file "or"mypar.txt with the design
       }    of the covariance matrix to be input.
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);    Revision 1.88  2003/06/23 17:54:56  brouard
   while (*fb > *fc) {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    Revision 1.87  2003/06/18 12:26:01  brouard
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    Version 0.96
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);    Revision 1.86  2003/06/17 20:04:08  brouard
     if ((*bx-u)*(u-*cx) > 0.0) {    (Module): Change position of html and gnuplot routines and added
       fu=(*func)(u);    routine fileappend.
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    Revision 1.85  2003/06/17 13:12:43  brouard
       if (fu < *fc) {    * imach.c (Repository): Check when date of death was earlier that
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    current date of interview. It may happen when the death was just
           SHFT(*fb,*fc,fu,(*func)(u))    prior to the death. In this case, dh was negative and likelihood
           }    was wrong (infinity). We still send an "Error" but patch by
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    assuming that the date of death was just one stepm after the
       u=ulim;    interview.
       fu=(*func)(u);    (Repository): Because some people have very long ID (first column)
     } else {    we changed int to long in num[] and we added a new lvector for
       u=(*cx)+GOLD*(*cx-*bx);    memory allocation. But we also truncated to 8 characters (left
       fu=(*func)(u);    truncation)
     }    (Repository): No more line truncation errors.
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)    Revision 1.84  2003/06/13 21:44:43  brouard
       }    * imach.c (Repository): Replace "freqsummary" at a correct
 }    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 /*************** linmin ************************/    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int ncom;  
 double *pcom,*xicom;    Revision 1.83  2003/06/10 13:39:11  lievre
 double (*nrfunc)(double []);    *** empty log message ***
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    Revision 1.82  2003/06/05 15:57:20  brouard
 {    Add log in  imach.c and  fullversion number is now printed.
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  */
   double f1dim(double x);  /*
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,     Interpolated Markov Chain
               double *fc, double (*func)(double));  
   int j;    Short summary of the programme:
   double xx,xmin,bx,ax;    
   double fx,fb,fa;    This program computes Healthy Life Expectancies from
      cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   ncom=n;    first survey ("cross") where individuals from different ages are
   pcom=vector(1,n);    interviewed on their health status or degree of disability (in the
   xicom=vector(1,n);    case of a health survey which is our main interest) -2- at least a
   nrfunc=func;    second wave of interviews ("longitudinal") which measure each change
   for (j=1;j<=n;j++) {    (if any) in individual health status.  Health expectancies are
     pcom[j]=p[j];    computed from the time spent in each health state according to a
     xicom[j]=xi[j];    model. More health states you consider, more time is necessary to reach the
   }    Maximum Likelihood of the parameters involved in the model.  The
   ax=0.0;    simplest model is the multinomial logistic model where pij is the
   xx=1.0;    probability to be observed in state j at the second wave
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    conditional to be observed in state i at the first wave. Therefore
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #ifdef DEBUG    'age' is age and 'sex' is a covariate. If you want to have a more
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    complex model than "constant and age", you should modify the program
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    where the markup *Covariates have to be included here again* invites
 #endif    you to do it.  More covariates you add, slower the
   for (j=1;j<=n;j++) {    convergence.
     xi[j] *= xmin;  
     p[j] += xi[j];    The advantage of this computer programme, compared to a simple
   }    multinomial logistic model, is clear when the delay between waves is not
   free_vector(xicom,1,n);    identical for each individual. Also, if a individual missed an
   free_vector(pcom,1,n);    intermediate interview, the information is lost, but taken into
 }    account using an interpolation or extrapolation.  
   
 /*************** powell ************************/    hPijx is the probability to be observed in state i at age x+h
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    conditional to the observed state i at age x. The delay 'h' can be
             double (*func)(double []))    split into an exact number (nh*stepm) of unobserved intermediate
 {    states. This elementary transition (by month, quarter,
   void linmin(double p[], double xi[], int n, double *fret,    semester or year) is modelled as a multinomial logistic.  The hPx
               double (*func)(double []));    matrix is simply the matrix product of nh*stepm elementary matrices
   int i,ibig,j;    and the contribution of each individual to the likelihood is simply
   double del,t,*pt,*ptt,*xit;    hPijx.
   double fp,fptt;  
   double *xits;    Also this programme outputs the covariance matrix of the parameters but also
   pt=vector(1,n);    of the life expectancies. It also computes the period (stable) prevalence. 
   ptt=vector(1,n);    
   xit=vector(1,n);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   xits=vector(1,n);             Institut national d'études démographiques, Paris.
   *fret=(*func)(p);    This software have been partly granted by Euro-REVES, a concerted action
   for (j=1;j<=n;j++) pt[j]=p[j];    from the European Union.
   for (*iter=1;;++(*iter)) {    It is copyrighted identically to a GNU software product, ie programme and
     fp=(*fret);    software can be distributed freely for non commercial use. Latest version
     ibig=0;    can be accessed at http://euroreves.ined.fr/imach .
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     for (i=1;i<=n;i++)    
       printf(" %d %.12f",i, p[i]);    **********************************************************************/
     fprintf(ficlog," %d %.12f",i, p[i]);  /*
     printf("\n");    main
     fprintf(ficlog,"\n");    read parameterfile
     for (i=1;i<=n;i++) {    read datafile
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    concatwav
       fptt=(*fret);    freqsummary
 #ifdef DEBUG    if (mle >= 1)
       printf("fret=%lf \n",*fret);      mlikeli
       fprintf(ficlog,"fret=%lf \n",*fret);    print results files
 #endif    if mle==1 
       printf("%d",i);fflush(stdout);       computes hessian
       fprintf(ficlog,"%d",i);fflush(ficlog);    read end of parameter file: agemin, agemax, bage, fage, estepm
       linmin(p,xit,n,fret,func);        begin-prev-date,...
       if (fabs(fptt-(*fret)) > del) {    open gnuplot file
         del=fabs(fptt-(*fret));    open html file
         ibig=i;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
       }     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
 #ifdef DEBUG                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       printf("%d %.12e",i,(*fret));      freexexit2 possible for memory heap.
       fprintf(ficlog,"%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {    h Pij x                         | pij_nom  ficrestpij
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
         printf(" x(%d)=%.12e",j,xit[j]);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
       }  
       for(j=1;j<=n;j++) {         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
         printf(" p=%.12e",p[j]);         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
         fprintf(ficlog," p=%.12e",p[j]);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       }     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       printf("\n");     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
       fprintf(ficlog,"\n");  
 #endif    forecasting if prevfcast==1 prevforecast call prevalence()
     }    health expectancies
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    Variance-covariance of DFLE
 #ifdef DEBUG    prevalence()
       int k[2],l;     movingaverage()
       k[0]=1;    varevsij() 
       k[1]=-1;    if popbased==1 varevsij(,popbased)
       printf("Max: %.12e",(*func)(p));    total life expectancies
       fprintf(ficlog,"Max: %.12e",(*func)(p));    Variance of period (stable) prevalence
       for (j=1;j<=n;j++) {   end
         printf(" %.12e",p[j]);  */
         fprintf(ficlog," %.12e",p[j]);  
       }  /* #define DEBUG */
       printf("\n");  /* #define DEBUGBRENT */
       fprintf(ficlog,"\n");  /* #define DEBUGLINMIN */
       for(l=0;l<=1;l++) {  /* #define DEBUGHESS */
         for (j=1;j<=n;j++) {  #define DEBUGHESSIJ
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan)*\/ */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #define POWELL /* Instead of NLOPT */
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #define POWELLF1F3 /* Skip test */
         }  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  #include <math.h>
 #endif  #include <stdio.h>
   #include <stdlib.h>
   #include <string.h>
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  #ifdef _WIN32
       free_vector(ptt,1,n);  #include <io.h>
       free_vector(pt,1,n);  #include <windows.h>
       return;  #include <tchar.h>
     }  #else
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #include <unistd.h>
     for (j=1;j<=n;j++) {  #endif
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  #include <limits.h>
       pt[j]=p[j];  #include <sys/types.h>
     }  
     fptt=(*func)(ptt);  #if defined(__GNUC__)
     if (fptt < fp) {  #include <sys/utsname.h> /* Doesn't work on Windows */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  #endif
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  #include <sys/stat.h>
         for (j=1;j<=n;j++) {  #include <errno.h>
           xi[j][ibig]=xi[j][n];  /* extern int errno; */
           xi[j][n]=xit[j];  
         }  /* #ifdef LINUX */
 #ifdef DEBUG  /* #include <time.h> */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /* #include "timeval.h" */
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /* #else */
         for(j=1;j<=n;j++){  /* #include <sys/time.h> */
           printf(" %.12e",xit[j]);  /* #endif */
           fprintf(ficlog," %.12e",xit[j]);  
         }  #include <time.h>
         printf("\n");  
         fprintf(ficlog,"\n");  #ifdef GSL
 #endif  #include <gsl/gsl_errno.h>
       }  #include <gsl/gsl_multimin.h>
     }  #endif
   }  
 }  
   #ifdef NLOPT
 /**** Prevalence limit ****************/  #include <nlopt.h>
   typedef struct {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    double (* function)(double [] );
 {  } myfunc_data ;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  #endif
      matrix by transitions matrix until convergence is reached */  
   /* #include <libintl.h> */
   int i, ii,j,k;  /* #define _(String) gettext (String) */
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  #define GNUPLOTPROGRAM "gnuplot"
   double agefin, delaymax=50 ; /* Max number of years to converge */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     }  
   #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
    cov[1]=1.;  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #define NINTERVMAX 8
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     newm=savm;  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
     /* Covariates have to be included here again */  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
      cov[2]=agefin;  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
    #define MAXN 20000
       for (k=1; k<=cptcovn;k++) {  #define YEARM 12. /**< Number of months per year */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #define AGESUP 130
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  #define AGEBASE 40
       }  #define AGEOVERFLOW 1.e20
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
       for (k=1; k<=cptcovprod;k++)  #ifdef _WIN32
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #define ODIRSEPARATOR '/'
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  #else
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  #define DIRSEPARATOR '/'
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
     savm=oldm;  #endif
     oldm=newm;  
     maxmax=0.;  /* $Id$ */
     for(j=1;j<=nlstate;j++){  /* $State$ */
       min=1.;  #include "version.h"
       max=0.;  char version[]=__IMACH_VERSION__;
       for(i=1; i<=nlstate; i++) {  char copyright[]="October 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
         sumnew=0;  char fullversion[]="$Revision$ $Date$"; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  char strstart[80];
         prlim[i][j]= newm[i][j]/(1-sumnew);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
         max=FMAX(max,prlim[i][j]);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
         min=FMIN(min,prlim[i][j]);  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
       }  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       maxmin=max-min;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       maxmax=FMAX(maxmax,maxmin);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
     }  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
     if(maxmax < ftolpl){  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
       return prlim;  int cptcovprodnoage=0; /**< Number of covariate products without age */   
     }  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   }  int cptcov=0; /* Working variable */
 }  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 /*************** transition probabilities ***************/  int ndeath=1; /* Number of dead states */
   int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  int popbased=0;
 {  
   double s1, s2;  int *wav; /* Number of waves for this individuual 0 is possible */
   /*double t34;*/  int maxwav=0; /* Maxim number of waves */
   int i,j,j1, nc, ii, jj;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
     for(i=1; i<= nlstate; i++){  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
     for(j=1; j<i;j++){                     to the likelihood and the sum of weights (done by funcone)*/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  int mle=1, weightopt=0;
         /*s2 += param[i][j][nc]*cov[nc];*/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       ps[i][j]=s2;  int countcallfunc=0;  /* Count the number of calls to func */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  double jmean=1; /* Mean space between 2 waves */
     }  double **matprod2(); /* test */
     for(j=i+1; j<=nlstate+ndeath;j++){  double **oldm, **newm, **savm; /* Working pointers to matrices */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*FILE *fic ; */ /* Used in readdata only */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       }  FILE *ficlog, *ficrespow;
       ps[i][j]=s2;  int globpr=0; /* Global variable for printing or not */
     }  double fretone; /* Only one call to likelihood */
   }  long ipmx=0; /* Number of contributions */
     /*ps[3][2]=1;*/  double sw; /* Sum of weights */
   char filerespow[FILENAMELENGTH];
   for(i=1; i<= nlstate; i++){  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
      s1=0;  FILE *ficresilk;
     for(j=1; j<i; j++)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       s1+=exp(ps[i][j]);  FILE *ficresprobmorprev;
     for(j=i+1; j<=nlstate+ndeath; j++)  FILE *fichtm, *fichtmcov; /* Html File */
       s1+=exp(ps[i][j]);  FILE *ficreseij;
     ps[i][i]=1./(s1+1.);  char filerese[FILENAMELENGTH];
     for(j=1; j<i; j++)  FILE *ficresstdeij;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  char fileresstde[FILENAMELENGTH];
     for(j=i+1; j<=nlstate+ndeath; j++)  FILE *ficrescveij;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  char filerescve[FILENAMELENGTH];
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  FILE  *ficresvij;
   } /* end i */  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  char fileresvpl[FILENAMELENGTH];
     for(jj=1; jj<= nlstate+ndeath; jj++){  char title[MAXLINE];
       ps[ii][jj]=0;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       ps[ii][ii]=1;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   }  char command[FILENAMELENGTH];
   int  outcmd=0;
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     for(jj=1; jj<= nlstate+ndeath; jj++){  char fileresu[FILENAMELENGTH]; /* fileres without r in front */
      printf("%lf ",ps[ii][jj]);  char filelog[FILENAMELENGTH]; /* Log file */
    }  char filerest[FILENAMELENGTH];
     printf("\n ");  char fileregp[FILENAMELENGTH];
     }  char popfile[FILENAMELENGTH];
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
     return ps;  /* struct timezone tzp; */
 }  /* extern int gettimeofday(); */
   struct tm tml, *gmtime(), *localtime();
 /**************** Product of 2 matrices ******************/  
   extern time_t time();
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  struct tm tm;
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  char strcurr[80], strfor[80];
      a pointer to pointers identical to out */  
   long i, j, k;  char *endptr;
   for(i=nrl; i<= nrh; i++)  long lval;
     for(k=ncolol; k<=ncoloh; k++)  double dval;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];  #define NR_END 1
   #define FREE_ARG char*
   return out;  #define FTOL 1.0e-10
 }  
   #define NRANSI 
   #define ITMAX 200 
 /************* Higher Matrix Product ***************/  
   #define TOL 2.0e-4 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  #define CGOLD 0.3819660 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  #define ZEPS 1.0e-10 
      duration (i.e. until  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  #define GOLD 1.618034 
      (typically every 2 years instead of every month which is too big).  #define GLIMIT 100.0 
      Model is determined by parameters x and covariates have to be  #define TINY 1.0e-20 
      included manually here.  
   static double maxarg1,maxarg2;
      */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   int i, j, d, h, k;    
   double **out, cov[NCOVMAX];  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double **newm;  #define rint(a) floor(a+0.5)
   /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   /* Hstepm could be zero and should return the unit matrix */  #define mytinydouble 1.0e-16
   for (i=1;i<=nlstate+ndeath;i++)  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
     for (j=1;j<=nlstate+ndeath;j++){  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /* static double dsqrarg; */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
     }  static double sqrarg;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for(h=1; h <=nhstepm; h++){  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     for(d=1; d <=hstepm; d++){  int agegomp= AGEGOMP;
       newm=savm;  
       /* Covariates have to be included here again */  int imx; 
       cov[1]=1.;  int stepm=1;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  /* Stepm, step in month: minimum step interpolation*/
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  int estepm;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  int m,nb;
   long *num;
   int firstpass=0, lastpass=4,*cod, *cens;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/                     covariate for which somebody answered excluding 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,                     undefined. Usually 2: 0 and 1. */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
       savm=oldm;                               covariate for which somebody answered including 
       oldm=newm;                               undefined. Usually 3: -1, 0 and 1. */
     }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     for(i=1; i<=nlstate+ndeath; i++)  double **pmmij, ***probs;
       for(j=1;j<=nlstate+ndeath;j++) {  double *ageexmed,*agecens;
         po[i][j][h]=newm[i][j];  double dateintmean=0;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  double *weight;
       }  int **s; /* Status */
   } /* end h */  double *agedc;
   return po;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
 }                    * covar=matrix(0,NCOVMAX,1,n); 
                     * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
   double  idx; 
 /*************** log-likelihood *************/  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
 double func( double *x)  int *Tage;
 {  int *Ndum; /** Freq of modality (tricode */
   int i, ii, j, k, mi, d, kk;  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double **out;  double *lsurv, *lpop, *tpop;
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   long ipmx;  double ftolhess; /**< Tolerance for computing hessian */
   /*extern weight */  
   /* We are differentiating ll according to initial status */  /**************** split *************************/
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   /*for(i=1;i<imx;i++)  {
     printf(" %d\n",s[4][i]);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   */       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   cov[1]=1.;    */ 
     char  *ss;                            /* pointer */
   for(k=1; k<=nlstate; k++) ll[k]=0.;    int   l1=0, l2=0;                             /* length counters */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    l1 = strlen(path );                   /* length of path */
     for(mi=1; mi<= wav[i]-1; mi++){    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       for (ii=1;ii<=nlstate+ndeath;ii++)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       for(d=0; d<dh[mi][i]; d++){      strcpy( name, path );               /* we got the fullname name because no directory */
         newm=savm;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
         for (kk=1; kk<=cptcovage;kk++) {      /* get current working directory */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      /*    extern  char* getcwd ( char *buf , int len);*/
         }  #ifdef WIN32
              if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #else
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          if (getcwd(dirc, FILENAME_MAX) == NULL) {
         savm=oldm;  #endif
         oldm=newm;        return( GLOCK_ERROR_GETCWD );
              }
              /* got dirc from getcwd*/
       } /* end mult */      printf(" DIRC = %s \n",dirc);
          } else {                              /* strip direcotry from path */
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      ss++;                               /* after this, the filename */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      l2 = strlen( ss );                  /* length of filename */
       ipmx +=1;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       sw += weight[i];      strcpy( name, ss );         /* save file name */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     } /* end of wave */      dirc[l1-l2] = '\0';                 /* add zero */
   } /* end of individual */      printf(" DIRC2 = %s \n",dirc);
     }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    /* We add a separator at the end of dirc if not exists */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    l1 = strlen( dirc );                  /* length of directory */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    if( dirc[l1-1] != DIRSEPARATOR ){
   return -l;      dirc[l1] =  DIRSEPARATOR;
 }      dirc[l1+1] = 0; 
       printf(" DIRC3 = %s \n",dirc);
     }
 /*********** Maximum Likelihood Estimation ***************/    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      ss++;
 {      strcpy(ext,ss);                     /* save extension */
   int i,j, iter;      l1= strlen( name);
   double **xi,*delti;      l2= strlen(ss)+1;
   double fret;      strncpy( finame, name, l1-l2);
   xi=matrix(1,npar,1,npar);      finame[l1-l2]= 0;
   for (i=1;i<=npar;i++)    }
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);    return( 0 );                          /* we're done */
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  }
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  /******************************************/
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  void replace_back_to_slash(char *s, char*t)
   {
 }    int i;
     int lg=0;
 /**** Computes Hessian and covariance matrix ***/    i=0;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    lg=strlen(t);
 {    for(i=0; i<= lg; i++) {
   double  **a,**y,*x,pd;      (s[i] = t[i]);
   double **hess;      if (t[i]== '\\') s[i]='/';
   int i, j,jk;    }
   int *indx;  }
   
   double hessii(double p[], double delta, int theta, double delti[]);  char *trimbb(char *out, char *in)
   double hessij(double p[], double delti[], int i, int j);  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   void lubksb(double **a, int npar, int *indx, double b[]) ;    char *s;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    s=out;
     while (*in != '\0'){
   hess=matrix(1,npar,1,npar);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         in++;
   printf("\nCalculation of the hessian matrix. Wait...\n");      }
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");      *out++ = *in++;
   for (i=1;i<=npar;i++){    }
     printf("%d",i);fflush(stdout);    *out='\0';
     fprintf(ficlog,"%d",i);fflush(ficlog);    return s;
     hess[i][i]=hessii(p,ftolhess,i,delti);  }
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/  /* char *substrchaine(char *out, char *in, char *chain) */
   }  /* { */
    /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
   for (i=1;i<=npar;i++) {  /*   char *s, *t; */
     for (j=1;j<=npar;j++)  {  /*   t=in;s=out; */
       if (j>i) {  /*   while ((*in != *chain) && (*in != '\0')){ */
         printf(".%d%d",i,j);fflush(stdout);  /*     *out++ = *in++; */
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  /*   } */
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      /*   /\* *in matches *chain *\/ */
         /*printf(" %lf ",hess[i][j]);*/  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
       }  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
     }  /*   } */
   }  /*   in--; chain--; */
   printf("\n");  /*   while ( (*in != '\0')){ */
   fprintf(ficlog,"\n");  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   /*     *out++ = *in++; */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  /*   } */
    /*   *out='\0'; */
   a=matrix(1,npar,1,npar);  /*   out=s; */
   y=matrix(1,npar,1,npar);  /*   return out; */
   x=vector(1,npar);  /* } */
   indx=ivector(1,npar);  char *substrchaine(char *out, char *in, char *chain)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    /* Substract chain 'chain' from 'in', return and output 'out' */
   ludcmp(a,npar,indx,&pd);    /* in="V1+V1*age+age*age+V2", chain="age*age" */
   
   for (j=1;j<=npar;j++) {    char *strloc;
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    strcpy (out, in); 
     lubksb(a,npar,indx,x);    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
     for (i=1;i<=npar;i++){    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
       matcov[i][j]=x[i];    if(strloc != NULL){ 
     }      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
   }      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
       /* strcpy (strloc, strloc +strlen(chain));*/
   printf("\n#Hessian matrix#\n");    }
   fprintf(ficlog,"\n#Hessian matrix#\n");    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
   for (i=1;i<=npar;i++) {    return out;
     for (j=1;j<=npar;j++) {  }
       printf("%.3e ",hess[i][j]);  
       fprintf(ficlog,"%.3e ",hess[i][j]);  
     }  char *cutl(char *blocc, char *alocc, char *in, char occ)
     printf("\n");  {
     fprintf(ficlog,"\n");    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
   }       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef" and alocc="ghi2j".
   /* Recompute Inverse */       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   for (i=1;i<=npar;i++)    */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    char *s, *t;
   ludcmp(a,npar,indx,&pd);    t=in;s=in;
     while ((*in != occ) && (*in != '\0')){
   /*  printf("\n#Hessian matrix recomputed#\n");      *alocc++ = *in++;
     }
   for (j=1;j<=npar;j++) {    if( *in == occ){
     for (i=1;i<=npar;i++) x[i]=0;      *(alocc)='\0';
     x[j]=1;      s=++in;
     lubksb(a,npar,indx,x);    }
     for (i=1;i<=npar;i++){   
       y[i][j]=x[i];    if (s == t) {/* occ not found */
       printf("%.3e ",y[i][j]);      *(alocc-(in-s))='\0';
       fprintf(ficlog,"%.3e ",y[i][j]);      in=s;
     }    }
     printf("\n");    while ( *in != '\0'){
     fprintf(ficlog,"\n");      *blocc++ = *in++;
   }    }
   */  
     *blocc='\0';
   free_matrix(a,1,npar,1,npar);    return t;
   free_matrix(y,1,npar,1,npar);  }
   free_vector(x,1,npar);  char *cutv(char *blocc, char *alocc, char *in, char occ)
   free_ivector(indx,1,npar);  {
   free_matrix(hess,1,npar,1,npar);    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
        and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
 }       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     */
 /*************** hessian matrix ****************/    char *s, *t;
 double hessii( double x[], double delta, int theta, double delti[])    t=in;s=in;
 {    while (*in != '\0'){
   int i;      while( *in == occ){
   int l=1, lmax=20;        *blocc++ = *in++;
   double k1,k2;        s=in;
   double p2[NPARMAX+1];      }
   double res;      *blocc++ = *in++;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    }
   double fx;    if (s == t) /* occ not found */
   int k=0,kmax=10;      *(blocc-(in-s))='\0';
   double l1;    else
       *(blocc-(in-s)-1)='\0';
   fx=func(x);    in=s;
   for (i=1;i<=npar;i++) p2[i]=x[i];    while ( *in != '\0'){
   for(l=0 ; l <=lmax; l++){      *alocc++ = *in++;
     l1=pow(10,l);    }
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){    *alocc='\0';
       delt = delta*(l1*k);    return s;
       p2[theta]=x[theta] +delt;  }
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;  int nbocc(char *s, char occ)
       k2=func(p2)-fx;  {
       /*res= (k1-2.0*fx+k2)/delt/delt; */    int i,j=0;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    int lg=20;
          i=0;
 #ifdef DEBUG    lg=strlen(s);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for(i=0; i<= lg; i++) {
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    if  (s[i] == occ ) j++;
 #endif    }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    return j;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  }
         k=kmax;  
       }  /* void cutv(char *u,char *v, char*t, char occ) */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  /* { */
         k=kmax; l=lmax*10.;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
       }  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  /*      gives u="abcdef2ghi" and v="j" *\/ */
         delts=delt;  /*   int i,lg,j,p=0; */
       }  /*   i=0; */
     }  /*   lg=strlen(t); */
   }  /*   for(j=0; j<=lg-1; j++) { */
   delti[theta]=delts;  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   return res;  /*   } */
    
 }  /*   for(j=0; j<p; j++) { */
   /*     (u[j] = t[j]); */
 double hessij( double x[], double delti[], int thetai,int thetaj)  /*   } */
 {  /*      u[p]='\0'; */
   int i;  
   int l=1, l1, lmax=20;  /*    for(j=0; j<= lg; j++) { */
   double k1,k2,k3,k4,res,fx;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   double p2[NPARMAX+1];  /*   } */
   int k;  /* } */
   
   fx=func(x);  #ifdef _WIN32
   for (k=1; k<=2; k++) {  char * strsep(char **pp, const char *delim)
     for (i=1;i<=npar;i++) p2[i]=x[i];  {
     p2[thetai]=x[thetai]+delti[thetai]/k;    char *p, *q;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           
     k1=func(p2)-fx;    if ((p = *pp) == NULL)
        return 0;
     p2[thetai]=x[thetai]+delti[thetai]/k;    if ((q = strpbrk (p, delim)) != NULL)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    {
     k2=func(p2)-fx;      *pp = q + 1;
        *q = '\0';
     p2[thetai]=x[thetai]-delti[thetai]/k;    }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    else
     k3=func(p2)-fx;      *pp = 0;
      return p;
     p2[thetai]=x[thetai]-delti[thetai]/k;  }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  #endif
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  /********************** nrerror ********************/
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  void nrerror(char error_text[])
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  {
 #endif    fprintf(stderr,"ERREUR ...\n");
   }    fprintf(stderr,"%s\n",error_text);
   return res;    exit(EXIT_FAILURE);
 }  }
   /*********************** vector *******************/
 /************** Inverse of matrix **************/  double *vector(int nl, int nh)
 void ludcmp(double **a, int n, int *indx, double *d)  {
 {    double *v;
   int i,imax,j,k;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double big,dum,sum,temp;    if (!v) nrerror("allocation failure in vector");
   double *vv;    return v-nl+NR_END;
    }
   vv=vector(1,n);  
   *d=1.0;  /************************ free vector ******************/
   for (i=1;i<=n;i++) {  void free_vector(double*v, int nl, int nh)
     big=0.0;  {
     for (j=1;j<=n;j++)    free((FREE_ARG)(v+nl-NR_END));
       if ((temp=fabs(a[i][j])) > big) big=temp;  }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;  /************************ivector *******************************/
   }  int *ivector(long nl,long nh)
   for (j=1;j<=n;j++) {  {
     for (i=1;i<j;i++) {    int *v;
       sum=a[i][j];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    if (!v) nrerror("allocation failure in ivector");
       a[i][j]=sum;    return v-nl+NR_END;
     }  }
     big=0.0;  
     for (i=j;i<=n;i++) {  /******************free ivector **************************/
       sum=a[i][j];  void free_ivector(int *v, long nl, long nh)
       for (k=1;k<j;k++)  {
         sum -= a[i][k]*a[k][j];    free((FREE_ARG)(v+nl-NR_END));
       a[i][j]=sum;  }
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;  /************************lvector *******************************/
         imax=i;  long *lvector(long nl,long nh)
       }  {
     }    long *v;
     if (j != imax) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       for (k=1;k<=n;k++) {    if (!v) nrerror("allocation failure in ivector");
         dum=a[imax][k];    return v-nl+NR_END;
         a[imax][k]=a[j][k];  }
         a[j][k]=dum;  
       }  /******************free lvector **************************/
       *d = -(*d);  void free_lvector(long *v, long nl, long nh)
       vv[imax]=vv[j];  {
     }    free((FREE_ARG)(v+nl-NR_END));
     indx[j]=imax;  }
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {  /******************* imatrix *******************************/
       dum=1.0/(a[j][j]);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     }  { 
   }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   free_vector(vv,1,n);  /* Doesn't work */    int **m; 
 ;    
 }    /* allocate pointers to rows */ 
     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 void lubksb(double **a, int n, int *indx, double b[])    if (!m) nrerror("allocation failure 1 in matrix()"); 
 {    m += NR_END; 
   int i,ii=0,ip,j;    m -= nrl; 
   double sum;    
      
   for (i=1;i<=n;i++) {    /* allocate rows and set pointers to them */ 
     ip=indx[i];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     sum=b[ip];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     b[ip]=b[i];    m[nrl] += NR_END; 
     if (ii)    m[nrl] -= ncl; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    
     else if (sum) ii=i;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     b[i]=sum;    
   }    /* return pointer to array of pointers to rows */ 
   for (i=n;i>=1;i--) {    return m; 
     sum=b[i];  } 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  /****************** free_imatrix *************************/
   }  void free_imatrix(m,nrl,nrh,ncl,nch)
 }        int **m;
         long nch,ncl,nrh,nrl; 
 /************ Frequencies ********************/       /* free an int matrix allocated by imatrix() */ 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  { 
 {  /* Some frequencies */    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
      free((FREE_ARG) (m+nrl-NR_END)); 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  } 
   int first;  
   double ***freq; /* Frequencies */  /******************* matrix *******************************/
   double *pp;  double **matrix(long nrl, long nrh, long ncl, long nch)
   double pos, k2, dateintsum=0,k2cpt=0;  {
   FILE *ficresp;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   char fileresp[FILENAMELENGTH];    double **m;
    
   pp=vector(1,nlstate);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    if (!m) nrerror("allocation failure 1 in matrix()");
   strcpy(fileresp,"p");    m += NR_END;
   strcat(fileresp,fileres);    m -= nrl;
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     exit(0);    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      return m;
   j=cptcoveff;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   first=1;     */
   }
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  /*************************free matrix ************************/
       j1++;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  {
         scanf("%d", i);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for (i=-1; i<=nlstate+ndeath; i++)      free((FREE_ARG)(m+nrl-NR_END));
         for (jk=-1; jk<=nlstate+ndeath; jk++)    }
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;  /******************* ma3x *******************************/
        double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       dateintsum=0;  {
       k2cpt=0;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       for (i=1; i<=imx; i++) {    double ***m;
         bool=1;  
         if  (cptcovn>0) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
           for (z1=1; z1<=cptcoveff; z1++)    if (!m) nrerror("allocation failure 1 in matrix()");
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    m += NR_END;
               bool=0;    m -= nrl;
         }  
         if (bool==1) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           for(m=firstpass; m<=lastpass; m++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
             k2=anint[m][i]+(mint[m][i]/12.);    m[nrl] += NR_END;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    m[nrl] -= ncl;
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
               }    m[nrl][ncl] += NR_END;
                  m[nrl][ncl] -= nll;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    for (j=ncl+1; j<=nch; j++) 
                 dateintsum=dateintsum+k2;      m[nrl][j]=m[nrl][j-1]+nlay;
                 k2cpt++;    
               }    for (i=nrl+1; i<=nrh; i++) {
             }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
           }      for (j=ncl+1; j<=nch; j++) 
         }        m[i][j]=m[i][j-1]+nlay;
       }    }
            return m; 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       if  (cptcovn>0) {    */
         fprintf(ficresp, "\n#********** Variable ");  }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresp, "**********\n#");  /*************************free ma3x ************************/
       }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       for(i=1; i<=nlstate;i++)  {
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       fprintf(ficresp, "\n");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
          free((FREE_ARG)(m+nrl-NR_END));
       for(i=(int)agemin; i <= (int)agemax+3; i++){  }
         if(i==(int)agemax+3){  
           fprintf(ficlog,"Total");  /*************** function subdirf ***********/
         }else{  char *subdirf(char fileres[])
           if(first==1){  {
             first=0;    /* Caution optionfilefiname is hidden */
             printf("See log file for details...\n");    strcpy(tmpout,optionfilefiname);
           }    strcat(tmpout,"/"); /* Add to the right */
           fprintf(ficlog,"Age %d", i);    strcat(tmpout,fileres);
         }    return tmpout;
         for(jk=1; jk <=nlstate ; jk++){  }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];  /*************** function subdirf2 ***********/
         }  char *subdirf2(char fileres[], char *preop)
         for(jk=1; jk <=nlstate ; jk++){  {
           for(m=-1, pos=0; m <=0 ; m++)    
             pos += freq[jk][m][i];    /* Caution optionfilefiname is hidden */
           if(pp[jk]>=1.e-10){    strcpy(tmpout,optionfilefiname);
             if(first==1){    strcat(tmpout,"/");
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    strcat(tmpout,preop);
             }    strcat(tmpout,fileres);
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    return tmpout;
           }else{  }
             if(first==1)  
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  /*************** function subdirf3 ***********/
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  char *subdirf3(char fileres[], char *preop, char *preop2)
           }  {
         }    
     /* Caution optionfilefiname is hidden */
         for(jk=1; jk <=nlstate ; jk++){    strcpy(tmpout,optionfilefiname);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    strcat(tmpout,"/");
             pp[jk] += freq[jk][m][i];    strcat(tmpout,preop);
         }    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
         for(jk=1,pos=0; jk <=nlstate ; jk++)    return tmpout;
           pos += pp[jk];  }
         for(jk=1; jk <=nlstate ; jk++){  
           if(pos>=1.e-5){  char *asc_diff_time(long time_sec, char ascdiff[])
             if(first==1)  {
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    long sec_left, days, hours, minutes;
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    days = (time_sec) / (60*60*24);
           }else{    sec_left = (time_sec) % (60*60*24);
             if(first==1)    hours = (sec_left) / (60*60) ;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    sec_left = (sec_left) %(60*60);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    minutes = (sec_left) /60;
           }    sec_left = (sec_left) % (60);
           if( i <= (int) agemax){    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
             if(pos>=1.e-5){    return ascdiff;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  }
               probs[i][jk][j1]= pp[jk]/pos;  
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  /***************** f1dim *************************/
             }  extern int ncom; 
             else  extern double *pcom,*xicom;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  extern double (*nrfunc)(double []); 
           }   
         }  double f1dim(double x) 
          { 
         for(jk=-1; jk <=nlstate+ndeath; jk++)    int j; 
           for(m=-1; m <=nlstate+ndeath; m++)    double f;
             if(freq[jk][m][i] !=0 ) {    double *xt; 
             if(first==1)   
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    xt=vector(1,ncom); 
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
             }    f=(*nrfunc)(xt); 
         if(i <= (int) agemax)    free_vector(xt,1,ncom); 
           fprintf(ficresp,"\n");    return f; 
         if(first==1)  } 
           printf("Others in log...\n");  
         fprintf(ficlog,"\n");  /*****************brent *************************/
       }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     }  {
   }    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
   dateintmean=dateintsum/k2cpt;     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
       * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
   fclose(ficresp);     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);     * returned function value. 
   free_vector(pp,1,nlstate);    */
      int iter; 
   /* End of Freq */    double a,b,d,etemp;
 }    double fu=0,fv,fw,fx;
     double ftemp=0.;
 /************ Prevalence ********************/    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    double e=0.0; 
 {  /* Some frequencies */   
      a=(ax < cx ? ax : cx); 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    b=(ax > cx ? ax : cx); 
   double ***freq; /* Frequencies */    x=w=v=bx; 
   double *pp;    fw=fv=fx=(*f)(x); 
   double pos, k2;    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
   pp=vector(1,nlstate);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
        printf(".");fflush(stdout);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      fprintf(ficlog,".");fflush(ficlog);
   j1=0;  #ifdef DEBUGBRENT
        printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   j=cptcoveff;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
    #endif
   for(k1=1; k1<=j;k1++){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     for(i1=1; i1<=ncodemax[k1];i1++){        *xmin=x; 
       j1++;        return fx; 
            } 
       for (i=-1; i<=nlstate+ndeath; i++)        ftemp=fu;
         for (jk=-1; jk<=nlstate+ndeath; jk++)        if (fabs(e) > tol1) { 
           for(m=agemin; m <= agemax+3; m++)        r=(x-w)*(fx-fv); 
             freq[i][jk][m]=0;        q=(x-v)*(fx-fw); 
              p=(x-v)*q-(x-w)*r; 
       for (i=1; i<=imx; i++) {        q=2.0*(q-r); 
         bool=1;        if (q > 0.0) p = -p; 
         if  (cptcovn>0) {        q=fabs(q); 
           for (z1=1; z1<=cptcoveff; z1++)        etemp=e; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        e=d; 
               bool=0;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         if (bool==1) {        else { 
           for(m=firstpass; m<=lastpass; m++){          d=p/q; 
             k2=anint[m][i]+(mint[m][i]/12.);          u=x+d; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          if (u-a < tol2 || b-u < tol2) 
               if(agev[m][i]==0) agev[m][i]=agemax+1;            d=SIGN(tol1,xm-x); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;        } 
               if (m<lastpass) {      } else { 
                 if (calagedate>0)        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      } 
                 else      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      fu=(*f)(u); 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      if (fu <= fx) { 
               }        if (u >= x) a=x; else b=x; 
             }        SHFT(v,w,x,u) 
           }        SHFT(fv,fw,fx,fu) 
         }      } else { 
       }        if (u < x) a=u; else b=u; 
       for(i=(int)agemin; i <= (int)agemax+3; i++){        if (fu <= fw || w == x) { 
         for(jk=1; jk <=nlstate ; jk++){          v=w; 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          w=u; 
             pp[jk] += freq[jk][m][i];          fv=fw; 
         }          fw=fu; 
         for(jk=1; jk <=nlstate ; jk++){        } else if (fu <= fv || v == x || v == w) { 
           for(m=-1, pos=0; m <=0 ; m++)          v=u; 
             pos += freq[jk][m][i];          fv=fu; 
         }        } 
              } 
         for(jk=1; jk <=nlstate ; jk++){    } 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    nrerror("Too many iterations in brent"); 
             pp[jk] += freq[jk][m][i];    *xmin=x; 
         }    return fx; 
          } 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  
          /****************** mnbrak ***********************/
         for(jk=1; jk <=nlstate ; jk++){      
           if( i <= (int) agemax){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
             if(pos>=1.e-5){              double (*func)(double)) 
               probs[i][jk][j1]= pp[jk]/pos;  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
             }  the downhill direction (defined by the function as evaluated at the initial points) and returns
           }  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
         }/* end jk */  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
       }/* end i */     */
     } /* end i1 */    double ulim,u,r,q, dum;
   } /* end k1 */    double fu; 
   
      double scale=10.;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    int iterscale=0;
   free_vector(pp,1,nlstate);  
      *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
 }  /* End of Freq */    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
   
 /************* Waves Concatenation ***************/  
     /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
 {    /*   *bx = *ax - (*ax - *bx)/scale; */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
      Death is a valid wave (if date is known).    /* } */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    if (*fb > *fa) { 
      and mw[mi+1][i]. dh depends on stepm.      SHFT(dum,*ax,*bx,dum) 
      */      SHFT(dum,*fb,*fa,dum) 
     } 
   int i, mi, m;    *cx=(*bx)+GOLD*(*bx-*ax); 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    *fc=(*func)(*cx); 
      double sum=0., jmean=0.;*/  #ifdef DEBUG
   int first;    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
   int j, k=0,jk, ju, jl;    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
   double sum=0.;  #endif
   first=0;    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
   jmin=1e+5;      r=(*bx-*ax)*(*fb-*fc); 
   jmax=-1;      q=(*bx-*cx)*(*fb-*fa); 
   jmean=0.;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   for(i=1; i<=imx; i++){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
     mi=0;      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
     m=firstpass;      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
     while(s[m][i] <= nlstate){        fu=(*func)(u); 
       if(s[m][i]>=1)  #ifdef DEBUG
         mw[++mi][i]=m;        /* f(x)=A(x-u)**2+f(u) */
       if(m >=lastpass)        double A, fparabu; 
         break;        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
       else        fparabu= *fa - A*(*ax-u)*(*ax-u);
         m++;        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
     }/* end while */        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
     if (s[m][i] > nlstate){        /* And thus,it can be that fu > *fc even if fparabu < *fc */
       mi++;     /* Death is another wave */        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
       /* if(mi==0)  never been interviewed correctly before death */          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
          /* Only death is a correct wave */        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
       mw[mi][i]=m;  #endif 
     }  #ifdef MNBRAKORIGINAL
   #else
     wav[i]=mi;  /*       if (fu > *fc) { */
     if(mi==0){  /* #ifdef DEBUG */
       if(first==0){  /*       printf("mnbrak4  fu > fc \n"); */
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
         first=1;  /* #endif */
       }  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
       if(first==1){  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);  /*      dum=u; /\* Shifting c and u *\/ */
       }  /*      u = *cx; */
     } /* end mi==0 */  /*      *cx = dum; */
   }  /*      dum = fu; */
   /*      fu = *fc; */
   for(i=1; i<=imx; i++){  /*      *fc =dum; */
     for(mi=1; mi<wav[i];mi++){  /*       } else { /\* end *\/ */
       if (stepm <=0)  /* #ifdef DEBUG */
         dh[mi][i]=1;  /*       printf("mnbrak3  fu < fc \n"); */
       else{  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
         if (s[mw[mi+1][i]][i] > nlstate) {  /* #endif */
           if (agedc[i] < 2*AGESUP) {  /*      dum=u; /\* Shifting c and u *\/ */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  /*      u = *cx; */
           if(j==0) j=1;  /* Survives at least one month after exam */  /*      *cx = dum; */
           k=k+1;  /*      dum = fu; */
           if (j >= jmax) jmax=j;  /*      fu = *fc; */
           if (j <= jmin) jmin=j;  /*      *fc =dum; */
           sum=sum+j;  /*       } */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  #ifdef DEBUG
           }        printf("mnbrak34  fu < or >= fc \n");
         }        fprintf(ficlog, "mnbrak34 fu < fc\n");
         else{  #endif
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        dum=u; /* Shifting c and u */
           k=k+1;        u = *cx;
           if (j >= jmax) jmax=j;        *cx = dum;
           else if (j <= jmin)jmin=j;        dum = fu;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        fu = *fc;
           sum=sum+j;        *fc =dum;
         }  #endif
         jk= j/stepm;      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
         jl= j -jk*stepm;  #ifdef DEBUG
         ju= j -(jk+1)*stepm;        printf("mnbrak2  u after c but before ulim\n");
         if(jl <= -ju)        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
           dh[mi][i]=jk;  #endif
         else        fu=(*func)(u); 
           dh[mi][i]=jk+1;        if (fu < *fc) { 
         if(dh[mi][i]==0)  #ifdef DEBUG
           dh[mi][i]=1; /* At least one step */        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
       }        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
     }  #endif
   }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   jmean=sum/k;          SHFT(*fb,*fc,fu,(*func)(u)) 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        } 
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
  }  #ifdef DEBUG
         printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
 /*********** Tricode ****************************/        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
 void tricode(int *Tvar, int **nbcode, int imx)  #endif
 {        u=ulim; 
   int Ndum[20],ij=1, k, j, i;        fu=(*func)(u); 
   int cptcode=0;      } else { /* u could be left to b (if r > q parabola has a maximum) */
   cptcoveff=0;  #ifdef DEBUG
          printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
   for (k=0; k<19; k++) Ndum[k]=0;        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
   for (k=1; k<=7; k++) ncodemax[k]=0;  #endif
         u=(*cx)+GOLD*(*cx-*bx); 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        fu=(*func)(u); 
     for (i=1; i<=imx; i++) {      } /* end tests */
       ij=(int)(covar[Tvar[j]][i]);      SHFT(*ax,*bx,*cx,u) 
       Ndum[ij]++;      SHFT(*fa,*fb,*fc,fu) 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  #ifdef DEBUG
       if (ij > cptcode) cptcode=ij;        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
     }        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
   #endif
     for (i=0; i<=cptcode; i++) {    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
       if(Ndum[i]!=0) ncodemax[j]++;  } 
     }  
     ij=1;  /*************** linmin ************************/
   /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
   resets p to where the function func(p) takes on a minimum along the direction xi from p ,
     for (i=1; i<=ncodemax[j]; i++) {  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
       for (k=0; k<=19; k++) {  the value of func at the returned location p . This is actually all accomplished by calling the
         if (Ndum[k] != 0) {  routines mnbrak and brent .*/
           nbcode[Tvar[j]][ij]=k;  int ncom; 
            double *pcom,*xicom;
           ij++;  double (*nrfunc)(double []); 
         }   
         if (ij > ncodemax[j]) break;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       }    { 
     }    double brent(double ax, double bx, double cx, 
   }                   double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
  for (k=0; k<19; k++) Ndum[k]=0;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
  for (i=1; i<=ncovmodel-2; i++) {    int j; 
    ij=Tvar[i];    double xx,xmin,bx,ax; 
    Ndum[ij]++;    double fx,fb,fa;
  }  
   #ifdef LINMINORIGINAL
  ij=1;  #else
  for (i=1; i<=10; i++) {    double scale=10., axs, xxs; /* Scale added for infinity */
    if((Ndum[i]!=0) && (i<=ncovcol)){  #endif
      Tvaraff[ij]=i;    
      ij++;    ncom=n; 
    }    pcom=vector(1,n); 
  }    xicom=vector(1,n); 
      nrfunc=func; 
  cptcoveff=ij-1;    for (j=1;j<=n;j++) { 
 }      pcom[j]=p[j]; 
       xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
 /*********** Health Expectancies ****************/    } 
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  #ifdef LINMINORIGINAL
     xx=1.;
 {  #else
   /* Health expectancies */    axs=0.0;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    xxs=1.;
   double age, agelim, hf;    do{
   double ***p3mat,***varhe;      xx= xxs;
   double **dnewm,**doldm;  #endif
   double *xp;      ax=0.;
   double **gp, **gm;      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
   double ***gradg, ***trgradg;      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
   int theta;      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
       /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
   xp=vector(1,npar);      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
   dnewm=matrix(1,nlstate*2,1,npar);      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
   doldm=matrix(1,nlstate*2,1,nlstate*2);  #ifdef LINMINORIGINAL
    #else
   fprintf(ficreseij,"# Health expectancies\n");      if (fx != fx){
   fprintf(ficreseij,"# Age");          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
   for(i=1; i<=nlstate;i++)          printf("|");
     for(j=1; j<=nlstate;j++)          fprintf(ficlog,"|");
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  #ifdef DEBUGLINMIN
   fprintf(ficreseij,"\n");          printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
   #endif
   if(estepm < stepm){      }
     printf ("Problem %d lower than %d\n",estepm, stepm);    }while(fx != fx);
   }  #endif
   else  hstepm=estepm;      
   /* We compute the life expectancy from trapezoids spaced every estepm months  #ifdef DEBUGLINMIN
    * This is mainly to measure the difference between two models: for example    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
    * if stepm=24 months pijx are given only every 2 years and by summing them    fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
    * we are calculating an estimate of the Life Expectancy assuming a linear  #endif
    * progression inbetween and thus overestimating or underestimating according    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
    * to the curvature of the survival function. If, for the same date, we    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    /* fmin = f(p[j] + xmin * xi[j]) */
    * to compare the new estimate of Life expectancy with the same linear    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
    * hypothesis. A more precise result, taking into account a more precise    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
    * curvature will be obtained if estepm is as small as stepm. */  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /* For example we decided to compute the life expectancy with the smallest unit */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  #endif
      nhstepm is the number of hstepm from age to agelim  #ifdef DEBUGLINMIN
      nstepm is the number of stepm from age to agelin.    printf("linmin end ");
      Look at hpijx to understand the reason of that which relies in memory size    fprintf(ficlog,"linmin end ");
      and note for a fixed period like estepm months */  #endif
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    for (j=1;j<=n;j++) { 
      survival function given by stepm (the optimization length). Unfortunately it  #ifdef LINMINORIGINAL
      means that if the survival funtion is printed only each two years of age and if      xi[j] *= xmin; 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  #else
      results. So we changed our mind and took the option of the best precision.  #ifdef DEBUGLINMIN
   */      if(xxs <1.0)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        printf(" before xi[%d]=%12.8f", j,xi[j]);
   #endif
   agelim=AGESUP;      xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  #ifdef DEBUGLINMIN
     /* nhstepm age range expressed in number of stepm */      if(xxs <1.0)
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  #endif
     /* if (stepm >= YEARM) hstepm=1;*/  #endif
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      p[j] += xi[j]; /* Parameters values are updated accordingly */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  #ifdef DEBUGLINMIN
     gp=matrix(0,nhstepm,1,nlstate*2);    printf("\n");
     gm=matrix(0,nhstepm,1,nlstate*2);    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
     fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    for (j=1;j<=n;j++) { 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
        if(j % ncovmodel == 0){
         printf("\n");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        fprintf(ficlog,"\n");
       }
     /* Computing Variances of health expectancies */    }
   #else
      for(theta=1; theta <=npar; theta++){  #endif
       for(i=1; i<=npar; i++){    free_vector(xicom,1,n); 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    free_vector(pcom,1,n); 
       }  } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
    
       cptj=0;  /*************** powell ************************/
       for(j=1; j<= nlstate; j++){  /*
         for(i=1; i<=nlstate; i++){  Minimization of a function func of n variables. Input consists of an initial starting point
           cptj=cptj+1;  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  such that failure to decrease by more than this amount on one iteration signals doneness. On
           }  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
         }  function value at p , and iter is the number of iterations taken. The routine linmin is used.
       }   */
        void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                    double (*func)(double [])) 
       for(i=1; i<=npar; i++)  { 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    void linmin(double p[], double xi[], int n, double *fret, 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                  double (*func)(double [])); 
          int i,ibig,j; 
       cptj=0;    double del,t,*pt,*ptt,*xit;
       for(j=1; j<= nlstate; j++){    double directest;
         for(i=1;i<=nlstate;i++){    double fp,fptt;
           cptj=cptj+1;    double *xits;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    int niterf, itmp;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    pt=vector(1,n); 
         }    ptt=vector(1,n); 
       }    xit=vector(1,n); 
       for(j=1; j<= nlstate*2; j++)    xits=vector(1,n); 
         for(h=0; h<=nhstepm-1; h++){    *fret=(*func)(p); 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    for (j=1;j<=n;j++) pt[j]=p[j]; 
         }    rcurr_time = time(NULL);  
      }    for (*iter=1;;++(*iter)) { 
          fp=(*fret); /* From former iteration or initial value */
 /* End theta */      ibig=0; 
       del=0.0; 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      rlast_time=rcurr_time;
       /* (void) gettimeofday(&curr_time,&tzp); */
      for(h=0; h<=nhstepm-1; h++)      rcurr_time = time(NULL);  
       for(j=1; j<=nlstate*2;j++)      curr_time = *localtime(&rcurr_time);
         for(theta=1; theta <=npar; theta++)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
           trgradg[h][j][theta]=gradg[h][theta][j];      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
        /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
       for (i=1;i<=n;i++) {
      for(i=1;i<=nlstate*2;i++)        printf(" %d %.12f",i, p[i]);
       for(j=1;j<=nlstate*2;j++)        fprintf(ficlog," %d %.12lf",i, p[i]);
         varhe[i][j][(int)age] =0.;        fprintf(ficrespow," %.12lf", p[i]);
       }
      printf("%d|",(int)age);fflush(stdout);      printf("\n");
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      fprintf(ficlog,"\n");
      for(h=0;h<=nhstepm-1;h++){      fprintf(ficrespow,"\n");fflush(ficrespow);
       for(k=0;k<=nhstepm-1;k++){      if(*iter <=3){
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        tml = *localtime(&rcurr_time);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        strcpy(strcurr,asctime(&tml));
         for(i=1;i<=nlstate*2;i++)        rforecast_time=rcurr_time; 
           for(j=1;j<=nlstate*2;j++)        itmp = strlen(strcurr);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       }          strcurr[itmp-1]='\0';
     }        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
     /* Computing expectancies */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
     for(i=1; i<=nlstate;i++)        for(niterf=10;niterf<=30;niterf+=10){
       for(j=1; j<=nlstate;j++)          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          forecast_time = *localtime(&rforecast_time);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          strcpy(strfor,asctime(&forecast_time));
                    itmp = strlen(strfor);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
         }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
     fprintf(ficreseij,"%3.0f",age );        }
     cptj=0;      }
     for(i=1; i<=nlstate;i++)      for (i=1;i<=n;i++) { /* For each direction i */
       for(j=1; j<=nlstate;j++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
         cptj++;        fptt=(*fret); 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  #ifdef DEBUG
       }        printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
     fprintf(ficreseij,"\n");        fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
      #endif
     free_matrix(gm,0,nhstepm,1,nlstate*2);        printf("%d",i);fflush(stdout); /* print direction (parameter) i */
     free_matrix(gp,0,nhstepm,1,nlstate*2);        fprintf(ficlog,"%d",i);fflush(ficlog);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
   }          /* because that direction will be replaced unless the gain del is small */
   printf("\n");          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
   fprintf(ficlog,"\n");          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
           /* with the new direction. */
   free_vector(xp,1,npar);          del=fabs(fptt-(*fret)); 
   free_matrix(dnewm,1,nlstate*2,1,npar);          ibig=i; 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        } 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  #ifdef DEBUG
 }        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
 /************ Variance ******************/        for (j=1;j<=n;j++) {
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 {          printf(" x(%d)=%.12e",j,xit[j]);
   /* Variance of health expectancies */          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        }
   /* double **newm;*/        for(j=1;j<=n;j++) {
   double **dnewm,**doldm;          printf(" p(%d)=%.12e",j,p[j]);
   double **dnewmp,**doldmp;          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
   int i, j, nhstepm, hstepm, h, nstepm ;        }
   int k, cptcode;        printf("\n");
   double *xp;        fprintf(ficlog,"\n");
   double **gp, **gm;  /* for var eij */  #endif
   double ***gradg, ***trgradg; /*for var eij */      } /* end loop on each direction i */
   double **gradgp, **trgradgp; /* for var p point j */      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
   double *gpp, *gmp; /* for var p point j */      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */      /* New value of last point Pn is not computed, P(n-1) */
   double ***p3mat;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
   double age,agelim, hf;        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
   int theta;        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
   char digit[4];        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
   char digitp[16];        /* decreased of more than 3.84  */
         /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
   char fileresprobmorprev[FILENAMELENGTH];        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
         /* By adding 10 parameters more the gain should be 18.31 */
   if(popbased==1)  
     strcpy(digitp,"-populbased-");        /* Starting the program with initial values given by a former maximization will simply change */
   else        /* the scales of the directions and the directions, because the are reset to canonical directions */
     strcpy(digitp,"-stablbased-");        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
         /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
   strcpy(fileresprobmorprev,"prmorprev");  #ifdef DEBUG
   sprintf(digit,"%-d",ij);        int k[2],l;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/        k[0]=1;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */        k[1]=-1;
   strcat(fileresprobmorprev,digitp); /* Popbased or not */        printf("Max: %.12e",(*func)(p));
   strcat(fileresprobmorprev,fileres);        fprintf(ficlog,"Max: %.12e",(*func)(p));
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {        for (j=1;j<=n;j++) {
     printf("Problem with resultfile: %s\n", fileresprobmorprev);          printf(" %.12e",p[j]);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);          fprintf(ficlog," %.12e",p[j]);
   }        }
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        printf("\n");
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        fprintf(ficlog,"\n");
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");        for(l=0;l<=1;l++) {
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);          for (j=1;j<=n;j++) {
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     fprintf(ficresprobmorprev," p.%-d SE",j);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(i=1; i<=nlstate;i++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);          }
   }            printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   fprintf(ficresprobmorprev,"\n");          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  #endif
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  
     exit(0);  
   }        free_vector(xit,1,n); 
   else{        free_vector(xits,1,n); 
     fprintf(ficgp,"\n# Routine varevsij");        free_vector(ptt,1,n); 
   }        free_vector(pt,1,n); 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        return; 
     printf("Problem with html file: %s\n", optionfilehtm);      } /* enough precision */ 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     exit(0);      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
   }        ptt[j]=2.0*p[j]-pt[j]; 
   else{        xit[j]=p[j]-pt[j]; 
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");        pt[j]=p[j]; 
   }      } 
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      fptt=(*func)(ptt); /* f_3 */
   #ifdef POWELLF1F3
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  #else
   fprintf(ficresvij,"# Age");      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
   for(i=1; i<=nlstate;i++)  #endif
     for(j=1; j<=nlstate;j++)        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
   fprintf(ficresvij,"\n");        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
   xp=vector(1,npar);        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
   dnewm=matrix(1,nlstate,1,npar);        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
   doldm=matrix(1,nlstate,1,nlstate);        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);  #ifdef NRCORIGINAL
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
   #else
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
   gpp=vector(nlstate+1,nlstate+ndeath);        t= t- del*SQR(fp-fptt);
   gmp=vector(nlstate+1,nlstate+ndeath);  #endif
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
    #ifdef DEBUG
   if(estepm < stepm){        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
     printf ("Problem %d lower than %d\n",estepm, stepm);        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   }        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   else  hstepm=estepm;                 (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   /* For example we decided to compute the life expectancy with the smallest unit */        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
      nhstepm is the number of hstepm from age to agelim        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
      nstepm is the number of stepm from age to agelin.        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
      Look at hpijx to understand the reason of that which relies in memory size  #endif
      and note for a fixed period like k years */  #ifdef POWELLORIGINAL
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        if (t < 0.0) { /* Then we use it for new direction */
      survival function given by stepm (the optimization length). Unfortunately it  #else
      means that if the survival funtion is printed only each two years of age and if        if (directest*t < 0.0) { /* Contradiction between both tests */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
      results. So we changed our mind and took the option of the best precision.          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
   */          fprintf(ficlog,"directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
   agelim = AGESUP;        } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if (directest < 0.0) { /* Then we use it for new direction */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  #endif
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  #ifdef DEBUGLINMIN
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          printf("Before linmin in direction P%d-P0\n",n);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          for (j=1;j<=n;j++) { 
     gp=matrix(0,nhstepm,1,nlstate);            printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
     gm=matrix(0,nhstepm,1,nlstate);            fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
             if(j % ncovmodel == 0){
               printf("\n");
     for(theta=1; theta <=npar; theta++){              fprintf(ficlog,"\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */            }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          }
       }  #endif
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  #ifdef DEBUGLINMIN
           for (j=1;j<=n;j++) { 
       if (popbased==1) {            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
         for(i=1; i<=nlstate;i++)            fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
           prlim[i][i]=probs[(int)age][i][ij];            if(j % ncovmodel == 0){
       }              printf("\n");
                fprintf(ficlog,"\n");
       for(j=1; j<= nlstate; j++){            }
         for(h=0; h<=nhstepm; h++){          }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  #endif
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          for (j=1;j<=n;j++) { 
         }            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
       }            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
       /* This for computing forces of mortality (h=1)as a weighted average */          }
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         for(i=1; i<= nlstate; i++)          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
           gpp[j] += prlim[i][i]*p3mat[i][j][1];  
       }      #ifdef DEBUG
       /* end force of mortality */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for(i=1; i<=npar; i++) /* Computes gradient */          for(j=1;j<=n;j++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            printf(" %.12e",xit[j]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              fprintf(ficlog," %.12e",xit[j]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
            printf("\n");
       if (popbased==1) {          fprintf(ficlog,"\n");
         for(i=1; i<=nlstate;i++)  #endif
           prlim[i][i]=probs[(int)age][i][ij];        } /* end of t or directest negative */
       }  #ifdef POWELLF1F3
   #else
       for(j=1; j<= nlstate; j++){      } /* end if (fptt < fp)  */
         for(h=0; h<=nhstepm; h++){  #endif
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    } /* loop iteration */ 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  } 
         }  
       }  /**** Prevalence limit (stable or period prevalence)  ****************/
       /* This for computing force of mortality (h=1)as a weighted average */  
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij)
         for(i=1; i<= nlstate; i++)  {
           gmp[j] += prlim[i][i]*p3mat[i][j][1];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       }           matrix by transitions matrix until convergence is reached with precision ftolpl */
       /* end force of mortality */    
     int i, ii,j,k;
       for(j=1; j<= nlstate; j++) /* vareij */    double min, max, maxmin, maxmax,sumnew=0.;
         for(h=0; h<=nhstepm; h++){    /* double **matprod2(); */ /* test */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double **out, cov[NCOVMAX+1], **pmij();
         }    double **newm;
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    double agefin, delaymax=100 ; /* Max number of years to converge */
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    int ncvloop=0;
       }    
     for (ii=1;ii<=nlstate+ndeath;ii++)
     } /* End theta */      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      }
     
     for(h=0; h<=nhstepm; h++) /* veij */    cov[1]=1.;
       for(j=1; j<=nlstate;j++)    
         for(theta=1; theta <=npar; theta++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           trgradg[h][j][theta]=gradg[h][theta][j];    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */      ncvloop++;
       for(theta=1; theta <=npar; theta++)      newm=savm;
         trgradgp[j][theta]=gradgp[theta][j];      /* Covariates have to be included here again */
       cov[2]=agefin;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      if(nagesqr==1)
     for(i=1;i<=nlstate;i++)        cov[3]= agefin*agefin;;
       for(j=1;j<=nlstate;j++)      for (k=1; k<=cptcovn;k++) {
         vareij[i][j][(int)age] =0.;        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
     for(h=0;h<=nhstepm;h++){        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
       for(k=0;k<=nhstepm;k++){      }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
         for(i=1;i<=nlstate;i++)      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
           for(j=1;j<=nlstate;j++)      for (k=1; k<=cptcovprod;k++) /* Useless */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
       }        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
     }      
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     /* pptj */      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     for(j=nlstate+1;j<=nlstate+ndeath;j++)      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
       for(i=nlstate+1;i<=nlstate+ndeath;i++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
         varppt[j][i]=doldmp[j][i];      
     /* end ppptj */      savm=oldm;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);        oldm=newm;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);      maxmax=0.;
        for(j=1;j<=nlstate;j++){
     if (popbased==1) {        min=1.;
       for(i=1; i<=nlstate;i++)        max=0.;
         prlim[i][i]=probs[(int)age][i][ij];        for(i=1; i<=nlstate; i++) {
     }          sumnew=0;
              for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     /* This for computing force of mortality (h=1)as a weighted average */          prlim[i][j]= newm[i][j]/(1-sumnew);
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          max=FMAX(max,prlim[i][j]);
       for(i=1; i<= nlstate; i++)          min=FMIN(min,prlim[i][j]);
         gmp[j] += prlim[i][i]*p3mat[i][j][1];          /* printf(" age= %d prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d max=%f min=%f\n", (int)age, i, j, i, j, prlim[i][j],(int)agefin, max, min); */
     }            }
     /* end force of mortality */        maxmin=(max-min)/(max+min)*2;
         maxmax=FMAX(maxmax,maxmin);
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);      } /* j loop */
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      *ncvyear= (int)age- (int)agefin;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));      /* printf("maxmax=%lf maxmin=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
       for(i=1; i<=nlstate;i++){      if(maxmax < ftolpl){
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);        /* printf("maxmax=%lf maxmin=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
       }        return prlim;
     }      }
     fprintf(ficresprobmorprev,"\n");    } /* age loop */
     printf("Warning: the stable prevalence at age %d did not converge with the required precision %g > ftolpl=%g. \n\
     fprintf(ficresvij,"%.0f ",age );  Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
     for(i=1; i<=nlstate;i++)  /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
       for(j=1; j<=nlstate;j++){    return prlim; /* should not reach here */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  }
       }  
     fprintf(ficresvij,"\n");  /*************** transition probabilities ***************/ 
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  {
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    /* According to parameters values stored in x and the covariate's values stored in cov,
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       computes the probability to be observed in state j being in state i by appying the
   } /* End age */       model to the ncovmodel covariates (including constant and age).
   free_vector(gpp,nlstate+1,nlstate+ndeath);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   free_vector(gmp,nlstate+1,nlstate+ndeath);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);       ncth covariate in the global vector x is given by the formula:
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);       Outputs ps[i][j] the probability to be observed in j being in j according to
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);    */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    double s1, lnpijopii;
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    /*double t34;*/
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    int i,j, nc, ii, jj;
   
   free_vector(xp,1,npar);      for(i=1; i<= nlstate; i++){
   free_matrix(doldm,1,nlstate,1,nlstate);        for(j=1; j<i;j++){
   free_matrix(dnewm,1,nlstate,1,npar);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   fclose(ficresprobmorprev);          }
   fclose(ficgp);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   fclose(fichtm);  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }
 }        for(j=i+1; j<=nlstate+ndeath;j++){
           for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 /************ Variance of prevlim ******************/            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
 {  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   /* Variance of prevalence limit */          }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   double **newm;        }
   double **dnewm,**doldm;      }
   int i, j, nhstepm, hstepm;      
   int k, cptcode;      for(i=1; i<= nlstate; i++){
   double *xp;        s1=0;
   double *gp, *gm;        for(j=1; j<i; j++){
   double **gradg, **trgradg;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   double age,agelim;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   int theta;        }
            for(j=i+1; j<=nlstate+ndeath; j++){
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   fprintf(ficresvpl,"# Age");          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   for(i=1; i<=nlstate;i++)        }
       fprintf(ficresvpl," %1d-%1d",i,i);        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   fprintf(ficresvpl,"\n");        ps[i][i]=1./(s1+1.);
         /* Computing other pijs */
   xp=vector(1,npar);        for(j=1; j<i; j++)
   dnewm=matrix(1,nlstate,1,npar);          ps[i][j]= exp(ps[i][j])*ps[i][i];
   doldm=matrix(1,nlstate,1,nlstate);        for(j=i+1; j<=nlstate+ndeath; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
   hstepm=1*YEARM; /* Every year of age */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      } /* end i */
   agelim = AGESUP;      
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(jj=1; jj<= nlstate+ndeath; jj++){
     if (stepm >= YEARM) hstepm=1;          ps[ii][jj]=0;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          ps[ii][ii]=1;
     gradg=matrix(1,npar,1,nlstate);        }
     gp=vector(1,nlstate);      }
     gm=vector(1,nlstate);      
       
     for(theta=1; theta <=npar; theta++){      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
       for(i=1; i<=npar; i++){ /* Computes gradient */      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
       }      /*   } */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /*   printf("\n "); */
       for(i=1;i<=nlstate;i++)      /* } */
         gp[i] = prlim[i][i];      /* printf("\n ");printf("%lf ",cov[2]);*/
          /*
       for(i=1; i<=npar; i++) /* Computes gradient */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        goto end;*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      return ps;
       for(i=1;i<=nlstate;i++)  }
         gm[i] = prlim[i][i];  
   /**************** Product of 2 matrices ******************/
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
     } /* End theta */  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     trgradg =matrix(1,nlstate,1,npar);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
     for(j=1; j<=nlstate;j++)       before: only the contents of out is modified. The function returns
       for(theta=1; theta <=npar; theta++)       a pointer to pointers identical to out */
         trgradg[j][theta]=gradg[theta][j];    int i, j, k;
     for(i=nrl; i<= nrh; i++)
     for(i=1;i<=nlstate;i++)      for(k=ncolol; k<=ncoloh; k++){
       varpl[i][(int)age] =0.;        out[i][k]=0.;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        for(j=ncl; j<=nch; j++)
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          out[i][k] +=in[i][j]*b[j][k];
     for(i=1;i<=nlstate;i++)      }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    return out;
   }
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  /************* Higher Matrix Product ***************/
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     free_vector(gm,1,nlstate);  {
     free_matrix(gradg,1,npar,1,nlstate);    /* Computes the transition matrix starting at age 'age' over 
     free_matrix(trgradg,1,nlstate,1,npar);       'nhstepm*hstepm*stepm' months (i.e. until
   } /* End age */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
   free_vector(xp,1,npar);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   free_matrix(doldm,1,nlstate,1,npar);       (typically every 2 years instead of every month which is too big 
   free_matrix(dnewm,1,nlstate,1,nlstate);       for the memory).
        Model is determined by parameters x and covariates have to be 
 }       included manually here. 
   
 /************ Variance of one-step probabilities  ******************/       */
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  
 {    int i, j, d, h, k;
   int i, j=0,  i1, k1, l1, t, tj;    double **out, cov[NCOVMAX+1];
   int k2, l2, j1,  z1;    double **newm;
   int k=0,l, cptcode;    double agexact;
   int first=1, first1;  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    /* Hstepm could be zero and should return the unit matrix */
   double **dnewm,**doldm;    for (i=1;i<=nlstate+ndeath;i++)
   double *xp;      for (j=1;j<=nlstate+ndeath;j++){
   double *gp, *gm;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double **gradg, **trgradg;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double **mu;      }
   double age,agelim, cov[NCOVMAX];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    for(h=1; h <=nhstepm; h++){
   int theta;      for(d=1; d <=hstepm; d++){
   char fileresprob[FILENAMELENGTH];        newm=savm;
   char fileresprobcov[FILENAMELENGTH];        /* Covariates have to be included here again */
   char fileresprobcor[FILENAMELENGTH];        cov[1]=1.;
         agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double ***varpij;        cov[2]=agexact;
         if(nagesqr==1)
   strcpy(fileresprob,"prob");          cov[3]= agexact*agexact;
   strcat(fileresprob,fileres);        for (k=1; k<=cptcovn;k++) 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
     printf("Problem with resultfile: %s\n", fileresprob);          /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
   }          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   strcpy(fileresprobcov,"probcov");          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
   strcat(fileresprobcov,fileres);          /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
     printf("Problem with resultfile: %s\n", fileresprobcov);          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);          /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
   }  
   strcpy(fileresprobcor,"probcor");  
   strcat(fileresprobcor,fileres);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     printf("Problem with resultfile: %s\n", fileresprobcor);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   }        savm=oldm;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        oldm=newm;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      }
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      for(i=1; i<=nlstate+ndeath; i++)
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        for(j=1;j<=nlstate+ndeath;j++) {
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          po[i][j][h]=newm[i][j];
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
          }
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      /*printf("h=%d ",h);*/
   fprintf(ficresprob,"# Age");    } /* end h */
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  /*     printf("\n H=%d \n",h); */
   fprintf(ficresprobcov,"# Age");    return po;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  }
   fprintf(ficresprobcov,"# Age");  
   #ifdef NLOPT
     double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
   for(i=1; i<=nlstate;i++)    double fret;
     for(j=1; j<=(nlstate+ndeath);j++){    double *xt;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    int j;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    myfunc_data *d2 = (myfunc_data *) pd;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  /* xt = (p1-1); */
     }      xt=vector(1,n); 
   fprintf(ficresprob,"\n");    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   fprintf(ficresprobcov,"\n");  
   fprintf(ficresprobcor,"\n");    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
   xp=vector(1,npar);    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    printf("Function = %.12lf ",fret);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    printf("\n");
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);   free_vector(xt,1,n);
   first=1;    return fret;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  #endif
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  
     exit(0);  /*************** log-likelihood *************/
   }  double func( double *x)
   else{  {
     fprintf(ficgp,"\n# Routine varprob");    int i, ii, j, k, mi, d, kk;
   }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    double **out;
     printf("Problem with html file: %s\n", optionfilehtm);    double sw; /* Sum of weights */
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    double lli; /* Individual log likelihood */
     exit(0);    int s1, s2;
   }    double bbh, survp;
   else{    long ipmx;
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    double agexact;
     fprintf(fichtm,"\n");    /*extern weight */
     /* We are differentiating ll according to initial status */
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    /*for(i=1;i<imx;i++) 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");      printf(" %d\n",s[4][i]);
     */
   }  
     ++countcallfunc;
    
   cov[1]=1;    cov[1]=1.;
   tj=cptcoveff;  
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    for(k=1; k<=nlstate; k++) ll[k]=0.;
   j1=0;  
   for(t=1; t<=tj;t++){    if(mle==1){
     for(i1=1; i1<=ncodemax[t];i1++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       j1++;        /* Computes the values of the ncovmodel covariates of the model
                 depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
       if  (cptcovn>0) {           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
         fprintf(ficresprob, "\n#********** Variable ");           to be observed in j being in i according to the model.
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);         */
         fprintf(ficresprob, "**********\n#");        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
         fprintf(ficresprobcov, "\n#********** Variable ");            cov[2+nagesqr+k]=covar[Tvar[k]][i];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(ficresprobcov, "**********\n#");        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
                   is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
         fprintf(ficgp, "\n#********** Variable ");           has been calculated etc */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(mi=1; mi<= wav[i]-1; mi++){
         fprintf(ficgp, "**********\n#");          for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
                      oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");          for(d=0; d<dh[mi][i]; d++){
                    newm=savm;
         fprintf(ficresprobcor, "\n#********** Variable ");                agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            cov[2]=agexact;
         fprintf(ficgp, "**********\n#");                if(nagesqr==1)
       }              cov[3]= agexact*agexact;
                  for (kk=1; kk<=cptcovage;kk++) {
       for (age=bage; age<=fage; age ++){              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
         cov[2]=age;            }
         for (k=1; k<=cptcovn;k++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            oldm=newm;
         for (k=1; k<=cptcovprod;k++)          } /* end mult */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        
                  /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          /* But now since version 0.9 we anticipate for bias at large stepm.
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         gp=vector(1,(nlstate)*(nlstate+ndeath));           * (in months) between two waves is not a multiple of stepm, we rounded to 
         gm=vector(1,(nlstate)*(nlstate+ndeath));           * the nearest (and in case of equal distance, to the lowest) interval but now
               * we keep into memory the bias bh[mi][i] and also the previous matrix product
         for(theta=1; theta <=npar; theta++){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           for(i=1; i<=npar; i++)           * probability in order to take into account the bias as a fraction of the way
             xp[i] = x[i] + (i==theta ?delti[theta]:0);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                     * -stepm/2 to stepm/2 .
           pmij(pmmij,cov,ncovmodel,xp,nlstate);           * For stepm=1 the results are the same as for previous versions of Imach.
                     * For stepm > 1 the results are less biased than in previous versions. 
           k=0;           */
           for(i=1; i<= (nlstate); i++){          s1=s[mw[mi][i]][i];
             for(j=1; j<=(nlstate+ndeath);j++){          s2=s[mw[mi+1][i]][i];
               k=k+1;          bbh=(double)bh[mi][i]/(double)stepm; 
               gp[k]=pmmij[i][j];          /* bias bh is positive if real duration
             }           * is higher than the multiple of stepm and negative otherwise.
           }           */
                    /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           for(i=1; i<=npar; i++)          if( s2 > nlstate){ 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            /* i.e. if s2 is a death state and if the date of death is known 
                   then the contribution to the likelihood is the probability to 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);               die between last step unit time and current  step unit time, 
           k=0;               which is also equal to probability to die before dh 
           for(i=1; i<=(nlstate); i++){               minus probability to die before dh-stepm . 
             for(j=1; j<=(nlstate+ndeath);j++){               In version up to 0.92 likelihood was computed
               k=k+1;          as if date of death was unknown. Death was treated as any other
               gm[k]=pmmij[i][j];          health state: the date of the interview describes the actual state
             }          and not the date of a change in health state. The former idea was
           }          to consider that at each interview the state was recorded
                (healthy, disable or death) and IMaCh was corrected; but when we
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          introduced the exact date of death then we should have modified
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            the contribution of an exact death to the likelihood. This new
         }          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          and month of death but the probability to survive from last
           for(theta=1; theta <=npar; theta++)          interview up to one month before death multiplied by the
             trgradg[j][theta]=gradg[theta][j];          probability to die within a month. Thanks to Chris
                  Jackson for correcting this bug.  Former versions increased
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);          mortality artificially. The bad side is that we add another loop
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);          which slows down the processing. The difference can be up to 10%
                  lower mortality.
         pmij(pmmij,cov,ncovmodel,x,nlstate);            */
                  /* If, at the beginning of the maximization mostly, the
         k=0;             cumulative probability or probability to be dead is
         for(i=1; i<=(nlstate); i++){             constant (ie = 1) over time d, the difference is equal to
           for(j=1; j<=(nlstate+ndeath);j++){             0.  out[s1][3] = savm[s1][3]: probability, being at state
             k=k+1;             s1 at precedent wave, to be dead a month before current
             mu[k][(int) age]=pmmij[i][j];             wave is equal to probability, being at state s1 at
           }             precedent wave, to be dead at mont of the current
         }             wave. Then the observed probability (that this person died)
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)             is null according to current estimated parameter. In fact,
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)             it should be very low but not zero otherwise the log go to
             varpij[i][j][(int)age] = doldm[i][j];             infinity.
           */
         /*printf("\n%d ",(int)age);  /* #ifdef INFINITYORIGINAL */
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  /* #else */
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
      }*/  /*          lli=log(mytinydouble); */
   /*        else */
         fprintf(ficresprob,"\n%d ",(int)age);  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
         fprintf(ficresprobcov,"\n%d ",(int)age);  /* #endif */
         fprintf(ficresprobcor,"\n%d ",(int)age);              lli=log(out[s1][s2] - savm[s1][s2]);
   
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          } else if  (s2==-2) {
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            for (j=1,survp=0. ; j<=nlstate; j++) 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);            /*survp += out[s1][j]; */
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            lli= log(survp);
         }          }
         i=0;          
         for (k=1; k<=(nlstate);k++){          else if  (s2==-4) { 
           for (l=1; l<=(nlstate+ndeath);l++){            for (j=3,survp=0. ; j<=nlstate; j++)  
             i=i++;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            lli= log(survp); 
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          } 
             for (j=1; j<=i;j++){  
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          else if  (s2==-5) { 
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            for (j=1,survp=0. ; j<=2; j++)  
             }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           }            lli= log(survp); 
         }/* end of loop for state */          } 
       } /* end of loop for age */          
           else{
       /* Confidence intervalle of pij  */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       /*            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       fprintf(ficgp,"\nset noparametric;unset label");          } 
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          /*if(lli ==000.0)*/
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);          ipmx +=1;
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);          sw += weight[i];
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       */          /* if (lli < log(mytinydouble)){ */
           /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
       first1=1;          /* } */
       for (k2=1; k2<=(nlstate);k2++){        } /* end of wave */
         for (l2=1; l2<=(nlstate+ndeath);l2++){      } /* end of individual */
           if(l2==k2) continue;    }  else if(mle==2){
           j=(k2-1)*(nlstate+ndeath)+l2;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for (k1=1; k1<=(nlstate);k1++){        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
             for (l1=1; l1<=(nlstate+ndeath);l1++){        for(mi=1; mi<= wav[i]-1; mi++){
               if(l1==k1) continue;          for (ii=1;ii<=nlstate+ndeath;ii++)
               i=(k1-1)*(nlstate+ndeath)+l1;            for (j=1;j<=nlstate+ndeath;j++){
               if(i<=j) continue;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               for (age=bage; age<=fage; age ++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                 if ((int)age %5==0){            }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          for(d=0; d<=dh[mi][i]; d++){
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;            newm=savm;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   mu1=mu[i][(int) age]/stepm*YEARM ;            cov[2]=agexact;
                   mu2=mu[j][(int) age]/stepm*YEARM;            if(nagesqr==1)
                   c12=cv12/sqrt(v1*v2);              cov[3]= agexact*agexact;
                   /* Computing eigen value of matrix of covariance */            for (kk=1; kk<=cptcovage;kk++) {
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;            }
                   /* Eigen vectors */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   /*v21=sqrt(1.-v11*v11); *//* error */            savm=oldm;
                   v21=(lc1-v1)/cv12*v11;            oldm=newm;
                   v12=-v21;          } /* end mult */
                   v22=v11;        
                   tnalp=v21/v11;          s1=s[mw[mi][i]][i];
                   if(first1==1){          s2=s[mw[mi+1][i]][i];
                     first1=0;          bbh=(double)bh[mi][i]/(double)stepm; 
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                   }          ipmx +=1;
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          sw += weight[i];
                   /*printf(fignu*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */        } /* end of wave */
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */      } /* end of individual */
                   if(first==1){    }  else if(mle==3){  /* exponential inter-extrapolation */
                     first=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                     fprintf(ficgp,"\nset parametric;unset label");        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);        for(mi=1; mi<= wav[i]-1; mi++){
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          for (ii=1;ii<=nlstate+ndeath;ii++)
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);            for (j=1;j<=nlstate+ndeath;j++){
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);            }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          for(d=0; d<dh[mi][i]; d++){
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\            newm=savm;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));            cov[2]=agexact;
                   }else{            if(nagesqr==1)
                     first=0;              cov[3]= agexact*agexact;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);            for (kk=1; kk<=cptcovage;kk++) {
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\            }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   }/* if first */            savm=oldm;
                 } /* age mod 5 */            oldm=newm;
               } /* end loop age */          } /* end mult */
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);        
               first=1;          s1=s[mw[mi][i]][i];
             } /*l12 */          s2=s[mw[mi+1][i]][i];
           } /* k12 */          bbh=(double)bh[mi][i]/(double)stepm; 
         } /*l1 */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       }/* k1 */          ipmx +=1;
     } /* loop covariates */          sw += weight[i];
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        } /* end of wave */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      } /* end of individual */
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   free_vector(xp,1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
   fclose(ficresprob);            for (j=1;j<=nlstate+ndeath;j++){
   fclose(ficresprobcov);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fclose(ficresprobcor);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fclose(ficgp);            }
   fclose(fichtm);          for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
             agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
             cov[2]=agexact;
 /******************* Printing html file ***********/            if(nagesqr==1)
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              cov[3]= agexact*agexact;
                   int lastpass, int stepm, int weightopt, char model[],\            for (kk=1; kk<=cptcovage;kk++) {
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   int popforecast, int estepm ,\            }
                   double jprev1, double mprev1,double anprev1, \          
                   double jprev2, double mprev2,double anprev2){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int jj1, k1, i1, cpt;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /*char optionfilehtm[FILENAMELENGTH];*/            savm=oldm;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            oldm=newm;
     printf("Problem with %s \n",optionfilehtm), exit(0);          } /* end mult */
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);        
   }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n          if( s2 > nlstate){ 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n            lli=log(out[s1][s2] - savm[s1][s2]);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n          }else{
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
  - Life expectancies by age and initial health status (estepm=%2d months):          }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \          ipmx +=1;
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
  m=cptcoveff;      } /* end of individual */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  jj1=0;        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
  for(k1=1; k1<=m;k1++){        for(mi=1; mi<= wav[i]-1; mi++){
    for(i1=1; i1<=ncodemax[k1];i1++){          for (ii=1;ii<=nlstate+ndeath;ii++)
      jj1++;            for (j=1;j<=nlstate+ndeath;j++){
      if (cptcovn > 0) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
        for (cpt=1; cpt<=cptcoveff;cpt++)            }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          for(d=0; d<dh[mi][i]; d++){
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            newm=savm;
      }            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
      /* Pij */            cov[2]=agexact;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>            if(nagesqr==1)
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                  cov[3]= agexact*agexact;
      /* Quasi-incidences */            for (kk=1; kk<=cptcovage;kk++) {
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            }
        /* Stable prevalence in each health state */          
        for(cpt=1; cpt<nlstate;cpt++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            savm=oldm;
        }            oldm=newm;
      for(cpt=1; cpt<=nlstate;cpt++) {          } /* end mult */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>        
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          s1=s[mw[mi][i]][i];
      }          s2=s[mw[mi+1][i]][i];
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 health expectancies in states (1) and (2): e%s%d.png<br>          ipmx +=1;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          sw += weight[i];
    } /* end i1 */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  }/* End k1 */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
  fprintf(fichtm,"</ul>");        } /* end of wave */
       } /* end of individual */
     } /* End of if */
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    return -l;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  }
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  /*************** log-likelihood *************/
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  double funcone( double *x)
   {
  if(popforecast==1) fprintf(fichtm,"\n    /* Same as likeli but slower because of a lot of printf and if */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    int i, ii, j, k, mi, d, kk;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         <br>",fileres,fileres,fileres,fileres);    double **out;
  else    double lli; /* Individual log likelihood */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    double llt;
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    int s1, s2;
     double bbh, survp;
  m=cptcoveff;    double agexact;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    /*extern weight */
     /* We are differentiating ll according to initial status */
  jj1=0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
  for(k1=1; k1<=m;k1++){    /*for(i=1;i<imx;i++) 
    for(i1=1; i1<=ncodemax[k1];i1++){      printf(" %d\n",s[4][i]);
      jj1++;    */
      if (cptcovn > 0) {    cov[1]=1.;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      }      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
      for(cpt=1; cpt<=nlstate;cpt++) {      for(mi=1; mi<= wav[i]-1; mi++){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        for (ii=1;ii<=nlstate+ndeath;ii++)
 interval) in state (%d): v%s%d%d.png <br>          for (j=1;j<=nlstate+ndeath;j++){
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
    } /* end i1 */          }
  }/* End k1 */        for(d=0; d<dh[mi][i]; d++){
  fprintf(fichtm,"</ul>");          newm=savm;
 fclose(fichtm);          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }          cov[2]=agexact;
           if(nagesqr==1)
 /******************* Gnuplot file **************/            cov[3]= agexact*agexact;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          }
   int ng;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     printf("Problem with file %s",optionfilegnuplot);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
           /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
 #ifdef windows          savm=oldm;
     fprintf(ficgp,"cd \"%s\" \n",pathc);          oldm=newm;
 #endif        } /* end mult */
 m=pow(2,cptcoveff);        
          s1=s[mw[mi][i]][i];
  /* 1eme*/        s2=s[mw[mi+1][i]][i];
   for (cpt=1; cpt<= nlstate ; cpt ++) {        bbh=(double)bh[mi][i]/(double)stepm; 
    for (k1=1; k1<= m ; k1 ++) {        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
 #ifdef windows         */
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          lli=log(out[s1][s2] - savm[s1][s2]);
 #endif        } else if  (s2==-2) {
 #ifdef unix          for (j=1,survp=0. ; j<=nlstate; j++) 
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);          lli= log(survp);
 #endif        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 for (i=1; i<= nlstate ; i ++) {        } else if(mle==2){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   else fprintf(ficgp," \%%*lf (\%%*lf)");        } else if(mle==3){  /* exponential inter-extrapolation */
 }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     for (i=1; i<= nlstate ; i ++) {          lli=log(out[s1][s2]); /* Original formula */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        } else{  /* mle=0 back to 1 */
   else fprintf(ficgp," \%%*lf (\%%*lf)");          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 }          /*lli=log(out[s1][s2]); */ /* Original formula */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        } /* End of if */
      for (i=1; i<= nlstate ; i ++) {        ipmx +=1;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        sw += weight[i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        if(globpr){
 #ifdef unix          fprintf(ficresilk,"%9ld %6.1f %6d %2d %2d %2d %2d %3d %11.6f %8.4f\
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");   %11.6f %11.6f %11.6f ", \
 #endif                  num[i], agexact, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
    }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   /*2 eme*/            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   for (k1=1; k1<= m ; k1 ++) {          }
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);          fprintf(ficresilk," %10.6f\n", -llt);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        }
          } /* end of wave */
     for (i=1; i<= nlstate+1 ; i ++) {    } /* end of individual */
       k=2*i;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for (j=1; j<= nlstate+1 ; j ++) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    if(globpr==0){ /* First time we count the contributions and weights */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      gipmx=ipmx;
 }        gsw=sw;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    return -l;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  }
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");  /*************** function likelione ***********/
 }    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       fprintf(ficgp,"\" t\"\" w l 0,");  {
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    /* This routine should help understanding what is done with 
       for (j=1; j<= nlstate+1 ; j ++) {       the selection of individuals/waves and
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       to check the exact contribution to the likelihood.
   else fprintf(ficgp," \%%*lf (\%%*lf)");       Plotting could be done.
 }       */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    int k;
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }    if(*globpri !=0){ /* Just counts and sums, no printings */
   }      strcpy(fileresilk,"ILK_"); 
        strcat(fileresilk,fileresu);
   /*3eme*/      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
   for (k1=1; k1<= m ; k1 ++) {        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     for (cpt=1; cpt<= nlstate ; cpt ++) {      }
       k=2+nlstate*(2*cpt-2);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      fprintf(ficresilk, "#num_i age i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      for(k=1; k<=nlstate; k++) 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    *fretone=(*funcone)(p);
     if(*globpri !=0){
 */      fclose(ficresilk);
       for (i=1; i< nlstate ; i ++) {      fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle >= 1. You should at least run with mle >= 1 and starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
   <img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
       }     fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
     }  <img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
   }      fflush(fichtm);
    
   /* CV preval stat */      for (k=1; k<= nlstate ; k++) {
     for (k1=1; k1<= m ; k1 ++) {        fprintf(fichtm,"<br>- Probability p%dj by origin %d and destination j <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
     for (cpt=1; cpt<nlstate ; cpt ++) {  <img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
       k=3;  
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    } 
     return;
       for (i=1; i< nlstate ; i ++)  }
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  
        /*********** Maximum Likelihood Estimation ***************/
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       for (i=1; i< nlstate ; i ++) {  {
         l=3+(nlstate+ndeath)*cpt;    int i,j, iter=0;
         fprintf(ficgp,"+$%d",l+i+1);    double **xi;
       }    double fret;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      double fretone; /* Only one call to likelihood */
     }    /*  char filerespow[FILENAMELENGTH];*/
   }    
    #ifdef NLOPT
   /* proba elementaires */    int creturn;
    for(i=1,jk=1; i <=nlstate; i++){    nlopt_opt opt;
     for(k=1; k <=(nlstate+ndeath); k++){    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
       if (k != i) {    double *lb;
         for(j=1; j <=ncovmodel; j++){    double minf; /* the minimum objective value, upon return */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    double * p1; /* Shifted parameters from 0 instead of 1 */
           jk++;    myfunc_data dinst, *d = &dinst;
           fprintf(ficgp,"\n");  #endif
         }  
       }  
     }    xi=matrix(1,npar,1,npar);
    }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        xi[i][j]=(i==j ? 1.0 : 0.0);
      for(jk=1; jk <=m; jk++) {    printf("Powell\n");  fprintf(ficlog,"Powell\n");
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    strcpy(filerespow,"POW_"); 
        if (ng==2)    strcat(filerespow,fileres);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
        else      printf("Problem with resultfile: %s\n", filerespow);
          fprintf(ficgp,"\nset title \"Probability\"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    }
        i=1;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
        for(k2=1; k2<=nlstate; k2++) {    for (i=1;i<=nlstate;i++)
          k3=i;      for(j=1;j<=nlstate+ndeath;j++)
          for(k=1; k<=(nlstate+ndeath); k++) {        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
            if (k != k2){    fprintf(ficrespow,"\n");
              if(ng==2)  #ifdef POWELL
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    powell(p,xi,npar,ftol,&iter,&fret,func);
              else  #endif
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;  #ifdef NLOPT
              for(j=3; j <=ncovmodel; j++) {  #ifdef NEWUOA
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  #else
                  ij++;    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
                }  #endif
                else    lb=vector(0,npar-1);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
              }    nlopt_set_lower_bounds(opt, lb);
              fprintf(ficgp,")/(1");    nlopt_set_initial_step1(opt, 0.1);
                  
              for(k1=1; k1 <=nlstate; k1++){      p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    d->function = func;
                ij=1;    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
                for(j=3; j <=ncovmodel; j++){    nlopt_set_min_objective(opt, myfunc, d);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    nlopt_set_xtol_rel(opt, ftol);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
                    ij++;      printf("nlopt failed! %d\n",creturn); 
                  }    }
                  else    else {
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
                }      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
                fprintf(ficgp,")");      iter=1; /* not equal */
              }    }
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    nlopt_destroy(opt);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  #endif
              i=i+ncovmodel;    free_matrix(xi,1,npar,1,npar);
            }    fclose(ficrespow);
          } /* end k */    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
        } /* end k2 */    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
      } /* end jk */    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
    } /* end ng */  
    fclose(ficgp);  }
 }  /* end gnuplot */  
   /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 /*************** Moving average **************/  {
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    double  **a,**y,*x,pd;
     /* double **hess; */
   int i, cpt, cptcod;    int i, j;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    int *indx;
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
           mobaverage[(int)agedeb][i][cptcod]=0.;    double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
        void lubksb(double **a, int npar, int *indx, double b[]) ;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
       for (i=1; i<=nlstate;i++){    double gompertz(double p[]);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* hess=matrix(1,npar,1,npar); */
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    printf("\nCalculation of the hessian matrix. Wait...\n");
           }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    for (i=1;i<=npar;i++){
         }      printf("%d-",i);fflush(stdout);
       }      fprintf(ficlog,"%d-",i);fflush(ficlog);
     }     
           hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 }      
       /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 /************** Forecasting ******************/    }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    
      for (i=1;i<=npar;i++) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      for (j=1;j<=npar;j++)  {
   int *popage;        if (j>i) { 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          printf(".%d-%d",i,j);fflush(stdout);
   double *popeffectif,*popcount;          fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
   double ***p3mat;          hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
   char fileresf[FILENAMELENGTH];          
           hess[j][i]=hess[i][j];    
  agelim=AGESUP;          /*printf(" %lf ",hess[i][j]);*/
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        }
       }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    }
      printf("\n");
      fprintf(ficlog,"\n");
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   if((ficresf=fopen(fileresf,"w"))==NULL) {    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     printf("Problem with forecast resultfile: %s\n", fileresf);    
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    a=matrix(1,npar,1,npar);
   }    y=matrix(1,npar,1,npar);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    x=vector(1,npar);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (j=1;j<=npar;j++) {
     movingaverage(agedeb, fage, ageminpar, mobaverage);      for (i=1;i<=npar;i++) x[i]=0;
   }      x[j]=1;
       lubksb(a,npar,indx,x);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for (i=1;i<=npar;i++){ 
   if (stepm<=12) stepsize=1;        matcov[i][j]=x[i];
        }
   agelim=AGESUP;    }
    
   hstepm=1;    printf("\n#Hessian matrix#\n");
   hstepm=hstepm/stepm;    fprintf(ficlog,"\n#Hessian matrix#\n");
   yp1=modf(dateintmean,&yp);    for (i=1;i<=npar;i++) { 
   anprojmean=yp;      for (j=1;j<=npar;j++) { 
   yp2=modf((yp1*12),&yp);        printf("%.6e ",hess[i][j]);
   mprojmean=yp;        fprintf(ficlog,"%.6e ",hess[i][j]);
   yp1=modf((yp2*30.5),&yp);      }
   jprojmean=yp;      printf("\n");
   if(jprojmean==0) jprojmean=1;      fprintf(ficlog,"\n");
   if(mprojmean==0) jprojmean=1;    }
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    /* printf("\n#Covariance matrix#\n"); */
      /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
   for(cptcov=1;cptcov<=i2;cptcov++){    /* for (i=1;i<=npar;i++) {  */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /*   for (j=1;j<=npar;j++) {  */
       k=k+1;    /*     printf("%.6e ",matcov[i][j]); */
       fprintf(ficresf,"\n#******");    /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
       for(j=1;j<=cptcoveff;j++) {    /*   } */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*   printf("\n"); */
       }    /*   fprintf(ficlog,"\n"); */
       fprintf(ficresf,"******\n");    /* } */
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    /* Recompute Inverse */
          /* for (i=1;i<=npar;i++) */
          /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    /* ludcmp(a,npar,indx,&pd); */
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      /*  printf("\n#Hessian matrix recomputed#\n"); */
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* for (j=1;j<=npar;j++) { */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /*   for (i=1;i<=npar;i++) x[i]=0; */
           nhstepm = nhstepm/hstepm;    /*   x[j]=1; */
              /*   lubksb(a,npar,indx,x); */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*   for (i=1;i<=npar;i++){  */
           oldm=oldms;savm=savms;    /*     y[i][j]=x[i]; */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /*     printf("%.3e ",y[i][j]); */
            /*     fprintf(ficlog,"%.3e ",y[i][j]); */
           for (h=0; h<=nhstepm; h++){    /*   } */
             if (h==(int) (calagedate+YEARM*cpt)) {    /*   printf("\n"); */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    /*   fprintf(ficlog,"\n"); */
             }    /* } */
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    /* Verifying the inverse matrix */
               for(i=1; i<=nlstate;i++) {                #ifdef DEBUGHESS
                 if (mobilav==1)    y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {     printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];     fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
                 }  
                    for (j=1;j<=npar;j++) {
               }      for (i=1;i<=npar;i++){ 
               if (h==(int)(calagedate+12*cpt)){        printf("%.2f ",y[i][j]);
                 fprintf(ficresf," %.3f", kk1);        fprintf(ficlog,"%.2f ",y[i][j]);
                              }
               }      printf("\n");
             }      fprintf(ficlog,"\n");
           }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #endif
         }  
       }    free_matrix(a,1,npar,1,npar);
     }    free_matrix(y,1,npar,1,npar);
   }    free_vector(x,1,npar);
            free_ivector(indx,1,npar);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* free_matrix(hess,1,npar,1,npar); */
   
   fclose(ficresf);  
 }  }
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  /*************** hessian matrix ****************/
    double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  { /* Around values of x, computes the function func and returns the scales delti and hessian */
   int *popage;    int i;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    int l=1, lmax=20;
   double *popeffectif,*popcount;    double k1,k2, res, fx;
   double ***p3mat,***tabpop,***tabpopprev;    double p2[MAXPARM+1]; /* identical to x */
   char filerespop[FILENAMELENGTH];    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     int k=0,kmax=10;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double l1;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;    fx=func(x);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    for (i=1;i<=npar;i++) p2[i]=x[i];
      for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      l1=pow(10,l);
        delts=delt;
        for(k=1 ; k <kmax; k=k+1){
   strcpy(filerespop,"pop");        delt = delta*(l1*k);
   strcat(filerespop,fileres);        p2[theta]=x[theta] +delt;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
     printf("Problem with forecast resultfile: %s\n", filerespop);        p2[theta]=x[theta]-delt;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);        k2=func(p2)-fx;
   }        /*res= (k1-2.0*fx+k2)/delt/delt; */
   printf("Computing forecasting: result on file '%s' \n", filerespop);        res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);        
   #ifdef DEBUGHESSII
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   if (mobilav==1) {  #endif
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     movingaverage(agedeb, fage, ageminpar, mobaverage);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   }          k=kmax;
         }
   stepsize=(int) (stepm+YEARM-1)/YEARM;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   if (stepm<=12) stepsize=1;          k=kmax; l=lmax*10;
          }
   agelim=AGESUP;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
            delts=delt;
   hstepm=1;        }
   hstepm=hstepm/stepm;      } /* End loop k */
      }
   if (popforecast==1) {    delti[theta]=delts;
     if((ficpop=fopen(popfile,"r"))==NULL) {    return res; 
       printf("Problem with population file : %s\n",popfile);exit(0);    
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);  }
     }  
     popage=ivector(0,AGESUP);  double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     popeffectif=vector(0,AGESUP);  {
     popcount=vector(0,AGESUP);    int i;
        int l=1, lmax=20;
     i=1;      double k1,k2,k3,k4,res,fx;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    double p2[MAXPARM+1];
        int k, kmax=1;
     imx=i;    double v1, v2, cv12, lc1, lc2;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    
   }    fx=func(x);
     for (k=1; k<=kmax; k=k+10) {
   for(cptcov=1;cptcov<=i2;cptcov++){      for (i=1;i<=npar;i++) p2[i]=x[i];
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      p2[thetai]=x[thetai]+delti[thetai]*k;
       k=k+1;      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
       fprintf(ficrespop,"\n#******");      k1=func(p2)-fx;
       for(j=1;j<=cptcoveff;j++) {    
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      p2[thetai]=x[thetai]+delti[thetai]*k;
       }      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
       fprintf(ficrespop,"******\n");      k2=func(p2)-fx;
       fprintf(ficrespop,"# Age");    
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      p2[thetai]=x[thetai]-delti[thetai]*k;
       if (popforecast==1)  fprintf(ficrespop," [Population]");      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
            k3=func(p2)-fx;
       for (cpt=0; cpt<=0;cpt++) {    
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        p2[thetai]=x[thetai]-delti[thetai]*k;
              p2[thetaj]=x[thetaj]-delti[thetaj]*k;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      k4=func(p2)-fx;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
           nhstepm = nhstepm/hstepm;      if(k1*k2*k3*k4 <0.){
                  kmax=kmax+10;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(kmax >=10){
           oldm=oldms;savm=savms;        printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
                printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           for (h=0; h<=nhstepm; h++){        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             if (h==(int) (calagedate+YEARM*cpt)) {        }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      }
             }  #ifdef DEBUGHESSIJ
             for(j=1; j<=nlstate+ndeath;j++) {      v1=hess[thetai][thetai];
               kk1=0.;kk2=0;      v2=hess[thetaj][thetaj];
               for(i=1; i<=nlstate;i++) {                    cv12=res;
                 if (mobilav==1)      /* Computing eigen value of Hessian matrix */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                 else {      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      if ((lc2 <0) || (lc1 <0) ){
                 }        printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
               }        fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
               if (h==(int)(calagedate+12*cpt)){        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   /*fprintf(ficrespop," %.3f", kk1);      }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  #endif
               }    }
             }    return res;
             for(i=1; i<=nlstate;i++){  }
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){      /* Not done yet: Was supposed to fix if not exactly at the maximum */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
                 }  /* { */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  /*   int i; */
             }  /*   int l=1, lmax=20; */
   /*   double k1,k2,k3,k4,res,fx; */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  /*   double p2[MAXPARM+1]; */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
           }  /*   int k=0,kmax=10; */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*   double l1; */
         }    
       }  /*   fx=func(x); */
    /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
   /******/  /*     l1=pow(10,l); */
   /*     delts=delt; */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  /*     for(k=1 ; k <kmax; k=k+1){ */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    /*       delt = delti*(l1*k); */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
           nhstepm = nhstepm/hstepm;  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
            /*       k1=func(p2)-fx; */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
           oldm=oldms;savm=savms;  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
           for (h=0; h<=nhstepm; h++){  /*       k2=func(p2)-fx; */
             if (h==(int) (calagedate+YEARM*cpt)) {        
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
             }  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
             for(j=1; j<=nlstate+ndeath;j++) {  /*       k3=func(p2)-fx; */
               kk1=0.;kk2=0;        
               for(i=1; i<=nlstate;i++) {                /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
               }  /*       k4=func(p2)-fx; */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
             }  /* #ifdef DEBUGHESSIJ */
           }  /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
         }  /* #endif */
       }  /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
    }  /*      k=kmax; */
   }  /*       } */
    /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*      k=kmax; l=lmax*10; */
   /*       } */
   if (popforecast==1) {  /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
     free_ivector(popage,0,AGESUP);  /*      delts=delt; */
     free_vector(popeffectif,0,AGESUP);  /*       } */
     free_vector(popcount,0,AGESUP);  /*     } /\* End loop k *\/ */
   }  /*   } */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*   delti[theta]=delts; */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*   return res;  */
   fclose(ficrespop);  /* } */
 }  
   
 /***********************************************/  /************** Inverse of matrix **************/
 /**************** Main Program *****************/  void ludcmp(double **a, int n, int *indx, double *d) 
 /***********************************************/  { 
     int i,imax,j,k; 
 int main(int argc, char *argv[])    double big,dum,sum,temp; 
 {    double *vv; 
    
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    vv=vector(1,n); 
   double agedeb, agefin,hf;    *d=1.0; 
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    for (i=1;i<=n;i++) { 
       big=0.0; 
   double fret;      for (j=1;j<=n;j++) 
   double **xi,tmp,delta;        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double dum; /* Dummy variable */      vv[i]=1.0/big; 
   double ***p3mat;    } 
   int *indx;    for (j=1;j<=n;j++) { 
   char line[MAXLINE], linepar[MAXLINE];      for (i=1;i<j;i++) { 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];        sum=a[i][j]; 
   int firstobs=1, lastobs=10;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   int sdeb, sfin; /* Status at beginning and end */        a[i][j]=sum; 
   int c,  h , cpt,l;      } 
   int ju,jl, mi;      big=0.0; 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      for (i=j;i<=n;i++) { 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        sum=a[i][j]; 
   int mobilav=0,popforecast=0;        for (k=1;k<j;k++) 
   int hstepm, nhstepm;          sum -= a[i][k]*a[k][j]; 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
   double bage, fage, age, agelim, agebase;          big=dum; 
   double ftolpl=FTOL;          imax=i; 
   double **prlim;        } 
   double *severity;      } 
   double ***param; /* Matrix of parameters */      if (j != imax) { 
   double  *p;        for (k=1;k<=n;k++) { 
   double **matcov; /* Matrix of covariance */          dum=a[imax][k]; 
   double ***delti3; /* Scale */          a[imax][k]=a[j][k]; 
   double *delti; /* Scale */          a[j][k]=dum; 
   double ***eij, ***vareij;        } 
   double **varpl; /* Variances of prevalence limits by age */        *d = -(*d); 
   double *epj, vepp;        vv[imax]=vv[j]; 
   double kk1, kk2;      } 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      indx[j]=imax; 
        if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
   char *alph[]={"a","a","b","c","d","e"}, str[4];        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
   char z[1]="c", occ;    } 
 #include <sys/time.h>    free_vector(vv,1,n);  /* Doesn't work */
 #include <time.h>  ;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  } 
    
   /* long total_usecs;  void lubksb(double **a, int n, int *indx, double b[]) 
   struct timeval start_time, end_time;  { 
      int i,ii=0,ip,j; 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    double sum; 
   getcwd(pathcd, size);   
     for (i=1;i<=n;i++) { 
   printf("\n%s",version);      ip=indx[i]; 
   if(argc <=1){      sum=b[ip]; 
     printf("\nEnter the parameter file name: ");      b[ip]=b[i]; 
     scanf("%s",pathtot);      if (ii) 
   }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   else{      else if (sum) ii=i; 
     strcpy(pathtot,argv[1]);      b[i]=sum; 
   }    } 
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    for (i=n;i>=1;i--) { 
   /*cygwin_split_path(pathtot,path,optionfile);      sum=b[i]; 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   /* cutv(path,optionfile,pathtot,'\\');*/      b[i]=sum/a[i][i]; 
     } 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  } 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);  void pstamp(FILE *fichier)
   replace(pathc,path);  {
     fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
 /*-------- arguments in the command line --------*/  }
   
   /* Log file */  /************ Frequencies ********************/
   strcat(filelog, optionfilefiname);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   strcat(filelog,".log");    /* */  {  /* Some frequencies */
   if((ficlog=fopen(filelog,"w"))==NULL)    {    
     printf("Problem with logfile %s\n",filelog);    int i, m, jk, j1, bool, z1,j;
     goto end;    int first;
   }    double ***freq; /* Frequencies */
   fprintf(ficlog,"Log filename:%s\n",filelog);    double *pp, **prop;
   fprintf(ficlog,"\n%s",version);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   fprintf(ficlog,"\nEnter the parameter file name: ");    char fileresp[FILENAMELENGTH];
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    
   fflush(ficlog);    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
   /* */    strcpy(fileresp,"P_");
   strcpy(fileres,"r");    strcat(fileresp,fileresu);
   strcat(fileres, optionfilefiname);    if((ficresp=fopen(fileresp,"w"))==NULL) {
   strcat(fileres,".txt");    /* Other files have txt extension */      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   /*---------arguments file --------*/      exit(0);
     }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     printf("Problem with optionfile %s\n",optionfile);    j1=0;
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    
     goto end;    j=cptcoveff;
   }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
   strcpy(filereso,"o");    first=1;
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
     printf("Problem with Output resultfile: %s\n", filereso);    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    /*    j1++; */
     goto end;    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
   }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
   /* Reads comments: lines beginning with '#' */        for (i=-5; i<=nlstate+ndeath; i++)  
   while((c=getc(ficpar))=='#' && c!= EOF){          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     ungetc(c,ficpar);            for(m=iagemin; m <= iagemax+3; m++)
     fgets(line, MAXLINE, ficpar);              freq[i][jk][m]=0;
     puts(line);        
     fputs(line,ficparo);        for (i=1; i<=nlstate; i++)  
   }          for(m=iagemin; m <= iagemax+3; m++)
   ungetc(c,ficpar);            prop[i][m]=0;
         
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        dateintsum=0;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        k2cpt=0;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        for (i=1; i<=imx; i++) {
 while((c=getc(ficpar))=='#' && c!= EOF){          bool=1;
     ungetc(c,ficpar);          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
     fgets(line, MAXLINE, ficpar);            for (z1=1; z1<=cptcoveff; z1++)       
     puts(line);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
     fputs(line,ficparo);                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
   }                bool=0;
   ungetc(c,ficpar);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
                    bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
                      j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
   covar=matrix(0,NCOVMAX,1,n);                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
   cptcovn=0;              } 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          }
    
   ncovmodel=2+cptcovn;          if (bool==1){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            for(m=firstpass; m<=lastpass; m++){
                k2=anint[m][i]+(mint[m][i]/12.);
   /* Read guess parameters */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   /* Reads comments: lines beginning with '#' */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   while((c=getc(ficpar))=='#' && c!= EOF){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     ungetc(c,ficpar);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     fgets(line, MAXLINE, ficpar);                if (m<lastpass) {
     puts(line);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     fputs(line,ficparo);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   }                }
   ungetc(c,ficpar);                
                  if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                  dateintsum=dateintsum+k2;
     for(i=1; i <=nlstate; i++)                  k2cpt++;
     for(j=1; j <=nlstate+ndeath-1; j++){                }
       fscanf(ficpar,"%1d%1d",&i1,&j1);                /*}*/
       fprintf(ficparo,"%1d%1d",i1,j1);            }
       if(mle==1)          }
         printf("%1d%1d",i,j);        } /* end i */
       fprintf(ficlog,"%1d%1d",i,j);         
       for(k=1; k<=ncovmodel;k++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         fscanf(ficpar," %lf",&param[i][j][k]);        pstamp(ficresp);
         if(mle==1){        if  (cptcovn>0) {
           printf(" %lf",param[i][j][k]);          fprintf(ficresp, "\n#********** Variable "); 
           fprintf(ficlog," %lf",param[i][j][k]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         }          fprintf(ficresp, "**********\n#");
         else          fprintf(ficlog, "\n#********** Variable "); 
           fprintf(ficlog," %lf",param[i][j][k]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         fprintf(ficparo," %lf",param[i][j][k]);          fprintf(ficlog, "**********\n#");
       }        }
       fscanf(ficpar,"\n");        for(i=1; i<=nlstate;i++) 
       if(mle==1)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         printf("\n");        fprintf(ficresp, "\n");
       fprintf(ficlog,"\n");        
       fprintf(ficparo,"\n");        for(i=iagemin; i <= iagemax+3; i++){
     }          if(i==iagemax+3){
              fprintf(ficlog,"Total");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          }else{
             if(first==1){
   p=param[1][1];              first=0;
                printf("See log file for details...\n");
   /* Reads comments: lines beginning with '#' */            }
   while((c=getc(ficpar))=='#' && c!= EOF){            fprintf(ficlog,"Age %d", i);
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);          for(jk=1; jk <=nlstate ; jk++){
     puts(line);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     fputs(line,ficparo);              pp[jk] += freq[jk][m][i]; 
   }          }
   ungetc(c,ficpar);          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              pos += freq[jk][m][i];
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */            if(pp[jk]>=1.e-10){
   for(i=1; i <=nlstate; i++){              if(first==1){
     for(j=1; j <=nlstate+ndeath-1; j++){                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fscanf(ficpar,"%1d%1d",&i1,&j1);              }
       printf("%1d%1d",i,j);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fprintf(ficparo,"%1d%1d",i1,j1);            }else{
       for(k=1; k<=ncovmodel;k++){              if(first==1)
         fscanf(ficpar,"%le",&delti3[i][j][k]);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         printf(" %le",delti3[i][j][k]);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         fprintf(ficparo," %le",delti3[i][j][k]);            }
       }          }
       fscanf(ficpar,"\n");  
       printf("\n");          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficparo,"\n");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     }              pp[jk] += freq[jk][m][i];
   }          }       
   delti=delti3[1][1];          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
              pos += pp[jk];
   /* Reads comments: lines beginning with '#' */            posprop += prop[jk][i];
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);          for(jk=1; jk <=nlstate ; jk++){
     fgets(line, MAXLINE, ficpar);            if(pos>=1.e-5){
     puts(line);              if(first==1)
     fputs(line,ficparo);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   ungetc(c,ficpar);            }else{
                if(first==1)
   matcov=matrix(1,npar,1,npar);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   for(i=1; i <=npar; i++){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     fscanf(ficpar,"%s",&str);            }
     if(mle==1)            if( i <= iagemax){
       printf("%s",str);              if(pos>=1.e-5){
     fprintf(ficlog,"%s",str);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     fprintf(ficparo,"%s",str);                /*probs[i][jk][j1]= pp[jk]/pos;*/
     for(j=1; j <=i; j++){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       fscanf(ficpar," %le",&matcov[i][j]);              }
       if(mle==1){              else
         printf(" %.5le",matcov[i][j]);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         fprintf(ficlog," %.5le",matcov[i][j]);            }
       }          }
       else          
         fprintf(ficlog," %.5le",matcov[i][j]);          for(jk=-1; jk <=nlstate+ndeath; jk++)
       fprintf(ficparo," %.5le",matcov[i][j]);            for(m=-1; m <=nlstate+ndeath; m++)
     }              if(freq[jk][m][i] !=0 ) {
     fscanf(ficpar,"\n");              if(first==1)
     if(mle==1)                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       printf("\n");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     fprintf(ficlog,"\n");              }
     fprintf(ficparo,"\n");          if(i <= iagemax)
   }            fprintf(ficresp,"\n");
   for(i=1; i <=npar; i++)          if(first==1)
     for(j=i+1;j<=npar;j++)            printf("Others in log...\n");
       matcov[i][j]=matcov[j][i];          fprintf(ficlog,"\n");
            }
   if(mle==1)        /*}*/
     printf("\n");    }
   fprintf(ficlog,"\n");    dateintmean=dateintsum/k2cpt; 
    
     fclose(ficresp);
     /*-------- Rewriting paramater file ----------*/    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
      strcpy(rfileres,"r");    /* "Rparameterfile */    free_vector(pp,1,nlstate);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      strcat(rfileres,".");    /* */    /* End of Freq */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  }
     if((ficres =fopen(rfileres,"w"))==NULL) {  
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  /************ Prevalence ********************/
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     }  {  
     fprintf(ficres,"#%s\n",version);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           in each health status at the date of interview (if between dateprev1 and dateprev2).
     /*-------- data file ----------*/       We still use firstpass and lastpass as another selection.
     if((fic=fopen(datafile,"r"))==NULL)    {    */
       printf("Problem with datafile: %s\n", datafile);goto end;   
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    int i, m, jk, j1, bool, z1,j;
     }  
     double **prop;
     n= lastobs;    double posprop; 
     severity = vector(1,maxwav);    double  y2; /* in fractional years */
     outcome=imatrix(1,maxwav+1,1,n);    int iagemin, iagemax;
     num=ivector(1,n);    int first; /** to stop verbosity which is redirected to log file */
     moisnais=vector(1,n);  
     annais=vector(1,n);    iagemin= (int) agemin;
     moisdc=vector(1,n);    iagemax= (int) agemax;
     andc=vector(1,n);    /*pp=vector(1,nlstate);*/
     agedc=vector(1,n);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     cod=ivector(1,n);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     weight=vector(1,n);    j1=0;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    
     mint=matrix(1,maxwav,1,n);    /*j=cptcoveff;*/
     anint=matrix(1,maxwav,1,n);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     s=imatrix(1,maxwav+1,1,n);    
     adl=imatrix(1,maxwav+1,1,n);        first=1;
     tab=ivector(1,NCOVMAX);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
     ncodemax=ivector(1,8);      /*for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;*/
     i=1;        
     while (fgets(line, MAXLINE, fic) != NULL)    {        for (i=1; i<=nlstate; i++)  
       if ((i >= firstobs) && (i <=lastobs)) {          for(m=iagemin; m <= iagemax+3; m++)
                    prop[i][m]=0.0;
         for (j=maxwav;j>=1;j--){       
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        for (i=1; i<=imx; i++) { /* Each individual */
           strcpy(line,stra);          bool=1;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          if  (cptcovn>0) {
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            for (z1=1; z1<=cptcoveff; z1++) 
         }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) 
                        bool=0;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          } 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for (j=ncovcol;j>=1;j--){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         num[i]=atol(stra);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                          prop[s[m][i]][iagemax+3] += weight[i]; 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){                } 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              }
             } /* end selection of waves */
         i=i+1;          }
       }        }
     }        for(i=iagemin; i <= iagemax+3; i++){  
     /* printf("ii=%d", ij);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
        scanf("%d",i);*/            posprop += prop[jk][i]; 
   imx=i-1; /* Number of individuals */          } 
           
   /* for (i=1; i<=imx; i++){          for(jk=1; jk <=nlstate ; jk++){     
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            if( i <=  iagemax){ 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              if(posprop>=1.e-5){ 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                probs[i][jk][j1]= prop[jk][i]/posprop;
     }*/              } else{
    /*  for (i=1; i<=imx; i++){                if(first==1){
      if (s[4][i]==9)  s[4][i]=-1;                  first=0;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
                  }
                }
   /* Calculation of the number of parameter from char model*/            } 
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */          }/* end jk */ 
   Tprod=ivector(1,15);        }/* end i */ 
   Tvaraff=ivector(1,15);      /*} *//* end i1 */
   Tvard=imatrix(1,15,1,2);    } /* end j1 */
   Tage=ivector(1,15);          
        /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   if (strlen(model) >1){    /*free_vector(pp,1,nlstate);*/
     j=0, j1=0, k1=1, k2=1;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     j=nbocc(model,'+');  }  /* End of prevalence */
     j1=nbocc(model,'*');  
     cptcovn=j+1;  /************* Waves Concatenation ***************/
     cptcovprod=j1;  
      void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     strcpy(modelsav,model);  {
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       printf("Error. Non available option model=%s ",model);       Death is a valid wave (if date is known).
       fprintf(ficlog,"Error. Non available option model=%s ",model);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       goto end;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     }       and mw[mi+1][i]. dh depends on stepm.
           */
     for(i=(j+1); i>=1;i--){  
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    int i, mi, m;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/       double sum=0., jmean=0.;*/
       /*scanf("%d",i);*/    int first;
       if (strchr(strb,'*')) {  /* Model includes a product */    int j, k=0,jk, ju, jl;
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    double sum=0.;
         if (strcmp(strc,"age")==0) { /* Vn*age */    first=0;
           cptcovprod--;    jmin=100000;
           cutv(strb,stre,strd,'V');    jmax=-1;
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    jmean=0.;
           cptcovage++;    for(i=1; i<=imx; i++){
             Tage[cptcovage]=i;      mi=0;
             /*printf("stre=%s ", stre);*/      m=firstpass;
         }      while(s[m][i] <= nlstate){
         else if (strcmp(strd,"age")==0) { /* or age*Vn */        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           cptcovprod--;          mw[++mi][i]=m;
           cutv(strb,stre,strc,'V');        if(m >=lastpass)
           Tvar[i]=atoi(stre);          break;
           cptcovage++;        else
           Tage[cptcovage]=i;          m++;
         }      }/* end while */
         else {  /* Age is not in the model */      if (s[m][i] > nlstate){
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/        mi++;     /* Death is another wave */
           Tvar[i]=ncovcol+k1;        /* if(mi==0)  never been interviewed correctly before death */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */           /* Only death is a correct wave */
           Tprod[k1]=i;        mw[mi][i]=m;
           Tvard[k1][1]=atoi(strc); /* m*/      }
           Tvard[k1][2]=atoi(stre); /* n */  
           Tvar[cptcovn+k2]=Tvard[k1][1];      wav[i]=mi;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      if(mi==0){
           for (k=1; k<=lastobs;k++)        nbwarn++;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        if(first==0){
           k1++;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           k2=k2+2;          first=1;
         }        }
       }        if(first==1){
       else { /* no more sum */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        }
        /*  scanf("%d",i);*/      } /* end mi==0 */
       cutv(strd,strc,strb,'V');    } /* End individuals */
       Tvar[i]=atoi(strc);  
       }    for(i=1; i<=imx; i++){
       strcpy(modelsav,stra);        for(mi=1; mi<wav[i];mi++){
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        if (stepm <=0)
         scanf("%d",i);*/          dh[mi][i]=1;
     } /* end of loop + */        else{
   } /* end model */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
              if (agedc[i] < 2*AGESUP) {
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   printf("cptcovprod=%d ", cptcovprod);              if(j==0) j=1;  /* Survives at least one month after exam */
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);              else if(j<0){
   scanf("%d ",i);*/                nberr++;
     fclose(fic);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
     /*  if(mle==1){*/                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     if (weightopt != 1) { /* Maximisation without weights*/                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(i=1;i<=n;i++) weight[i]=1.0;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     }              }
     /*-calculation of age at interview from date of interview and age at death -*/              k=k+1;
     agev=matrix(1,maxwav,1,imx);              if (j >= jmax){
                 jmax=j;
     for (i=1; i<=imx; i++) {                ijmax=i;
       for(m=2; (m<= maxwav); m++) {              }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){              if (j <= jmin){
          anint[m][i]=9999;                jmin=j;
          s[m][i]=-1;                ijmin=i;
        }              }
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;              sum=sum+j;
       }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
     for (i=1; i<=imx; i++)  {          }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          else{
       for(m=1; (m<= maxwav); m++){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         if(s[m][i] >0){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)            k=k+1;
               if(moisdc[i]!=99 && andc[i]!=9999)            if (j >= jmax) {
                 agev[m][i]=agedc[i];              jmax=j;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/              ijmax=i;
            else {            }
               if (andc[i]!=9999){            else if (j <= jmin){
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              jmin=j;
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);              ijmin=i;
               agev[m][i]=-1;            }
               }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           }            if(j<0){
           else if(s[m][i] !=9){ /* Should no more exist */              nberr++;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             if(mint[m][i]==99 || anint[m][i]==9999)              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               agev[m][i]=1;            }
             else if(agev[m][i] <agemin){            sum=sum+j;
               agemin=agev[m][i];          }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          jk= j/stepm;
             }          jl= j -jk*stepm;
             else if(agev[m][i] >agemax){          ju= j -(jk+1)*stepm;
               agemax=agev[m][i];          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            if(jl==0){
             }              dh[mi][i]=jk;
             /*agev[m][i]=anint[m][i]-annais[i];*/              bh[mi][i]=0;
             /*   agev[m][i] = age[i]+2*m;*/            }else{ /* We want a negative bias in order to only have interpolation ie
           }                    * to avoid the price of an extra matrix product in likelihood */
           else { /* =9 */              dh[mi][i]=jk+1;
             agev[m][i]=1;              bh[mi][i]=ju;
             s[m][i]=-1;            }
           }          }else{
         }            if(jl <= -ju){
         else /*= 0 Unknown */              dh[mi][i]=jk;
           agev[m][i]=1;              bh[mi][i]=jl;       /* bias is positive if real duration
       }                                   * is higher than the multiple of stepm and negative otherwise.
                                       */
     }            }
     for (i=1; i<=imx; i++)  {            else{
       for(m=1; (m<= maxwav); m++){              dh[mi][i]=jk+1;
         if (s[m][i] > (nlstate+ndeath)) {              bh[mi][i]=ju;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);              }
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);              if(dh[mi][i]==0){
           goto end;              dh[mi][i]=1; /* At least one step */
         }              bh[mi][i]=ju; /* At least one step */
       }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     }            }
           } /* end if mle */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        }
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      } /* end wave */
     }
     free_vector(severity,1,maxwav);    jmean=sum/k;
     free_imatrix(outcome,1,maxwav+1,1,n);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     free_vector(moisnais,1,n);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     free_vector(annais,1,n);   }
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/  /*********** Tricode ****************************/
     free_vector(moisdc,1,n);  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
     free_vector(andc,1,n);  {
     /**< Uses cptcovn+2*cptcovprod as the number of covariates */
        /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
     wav=ivector(1,imx);     * Boring subroutine which should only output nbcode[Tvar[j]][k]
     dh=imatrix(1,lastpass-firstpass+1,1,imx);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);     * nbcode[Tvar[j]][1]= 
        */
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     int modmaxcovj=0; /* Modality max of covariates j */
     int cptcode=0; /* Modality max of covariates j */
       Tcode=ivector(1,100);    int modmincovj=0; /* Modality min of covariates j */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    cptcoveff=0; 
         
    codtab=imatrix(1,100,1,10);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
    h=0;  
    m=pow(2,cptcoveff);    /* Loop on covariates without age and products */
      for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
    for(k=1;k<=cptcoveff; k++){      for (k=-1; k < maxncov; k++) Ndum[k]=0;
      for(i=1; i <=(m/pow(2,k));i++){      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
        for(j=1; j <= ncodemax[k]; j++){                                 modality of this covariate Vj*/ 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
            h++;                                      * If product of Vn*Vm, still boolean *:
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
          }        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
        }                                        modality of the nth covariate of individual i. */
      }        if (ij > modmaxcovj)
    }          modmaxcovj=ij; 
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        else if (ij < modmincovj) 
       codtab[1][2]=1;codtab[2][2]=2; */          modmincovj=ij; 
    /* for(i=1; i <=m ;i++){        if ((ij < -1) && (ij > NCOVMAX)){
       for(k=1; k <=cptcovn; k++){          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          exit(1);
       }        }else
       printf("\n");        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
       }        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
       scanf("%d",i);*/        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
            /* getting the maximum value of the modality of the covariate
    /* Calculates basic frequencies. Computes observed prevalence at single age           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
        and prints on file fileres'p'. */           female is 1, then modmaxcovj=1.*/
       } /* end for loop on individuals i */
          printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
          fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      cptcode=modmaxcovj;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     /*for (i=0; i<=cptcode; i++) {*/
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
              fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
     /* For Powell, parameters are in a vector p[] starting at p[1]        if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          if( k != -1){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
                                covariate for which somebody answered excluding 
     if(mle==1){                               undefined. Usually 2: 0 and 1. */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          }
     }          ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
                                   covariate for which somebody answered including 
     /*--------- results files --------------*/                               undefined. Usually 3: -1, 0 and 1. */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);        }
          /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
            historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
    jk=1;      } /* Ndum[-1] number of undefined modalities */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
    for(i=1,jk=1; i <=nlstate; i++){         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
      for(k=1; k <=(nlstate+ndeath); k++){         modmincovj=3; modmaxcovj = 7;
        if (k != i)         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
          {         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
            printf("%d%d ",i,k);         defining two dummy variables: variables V1_1 and V1_2.
            fprintf(ficlog,"%d%d ",i,k);         nbcode[Tvar[j]][ij]=k;
            fprintf(ficres,"%1d%1d ",i,k);         nbcode[Tvar[j]][1]=0;
            for(j=1; j <=ncovmodel; j++){         nbcode[Tvar[j]][2]=1;
              printf("%f ",p[jk]);         nbcode[Tvar[j]][3]=2;
              fprintf(ficlog,"%f ",p[jk]);         To be continued (not working yet).
              fprintf(ficres,"%f ",p[jk]);      */
              jk++;      ij=0; /* ij is similar to i but can jump over null modalities */
            }      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
            printf("\n");          if (Ndum[i] == 0) { /* If nobody responded to this modality k */
            fprintf(ficlog,"\n");            break;
            fprintf(ficres,"\n");          }
          }          ij++;
      }          nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
    }          cptcode = ij; /* New max modality for covar j */
    if(mle==1){      } /* end of loop on modality i=-1 to 1 or more */
      /* Computing hessian and covariance matrix */        
      ftolhess=ftol; /* Usually correct */      /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
      hesscov(matcov, p, npar, delti, ftolhess, func);      /*  /\*recode from 0 *\/ */
    }      /*                               k is a modality. If we have model=V1+V1*sex  */
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
    printf("# Scales (for hessian or gradient estimation)\n");      /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      /*  } */
    for(i=1,jk=1; i <=nlstate; i++){      /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
      for(j=1; j <=nlstate+ndeath; j++){      /*  if (ij > ncodemax[j]) { */
        if (j!=i) {      /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
          fprintf(ficres,"%1d%1d",i,j);      /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
          printf("%1d%1d",i,j);      /*    break; */
          fprintf(ficlog,"%1d%1d",i,j);      /*  } */
          for(k=1; k<=ncovmodel;k++){      /*   }  /\* end of loop on modality k *\/ */
            printf(" %.5e",delti[jk]);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
            fprintf(ficlog," %.5e",delti[jk]);    
            fprintf(ficres," %.5e",delti[jk]);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
            jk++;    
          }    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
          printf("\n");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
          fprintf(ficlog,"\n");     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
          fprintf(ficres,"\n");     Ndum[ij]++; /* Might be supersed V1 + V1*age */
        }   } 
      }  
    }   ij=0;
       for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
    k=1;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     if((Ndum[i]!=0) && (i<=ncovcol)){
    if(mle==1)       ij++;
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       Tvaraff[ij]=i; /*For printing (unclear) */
    for(i=1;i<=npar;i++){     }else{
      /*  if (k>nlstate) k=1;         /* Tvaraff[ij]=0; */
          i1=(i-1)/(ncovmodel*nlstate)+1;     }
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);   }
          printf("%s%d%d",alph[k],i1,tab[i]);*/   /* ij--; */
      fprintf(ficres,"%3d",i);   cptcoveff=ij; /*Number of total covariates*/
      if(mle==1)  
        printf("%3d",i);  }
      fprintf(ficlog,"%3d",i);  
      for(j=1; j<=i;j++){  
        fprintf(ficres," %.5e",matcov[i][j]);  /*********** Health Expectancies ****************/
        if(mle==1)  
          printf(" %.5e",matcov[i][j]);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
        fprintf(ficlog," %.5e",matcov[i][j]);  
      }  {
      fprintf(ficres,"\n");    /* Health expectancies, no variances */
      if(mle==1)    int i, j, nhstepm, hstepm, h, nstepm;
        printf("\n");    int nhstepma, nstepma; /* Decreasing with age */
      fprintf(ficlog,"\n");    double age, agelim, hf;
      k++;    double ***p3mat;
    }    double eip;
      
    while((c=getc(ficpar))=='#' && c!= EOF){    pstamp(ficreseij);
      ungetc(c,ficpar);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
      fgets(line, MAXLINE, ficpar);    fprintf(ficreseij,"# Age");
      puts(line);    for(i=1; i<=nlstate;i++){
      fputs(line,ficparo);      for(j=1; j<=nlstate;j++){
    }        fprintf(ficreseij," e%1d%1d ",i,j);
    ungetc(c,ficpar);      }
    estepm=0;      fprintf(ficreseij," e%1d. ",i);
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    }
    if (estepm==0 || estepm < stepm) estepm=stepm;    fprintf(ficreseij,"\n");
    if (fage <= 2) {  
      bage = ageminpar;    
      fage = agemaxpar;    if(estepm < stepm){
    }      printf ("Problem %d lower than %d\n",estepm, stepm);
        }
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    else  hstepm=estepm;   
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    /* We compute the life expectancy from trapezoids spaced every estepm months
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);     * This is mainly to measure the difference between two models: for example
         * if stepm=24 months pijx are given only every 2 years and by summing them
    while((c=getc(ficpar))=='#' && c!= EOF){     * we are calculating an estimate of the Life Expectancy assuming a linear 
      ungetc(c,ficpar);     * progression in between and thus overestimating or underestimating according
      fgets(line, MAXLINE, ficpar);     * to the curvature of the survival function. If, for the same date, we 
      puts(line);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      fputs(line,ficparo);     * to compare the new estimate of Life expectancy with the same linear 
    }     * hypothesis. A more precise result, taking into account a more precise
    ungetc(c,ficpar);     * curvature will be obtained if estepm is as small as stepm. */
    
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    /* For example we decided to compute the life expectancy with the smallest unit */
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       nhstepm is the number of hstepm from age to agelim 
           nstepm is the number of stepm from age to agelin. 
    while((c=getc(ficpar))=='#' && c!= EOF){       Look at hpijx to understand the reason of that which relies in memory size
      ungetc(c,ficpar);       and note for a fixed period like estepm months */
      fgets(line, MAXLINE, ficpar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      puts(line);       survival function given by stepm (the optimization length). Unfortunately it
      fputs(line,ficparo);       means that if the survival funtion is printed only each two years of age and if
    }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    ungetc(c,ficpar);       results. So we changed our mind and took the option of the best precision.
      */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    agelim=AGESUP;
     /* If stepm=6 months */
   fscanf(ficpar,"pop_based=%d\n",&popbased);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   fprintf(ficparo,"pop_based=%d\n",popbased);           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   fprintf(ficres,"pop_based=%d\n",popbased);        
    /* nhstepm age range expressed in number of stepm */
   while((c=getc(ficpar))=='#' && c!= EOF){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     ungetc(c,ficpar);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fgets(line, MAXLINE, ficpar);    /* if (stepm >= YEARM) hstepm=1;*/
     puts(line);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fputs(line,ficparo);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }  
   ungetc(c,ficpar);    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      /* if (stepm >= YEARM) hstepm=1;*/
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
 while((c=getc(ficpar))=='#' && c!= EOF){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     ungetc(c,ficpar);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     fgets(line, MAXLINE, ficpar);      
     puts(line);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     fputs(line,ficparo);      
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   ungetc(c,ficpar);      
       printf("%d|",(int)age);fflush(stdout);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 /*------------ gnuplot -------------*/            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   strcpy(optionfilegnuplot,optionfilefiname);            
   strcat(optionfilegnuplot,".gp");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);          }
   }  
   fclose(ficgp);      fprintf(ficreseij,"%3.0f",age );
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);      for(i=1; i<=nlstate;i++){
 /*--------- index.htm --------*/        eip=0;
         for(j=1; j<=nlstate;j++){
   strcpy(optionfilehtm,optionfile);          eip +=eij[i][j][(int)age];
   strcat(optionfilehtm,".htm");          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        }
     printf("Problem with %s \n",optionfilehtm), exit(0);        fprintf(ficreseij,"%9.4f", eip );
   }      }
       fprintf(ficreseij,"\n");
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    }
 \n    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 Total number of observations=%d <br>\n    printf("\n");
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    fprintf(ficlog,"\n");
 <hr  size=\"2\" color=\"#EC5E5E\">    
  <ul><li><h4>Parameter files</h4>\n  }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  
  - Log file of the run: <a href=\"%s\">%s</a><br>\n  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);  
   fclose(fichtm);  {
     /* Covariances of health expectancies eij and of total life expectancies according
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);     to initial status i, ei. .
      */
 /*------------ free_vector  -------------*/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
  chdir(path);    int nhstepma, nstepma; /* Decreasing with age */
      double age, agelim, hf;
  free_ivector(wav,1,imx);    double ***p3matp, ***p3matm, ***varhe;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    double **dnewm,**doldm;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      double *xp, *xm;
  free_ivector(num,1,n);    double **gp, **gm;
  free_vector(agedc,1,n);    double ***gradg, ***trgradg;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    int theta;
  fclose(ficparo);  
  fclose(ficres);    double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   /*--------------- Prevalence limit --------------*/    xp=vector(1,npar);
      xm=vector(1,npar);
   strcpy(filerespl,"pl");    dnewm=matrix(1,nlstate*nlstate,1,npar);
   strcat(filerespl,fileres);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    pstamp(ficresstdeij);
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   }    fprintf(ficresstdeij,"# Age");
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    for(i=1; i<=nlstate;i++){
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);      for(j=1; j<=nlstate;j++)
   fprintf(ficrespl,"#Prevalence limit\n");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   fprintf(ficrespl,"#Age ");      fprintf(ficresstdeij," e%1d. ",i);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    }
   fprintf(ficrespl,"\n");    fprintf(ficresstdeij,"\n");
    
   prlim=matrix(1,nlstate,1,nlstate);    pstamp(ficrescveij);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficrescveij,"# Age");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for(i=1; i<=nlstate;i++)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(j=1; j<=nlstate;j++){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        cptj= (j-1)*nlstate+i;
   k=0;        for(i2=1; i2<=nlstate;i2++)
   agebase=ageminpar;          for(j2=1; j2<=nlstate;j2++){
   agelim=agemaxpar;            cptj2= (j2-1)*nlstate+i2;
   ftolpl=1.e-10;            if(cptj2 <= cptj)
   i1=cptcoveff;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   if (cptcovn < 1){i1=1;}          }
       }
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficrescveij,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
         k=k+1;    if(estepm < stepm){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficrespl,"\n#******");    }
         printf("\n#******");    else  hstepm=estepm;   
         fprintf(ficlog,"\n#******");    /* We compute the life expectancy from trapezoids spaced every estepm months
         for(j=1;j<=cptcoveff;j++) {     * This is mainly to measure the difference between two models: for example
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     * if stepm=24 months pijx are given only every 2 years and by summing them
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     * we are calculating an estimate of the Life Expectancy assuming a linear 
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     * progression in between and thus overestimating or underestimating according
         }     * to the curvature of the survival function. If, for the same date, we 
         fprintf(ficrespl,"******\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         printf("******\n");     * to compare the new estimate of Life expectancy with the same linear 
         fprintf(ficlog,"******\n");     * hypothesis. A more precise result, taking into account a more precise
             * curvature will be obtained if estepm is as small as stepm. */
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /* For example we decided to compute the life expectancy with the smallest unit */
           fprintf(ficrespl,"%.0f",age );    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           for(i=1; i<=nlstate;i++)       nhstepm is the number of hstepm from age to agelim 
           fprintf(ficrespl," %.5f", prlim[i][i]);       nstepm is the number of stepm from age to agelin. 
           fprintf(ficrespl,"\n");       Look at hpijx to understand the reason of that which relies in memory size
         }       and note for a fixed period like estepm months */
       }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     }       survival function given by stepm (the optimization length). Unfortunately it
   fclose(ficrespl);       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /*------------- h Pij x at various ages ------------*/       results. So we changed our mind and took the option of the best precision.
      */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    /* If stepm=6 months */
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    /* nhstepm age range expressed in number of stepm */
   }    agelim=AGESUP;
   printf("Computing pij: result on file '%s' \n", filerespij);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      /* if (stepm >= YEARM) hstepm=1;*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   /*if (stepm<=24) stepsize=2;*/    
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   agelim=AGESUP;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   hstepm=stepsize*YEARM; /* Every year of age */    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
   /* hstepm=1;   aff par mois*/    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
   k=0;    for (age=bage; age<=fage; age ++){ 
   for(cptcov=1;cptcov<=i1;cptcov++){      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       k=k+1;      /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficrespij,"\n#****** ");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* If stepm=6 months */
         fprintf(ficrespij,"******\n");      /* Computed by stepm unit matrices, product of hstepma matrices, stored
                 in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
       /* Computing  Variances of health expectancies */
           /*      nhstepm=nhstepm*YEARM; aff par mois*/      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(theta=1; theta <=npar; theta++){
           oldm=oldms;savm=savms;        for(i=1; i<=npar; i++){ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            xp[i] = x[i] + (i==theta ?delti[theta]:0);
           fprintf(ficrespij,"# Age");          xm[i] = x[i] - (i==theta ?delti[theta]:0);
           for(i=1; i<=nlstate;i++)        }
             for(j=1; j<=nlstate+ndeath;j++)        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
               fprintf(ficrespij," %1d-%1d",i,j);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
           fprintf(ficrespij,"\n");    
            for (h=0; h<=nhstepm; h++){        for(j=1; j<= nlstate; j++){
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          for(i=1; i<=nlstate; i++){
             for(i=1; i<=nlstate;i++)            for(h=0; h<=nhstepm-1; h++){
               for(j=1; j<=nlstate+ndeath;j++)              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             fprintf(ficrespij,"\n");            }
              }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           fprintf(ficrespij,"\n");       
         }        for(ij=1; ij<= nlstate*nlstate; ij++)
     }          for(h=0; h<=nhstepm-1; h++){
   }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);      }/* End theta */
       
   fclose(ficrespij);      
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
   /*---------- Forecasting ------------------*/          for(theta=1; theta <=npar; theta++)
   if((stepm == 1) && (strcmp(model,".")==0)){            trgradg[h][j][theta]=gradg[h][theta][j];
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
   }       for(ij=1;ij<=nlstate*nlstate;ij++)
   else{        for(ji=1;ji<=nlstate*nlstate;ji++)
     erreur=108;          varhe[ij][ji][(int)age] =0.;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);       printf("%d|",(int)age);fflush(stdout);
   }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
   /*---------- Health expectancies and variances ------------*/          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   strcpy(filerest,"t");          for(ij=1;ij<=nlstate*nlstate;ij++)
   strcat(filerest,fileres);            for(ji=1;ji<=nlstate*nlstate;ji++)
   if((ficrest=fopen(filerest,"w"))==NULL) {              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        }
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;      }
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      /* Computing expectancies */
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   strcpy(filerese,"e");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   strcat(filerese,fileres);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   if((ficreseij=fopen(filerese,"w"))==NULL) {            
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }          }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   strcpy(fileresv,"v");        eip=0.;
   strcat(fileresv,fileres);        vip=0.;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        for(j=1; j<=nlstate;j++){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          eip += eij[i][j][(int)age];
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        }
   calagedate=-1;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      }
       fprintf(ficresstdeij,"\n");
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficrescveij,"%3.0f",age );
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(i=1; i<=nlstate;i++)
       k=k+1;        for(j=1; j<=nlstate;j++){
       fprintf(ficrest,"\n#****** ");          cptj= (j-1)*nlstate+i;
       for(j=1;j<=cptcoveff;j++)          for(i2=1; i2<=nlstate;i2++)
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(j2=1; j2<=nlstate;j2++){
       fprintf(ficrest,"******\n");              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
       fprintf(ficreseij,"\n#****** ");                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
       for(j=1;j<=cptcoveff;j++)            }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       fprintf(ficreseij,"******\n");      fprintf(ficrescveij,"\n");
      
       fprintf(ficresvij,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficresvij,"******\n");    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       oldm=oldms;savm=savms;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      printf("\n");
      fprintf(ficlog,"\n");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    free_vector(xm,1,npar);
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    free_vector(xp,1,npar);
       if(popbased==1){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
        }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  /************ Variance ******************/
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyear, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       fprintf(ficrest,"\n");  {
     /* Variance of health expectancies */
       epj=vector(1,nlstate+1);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       for(age=bage; age <=fage ;age++){    /* double **newm;*/
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
         if (popbased==1) {    
           for(i=1; i<=nlstate;i++)    int movingaverage();
             prlim[i][i]=probs[(int)age][i][k];    double **dnewm,**doldm;
         }    double **dnewmp,**doldmp;
            int i, j, nhstepm, hstepm, h, nstepm ;
         fprintf(ficrest," %4.0f",age);    int k;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    double *xp;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    double **gp, **gm;  /* for var eij */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    double ***gradg, ***trgradg; /*for var eij */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    double **gradgp, **trgradgp; /* for var p point j */
           }    double *gpp, *gmp; /* for var p point j */
           epj[nlstate+1] +=epj[j];    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         }    double ***p3mat;
     double age,agelim, hf;
         for(i=1, vepp=0.;i <=nlstate;i++)    double ***mobaverage;
           for(j=1;j <=nlstate;j++)    int theta;
             vepp += vareij[i][j][(int)age];    char digit[4];
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    char digitp[25];
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    char fileresprobmorprev[FILENAMELENGTH];
         }  
         fprintf(ficrest,"\n");    if(popbased==1){
       }      if(mobilav!=0)
     }        strcpy(digitp,"-POPULBASED-MOBILAV_");
   }      else strcpy(digitp,"-POPULBASED-NOMOBIL_");
 free_matrix(mint,1,maxwav,1,n);    }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    else 
     free_vector(weight,1,n);      strcpy(digitp,"-STABLBASED_");
   fclose(ficreseij);  
   fclose(ficresvij);    if (mobilav!=0) {
   fclose(ficrest);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficpar);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   free_vector(epj,1,nlstate+1);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /*------- Variance limit prevalence------*/        }
     }
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);    strcpy(fileresprobmorprev,"PRMORPREV-"); 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    sprintf(digit,"%-d",ij);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     exit(0);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    strcat(fileresprobmorprev,fileresu);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   k=0;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficresvpl,"\n#****** ");   
       for(j=1;j<=cptcoveff;j++)    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    pstamp(ficresprobmorprev);
       fprintf(ficresvpl,"******\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
          fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       oldm=oldms;savm=savms;      fprintf(ficresprobmorprev," p.%-d SE",j);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      for(i=1; i<=nlstate;i++)
     }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
  }    }  
     fprintf(ficresprobmorprev,"\n");
   fclose(ficresvpl);    fprintf(ficgp,"\n# Routine varevsij");
     fprintf(ficgp,"\nunset title \n");
   /*---------- End : free ----------------*/  /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /*   } */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      pstamp(ficresvij);
      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    if(popbased==1)
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    else
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
      fprintf(ficresvij,"# Age");
   free_matrix(matcov,1,npar,1,npar);    for(i=1; i<=nlstate;i++)
   free_vector(delti,1,npar);      for(j=1; j<=nlstate;j++)
   free_matrix(agev,1,maxwav,1,imx);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    fprintf(ficresvij,"\n");
   
   fprintf(fichtm,"\n</body>");    xp=vector(1,npar);
   fclose(fichtm);    dnewm=matrix(1,nlstate,1,npar);
   fclose(ficgp);    doldm=matrix(1,nlstate,1,nlstate);
      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if(erreur >0){  
     printf("End of Imach with error or warning %d\n",erreur);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    gpp=vector(nlstate+1,nlstate+ndeath);
   }else{    gmp=vector(nlstate+1,nlstate+ndeath);
    printf("End of Imach\n");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
    fprintf(ficlog,"End of Imach\n");    
   }    if(estepm < stepm){
   printf("See log file on %s\n",filelog);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fclose(ficlog);    }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    else  hstepm=estepm;   
      /* For example we decided to compute the life expectancy with the smallest unit */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   /*printf("Total time was %d uSec.\n", total_usecs);*/       nhstepm is the number of hstepm from age to agelim 
   /*------ End -----------*/       nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  end:       survival function given by stepm (the optimization length). Unfortunately it
 #ifdef windows       means that if the survival funtion is printed every two years of age and if
   /* chdir(pathcd);*/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 #endif       results. So we changed our mind and took the option of the best precision.
  /*system("wgnuplot graph.plt");*/    */
  /*system("../gp37mgw/wgnuplot graph.plt");*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  /*system("cd ../gp37mgw");*/    agelim = AGESUP;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  strcpy(plotcmd,GNUPLOTPROGRAM);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
  strcat(plotcmd," ");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  strcat(plotcmd,optionfilegnuplot);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  system(plotcmd);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
 #ifdef windows      gm=matrix(0,nhstepm,1,nlstate);
   while (z[0] != 'q') {  
     /* chdir(path); */  
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      for(theta=1; theta <=npar; theta++){
     scanf("%s",z);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     if (z[0] == 'c') system("./imach");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     else if (z[0] == 'e') system(optionfilehtm);        }
     else if (z[0] == 'g') system(plotcmd);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     else if (z[0] == 'q') exit(0);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij);
   }  
 #endif        if (popbased==1) {
 }          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear, ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyear,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
     fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyear, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"PROB_"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"PROBCOV_"); 
     strcat(fileresprobcov,fileresu);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"PROBCOR_"); 
     strcat(fileresprobcor,fileresu);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
             /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter svg size 640, 480");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">\
   %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
            printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
          }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* aij, bij */
        fprintf(fichtm,"<br>- Logit model, for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
   <img src=\"%s_%d-1.svg\">",subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
        /* Pij */
        fprintf(fichtm,"<br>\n- Pij or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
   <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>\n- Iij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\
    incidence (rates) are the limit when h tends to zero of the ratio of the probability hPij \
   divided by h: hPij/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
   <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
        /* Survival functions (period) in state j */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
        }
        /* State specific survival functions (period) */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions from state %d in any different live states and total.\
    Or probability to survive in various states (1 to %d) being in state %d at different ages.\
    <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
        }
        /* Period (stable) prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s%d%d.svg\">%s%d%d.svg</a> <br> \
   <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
        }
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
   But because parameters are usually highly correlated (a higher incidence of disability \
   and a higher incidence of recovery can give very close observed transition) it might \
   be very useful to look not only at linear confidence intervals estimated from the \
   variances but at the covariance matrix. And instead of looking at the estimated coefficients \
   (parameters) of the logistic regression, it might be more meaningful to visualize the \
   covariance matrix of the one-step probabilities. \
   See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
   
    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.svg <br>\
   <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s_%d.svg<br>\
   <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
     int vpopbased;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     /* Contribution to likelihood */
     /* Plot the probability implied in the likelihood */
       fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
       fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
       /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
       fprintf(ficgp,"\nset ter png size 640, 480");
   /* nice for mle=4 plot by number of matrix products.
      replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
   /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
       /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
       fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
       fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):5 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
       fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
       fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):4 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
         fprintf(ficgp,"unset log;\n plot  \"%s\"",subdirf(fileresilk));
         fprintf(ficgp,"  u  2:($4 == %d && $5==%d ? $9 : 1/0):5 t \"p%d%d\" with points lc variable \\\n",i,1,i,1);
         for (j=2; j<= nlstate+ndeath ; j ++) {
           fprintf(ficgp,", \"\" u  2:($4 == %d && $5==%d ? $9 : 1/0):5 t \"p%d%d\" with points lc variable ",i,j,i,j);
         }
         fprintf(ficgp,";\nset out; unset ylabel;\n"); 
       }
       /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */              
       /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
       /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
       fprintf(ficgp,"\nset out;unset log\n");
       /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
        fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
        fprintf(ficgp,"\nset out \n");
       } /* k1 */
     } /* cpt */
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
         if(vpopbased==0)
           fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
         else
           fprintf(ficgp,"\nreplot ");
         for (i=1; i<= nlstate+1 ; i ++) {
           k=2*i;
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
           else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           fprintf(ficgp,"\" t\"\" w l lt 0,");
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
           else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
         } /* state */
       } /* vpopbased */
       fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
     } /* k1 */
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
         fprintf(ficgp,"set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* Survival functions (period) from state i in state j by initial state i */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'lij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate+ndeath ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
         k=3;
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           if(j==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(cpt-1) +j;
           fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
           /* for (i=2; i<= nlstate+ndeath ; i ++) */
           /*   fprintf(ficgp,"+$%d",k+l+i-1); */
           fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
         } /* nlstate */
         fprintf(ficgp,", '' ");
         fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           l=(nlstate+ndeath)*(cpt-1) +j;
           if(j < nlstate)
             fprintf(ficgp,"$%d +",k+l);
           else
             fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
         }
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* CV preval stable (period) for each covariate */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
          fprintf(ficgp,"\nset ter svg size 640, 480 ");
          if (ng==1){
            fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
            fprintf(ficgp,"\nunset log y");
          }else if (ng==2){
            fprintf(ficgp,"\nset ylabel \"Probability\"\n");
            fprintf(ficgp,"\nset log y");
          }else if (ng==3){
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
            fprintf(ficgp,"\nset log y");
          }else
            fprintf(ficgp,"\nunset title ");
          fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                switch( ng) {
                case 1:
                  if(nagesqr==0)
                    fprintf(ficgp," p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 2: /* ng=2 */
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                      fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 3:
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                  break;
                }
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                  if(ij <=cptcovage) { /* Bug valgrind */
                    if((j-2)==Tage[ij]) { /* Bug valgrind */
                      fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                      /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                      ij++;
                    }
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                }
                if(ng != 1){
                  fprintf(ficgp,")/(1");
                
                  for(k1=1; k1 <=nlstate; k1++){ 
                    if(nagesqr==0)
                      fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                    else /* nagesqr =1 */
                      fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
                    
                    ij=1;
                    for(j=3; j <=ncovmodel-nagesqr; j++){
                      if(ij <=cptcovage) { /* Bug valgrind */
                        if((j-2)==Tage[ij]) { /* Bug valgrind */
                          fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                          /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                          ij++;
                        }
                      }
                      else
                        fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                    }
                    fprintf(ficgp,")");
                  }
                  fprintf(ficgp,")");
                  if(ng ==2)
                    fprintf(ficgp," t \"p%d%d\" ", k2,k);
                  else /* ng= 3 */
                    fprintf(ficgp," t \"i%d%d\" ", k2,k);
                }else{ /* end ng <> 1 */
                  fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
                }
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
          fprintf(ficgp,"\n set out\n");
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"F_"); 
     strcat(fileresf,fileresu);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"POP_"); 
     strcat(filerespop,fileresu);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
    int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyear){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
   
     strcpy(filerespl,"PL_");
     strcat(filerespl,fileresu);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     }
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     pstamp(ficrespl);
     fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
           fprintf(ficrespl,"#******");
           printf("#******");
           fprintf(ficlog,"#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
           fprintf(ficrespl,"Total Years_to_converge\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyear, k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             tot=0.;
             for(i=1; i<=nlstate;i++){
               tot +=  prlim[i][i];
               fprintf(ficrespl," %.5f", prlim[i][i]);
             }
             fprintf(ficrespl," %.3f %d\n", tot, *ncvyear);
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
     int ncvyearnp=0;
     int *ncvyear=&ncvyearnp; /* Number of years needed for the period prevalence to converge */
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char model[MAXLINE], modeltemp[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double **hess; /* Hessian matrix */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 8) {
         printf("Not 8\n");
       }
       printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     ftolpl=6.e-3; /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled == 0)
               model[0]='\0';
       else if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
       printf("model=1+age+%s\n",model);fflush(stdout);
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else
         if(mle==1)
           printf("%1d%1d%1d",i1,j1,jk);
         fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", rfileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     /* /\* for(h=1; h <=100 ;h++){  *\/ */
     /*   /\* printf("h=%2d ", h); *\/ */
     /*    /\* for(k=1; k <=10; k++){ *\/ */
     /*      /\* printf("k=%d %d ",k,codtabm(h,k)); *\/ */
     /*    /\*   codtab[h][k]=codtabm(h,k); *\/ */
     /*    /\* } *\/ */
     /*    /\* printf("\n"); *\/ */
     /* } */
     /* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */
     /*   for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/  */
     /*     for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */
     /*    for(cpt=1; cpt <=pow(2,k-1); cpt++){  /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/  */
     /*      h++; */
     /*      if (h>m)  */
     /*        h=1; */
     /*      codtab[h][k]=j; */
     /*      /\* codtab[12][3]=1; *\/ */
     /*      /\*codtab[h][Tvar[k]]=j;*\/ */
     /*      /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */
     /*    }  */
     /*     } */
     /*   } */
     /* }  */
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){  */
     /*    for(k=1; k <=cptcovn; k++){ */
     /*      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */
     /*    } */
     /*    printf("\n"); */
     /* } */
     /*   scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# IMaCh-%s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015</a></font><br>  \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   <font size=\"2\">IMaCh-%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       fprintf(ficlog,"\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
           fprintf(ficlog,"%f ",matcov[i][j]);
         }
         printf("\n ");  fprintf(ficlog,"\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard maximisation */
     else{ /* For mle !=- 3 */
       globpr=0;/* debug */
       /* Computes likelihood for initial parameters */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* again, to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle != 0){
         /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, hess, p, npar, delti, ftolhess, func);
         printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         for(i=1,jk=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(j=1; j <=ncovmodel; j++){
                 printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 jk++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         }
       } /* end of hesscov and Wald tests */
   
       /*  */
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle >= 1) /* To big for the screen */
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.7e",matcov[jj][ll]); 
                           fprintf(ficlog," %.7e",matcov[jj][ll]); 
                           fprintf(ficres," %.7e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, ncvyear);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* ZZ Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
             /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyear, k); /*ZZ Is it the correct prevalim */
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
               /* printf(" age %4.0f ",age); */
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                   /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
                 }
                 epj[nlstate+1] +=epj[j];
               }
               /* printf(" age %4.0f \n",age); */
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyear, k, strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       free_matrix(hess,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.51  
changed lines
  Added in v.1.204


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>