Diff for /imach/src/imach.c between versions 1.20 and 1.91

version 1.20, 2002/02/20 17:22:01 version 1.91, 2003/06/25 15:30:29
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.91  2003/06/25 15:30:29  brouard
   individuals from different ages are interviewed on their health status    * imach.c (Repository): Duplicated warning errors corrected.
   or degree of  disability. At least a second wave of interviews    (Repository): Elapsed time after each iteration is now output. It
   ("longitudinal") should  measure each new individual health status.    helps to forecast when convergence will be reached. Elapsed time
   Health expectancies are computed from the transistions observed between    is stamped in powell.  We created a new html file for the graphs
   waves and are computed for each degree of severity of disability (number    concerning matrix of covariance. It has extension -cov.htm.
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.90  2003/06/24 12:34:15  brouard
   The simplest model is the multinomial logistic model where pij is    (Module): Some bugs corrected for windows. Also, when
   the probabibility to be observed in state j at the second wave conditional    mle=-1 a template is output in file "or"mypar.txt with the design
   to be observed in state i at the first wave. Therefore the model is:    of the covariance matrix to be input.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.89  2003/06/24 12:30:52  brouard
   age", you should modify the program where the markup    (Module): Some bugs corrected for windows. Also, when
     *Covariates have to be included here again* invites you to do it.    mle=-1 a template is output in file "or"mypar.txt with the design
   More covariates you add, less is the speed of the convergence.    of the covariance matrix to be input.
   
   The advantage that this computer programme claims, comes from that if the    Revision 1.88  2003/06/23 17:54:56  brouard
   delay between waves is not identical for each individual, or if some    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.87  2003/06/18 12:26:01  brouard
   hPijx is the probability to be    Version 0.96
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.86  2003/06/17 20:04:08  brouard
   unobserved intermediate  states. This elementary transition (by month or    (Module): Change position of html and gnuplot routines and added
   quarter trimester, semester or year) is model as a multinomial logistic.    routine fileappend.
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
   Also this programme outputs the covariance matrix of the parameters but also    current date of interview. It may happen when the death was just
   of the life expectancies. It also computes the prevalence limits.    prior to the death. In this case, dh was negative and likelihood
      was wrong (infinity). We still send an "Error" but patch by
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    assuming that the date of death was just one stepm after the
            Institut national d'études démographiques, Paris.    interview.
   This software have been partly granted by Euro-REVES, a concerted action    (Repository): Because some people have very long ID (first column)
   from the European Union.    we changed int to long in num[] and we added a new lvector for
   It is copyrighted identically to a GNU software product, ie programme and    memory allocation. But we also truncated to 8 characters (left
   software can be distributed freely for non commercial use. Latest version    truncation)
   can be accessed at http://euroreves.ined.fr/imach .    (Repository): No more line truncation errors.
   **********************************************************************/  
      Revision 1.84  2003/06/13 21:44:43  brouard
 #include <math.h>    * imach.c (Repository): Replace "freqsummary" at a correct
 #include <stdio.h>    place. It differs from routine "prevalence" which may be called
 #include <stdlib.h>    many times. Probs is memory consuming and must be used with
 #include <unistd.h>    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    Revision 1.83  2003/06/10 13:39:11  lievre
 /*#define DEBUG*/    *** empty log message ***
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.82  2003/06/05 15:57:20  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Add log in  imach.c and  fullversion number is now printed.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  */
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  /*
      Interpolated Markov Chain
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Short summary of the programme:
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    
 #define NCOVMAX 8 /* Maximum number of covariates */    This program computes Healthy Life Expectancies from
 #define MAXN 20000    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define YEARM 12. /* Number of months per year */    first survey ("cross") where individuals from different ages are
 #define AGESUP 130    interviewed on their health status or degree of disability (in the
 #define AGEBASE 40    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 int nvar;    computed from the time spent in each health state according to a
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    model. More health states you consider, more time is necessary to reach the
 int npar=NPARMAX;    Maximum Likelihood of the parameters involved in the model.  The
 int nlstate=2; /* Number of live states */    simplest model is the multinomial logistic model where pij is the
 int ndeath=1; /* Number of dead states */    probability to be observed in state j at the second wave
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    conditional to be observed in state i at the first wave. Therefore
 int popbased=0;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 int *wav; /* Number of waves for this individuual 0 is possible */    complex model than "constant and age", you should modify the program
 int maxwav; /* Maxim number of waves */    where the markup *Covariates have to be included here again* invites
 int jmin, jmax; /* min, max spacing between 2 waves */    you to do it.  More covariates you add, slower the
 int mle, weightopt;    convergence.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    The advantage of this computer programme, compared to a simple
 double jmean; /* Mean space between 2 waves */    multinomial logistic model, is clear when the delay between waves is not
 double **oldm, **newm, **savm; /* Working pointers to matrices */    identical for each individual. Also, if a individual missed an
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    intermediate interview, the information is lost, but taken into
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    account using an interpolation or extrapolation.  
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;  
 FILE *ficreseij;    hPijx is the probability to be observed in state i at age x+h
   char filerese[FILENAMELENGTH];    conditional to the observed state i at age x. The delay 'h' can be
  FILE  *ficresvij;    split into an exact number (nh*stepm) of unobserved intermediate
   char fileresv[FILENAMELENGTH];    states. This elementary transition (by month, quarter,
  FILE  *ficresvpl;    semester or year) is modelled as a multinomial logistic.  The hPx
   char fileresvpl[FILENAMELENGTH];    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 #define NR_END 1    hPijx.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
 #define NRANSI    
 #define ITMAX 200    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 #define TOL 2.0e-4    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 #define CGOLD 0.3819660    It is copyrighted identically to a GNU software product, ie programme and
 #define ZEPS 1.0e-10    software can be distributed freely for non commercial use. Latest version
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    can be accessed at http://euroreves.ined.fr/imach .
   
 #define GOLD 1.618034    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define GLIMIT 100.0    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define TINY 1.0e-20    
     **********************************************************************/
 static double maxarg1,maxarg2;  /*
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    main
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    read parameterfile
      read datafile
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    concatwav
 #define rint(a) floor(a+0.5)    freqsummary
     if (mle >= 1)
 static double sqrarg;      mlikeli
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    print results files
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    if mle==1 
        computes hessian
 int imx;    read end of parameter file: agemin, agemax, bage, fage, estepm
 int stepm;        begin-prev-date,...
 /* Stepm, step in month: minimum step interpolation*/    open gnuplot file
     open html file
 int m,nb;    stable prevalence
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;     for age prevalim()
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    h Pij x
 double **pmmij, ***probs, ***mobaverage;    variance of p varprob
 double dateintmean=0;    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 double *weight;    Variance-covariance of DFLE
 int **s; /* Status */    prevalence()
 double *agedc, **covar, idx;     movingaverage()
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    varevsij() 
     if popbased==1 varevsij(,popbased)
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    total life expectancies
 double ftolhess; /* Tolerance for computing hessian */    Variance of stable prevalence
    end
 /**************** split *************************/  */
 static  int split( char *path, char *dirc, char *name )  
 {  
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */   
   #include <math.h>
    l1 = strlen( path );                 /* length of path */  #include <stdio.h>
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #include <stdlib.h>
    s = strrchr( path, '\\' );           /* find last / */  #include <unistd.h>
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */  #include <sys/time.h>
       extern char       *getwd( );  #include <time.h>
   #include "timeval.h"
       if ( getwd( dirc ) == NULL ) {  
 #else  #define MAXLINE 256
       extern char       *getcwd( );  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define FILENAMELENGTH 132
 #endif  /*#define DEBUG*/
          return( GLOCK_ERROR_GETCWD );  /*#define windows*/
       }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       strcpy( name, path );             /* we've got it */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
       l2 = strlen( s );                 /* length of filename */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */  #define NINTERVMAX 8
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
       dirc[l1-l2] = 0;                  /* add zero */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    }  #define NCOVMAX 8 /* Maximum number of covariates */
    l1 = strlen( dirc );                 /* length of directory */  #define MAXN 20000
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define YEARM 12. /* Number of months per year */
    return( 0 );                         /* we're done */  #define AGESUP 130
 }  #define AGEBASE 40
   #ifdef unix
   #define DIRSEPARATOR '/'
 /******************************************/  #define ODIRSEPARATOR '\\'
   #else
 void replace(char *s, char*t)  #define DIRSEPARATOR '\\'
 {  #define ODIRSEPARATOR '/'
   int i;  #endif
   int lg=20;  
   i=0;  /* $Id$ */
   lg=strlen(t);  /* $State$ */
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
     if (t[i]== '\\') s[i]='/';  char fullversion[]="$Revision$ $Date$"; 
   }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 int nbocc(char *s, char occ)  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
   int i,j=0;  int ndeath=1; /* Number of dead states */
   int lg=20;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   i=0;  int popbased=0;
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  int *wav; /* Number of waves for this individuual 0 is possible */
   if  (s[i] == occ ) j++;  int maxwav; /* Maxim number of waves */
   }  int jmin, jmax; /* min, max spacing between 2 waves */
   return j;  int gipmx, gsw; /* Global variables on the number of contributions 
 }                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 void cutv(char *u,char *v, char*t, char occ)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int i,lg,j,p=0;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   i=0;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   for(j=0; j<=strlen(t)-1; j++) {  double jmean; /* Mean space between 2 waves */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   lg=strlen(t);  FILE *ficlog, *ficrespow;
   for(j=0; j<p; j++) {  int globpr; /* Global variable for printing or not */
     (u[j] = t[j]);  double fretone; /* Only one call to likelihood */
   }  long ipmx; /* Number of contributions */
      u[p]='\0';  double sw; /* Sum of weights */
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    for(j=0; j<= lg; j++) {  FILE *ficresilk;
     if (j>=(p+1))(v[j-p-1] = t[j]);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   }  FILE *ficresprobmorprev;
 }  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 /********************** nrerror ********************/  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
 void nrerror(char error_text[])  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   fprintf(stderr,"ERREUR ...\n");  char fileresvpl[FILENAMELENGTH];
   fprintf(stderr,"%s\n",error_text);  char title[MAXLINE];
   exit(1);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 /*********************** vector *******************/  char tmpout[FILENAMELENGTH]; 
 double *vector(int nl, int nh)  char command[FILENAMELENGTH];
 {  int  outcmd=0;
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in vector");  char lfileres[FILENAMELENGTH];
   return v-nl+NR_END;  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 /************************ free vector ******************/  char popfile[FILENAMELENGTH];
 void free_vector(double*v, int nl, int nh)  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   free((FREE_ARG)(v+nl-NR_END));  
 }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 /************************ivector *******************************/  extern int gettimeofday();
 int *ivector(long nl,long nh)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 {  long time_value;
   int *v;  extern long time();
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char strcurr[80], strfor[80];
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  #define NR_END 1
 }  #define FREE_ARG char*
   #define FTOL 1.0e-10
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  #define NRANSI 
 {  #define ITMAX 200 
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define TOL 2.0e-4 
   
 /******************* imatrix *******************************/  #define CGOLD 0.3819660 
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define ZEPS 1.0e-10 
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define GOLD 1.618034 
   int **m;  #define GLIMIT 100.0 
    #define TINY 1.0e-20 
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  static double maxarg1,maxarg2;
   if (!m) nrerror("allocation failure 1 in matrix()");  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m += NR_END;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   m -= nrl;    
    #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    #define rint(a) floor(a+0.5)
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  static double sqrarg;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m[nrl] += NR_END;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   m[nrl] -= ncl;  
    int imx; 
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int stepm;
    /* Stepm, step in month: minimum step interpolation*/
   /* return pointer to array of pointers to rows */  
   return m;  int estepm;
 }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
 /****************** free_imatrix *************************/  int m,nb;
 void free_imatrix(m,nrl,nrh,ncl,nch)  long *num;
       int **m;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
       long nch,ncl,nrh,nrl;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
      /* free an int matrix allocated by imatrix() */  double **pmmij, ***probs;
 {  double dateintmean=0;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  double *weight;
 }  int **s; /* Status */
   double *agedc, **covar, idx;
 /******************* matrix *******************************/  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  double ftolhess; /* Tolerance for computing hessian */
   double **m;  
   /**************** split *************************/
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    char  *ss;                            /* pointer */
   m -= nrl;    int   l1, l2;                         /* length counters */
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    l1 = strlen(path );                   /* length of path */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   m[nrl] += NR_END;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m[nrl] -= ncl;    if ( ss == NULL ) {                   /* no directory, so use current */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   return m;      /* get current working directory */
 }      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 /*************************free matrix ************************/        return( GLOCK_ERROR_GETCWD );
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)      }
 {      strcpy( name, path );               /* we've got it */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    } else {                              /* strip direcotry from path */
   free((FREE_ARG)(m+nrl-NR_END));      ss++;                               /* after this, the filename */
 }      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 /******************* ma3x *******************************/      strcpy( name, ss );         /* save file name */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 {      dirc[l1-l2] = 0;                    /* add zero */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    }
   double ***m;    l1 = strlen( dirc );                  /* length of directory */
     /*#ifdef windows
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   if (!m) nrerror("allocation failure 1 in matrix()");  #else
   m += NR_END;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   m -= nrl;  #endif
     */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    ss = strrchr( name, '.' );            /* find last / */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    ss++;
   m[nrl] += NR_END;    strcpy(ext,ss);                       /* save extension */
   m[nrl] -= ncl;    l1= strlen( name);
     l2= strlen(ss)+1;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    return( 0 );                          /* we're done */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  }
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  /******************************************/
     m[nrl][j]=m[nrl][j-1]+nlay;  
    void replace_back_to_slash(char *s, char*t)
   for (i=nrl+1; i<=nrh; i++) {  {
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    int i;
     for (j=ncl+1; j<=nch; j++)    int lg=0;
       m[i][j]=m[i][j-1]+nlay;    i=0;
   }    lg=strlen(t);
   return m;    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 /*************************free ma3x ************************/    }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  }
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int nbocc(char *s, char occ)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  {
   free((FREE_ARG)(m+nrl-NR_END));    int i,j=0;
 }    int lg=20;
     i=0;
 /***************** f1dim *************************/    lg=strlen(s);
 extern int ncom;    for(i=0; i<= lg; i++) {
 extern double *pcom,*xicom;    if  (s[i] == occ ) j++;
 extern double (*nrfunc)(double []);    }
      return j;
 double f1dim(double x)  }
 {  
   int j;  void cutv(char *u,char *v, char*t, char occ)
   double f;  {
   double *xt;    /* cuts string t into u and v where u is ended by char occ excluding it
         and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   xt=vector(1,ncom);       gives u="abcedf" and v="ghi2j" */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    int i,lg,j,p=0;
   f=(*nrfunc)(xt);    i=0;
   free_vector(xt,1,ncom);    for(j=0; j<=strlen(t)-1; j++) {
   return f;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 }    }
   
 /*****************brent *************************/    lg=strlen(t);
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    for(j=0; j<p; j++) {
 {      (u[j] = t[j]);
   int iter;    }
   double a,b,d,etemp;       u[p]='\0';
   double fu,fv,fw,fx;  
   double ftemp;     for(j=0; j<= lg; j++) {
   double p,q,r,tol1,tol2,u,v,w,x,xm;      if (j>=(p+1))(v[j-p-1] = t[j]);
   double e=0.0;    }
    }
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  /********************** nrerror ********************/
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  void nrerror(char error_text[])
   for (iter=1;iter<=ITMAX;iter++) {  {
     xm=0.5*(a+b);    fprintf(stderr,"ERREUR ...\n");
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    fprintf(stderr,"%s\n",error_text);
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    exit(EXIT_FAILURE);
     printf(".");fflush(stdout);  }
 #ifdef DEBUG  /*********************** vector *******************/
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  double *vector(int nl, int nh)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  {
 #endif    double *v;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       *xmin=x;    if (!v) nrerror("allocation failure in vector");
       return fx;    return v-nl+NR_END;
     }  }
     ftemp=fu;  
     if (fabs(e) > tol1) {  /************************ free vector ******************/
       r=(x-w)*(fx-fv);  void free_vector(double*v, int nl, int nh)
       q=(x-v)*(fx-fw);  {
       p=(x-v)*q-(x-w)*r;    free((FREE_ARG)(v+nl-NR_END));
       q=2.0*(q-r);  }
       if (q > 0.0) p = -p;  
       q=fabs(q);  /************************ivector *******************************/
       etemp=e;  int *ivector(long nl,long nh)
       e=d;  {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    int *v;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       else {    if (!v) nrerror("allocation failure in ivector");
         d=p/q;    return v-nl+NR_END;
         u=x+d;  }
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  /******************free ivector **************************/
       }  void free_ivector(int *v, long nl, long nh)
     } else {  {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    free((FREE_ARG)(v+nl-NR_END));
     }  }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  /************************lvector *******************************/
     if (fu <= fx) {  long *lvector(long nl,long nh)
       if (u >= x) a=x; else b=x;  {
       SHFT(v,w,x,u)    long *v;
         SHFT(fv,fw,fx,fu)    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         } else {    if (!v) nrerror("allocation failure in ivector");
           if (u < x) a=u; else b=u;    return v-nl+NR_END;
           if (fu <= fw || w == x) {  }
             v=w;  
             w=u;  /******************free lvector **************************/
             fv=fw;  void free_lvector(long *v, long nl, long nh)
             fw=fu;  {
           } else if (fu <= fv || v == x || v == w) {    free((FREE_ARG)(v+nl-NR_END));
             v=u;  }
             fv=fu;  
           }  /******************* imatrix *******************************/
         }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   nrerror("Too many iterations in brent");  { 
   *xmin=x;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   return fx;    int **m; 
 }    
     /* allocate pointers to rows */ 
 /****************** mnbrak ***********************/    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    m += NR_END; 
             double (*func)(double))    m -= nrl; 
 {    
   double ulim,u,r,q, dum;    
   double fu;    /* allocate rows and set pointers to them */ 
      m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   *fa=(*func)(*ax);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   *fb=(*func)(*bx);    m[nrl] += NR_END; 
   if (*fb > *fa) {    m[nrl] -= ncl; 
     SHFT(dum,*ax,*bx,dum)    
       SHFT(dum,*fb,*fa,dum)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       }    
   *cx=(*bx)+GOLD*(*bx-*ax);    /* return pointer to array of pointers to rows */ 
   *fc=(*func)(*cx);    return m; 
   while (*fb > *fc) {  } 
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  /****************** free_imatrix *************************/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  void free_imatrix(m,nrl,nrh,ncl,nch)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));        int **m;
     ulim=(*bx)+GLIMIT*(*cx-*bx);        long nch,ncl,nrh,nrl; 
     if ((*bx-u)*(u-*cx) > 0.0) {       /* free an int matrix allocated by imatrix() */ 
       fu=(*func)(u);  { 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       fu=(*func)(u);    free((FREE_ARG) (m+nrl-NR_END)); 
       if (fu < *fc) {  } 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  /******************* matrix *******************************/
           }  double **matrix(long nrl, long nrh, long ncl, long nch)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  {
       u=ulim;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       fu=(*func)(u);    double **m;
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       fu=(*func)(u);    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
     SHFT(*ax,*bx,*cx,u)    m -= nrl;
       SHFT(*fa,*fb,*fc,fu)  
       }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /*************** linmin ************************/    m[nrl] -= ncl;
   
 int ncom;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 double *pcom,*xicom;    return m;
 double (*nrfunc)(double []);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  }
 {  
   double brent(double ax, double bx, double cx,  /*************************free matrix ************************/
                double (*f)(double), double tol, double *xmin);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double f1dim(double x);  {
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    free((FREE_ARG)(m[nrl]+ncl-NR_END));
               double *fc, double (*func)(double));    free((FREE_ARG)(m+nrl-NR_END));
   int j;  }
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  /******************* ma3x *******************************/
    double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   ncom=n;  {
   pcom=vector(1,n);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   xicom=vector(1,n);    double ***m;
   nrfunc=func;  
   for (j=1;j<=n;j++) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     pcom[j]=p[j];    if (!m) nrerror("allocation failure 1 in matrix()");
     xicom[j]=xi[j];    m += NR_END;
   }    m -= nrl;
   ax=0.0;  
   xx=1.0;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    m[nrl] += NR_END;
 #ifdef DEBUG    m[nrl] -= ncl;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     p[j] += xi[j];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   }    m[nrl][ncl] += NR_END;
   free_vector(xicom,1,n);    m[nrl][ncl] -= nll;
   free_vector(pcom,1,n);    for (j=ncl+1; j<=nch; j++) 
 }      m[nrl][j]=m[nrl][j-1]+nlay;
     
 /*************** powell ************************/    for (i=nrl+1; i<=nrh; i++) {
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
             double (*func)(double []))      for (j=ncl+1; j<=nch; j++) 
 {        m[i][j]=m[i][j-1]+nlay;
   void linmin(double p[], double xi[], int n, double *fret,    }
               double (*func)(double []));    return m; 
   int i,ibig,j;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double del,t,*pt,*ptt,*xit;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double fp,fptt;    */
   double *xits;  }
   pt=vector(1,n);  
   ptt=vector(1,n);  /*************************free ma3x ************************/
   xit=vector(1,n);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   xits=vector(1,n);  {
   *fret=(*func)(p);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   for (j=1;j<=n;j++) pt[j]=p[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for (*iter=1;;++(*iter)) {    free((FREE_ARG)(m+nrl-NR_END));
     fp=(*fret);  }
     ibig=0;  
     del=0.0;  /***************** f1dim *************************/
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  extern int ncom; 
     for (i=1;i<=n;i++)  extern double *pcom,*xicom;
       printf(" %d %.12f",i, p[i]);  extern double (*nrfunc)(double []); 
     printf("\n");   
     for (i=1;i<=n;i++) {  double f1dim(double x) 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  { 
       fptt=(*fret);    int j; 
 #ifdef DEBUG    double f;
       printf("fret=%lf \n",*fret);    double *xt; 
 #endif   
       printf("%d",i);fflush(stdout);    xt=vector(1,ncom); 
       linmin(p,xit,n,fret,func);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       if (fabs(fptt-(*fret)) > del) {    f=(*nrfunc)(xt); 
         del=fabs(fptt-(*fret));    free_vector(xt,1,ncom); 
         ibig=i;    return f; 
       }  } 
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  /*****************brent *************************/
       for (j=1;j<=n;j++) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  { 
         printf(" x(%d)=%.12e",j,xit[j]);    int iter; 
       }    double a,b,d,etemp;
       for(j=1;j<=n;j++)    double fu,fv,fw,fx;
         printf(" p=%.12e",p[j]);    double ftemp;
       printf("\n");    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 #endif    double e=0.0; 
     }   
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    a=(ax < cx ? ax : cx); 
 #ifdef DEBUG    b=(ax > cx ? ax : cx); 
       int k[2],l;    x=w=v=bx; 
       k[0]=1;    fw=fv=fx=(*f)(x); 
       k[1]=-1;    for (iter=1;iter<=ITMAX;iter++) { 
       printf("Max: %.12e",(*func)(p));      xm=0.5*(a+b); 
       for (j=1;j<=n;j++)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         printf(" %.12e",p[j]);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf("\n");      printf(".");fflush(stdout);
       for(l=0;l<=1;l++) {      fprintf(ficlog,".");fflush(ficlog);
         for (j=1;j<=n;j++) {  #ifdef DEBUG
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #endif
       }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 #endif        *xmin=x; 
         return fx; 
       } 
       free_vector(xit,1,n);      ftemp=fu;
       free_vector(xits,1,n);      if (fabs(e) > tol1) { 
       free_vector(ptt,1,n);        r=(x-w)*(fx-fv); 
       free_vector(pt,1,n);        q=(x-v)*(fx-fw); 
       return;        p=(x-v)*q-(x-w)*r; 
     }        q=2.0*(q-r); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");        if (q > 0.0) p = -p; 
     for (j=1;j<=n;j++) {        q=fabs(q); 
       ptt[j]=2.0*p[j]-pt[j];        etemp=e; 
       xit[j]=p[j]-pt[j];        e=d; 
       pt[j]=p[j];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     fptt=(*func)(ptt);        else { 
     if (fptt < fp) {          d=p/q; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);          u=x+d; 
       if (t < 0.0) {          if (u-a < tol2 || b-u < tol2) 
         linmin(p,xit,n,fret,func);            d=SIGN(tol1,xm-x); 
         for (j=1;j<=n;j++) {        } 
           xi[j][ibig]=xi[j][n];      } else { 
           xi[j][n]=xit[j];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         }      } 
 #ifdef DEBUG      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      fu=(*f)(u); 
         for(j=1;j<=n;j++)      if (fu <= fx) { 
           printf(" %.12e",xit[j]);        if (u >= x) a=x; else b=x; 
         printf("\n");        SHFT(v,w,x,u) 
 #endif          SHFT(fv,fw,fx,fu) 
       }          } else { 
     }            if (u < x) a=u; else b=u; 
   }            if (fu <= fw || w == x) { 
 }              v=w; 
               w=u; 
 /**** Prevalence limit ****************/              fv=fw; 
               fw=fu; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)            } else if (fu <= fv || v == x || v == w) { 
 {              v=u; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit              fv=fu; 
      matrix by transitions matrix until convergence is reached */            } 
           } 
   int i, ii,j,k;    } 
   double min, max, maxmin, maxmax,sumnew=0.;    nrerror("Too many iterations in brent"); 
   double **matprod2();    *xmin=x; 
   double **out, cov[NCOVMAX], **pmij();    return fx; 
   double **newm;  } 
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /****************** mnbrak ***********************/
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);              double (*func)(double)) 
     }  { 
     double ulim,u,r,q, dum;
    cov[1]=1.;    double fu; 
     
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    *fa=(*func)(*ax); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    *fb=(*func)(*bx); 
     newm=savm;    if (*fb > *fa) { 
     /* Covariates have to be included here again */      SHFT(dum,*ax,*bx,dum) 
      cov[2]=agefin;        SHFT(dum,*fb,*fa,dum) 
          } 
       for (k=1; k<=cptcovn;k++) {    *cx=(*bx)+GOLD*(*bx-*ax); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    *fc=(*func)(*cx); 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    while (*fb > *fc) { 
       }      r=(*bx-*ax)*(*fb-*fc); 
       for (k=1; k<=cptcovage;k++)      q=(*bx-*cx)*(*fb-*fa); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       for (k=1; k<=cptcovprod;k++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        fu=(*func)(u); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     savm=oldm;            SHFT(*fb,*fc,fu,(*func)(u)) 
     oldm=newm;            } 
     maxmax=0.;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     for(j=1;j<=nlstate;j++){        u=ulim; 
       min=1.;        fu=(*func)(u); 
       max=0.;      } else { 
       for(i=1; i<=nlstate; i++) {        u=(*cx)+GOLD*(*cx-*bx); 
         sumnew=0;        fu=(*func)(u); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      } 
         prlim[i][j]= newm[i][j]/(1-sumnew);      SHFT(*ax,*bx,*cx,u) 
         max=FMAX(max,prlim[i][j]);        SHFT(*fa,*fb,*fc,fu) 
         min=FMIN(min,prlim[i][j]);        } 
       }  } 
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  /*************** linmin ************************/
     }  
     if(maxmax < ftolpl){  int ncom; 
       return prlim;  double *pcom,*xicom;
     }  double (*nrfunc)(double []); 
   }   
 }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
 /*************** transition probabilities ***************/    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    double f1dim(double x); 
 {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   double s1, s2;                double *fc, double (*func)(double)); 
   /*double t34;*/    int j; 
   int i,j,j1, nc, ii, jj;    double xx,xmin,bx,ax; 
     double fx,fb,fa;
     for(i=1; i<= nlstate; i++){   
     for(j=1; j<i;j++){    ncom=n; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    pcom=vector(1,n); 
         /*s2 += param[i][j][nc]*cov[nc];*/    xicom=vector(1,n); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    nrfunc=func; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    for (j=1;j<=n;j++) { 
       }      pcom[j]=p[j]; 
       ps[i][j]=s2;      xicom[j]=xi[j]; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    } 
     }    ax=0.0; 
     for(j=i+1; j<=nlstate+ndeath;j++){    xx=1.0; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  #ifdef DEBUG
       }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       ps[i][j]=(s2);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }  #endif
   }    for (j=1;j<=n;j++) { 
     /*ps[3][2]=1;*/      xi[j] *= xmin; 
       p[j] += xi[j]; 
   for(i=1; i<= nlstate; i++){    } 
      s1=0;    free_vector(xicom,1,n); 
     for(j=1; j<i; j++)    free_vector(pcom,1,n); 
       s1+=exp(ps[i][j]);  } 
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  char *asc_diff_time(long time_sec, char ascdiff[])
     ps[i][i]=1./(s1+1.);  {
     for(j=1; j<i; j++)    long sec_left, days, hours, minutes;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    days = (time_sec) / (60*60*24);
     for(j=i+1; j<=nlstate+ndeath; j++)    sec_left = (time_sec) % (60*60*24);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    hours = (sec_left) / (60*60) ;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    sec_left = (sec_left) %(60*60);
   } /* end i */    minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     for(jj=1; jj<= nlstate+ndeath; jj++){    return ascdiff;
       ps[ii][jj]=0;  }
       ps[ii][ii]=1;  
     }  /*************** powell ************************/
   }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
   { 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    void linmin(double p[], double xi[], int n, double *fret, 
     for(jj=1; jj<= nlstate+ndeath; jj++){                double (*func)(double [])); 
      printf("%lf ",ps[ii][jj]);    int i,ibig,j; 
    }    double del,t,*pt,*ptt,*xit;
     printf("\n ");    double fp,fptt;
     }    double *xits;
     printf("\n ");printf("%lf ",cov[2]);*/    int niterf, itmp;
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    pt=vector(1,n); 
   goto end;*/    ptt=vector(1,n); 
     return ps;    xit=vector(1,n); 
 }    xits=vector(1,n); 
     *fret=(*func)(p); 
 /**************** Product of 2 matrices ******************/    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      fp=(*fret); 
 {      ibig=0; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      del=0.0; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      last_time=curr_time;
   /* in, b, out are matrice of pointers which should have been initialized      (void) gettimeofday(&curr_time,&tzp);
      before: only the contents of out is modified. The function returns      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
      a pointer to pointers identical to out */      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   long i, j, k;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   for(i=nrl; i<= nrh; i++)      for (i=1;i<=n;i++) {
     for(k=ncolol; k<=ncoloh; k++)        printf(" %d %.12f",i, p[i]);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        fprintf(ficlog," %d %.12lf",i, p[i]);
         out[i][k] +=in[i][j]*b[j][k];        fprintf(ficrespow," %.12lf", p[i]);
       }
   return out;      printf("\n");
 }      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
 /************* Higher Matrix Product ***************/        tm = *localtime(&curr_time.tv_sec);
         asctime_r(&tm,strcurr);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        forecast_time=curr_time;
 {        itmp = strlen(strcurr);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        if(strcurr[itmp-1]=='\n')
      duration (i.e. until          strcurr[itmp-1]='\0';
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
      (typically every 2 years instead of every month which is too big).        for(niterf=10;niterf<=30;niterf+=10){
      Model is determined by parameters x and covariates have to be          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
      included manually here.          tmf = *localtime(&forecast_time.tv_sec);
           asctime_r(&tmf,strfor);
      */  /*      strcpy(strfor,asctime(&tmf)); */
           itmp = strlen(strfor);
   int i, j, d, h, k;          if(strfor[itmp-1]=='\n')
   double **out, cov[NCOVMAX];          strfor[itmp-1]='\0';
   double **newm;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   /* Hstepm could be zero and should return the unit matrix */        }
   for (i=1;i<=nlstate+ndeath;i++)      }
     for (j=1;j<=nlstate+ndeath;j++){      for (i=1;i<=n;i++) { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        fptt=(*fret); 
     }  #ifdef DEBUG
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        printf("fret=%lf \n",*fret);
   for(h=1; h <=nhstepm; h++){        fprintf(ficlog,"fret=%lf \n",*fret);
     for(d=1; d <=hstepm; d++){  #endif
       newm=savm;        printf("%d",i);fflush(stdout);
       /* Covariates have to be included here again */        fprintf(ficlog,"%d",i);fflush(ficlog);
       cov[1]=1.;        linmin(p,xit,n,fret,func); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        if (fabs(fptt-(*fret)) > del) { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          del=fabs(fptt-(*fret)); 
       for (k=1; k<=cptcovage;k++)          ibig=i; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        } 
       for (k=1; k<=cptcovprod;k++)  #ifdef DEBUG
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          printf(" x(%d)=%.12e",j,xit[j]);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        }
       savm=oldm;        for(j=1;j<=n;j++) {
       oldm=newm;          printf(" p=%.12e",p[j]);
     }          fprintf(ficlog," p=%.12e",p[j]);
     for(i=1; i<=nlstate+ndeath; i++)        }
       for(j=1;j<=nlstate+ndeath;j++) {        printf("\n");
         po[i][j][h]=newm[i][j];        fprintf(ficlog,"\n");
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  #endif
          */      } 
       }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   } /* end h */  #ifdef DEBUG
   return po;        int k[2],l;
 }        k[0]=1;
         k[1]=-1;
         printf("Max: %.12e",(*func)(p));
 /*************** log-likelihood *************/        fprintf(ficlog,"Max: %.12e",(*func)(p));
 double func( double *x)        for (j=1;j<=n;j++) {
 {          printf(" %.12e",p[j]);
   int i, ii, j, k, mi, d, kk;          fprintf(ficlog," %.12e",p[j]);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        }
   double **out;        printf("\n");
   double sw; /* Sum of weights */        fprintf(ficlog,"\n");
   double lli; /* Individual log likelihood */        for(l=0;l<=1;l++) {
   long ipmx;          for (j=1;j<=n;j++) {
   /*extern weight */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   /* We are differentiating ll according to initial status */            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /*for(i=1;i<imx;i++)          }
     printf(" %d\n",s[4][i]);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   cov[1]=1.;        }
   #endif
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        free_vector(xit,1,n); 
     for(mi=1; mi<= wav[i]-1; mi++){        free_vector(xits,1,n); 
       for (ii=1;ii<=nlstate+ndeath;ii++)        free_vector(ptt,1,n); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        free_vector(pt,1,n); 
       for(d=0; d<dh[mi][i]; d++){        return; 
         newm=savm;      } 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         for (kk=1; kk<=cptcovage;kk++) {      for (j=1;j<=n;j++) { 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        ptt[j]=2.0*p[j]-pt[j]; 
         }        xit[j]=p[j]-pt[j]; 
                pt[j]=p[j]; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      } 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      fptt=(*func)(ptt); 
         savm=oldm;      if (fptt < fp) { 
         oldm=newm;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
                if (t < 0.0) { 
                  linmin(p,xit,n,fret,func); 
       } /* end mult */          for (j=1;j<=n;j++) { 
                  xi[j][ibig]=xi[j][n]; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);            xi[j][n]=xit[j]; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/          }
       ipmx +=1;  #ifdef DEBUG
       sw += weight[i];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     } /* end of wave */          for(j=1;j<=n;j++){
   } /* end of individual */            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          printf("\n");
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          fprintf(ficlog,"\n");
   return -l;  #endif
 }        }
       } 
     } 
 /*********** Maximum Likelihood Estimation ***************/  } 
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  /**** Prevalence limit (stable prevalence)  ****************/
 {  
   int i,j, iter;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double **xi,*delti;  {
   double fret;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   xi=matrix(1,npar,1,npar);       matrix by transitions matrix until convergence is reached */
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)    int i, ii,j,k;
       xi[i][j]=(i==j ? 1.0 : 0.0);    double min, max, maxmin, maxmax,sumnew=0.;
   printf("Powell\n");    double **matprod2();
   powell(p,xi,npar,ftol,&iter,&fret,func);    double **out, cov[NCOVMAX], **pmij();
     double **newm;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    double agefin, delaymax=50 ; /* Max number of years to converge */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));  
     for (ii=1;ii<=nlstate+ndeath;ii++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /**** Computes Hessian and covariance matrix ***/      }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {     cov[1]=1.;
   double  **a,**y,*x,pd;   
   double **hess;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int i, j,jk;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   int *indx;      newm=savm;
       /* Covariates have to be included here again */
   double hessii(double p[], double delta, int theta, double delti[]);       cov[2]=agefin;
   double hessij(double p[], double delti[], int i, int j);    
   void lubksb(double **a, int npar, int *indx, double b[]) ;        for (k=1; k<=cptcovn;k++) {
   void ludcmp(double **a, int npar, int *indx, double *d) ;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   hess=matrix(1,npar,1,npar);        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   printf("\nCalculation of the hessian matrix. Wait...\n");        for (k=1; k<=cptcovprod;k++)
   for (i=1;i<=npar;i++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     /*printf(" %f ",p[i]);*/        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     /*printf(" %lf ",hess[i][i]);*/        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
    
   for (i=1;i<=npar;i++) {      savm=oldm;
     for (j=1;j<=npar;j++)  {      oldm=newm;
       if (j>i) {      maxmax=0.;
         printf(".%d%d",i,j);fflush(stdout);      for(j=1;j<=nlstate;j++){
         hess[i][j]=hessij(p,delti,i,j);        min=1.;
         hess[j][i]=hess[i][j];            max=0.;
         /*printf(" %lf ",hess[i][j]);*/        for(i=1; i<=nlstate; i++) {
       }          sumnew=0;
     }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   }          prlim[i][j]= newm[i][j]/(1-sumnew);
   printf("\n");          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        }
          maxmin=max-min;
   a=matrix(1,npar,1,npar);        maxmax=FMAX(maxmax,maxmin);
   y=matrix(1,npar,1,npar);      }
   x=vector(1,npar);      if(maxmax < ftolpl){
   indx=ivector(1,npar);        return prlim;
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    }
   ludcmp(a,npar,indx,&pd);  }
   
   for (j=1;j<=npar;j++) {  /*************** transition probabilities ***************/ 
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     lubksb(a,npar,indx,x);  {
     for (i=1;i<=npar;i++){    double s1, s2;
       matcov[i][j]=x[i];    /*double t34;*/
     }    int i,j,j1, nc, ii, jj;
   }  
       for(i=1; i<= nlstate; i++){
   printf("\n#Hessian matrix#\n");      for(j=1; j<i;j++){
   for (i=1;i<=npar;i++) {        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for (j=1;j<=npar;j++) {          /*s2 += param[i][j][nc]*cov[nc];*/
       printf("%.3e ",hess[i][j]);          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     }          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
     printf("\n");        }
   }        ps[i][j]=s2;
         /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   /* Recompute Inverse */      }
   for (i=1;i<=npar;i++)      for(j=i+1; j<=nlstate+ndeath;j++){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   ludcmp(a,npar,indx,&pd);          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   /*  printf("\n#Hessian matrix recomputed#\n");        }
         ps[i][j]=s2;
   for (j=1;j<=npar;j++) {      }
     for (i=1;i<=npar;i++) x[i]=0;    }
     x[j]=1;      /*ps[3][2]=1;*/
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){    for(i=1; i<= nlstate; i++){
       y[i][j]=x[i];       s1=0;
       printf("%.3e ",y[i][j]);      for(j=1; j<i; j++)
     }        s1+=exp(ps[i][j]);
     printf("\n");      for(j=i+1; j<=nlstate+ndeath; j++)
   }        s1+=exp(ps[i][j]);
   */      ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)
   free_matrix(a,1,npar,1,npar);        ps[i][j]= exp(ps[i][j])*ps[i][i];
   free_matrix(y,1,npar,1,npar);      for(j=i+1; j<=nlstate+ndeath; j++)
   free_vector(x,1,npar);        ps[i][j]= exp(ps[i][j])*ps[i][i];
   free_ivector(indx,1,npar);      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   free_matrix(hess,1,npar,1,npar);    } /* end i */
   
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 }      for(jj=1; jj<= nlstate+ndeath; jj++){
         ps[ii][jj]=0;
 /*************** hessian matrix ****************/        ps[ii][ii]=1;
 double hessii( double x[], double delta, int theta, double delti[])      }
 {    }
   int i;  
   int l=1, lmax=20;  
   double k1,k2;    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   double p2[NPARMAX+1];      for(jj=1; jj<= nlstate+ndeath; jj++){
   double res;       printf("%lf ",ps[ii][jj]);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;     }
   double fx;      printf("\n ");
   int k=0,kmax=10;      }
   double l1;      printf("\n ");printf("%lf ",cov[2]);*/
   /*
   fx=func(x);    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   for (i=1;i<=npar;i++) p2[i]=x[i];    goto end;*/
   for(l=0 ; l <=lmax; l++){      return ps;
     l1=pow(10,l);  }
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){  /**************** Product of 2 matrices ******************/
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       k1=func(p2)-fx;  {
       p2[theta]=x[theta]-delt;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       k2=func(p2)-fx;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       /*res= (k1-2.0*fx+k2)/delt/delt; */    /* in, b, out are matrice of pointers which should have been initialized 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */       before: only the contents of out is modified. The function returns
             a pointer to pointers identical to out */
 #ifdef DEBUG    long i, j, k;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for(i=nrl; i<= nrh; i++)
 #endif      for(k=ncolol; k<=ncoloh; k++)
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          out[i][k] +=in[i][j]*b[j][k];
         k=kmax;  
       }    return out;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  }
         k=kmax; l=lmax*10.;  
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  /************* Higher Matrix Product ***************/
         delts=delt;  
       }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     }  {
   }    /* Computes the transition matrix starting at age 'age' over 
   delti[theta]=delts;       'nhstepm*hstepm*stepm' months (i.e. until
   return res;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         nhstepm*hstepm matrices. 
 }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
 double hessij( double x[], double delti[], int thetai,int thetaj)       for the memory).
 {       Model is determined by parameters x and covariates have to be 
   int i;       included manually here. 
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;       */
   double p2[NPARMAX+1];  
   int k;    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
   fx=func(x);    double **newm;
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];    /* Hstepm could be zero and should return the unit matrix */
     p2[thetai]=x[thetai]+delti[thetai]/k;    for (i=1;i<=nlstate+ndeath;i++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for (j=1;j<=nlstate+ndeath;j++){
     k1=func(p2)-fx;        oldm[i][j]=(i==j ? 1.0 : 0.0);
          po[i][j][0]=(i==j ? 1.0 : 0.0);
     p2[thetai]=x[thetai]+delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     k2=func(p2)-fx;    for(h=1; h <=nhstepm; h++){
        for(d=1; d <=hstepm; d++){
     p2[thetai]=x[thetai]-delti[thetai]/k;        newm=savm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        /* Covariates have to be included here again */
     k3=func(p2)-fx;        cov[1]=1.;
          cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     p2[thetai]=x[thetai]-delti[thetai]/k;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for (k=1; k<=cptcovage;k++)
     k4=func(p2)-fx;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        for (k=1; k<=cptcovprod;k++)
 #ifdef DEBUG          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif  
   }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   return res;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
 /************** Inverse of matrix **************/        savm=oldm;
 void ludcmp(double **a, int n, int *indx, double *d)        oldm=newm;
 {      }
   int i,imax,j,k;      for(i=1; i<=nlstate+ndeath; i++)
   double big,dum,sum,temp;        for(j=1;j<=nlstate+ndeath;j++) {
   double *vv;          po[i][j][h]=newm[i][j];
            /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   vv=vector(1,n);           */
   *d=1.0;        }
   for (i=1;i<=n;i++) {    } /* end h */
     big=0.0;    return po;
     for (j=1;j<=n;j++)  }
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;  /*************** log-likelihood *************/
   }  double func( double *x)
   for (j=1;j<=n;j++) {  {
     for (i=1;i<j;i++) {    int i, ii, j, k, mi, d, kk;
       sum=a[i][j];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    double **out;
       a[i][j]=sum;    double sw; /* Sum of weights */
     }    double lli; /* Individual log likelihood */
     big=0.0;    int s1, s2;
     for (i=j;i<=n;i++) {    double bbh, survp;
       sum=a[i][j];    long ipmx;
       for (k=1;k<j;k++)    /*extern weight */
         sum -= a[i][k]*a[k][j];    /* We are differentiating ll according to initial status */
       a[i][j]=sum;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       if ( (dum=vv[i]*fabs(sum)) >= big) {    /*for(i=1;i<imx;i++) 
         big=dum;      printf(" %d\n",s[4][i]);
         imax=i;    */
       }    cov[1]=1.;
     }  
     if (j != imax) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];    if(mle==1){
         a[imax][k]=a[j][k];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         a[j][k]=dum;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
       *d = -(*d);          for (ii=1;ii<=nlstate+ndeath;ii++)
       vv[imax]=vv[j];            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     indx[j]=imax;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (a[j][j] == 0.0) a[j][j]=TINY;            }
     if (j != n) {          for(d=0; d<dh[mi][i]; d++){
       dum=1.0/(a[j][j]);            newm=savm;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_vector(vv,1,n);  /* Doesn't work */            }
 ;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 void lubksb(double **a, int n, int *indx, double b[])            oldm=newm;
 {          } /* end mult */
   int i,ii=0,ip,j;        
   double sum;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            /* But now since version 0.9 we anticipate for bias and large stepm.
   for (i=1;i<=n;i++) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     ip=indx[i];           * (in months) between two waves is not a multiple of stepm, we rounded to 
     sum=b[ip];           * the nearest (and in case of equal distance, to the lowest) interval but now
     b[ip]=b[i];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     if (ii)           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           * probability in order to take into account the bias as a fraction of the way
     else if (sum) ii=i;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     b[i]=sum;           * -stepm/2 to stepm/2 .
   }           * For stepm=1 the results are the same as for previous versions of Imach.
   for (i=n;i>=1;i--) {           * For stepm > 1 the results are less biased than in previous versions. 
     sum=b[i];           */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          s1=s[mw[mi][i]][i];
     b[i]=sum/a[i][i];          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
 }          /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
 /************ Frequencies ********************/           */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 {  /* Some frequencies */          if( s2 > nlstate){ 
              /* i.e. if s2 is a death state and if the date of death is known then the contribution
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;               to the likelihood is the probability to die between last step unit time and current 
   double ***freq; /* Frequencies */               step unit time, which is also the differences between probability to die before dh 
   double *pp;               and probability to die before dh-stepm . 
   double pos, k2, dateintsum=0,k2cpt=0;               In version up to 0.92 likelihood was computed
   FILE *ficresp;          as if date of death was unknown. Death was treated as any other
   char fileresp[FILENAMELENGTH];          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   pp=vector(1,nlstate);          to consider that at each interview the state was recorded
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          (healthy, disable or death) and IMaCh was corrected; but when we
   strcpy(fileresp,"p");          introduced the exact date of death then we should have modified
   strcat(fileresp,fileres);          the contribution of an exact death to the likelihood. This new
   if((ficresp=fopen(fileresp,"w"))==NULL) {          contribution is smaller and very dependent of the step unit
     printf("Problem with prevalence resultfile: %s\n", fileresp);          stepm. It is no more the probability to die between last interview
     exit(0);          and month of death but the probability to survive from last
   }          interview up to one month before death multiplied by the
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          probability to die within a month. Thanks to Chris
   j1=0;          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
   j=cptcoveff;          which slows down the processing. The difference can be up to 10%
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          lower mortality.
             */
   for(k1=1; k1<=j;k1++){            lli=log(out[s1][s2] - savm[s1][s2]);
    for(i1=1; i1<=ncodemax[k1];i1++){          }else{
        j1++;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
          scanf("%d", i);*/          } 
         for (i=-1; i<=nlstate+ndeath; i++)            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
          for (jk=-1; jk<=nlstate+ndeath; jk++)            /*if(lli ==000.0)*/
            for(m=agemin; m <= agemax+3; m++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
              freq[i][jk][m]=0;          ipmx +=1;
           sw += weight[i];
         dateintsum=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         k2cpt=0;        } /* end of wave */
        for (i=1; i<=imx; i++) {      } /* end of individual */
          bool=1;    }  else if(mle==2){
          if  (cptcovn>0) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            for (z1=1; z1<=cptcoveff; z1++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for(mi=1; mi<= wav[i]-1; mi++){
                bool=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
          }            for (j=1;j<=nlstate+ndeath;j++){
          if (bool==1) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            for(m=firstpass; m<=lastpass; m++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              k2=anint[m][i]+(mint[m][i]/12.);            }
              if ((k2>=dateprev1) && (k2<=dateprev2)) {          for(d=0; d<=dh[mi][i]; d++){
                if(agev[m][i]==0) agev[m][i]=agemax+1;            newm=savm;
                if(agev[m][i]==1) agev[m][i]=agemax+2;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            for (kk=1; kk<=cptcovage;kk++) {
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            }
                  dateintsum=dateintsum+k2;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                  k2cpt++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                }            savm=oldm;
             oldm=newm;
              }          } /* end mult */
            }        
          }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
        }          /* But now since version 0.9 we anticipate for bias and large stepm.
         if  (cptcovn>0) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
          fprintf(ficresp, "\n#********** Variable ");           * (in months) between two waves is not a multiple of stepm, we rounded to 
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);           * the nearest (and in case of equal distance, to the lowest) interval but now
        fprintf(ficresp, "**********\n#");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
        for(i=1; i<=nlstate;i++)           * probability in order to take into account the bias as a fraction of the way
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
        fprintf(ficresp, "\n");           * -stepm/2 to stepm/2 .
                   * For stepm=1 the results are the same as for previous versions of Imach.
   for(i=(int)agemin; i <= (int)agemax+3; i++){           * For stepm > 1 the results are less biased than in previous versions. 
     if(i==(int)agemax+3)           */
       printf("Total");          s1=s[mw[mi][i]][i];
     else          s2=s[mw[mi+1][i]][i];
       printf("Age %d", i);          bbh=(double)bh[mi][i]/(double)stepm; 
     for(jk=1; jk <=nlstate ; jk++){          /* bias is positive if real duration
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           * is higher than the multiple of stepm and negative otherwise.
         pp[jk] += freq[jk][m][i];           */
     }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(jk=1; jk <=nlstate ; jk++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for(m=-1, pos=0; m <=0 ; m++)          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
         pos += freq[jk][m][i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       if(pp[jk]>=1.e-10)          /*if(lli ==000.0)*/
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       else          ipmx +=1;
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
      for(jk=1; jk <=nlstate ; jk++){      } /* end of individual */
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    }  else if(mle==3){  /* exponential inter-extrapolation */
         pp[jk] += freq[jk][m][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     for(jk=1,pos=0; jk <=nlstate ; jk++)          for (ii=1;ii<=nlstate+ndeath;ii++)
       pos += pp[jk];            for (j=1;j<=nlstate+ndeath;j++){
     for(jk=1; jk <=nlstate ; jk++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(pos>=1.e-5)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            }
       else          for(d=0; d<dh[mi][i]; d++){
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            newm=savm;
       if( i <= (int) agemax){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if(pos>=1.e-5){            for (kk=1; kk<=cptcovage;kk++) {
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           probs[i][jk][j1]= pp[jk]/pos;            }
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       else            savm=oldm;
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            oldm=newm;
       }          } /* end mult */
     }        
     for(jk=-1; jk <=nlstate+ndeath; jk++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for(m=-1; m <=nlstate+ndeath; m++)          /* But now since version 0.9 we anticipate for bias and large stepm.
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     if(i <= (int) agemax)           * (in months) between two waves is not a multiple of stepm, we rounded to 
       fprintf(ficresp,"\n");           * the nearest (and in case of equal distance, to the lowest) interval but now
     printf("\n");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     }           * probability in order to take into account the bias as a fraction of the way
  }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   dateintmean=dateintsum/k2cpt;           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
   fclose(ficresp);           * For stepm > 1 the results are less biased than in previous versions. 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           */
   free_vector(pp,1,nlstate);          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   /* End of Freq */          bbh=(double)bh[mi][i]/(double)stepm; 
 }          /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
 /************ Prevalence ********************/           */
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
 {  /* Some frequencies */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          /*if(lli ==000.0)*/
   double ***freq; /* Frequencies */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   double *pp;          ipmx +=1;
   double pos, k2;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   pp=vector(1,nlstate);        } /* end of wave */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      } /* end of individual */
      }else if (mle==4){  /* ml=4 no inter-extrapolation */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   j1=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   j=cptcoveff;          for (ii=1;ii<=nlstate+ndeath;ii++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  for(k1=1; k1<=j;k1++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i1=1; i1<=ncodemax[k1];i1++){            }
       j1++;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
       for (i=-1; i<=nlstate+ndeath; i++)              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (jk=-1; jk<=nlstate+ndeath; jk++)              for (kk=1; kk<=cptcovage;kk++) {
           for(m=agemin; m <= agemax+3; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             freq[i][jk][m]=0;            }
                
       for (i=1; i<=imx; i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         bool=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if  (cptcovn>0) {            savm=oldm;
           for (z1=1; z1<=cptcoveff; z1++)            oldm=newm;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          } /* end mult */
               bool=0;        
         }          s1=s[mw[mi][i]][i];
         if (bool==1) {          s2=s[mw[mi+1][i]][i];
           for(m=firstpass; m<=lastpass; m++){          if( s2 > nlstate){ 
             k2=anint[m][i]+(mint[m][i]/12.);            lli=log(out[s1][s2] - savm[s1][s2]);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          }else{
               if(agev[m][i]==0) agev[m][i]=agemax+1;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
               if(agev[m][i]==1) agev[m][i]=agemax+2;          }
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          ipmx +=1;
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];            sw += weight[i];
             }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        } /* end of wave */
       }      } /* end of individual */
          }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         for(i=(int)agemin; i <= (int)agemax+3; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for(mi=1; mi<= wav[i]-1; mi++){
               pp[jk] += freq[jk][m][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
           }            for (j=1;j<=nlstate+ndeath;j++){
           for(jk=1; jk <=nlstate ; jk++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             for(m=-1, pos=0; m <=0 ; m++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             pos += freq[jk][m][i];            }
         }          for(d=0; d<dh[mi][i]; d++){
                    newm=savm;
          for(jk=1; jk <=nlstate ; jk++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            for (kk=1; kk<=cptcovage;kk++) {
              pp[jk] += freq[jk][m][i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          }            }
                    
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          for(jk=1; jk <=nlstate ; jk++){                      savm=oldm;
            if( i <= (int) agemax){            oldm=newm;
              if(pos>=1.e-5){          } /* end mult */
                probs[i][jk][j1]= pp[jk]/pos;        
              }          s1=s[mw[mi][i]][i];
            }          s2=s[mw[mi+1][i]][i];
          }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                    ipmx +=1;
         }          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
          } /* end of wave */
        } /* end of individual */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    } /* End of if */
   free_vector(pp,1,nlstate);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 }  /* End of Freq */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
 /************* Waves Concatenation ***************/  }
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  /*************** log-likelihood *************/
 {  double funcone( double *x)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  {
      Death is a valid wave (if date is known).    /* Same as likeli but slower because of a lot of printf and if */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    int i, ii, j, k, mi, d, kk;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      and mw[mi+1][i]. dh depends on stepm.    double **out;
      */    double lli; /* Individual log likelihood */
     double llt;
   int i, mi, m;    int s1, s2;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    double bbh, survp;
      double sum=0., jmean=0.;*/    /*extern weight */
     /* We are differentiating ll according to initial status */
   int j, k=0,jk, ju, jl;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double sum=0.;    /*for(i=1;i<imx;i++) 
   jmin=1e+5;      printf(" %d\n",s[4][i]);
   jmax=-1;    */
   jmean=0.;    cov[1]=1.;
   for(i=1; i<=imx; i++){  
     mi=0;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     m=firstpass;  
     while(s[m][i] <= nlstate){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if(s[m][i]>=1)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         mw[++mi][i]=m;      for(mi=1; mi<= wav[i]-1; mi++){
       if(m >=lastpass)        for (ii=1;ii<=nlstate+ndeath;ii++)
         break;          for (j=1;j<=nlstate+ndeath;j++){
       else            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         m++;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }/* end while */          }
     if (s[m][i] > nlstate){        for(d=0; d<dh[mi][i]; d++){
       mi++;     /* Death is another wave */          newm=savm;
       /* if(mi==0)  never been interviewed correctly before death */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          /* Only death is a correct wave */          for (kk=1; kk<=cptcovage;kk++) {
       mw[mi][i]=m;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     wav[i]=mi;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if(mi==0)          savm=oldm;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          oldm=newm;
   }        } /* end mult */
         
   for(i=1; i<=imx; i++){        s1=s[mw[mi][i]][i];
     for(mi=1; mi<wav[i];mi++){        s2=s[mw[mi+1][i]][i];
       if (stepm <=0)        bbh=(double)bh[mi][i]/(double)stepm; 
         dh[mi][i]=1;        /* bias is positive if real duration
       else{         * is higher than the multiple of stepm and negative otherwise.
         if (s[mw[mi+1][i]][i] > nlstate) {         */
           if (agedc[i] < 2*AGESUP) {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          lli=log(out[s1][s2] - savm[s1][s2]);
           if(j==0) j=1;  /* Survives at least one month after exam */        } else if (mle==1){
           k=k+1;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           if (j >= jmax) jmax=j;        } else if(mle==2){
           if (j <= jmin) jmin=j;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           sum=sum+j;        } else if(mle==3){  /* exponential inter-extrapolation */
           /* if (j<10) printf("j=%d num=%d ",j,i); */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         }          lli=log(out[s1][s2]); /* Original formula */
         else{        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          lli=log(out[s1][s2]); /* Original formula */
           k=k+1;        } /* End of if */
           if (j >= jmax) jmax=j;        ipmx +=1;
           else if (j <= jmin)jmin=j;        sw += weight[i];
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           sum=sum+j;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        if(globpr){
         jk= j/stepm;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         jl= j -jk*stepm;   %10.6f %10.6f %10.6f ", \
         ju= j -(jk+1)*stepm;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         if(jl <= -ju)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           dh[mi][i]=jk;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         else            llt +=ll[k]*gipmx/gsw;
           dh[mi][i]=jk+1;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         if(dh[mi][i]==0)          }
           dh[mi][i]=1; /* At least one step */          fprintf(ficresilk," %10.6f\n", -llt);
       }        }
     }      } /* end of wave */
   }    } /* end of individual */
   jmean=sum/k;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
  }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 /*********** Tricode ****************************/    if(globpr==0){ /* First time we count the contributions and weights */
 void tricode(int *Tvar, int **nbcode, int imx)      gipmx=ipmx;
 {      gsw=sw;
   int Ndum[20],ij=1, k, j, i;    }
   int cptcode=0;    return -l;
   cptcoveff=0;  }
    
   for (k=0; k<19; k++) Ndum[k]=0;  char *subdirf(char fileres[])
   for (k=1; k<=7; k++) ncodemax[k]=0;  {
     /* Caution optionfilefiname is hidden */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    strcpy(tmpout,optionfilefiname);
     for (i=1; i<=imx; i++) {    strcat(tmpout,"/"); /* Add to the right */
       ij=(int)(covar[Tvar[j]][i]);    strcat(tmpout,fileres);
       Ndum[ij]++;    return tmpout;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  }
       if (ij > cptcode) cptcode=ij;  
     }  char *subdirf2(char fileres[], char *preop)
   {
     for (i=0; i<=cptcode; i++) {    
       if(Ndum[i]!=0) ncodemax[j]++;    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
     ij=1;    strcat(tmpout,preop);
     strcat(tmpout,fileres);
     return tmpout;
     for (i=1; i<=ncodemax[j]; i++) {  }
       for (k=0; k<=19; k++) {  char *subdirf3(char fileres[], char *preop, char *preop2)
         if (Ndum[k] != 0) {  {
           nbcode[Tvar[j]][ij]=k;    
           ij++;    strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/");
         if (ij > ncodemax[j]) break;    strcat(tmpout,preop);
       }      strcat(tmpout,preop2);
     }    strcat(tmpout,fileres);
   }      return tmpout;
   }
  for (k=0; k<19; k++) Ndum[k]=0;  
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
  for (i=1; i<=ncovmodel-2; i++) {  {
       ij=Tvar[i];    /* This routine should help understanding what is done with 
       Ndum[ij]++;       the selection of individuals/waves and
     }       to check the exact contribution to the likelihood.
        Plotting could be done.
  ij=1;     */
  for (i=1; i<=10; i++) {    int k;
    if((Ndum[i]!=0) && (i<=ncov)){  
      Tvaraff[ij]=i;    if(*globpri !=0){ /* Just counts and sums, no printings */
      ij++;      strcpy(fileresilk,"ilk"); 
    }      strcat(fileresilk,fileres);
  }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresilk);
     cptcoveff=ij-1;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 }      }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 /*********** Health Expectancies ****************/      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)      for(k=1; k<=nlstate; k++) 
 {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   /* Health expectancies */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   int i, j, nhstepm, hstepm, h;    }
   double age, agelim,hf;  
   double ***p3mat;    *fretone=(*funcone)(p);
      if(*globpri !=0){
   fprintf(ficreseij,"# Health expectancies\n");      fclose(ficresilk);
   fprintf(ficreseij,"# Age");      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   for(i=1; i<=nlstate;i++)      fflush(fichtm); 
     for(j=1; j<=nlstate;j++)    } 
       fprintf(ficreseij," %1d-%1d",i,j);    return;
   fprintf(ficreseij,"\n");  }
   
   hstepm=1*YEARM; /*  Every j years of age (in month) */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  /*********** Maximum Likelihood Estimation ***************/
   
   agelim=AGESUP;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  {
     /* nhstepm age range expressed in number of stepm */    int i,j, iter;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    double **xi;
     /* Typically if 20 years = 20*12/6=40 stepm */    double fret;
     if (stepm >= YEARM) hstepm=1;    double fretone; /* Only one call to likelihood */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    char filerespow[FILENAMELENGTH];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    xi=matrix(1,npar,1,npar);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    for (i=1;i<=npar;i++)
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      for (j=1;j<=npar;j++)
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
     for(i=1; i<=nlstate;i++)    strcat(filerespow,fileres);
       for(j=1; j<=nlstate;j++)    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){      printf("Problem with resultfile: %s\n", filerespow);
           eij[i][j][(int)age] +=p3mat[i][j][h];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         }    }
        fprintf(ficrespow,"# Powell\n# iter -2*LL");
     hf=1;    for (i=1;i<=nlstate;i++)
     if (stepm >= YEARM) hf=stepm/YEARM;      for(j=1;j<=nlstate+ndeath;j++)
     fprintf(ficreseij,"%.0f",age );        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     for(i=1; i<=nlstate;i++)    fprintf(ficrespow,"\n");
       for(j=1; j<=nlstate;j++){  
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    powell(p,xi,npar,ftol,&iter,&fret,func);
       }  
     fprintf(ficreseij,"\n");    fclose(ficrespow);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
 /************ Variance ******************/  }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {  /**** Computes Hessian and covariance matrix ***/
   /* Variance of health expectancies */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  {
   double **newm;    double  **a,**y,*x,pd;
   double **dnewm,**doldm;    double **hess;
   int i, j, nhstepm, hstepm, h;    int i, j,jk;
   int k, cptcode;    int *indx;
   double *xp;  
   double **gp, **gm;    double hessii(double p[], double delta, int theta, double delti[]);
   double ***gradg, ***trgradg;    double hessij(double p[], double delti[], int i, int j);
   double ***p3mat;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   double age,agelim;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   int theta;  
     hess=matrix(1,npar,1,npar);
    fprintf(ficresvij,"# Covariances of life expectancies\n");  
   fprintf(ficresvij,"# Age");    printf("\nCalculation of the hessian matrix. Wait...\n");
   for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for(j=1; j<=nlstate;j++)    for (i=1;i<=npar;i++){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      printf("%d",i);fflush(stdout);
   fprintf(ficresvij,"\n");      fprintf(ficlog,"%d",i);fflush(ficlog);
       hess[i][i]=hessii(p,ftolhess,i,delti);
   xp=vector(1,npar);      /*printf(" %f ",p[i]);*/
   dnewm=matrix(1,nlstate,1,npar);      /*printf(" %lf ",hess[i][i]);*/
   doldm=matrix(1,nlstate,1,nlstate);    }
      
   hstepm=1*YEARM; /* Every year of age */    for (i=1;i<=npar;i++) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for (j=1;j<=npar;j++)  {
   agelim = AGESUP;        if (j>i) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          printf(".%d%d",i,j);fflush(stdout);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     if (stepm >= YEARM) hstepm=1;          hess[i][j]=hessij(p,delti,i,j);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          hess[j][i]=hess[i][j];    
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          /*printf(" %lf ",hess[i][j]);*/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        }
     gp=matrix(0,nhstepm,1,nlstate);      }
     gm=matrix(0,nhstepm,1,nlstate);    }
     printf("\n");
     for(theta=1; theta <=npar; theta++){    fprintf(ficlog,"\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
       if (popbased==1) {    x=vector(1,npar);
         for(i=1; i<=nlstate;i++)    indx=ivector(1,npar);
           prlim[i][i]=probs[(int)age][i][ij];    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
          ludcmp(a,npar,indx,&pd);
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    for (j=1;j<=npar;j++) {
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      for (i=1;i<=npar;i++) x[i]=0;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      x[j]=1;
         }      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
            matcov[i][j]=x[i];
       for(i=1; i<=npar; i++) /* Computes gradient */      }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
       if (popbased==1) {    for (i=1;i<=npar;i++) { 
         for(i=1; i<=nlstate;i++)      for (j=1;j<=npar;j++) { 
           prlim[i][i]=probs[(int)age][i][ij];        printf("%.3e ",hess[i][j]);
       }        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
       for(j=1; j<= nlstate; j++){      printf("\n");
         for(h=0; h<=nhstepm; h++){      fprintf(ficlog,"\n");
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    /* Recompute Inverse */
       }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       for(j=1; j<= nlstate; j++)    ludcmp(a,npar,indx,&pd);
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /*  printf("\n#Hessian matrix recomputed#\n");
         }  
     } /* End theta */    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      x[j]=1;
       lubksb(a,npar,indx,x);
     for(h=0; h<=nhstepm; h++)      for (i=1;i<=npar;i++){ 
       for(j=1; j<=nlstate;j++)        y[i][j]=x[i];
         for(theta=1; theta <=npar; theta++)        printf("%.3e ",y[i][j]);
           trgradg[h][j][theta]=gradg[h][theta][j];        fprintf(ficlog,"%.3e ",y[i][j]);
       }
     for(i=1;i<=nlstate;i++)      printf("\n");
       for(j=1;j<=nlstate;j++)      fprintf(ficlog,"\n");
         vareij[i][j][(int)age] =0.;    }
     for(h=0;h<=nhstepm;h++){    */
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    free_matrix(a,1,npar,1,npar);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    free_matrix(y,1,npar,1,npar);
         for(i=1;i<=nlstate;i++)    free_vector(x,1,npar);
           for(j=1;j<=nlstate;j++)    free_ivector(indx,1,npar);
             vareij[i][j][(int)age] += doldm[i][j];    free_matrix(hess,1,npar,1,npar);
       }  
     }  
     h=1;  }
     if (stepm >= YEARM) h=stepm/YEARM;  
     fprintf(ficresvij,"%.0f ",age );  /*************** hessian matrix ****************/
     for(i=1; i<=nlstate;i++)  double hessii( double x[], double delta, int theta, double delti[])
       for(j=1; j<=nlstate;j++){  {
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    int i;
       }    int l=1, lmax=20;
     fprintf(ficresvij,"\n");    double k1,k2;
     free_matrix(gp,0,nhstepm,1,nlstate);    double p2[NPARMAX+1];
     free_matrix(gm,0,nhstepm,1,nlstate);    double res;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    double fx;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int k=0,kmax=10;
   } /* End age */    double l1;
    
   free_vector(xp,1,npar);    fx=func(x);
   free_matrix(doldm,1,nlstate,1,npar);    for (i=1;i<=npar;i++) p2[i]=x[i];
   free_matrix(dnewm,1,nlstate,1,nlstate);    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
 }      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
 /************ Variance of prevlim ******************/        delt = delta*(l1*k);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        p2[theta]=x[theta] +delt;
 {        k1=func(p2)-fx;
   /* Variance of prevalence limit */        p2[theta]=x[theta]-delt;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        k2=func(p2)-fx;
   double **newm;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   double **dnewm,**doldm;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   int i, j, nhstepm, hstepm;        
   int k, cptcode;  #ifdef DEBUG
   double *xp;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double *gp, *gm;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double **gradg, **trgradg;  #endif
   double age,agelim;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   int theta;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
              k=kmax;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        }
   fprintf(ficresvpl,"# Age");        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   for(i=1; i<=nlstate;i++)          k=kmax; l=lmax*10.;
       fprintf(ficresvpl," %1d-%1d",i,i);        }
   fprintf(ficresvpl,"\n");        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
   xp=vector(1,npar);        }
   dnewm=matrix(1,nlstate,1,npar);      }
   doldm=matrix(1,nlstate,1,nlstate);    }
      delti[theta]=delts;
   hstepm=1*YEARM; /* Every year of age */    return res; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    
   agelim = AGESUP;  }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  double hessij( double x[], double delti[], int thetai,int thetaj)
     if (stepm >= YEARM) hstepm=1;  {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    int i;
     gradg=matrix(1,npar,1,nlstate);    int l=1, l1, lmax=20;
     gp=vector(1,nlstate);    double k1,k2,k3,k4,res,fx;
     gm=vector(1,nlstate);    double p2[NPARMAX+1];
     int k;
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    fx=func(x);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (k=1; k<=2; k++) {
       }      for (i=1;i<=npar;i++) p2[i]=x[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(i=1;i<=nlstate;i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         gp[i] = prlim[i][i];      k1=func(p2)-fx;
        
       for(i=1; i<=npar; i++) /* Computes gradient */      p2[thetai]=x[thetai]+delti[thetai]/k;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      k2=func(p2)-fx;
       for(i=1;i<=nlstate;i++)    
         gm[i] = prlim[i][i];      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(i=1;i<=nlstate;i++)      k3=func(p2)-fx;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    
     } /* End theta */      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     trgradg =matrix(1,nlstate,1,npar);      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for(j=1; j<=nlstate;j++)  #ifdef DEBUG
       for(theta=1; theta <=npar; theta++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         trgradg[j][theta]=gradg[theta][j];      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
     for(i=1;i<=nlstate;i++)    }
       varpl[i][(int)age] =0.;    return res;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)  /************** Inverse of matrix **************/
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
     fprintf(ficresvpl,"%.0f ",age );    int i,imax,j,k; 
     for(i=1; i<=nlstate;i++)    double big,dum,sum,temp; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double *vv; 
     fprintf(ficresvpl,"\n");   
     free_vector(gp,1,nlstate);    vv=vector(1,n); 
     free_vector(gm,1,nlstate);    *d=1.0; 
     free_matrix(gradg,1,npar,1,nlstate);    for (i=1;i<=n;i++) { 
     free_matrix(trgradg,1,nlstate,1,npar);      big=0.0; 
   } /* End age */      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
   free_vector(xp,1,npar);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   free_matrix(doldm,1,nlstate,1,npar);      vv[i]=1.0/big; 
   free_matrix(dnewm,1,nlstate,1,nlstate);    } 
     for (j=1;j<=n;j++) { 
 }      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
 /************ Variance of one-step probabilities  ******************/        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)        a[i][j]=sum; 
 {      } 
   int i, j;      big=0.0; 
   int k=0, cptcode;      for (i=j;i<=n;i++) { 
   double **dnewm,**doldm;        sum=a[i][j]; 
   double *xp;        for (k=1;k<j;k++) 
   double *gp, *gm;          sum -= a[i][k]*a[k][j]; 
   double **gradg, **trgradg;        a[i][j]=sum; 
   double age,agelim, cov[NCOVMAX];        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   int theta;          big=dum; 
   char fileresprob[FILENAMELENGTH];          imax=i; 
         } 
   strcpy(fileresprob,"prob");      } 
   strcat(fileresprob,fileres);      if (j != imax) { 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        for (k=1;k<=n;k++) { 
     printf("Problem with resultfile: %s\n", fileresprob);          dum=a[imax][k]; 
   }          a[imax][k]=a[j][k]; 
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);          a[j][k]=dum; 
          } 
         *d = -(*d); 
   xp=vector(1,npar);        vv[imax]=vv[j]; 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      } 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      indx[j]=imax; 
        if (a[j][j] == 0.0) a[j][j]=TINY; 
   cov[1]=1;      if (j != n) { 
   for (age=bage; age<=fage; age ++){        dum=1.0/(a[j][j]); 
     cov[2]=age;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     gradg=matrix(1,npar,1,9);      } 
     trgradg=matrix(1,9,1,npar);    } 
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    free_vector(vv,1,n);  /* Doesn't work */
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  ;
      } 
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++)  void lubksb(double **a, int n, int *indx, double b[]) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  { 
          int i,ii=0,ip,j; 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    double sum; 
       
       k=0;    for (i=1;i<=n;i++) { 
       for(i=1; i<= (nlstate+ndeath); i++){      ip=indx[i]; 
         for(j=1; j<=(nlstate+ndeath);j++){      sum=b[ip]; 
            k=k+1;      b[ip]=b[i]; 
           gp[k]=pmmij[i][j];      if (ii) 
         }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       }      else if (sum) ii=i; 
       b[i]=sum; 
       for(i=1; i<=npar; i++)    } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=n;i>=1;i--) { 
          sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      b[i]=sum/a[i][i]; 
       k=0;    } 
       for(i=1; i<=(nlstate+ndeath); i++){  } 
         for(j=1; j<=(nlstate+ndeath);j++){  
           k=k+1;  /************ Frequencies ********************/
           gm[k]=pmmij[i][j];  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
         }  {  /* Some frequencies */
       }    
          int i, m, jk, k1,i1, j1, bool, z1,z2,j;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    int first;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      double ***freq; /* Frequencies */
     }    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    FILE *ficresp;
       for(theta=1; theta <=npar; theta++)    char fileresp[FILENAMELENGTH];
       trgradg[j][theta]=gradg[theta][j];    
      pp=vector(1,nlstate);
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    prop=matrix(1,nlstate,iagemin,iagemax+3);
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
      pmij(pmmij,cov,ncovmodel,x,nlstate);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
      k=0;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
      for(i=1; i<=(nlstate+ndeath); i++){      exit(0);
        for(j=1; j<=(nlstate+ndeath);j++){    }
          k=k+1;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
          gm[k]=pmmij[i][j];    j1=0;
         }    
      }    j=cptcoveff;
          if (cptcovn<1) {j=1;ncodemax[1]=1;}
      /*printf("\n%d ",(int)age);  
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    first=1;
          
     for(k1=1; k1<=j;k1++){
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      for(i1=1; i1<=ncodemax[k1];i1++){
      }*/        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   fprintf(ficresprob,"\n%d ",(int)age);          scanf("%d", i);*/
         for (i=-1; i<=nlstate+ndeath; i++)  
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);            for(m=iagemin; m <= iagemax+3; m++)
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);              freq[i][jk][m]=0;
   }  
       for (i=1; i<=nlstate; i++)  
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        for(m=iagemin; m <= iagemax+3; m++)
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          prop[i][m]=0;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        dateintsum=0;
 }        k2cpt=0;
  free_vector(xp,1,npar);        for (i=1; i<=imx; i++) {
 fclose(ficresprob);          bool=1;
  exit(0);          if  (cptcovn>0) {
 }            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 /***********************************************/                bool=0;
 /**************** Main Program *****************/          }
 /***********************************************/          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
 /*int main(int argc, char *argv[])*/              k2=anint[m][i]+(mint[m][i]/12.);
 int main()              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   double agedeb, agefin,hf;                if (m<lastpass) {
   double agemin=1.e20, agemax=-1.e20;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   double fret;                }
   double **xi,tmp,delta;                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   double dum; /* Dummy variable */                  dateintsum=dateintsum+k2;
   double ***p3mat;                  k2cpt++;
   int *indx;                }
   char line[MAXLINE], linepar[MAXLINE];                /*}*/
   char title[MAXLINE];            }
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];          }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];        }
   char filerest[FILENAMELENGTH];         
   char fileregp[FILENAMELENGTH];        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   char popfile[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        if  (cptcovn>0) {
   int firstobs=1, lastobs=10;          fprintf(ficresp, "\n#********** Variable "); 
   int sdeb, sfin; /* Status at beginning and end */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int c,  h , cpt,l;          fprintf(ficresp, "**********\n#");
   int ju,jl, mi;        }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        for(i=1; i<=nlstate;i++) 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   int mobilav=0,popforecast=0;        fprintf(ficresp, "\n");
   int hstepm, nhstepm;        
   int *popage;/*boolprev=0 if date and zero if wave*/        for(i=iagemin; i <= iagemax+3; i++){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;          if(i==iagemax+3){
             fprintf(ficlog,"Total");
   double bage, fage, age, agelim, agebase;          }else{
   double ftolpl=FTOL;            if(first==1){
   double **prlim;              first=0;
   double *severity;              printf("See log file for details...\n");
   double ***param; /* Matrix of parameters */            }
   double  *p;            fprintf(ficlog,"Age %d", i);
   double **matcov; /* Matrix of covariance */          }
   double ***delti3; /* Scale */          for(jk=1; jk <=nlstate ; jk++){
   double *delti; /* Scale */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   double ***eij, ***vareij;              pp[jk] += freq[jk][m][i]; 
   double **varpl; /* Variances of prevalence limits by age */          }
   double *epj, vepp;          for(jk=1; jk <=nlstate ; jk++){
   double kk1, kk2;            for(m=-1, pos=0; m <=0 ; m++)
   double *popeffectif,*popcount;              pos += freq[jk][m][i];
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;            if(pp[jk]>=1.e-10){
   double yp,yp1,yp2;              if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";              }
   char *alph[]={"a","a","b","c","d","e"}, str[4];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
               if(first==1)
   char z[1]="c", occ;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 #include <sys/time.h>              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 #include <time.h>            }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          }
    
   /* long total_usecs;          for(jk=1; jk <=nlstate ; jk++){
   struct timeval start_time, end_time;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                pp[jk] += freq[jk][m][i];
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
   printf("\nIMACH, Version 0.7");            posprop += prop[jk][i];
   printf("\nEnter the parameter file name: ");          }
           for(jk=1; jk <=nlstate ; jk++){
 #ifdef windows            if(pos>=1.e-5){
   scanf("%s",pathtot);              if(first==1)
   getcwd(pathcd, size);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   /*cygwin_split_path(pathtot,path,optionfile);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            }else{
   /* cutv(path,optionfile,pathtot,'\\');*/              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 split(pathtot, path,optionfile);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   chdir(path);            }
   replace(pathc,path);            if( i <= iagemax){
 #endif              if(pos>=1.e-5){
 #ifdef unix                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   scanf("%s",optionfile);                /*probs[i][jk][j1]= pp[jk]/pos;*/
 #endif                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
 /*-------- arguments in the command line --------*/              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   strcpy(fileres,"r");            }
   strcat(fileres, optionfile);          }
           
   /*---------arguments file --------*/          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {              if(freq[jk][m][i] !=0 ) {
     printf("Problem with optionfile %s\n",optionfile);              if(first==1)
     goto end;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
   strcpy(filereso,"o");          if(i <= iagemax)
   strcat(filereso,fileres);            fprintf(ficresp,"\n");
   if((ficparo=fopen(filereso,"w"))==NULL) {          if(first==1)
     printf("Problem with Output resultfile: %s\n", filereso);goto end;            printf("Others in log...\n");
   }          fprintf(ficlog,"\n");
         }
   /* Reads comments: lines beginning with '#' */      }
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    dateintmean=dateintsum/k2cpt; 
     fgets(line, MAXLINE, ficpar);   
     puts(line);    fclose(ficresp);
     fputs(line,ficparo);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   }    free_vector(pp,1,nlstate);
   ungetc(c,ficpar);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);  /************ Prevalence ********************/
 while((c=getc(ficpar))=='#' && c!= EOF){  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     ungetc(c,ficpar);  {  
     fgets(line, MAXLINE, ficpar);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     puts(line);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     fputs(line,ficparo);       We still use firstpass and lastpass as another selection.
   }    */
   ungetc(c,ficpar);   
      int i, m, jk, k1, i1, j1, bool, z1,z2,j;
        double ***freq; /* Frequencies */
   covar=matrix(0,NCOVMAX,1,n);    double *pp, **prop;
   cptcovn=0;    double pos,posprop; 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    double  y2; /* in fractional years */
     int iagemin, iagemax;
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    iagemin= (int) agemin;
      iagemax= (int) agemax;
   /* Read guess parameters */    /*pp=vector(1,nlstate);*/
   /* Reads comments: lines beginning with '#' */    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   while((c=getc(ficpar))=='#' && c!= EOF){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     ungetc(c,ficpar);    j1=0;
     fgets(line, MAXLINE, ficpar);    
     puts(line);    j=cptcoveff;
     fputs(line,ficparo);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   }    
   ungetc(c,ficpar);    for(k1=1; k1<=j;k1++){
        for(i1=1; i1<=ncodemax[k1];i1++){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        j1++;
     for(i=1; i <=nlstate; i++)        
     for(j=1; j <=nlstate+ndeath-1; j++){        for (i=1; i<=nlstate; i++)  
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficparo,"%1d%1d",i1,j1);            prop[i][m]=0.0;
       printf("%1d%1d",i,j);       
       for(k=1; k<=ncovmodel;k++){        for (i=1; i<=imx; i++) { /* Each individual */
         fscanf(ficpar," %lf",&param[i][j][k]);          bool=1;
         printf(" %lf",param[i][j][k]);          if  (cptcovn>0) {
         fprintf(ficparo," %lf",param[i][j][k]);            for (z1=1; z1<=cptcoveff; z1++) 
       }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       fscanf(ficpar,"\n");                bool=0;
       printf("\n");          } 
       fprintf(ficparo,"\n");          if (bool==1) { 
     }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   p=param[1][1];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   /* Reads comments: lines beginning with '#' */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   while((c=getc(ficpar))=='#' && c!= EOF){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     ungetc(c,ficpar);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     fgets(line, MAXLINE, ficpar);                  prop[s[m][i]][iagemax+3] += weight[i]; 
     puts(line);                } 
     fputs(line,ficparo);              }
   }            } /* end selection of waves */
   ungetc(c,ficpar);          }
         }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for(i=iagemin; i <= iagemax+3; i++){  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          
   for(i=1; i <=nlstate; i++){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     for(j=1; j <=nlstate+ndeath-1; j++){            posprop += prop[jk][i]; 
       fscanf(ficpar,"%1d%1d",&i1,&j1);          } 
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);          for(jk=1; jk <=nlstate ; jk++){     
       for(k=1; k<=ncovmodel;k++){            if( i <=  iagemax){ 
         fscanf(ficpar,"%le",&delti3[i][j][k]);              if(posprop>=1.e-5){ 
         printf(" %le",delti3[i][j][k]);                probs[i][jk][j1]= prop[jk][i]/posprop;
         fprintf(ficparo," %le",delti3[i][j][k]);              } 
       }            } 
       fscanf(ficpar,"\n");          }/* end jk */ 
       printf("\n");        }/* end i */ 
       fprintf(ficparo,"\n");      } /* end i1 */
     }    } /* end k1 */
   }    
   delti=delti3[1][1];    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      /*free_vector(pp,1,nlstate);*/
   /* Reads comments: lines beginning with '#' */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   while((c=getc(ficpar))=='#' && c!= EOF){  }  /* End of prevalence */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /************* Waves Concatenation ***************/
     puts(line);  
     fputs(line,ficparo);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   }  {
   ungetc(c,ficpar);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         Death is a valid wave (if date is known).
   matcov=matrix(1,npar,1,npar);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   for(i=1; i <=npar; i++){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     fscanf(ficpar,"%s",&str);       and mw[mi+1][i]. dh depends on stepm.
     printf("%s",str);       */
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){    int i, mi, m;
       fscanf(ficpar," %le",&matcov[i][j]);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       printf(" %.5le",matcov[i][j]);       double sum=0., jmean=0.;*/
       fprintf(ficparo," %.5le",matcov[i][j]);    int first;
     }    int j, k=0,jk, ju, jl;
     fscanf(ficpar,"\n");    double sum=0.;
     printf("\n");    first=0;
     fprintf(ficparo,"\n");    jmin=1e+5;
   }    jmax=-1;
   for(i=1; i <=npar; i++)    jmean=0.;
     for(j=i+1;j<=npar;j++)    for(i=1; i<=imx; i++){
       matcov[i][j]=matcov[j][i];      mi=0;
          m=firstpass;
   printf("\n");      while(s[m][i] <= nlstate){
         if(s[m][i]>=1)
           mw[++mi][i]=m;
     /*-------- data file ----------*/        if(m >=lastpass)
     if((ficres =fopen(fileres,"w"))==NULL) {          break;
       printf("Problem with resultfile: %s\n", fileres);goto end;        else
     }          m++;
     fprintf(ficres,"#%s\n",version);      }/* end while */
          if (s[m][i] > nlstate){
     if((fic=fopen(datafile,"r"))==NULL)    {        mi++;     /* Death is another wave */
       printf("Problem with datafile: %s\n", datafile);goto end;        /* if(mi==0)  never been interviewed correctly before death */
     }           /* Only death is a correct wave */
         mw[mi][i]=m;
     n= lastobs;      }
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);      wav[i]=mi;
     num=ivector(1,n);      if(mi==0){
     moisnais=vector(1,n);        nbwarn++;
     annais=vector(1,n);        if(first==0){
     moisdc=vector(1,n);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     andc=vector(1,n);          first=1;
     agedc=vector(1,n);        }
     cod=ivector(1,n);        if(first==1){
     weight=vector(1,n);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        }
     mint=matrix(1,maxwav,1,n);      } /* end mi==0 */
     anint=matrix(1,maxwav,1,n);    } /* End individuals */
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);        for(i=1; i<=imx; i++){
     tab=ivector(1,NCOVMAX);      for(mi=1; mi<wav[i];mi++){
     ncodemax=ivector(1,8);        if (stepm <=0)
           dh[mi][i]=1;
     i=1;        else{
     while (fgets(line, MAXLINE, fic) != NULL)    {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       if ((i >= firstobs) && (i <=lastobs)) {            if (agedc[i] < 2*AGESUP) {
                      j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         for (j=maxwav;j>=1;j--){              if(j==0) j=1;  /* Survives at least one month after exam */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              else if(j<0){
           strcpy(line,stra);                nberr++;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                j=1; /* Temporary Dangerous patch */
         }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                        fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              }
               k=k+1;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);              if (j >= jmax) jmax=j;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);              if (j <= jmin) jmin=j;
               sum=sum+j;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         for (j=ncov;j>=1;j--){              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            }
         }          }
         num[i]=atol(stra);          else{
                    j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            k=k+1;
             if (j >= jmax) jmax=j;
         i=i+1;            else if (j <= jmin)jmin=j;
       }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     /* printf("ii=%d", ij);            if(j<0){
        scanf("%d",i);*/              nberr++;
   imx=i-1; /* Number of individuals */              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /* for (i=1; i<=imx; i++){            }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            sum=sum+j;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          jk= j/stepm;
     }          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
     for (i=1; i<=imx; i++)          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/            if(jl==0){
               dh[mi][i]=jk;
   /* Calculation of the number of parameter from char model*/              bh[mi][i]=0;
   Tvar=ivector(1,15);            }else{ /* We want a negative bias in order to only have interpolation ie
   Tprod=ivector(1,15);                    * at the price of an extra matrix product in likelihood */
   Tvaraff=ivector(1,15);              dh[mi][i]=jk+1;
   Tvard=imatrix(1,15,1,2);              bh[mi][i]=ju;
   Tage=ivector(1,15);                  }
              }else{
   if (strlen(model) >1){            if(jl <= -ju){
     j=0, j1=0, k1=1, k2=1;              dh[mi][i]=jk;
     j=nbocc(model,'+');              bh[mi][i]=jl;       /* bias is positive if real duration
     j1=nbocc(model,'*');                                   * is higher than the multiple of stepm and negative otherwise.
     cptcovn=j+1;                                   */
     cptcovprod=j1;            }
                else{
                  dh[mi][i]=jk+1;
     strcpy(modelsav,model);              bh[mi][i]=ju;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            }
       printf("Error. Non available option model=%s ",model);            if(dh[mi][i]==0){
       goto end;              dh[mi][i]=1; /* At least one step */
     }              bh[mi][i]=ju; /* At least one step */
                  /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     for(i=(j+1); i>=1;i--){            }
       cutv(stra,strb,modelsav,'+');          } /* end if mle */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      } /* end wave */
       /*scanf("%d",i);*/    }
       if (strchr(strb,'*')) {    jmean=sum/k;
         cutv(strd,strc,strb,'*');    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
         if (strcmp(strc,"age")==0) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
           cptcovprod--;   }
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre);  /*********** Tricode ****************************/
           cptcovage++;  void tricode(int *Tvar, int **nbcode, int imx)
             Tage[cptcovage]=i;  {
             /*printf("stre=%s ", stre);*/    
         }    int Ndum[20],ij=1, k, j, i, maxncov=19;
         else if (strcmp(strd,"age")==0) {    int cptcode=0;
           cptcovprod--;    cptcoveff=0; 
           cutv(strb,stre,strc,'V');   
           Tvar[i]=atoi(stre);    for (k=0; k<maxncov; k++) Ndum[k]=0;
           cptcovage++;    for (k=1; k<=7; k++) ncodemax[k]=0;
           Tage[cptcovage]=i;  
         }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         else {      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
           cutv(strb,stre,strc,'V');                                 modality*/ 
           Tvar[i]=ncov+k1;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           cutv(strb,strc,strd,'V');        Ndum[ij]++; /*store the modality */
           Tprod[k1]=i;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           Tvard[k1][1]=atoi(strc);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
           Tvard[k1][2]=atoi(stre);                                         Tvar[j]. If V=sex and male is 0 and 
           Tvar[cptcovn+k2]=Tvard[k1][1];                                         female is 1, then  cptcode=1.*/
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      }
           for (k=1; k<=lastobs;k++)  
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      for (i=0; i<=cptcode; i++) {
           k1++;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           k2=k2+2;      }
         }  
       }      ij=1; 
       else {      for (i=1; i<=ncodemax[j]; i++) {
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        for (k=0; k<= maxncov; k++) {
        /*  scanf("%d",i);*/          if (Ndum[k] != 0) {
       cutv(strd,strc,strb,'V');            nbcode[Tvar[j]][ij]=k; 
       Tvar[i]=atoi(strc);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       }            
       strcpy(modelsav,stra);              ij++;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          }
         scanf("%d",i);*/          if (ij > ncodemax[j]) break; 
     }        }  
 }      } 
      }  
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);   for (k=0; k< maxncov; k++) Ndum[k]=0;
   scanf("%d ",i);*/  
     fclose(fic);   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     /*  if(mle==1){*/     ij=Tvar[i];
     if (weightopt != 1) { /* Maximisation without weights*/     Ndum[ij]++;
       for(i=1;i<=n;i++) weight[i]=1.0;   }
     }  
     /*-calculation of age at interview from date of interview and age at death -*/   ij=1;
     agev=matrix(1,maxwav,1,imx);   for (i=1; i<= maxncov; i++) {
      if((Ndum[i]!=0) && (i<=ncovcol)){
    for (i=1; i<=imx; i++)       Tvaraff[ij]=i; /*For printing */
      for(m=2; (m<= maxwav); m++)       ij++;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){     }
          anint[m][i]=9999;   }
          s[m][i]=-1;   
        }   cptcoveff=ij-1; /*Number of simple covariates*/
      }
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  /*********** Health Expectancies ****************/
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
           if (s[m][i] == nlstate+1) {  
             if(agedc[i]>0)  {
               if(moisdc[i]!=99 && andc[i]!=9999)    /* Health expectancies */
               agev[m][i]=agedc[i];    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
             else {    double age, agelim, hf;
               if (andc[i]!=9999){    double ***p3mat,***varhe;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    double **dnewm,**doldm;
               agev[m][i]=-1;    double *xp;
               }    double **gp, **gm;
             }    double ***gradg, ***trgradg;
           }    int theta;
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
             if(mint[m][i]==99 || anint[m][i]==9999)    xp=vector(1,npar);
               agev[m][i]=1;    dnewm=matrix(1,nlstate*nlstate,1,npar);
             else if(agev[m][i] <agemin){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
               agemin=agev[m][i];    
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    fprintf(ficreseij,"# Health expectancies\n");
             }    fprintf(ficreseij,"# Age");
             else if(agev[m][i] >agemax){    for(i=1; i<=nlstate;i++)
               agemax=agev[m][i];      for(j=1; j<=nlstate;j++)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        fprintf(ficreseij," %1d-%1d (SE)",i,j);
             }    fprintf(ficreseij,"\n");
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/    if(estepm < stepm){
           }      printf ("Problem %d lower than %d\n",estepm, stepm);
           else { /* =9 */    }
             agev[m][i]=1;    else  hstepm=estepm;   
             s[m][i]=-1;    /* We compute the life expectancy from trapezoids spaced every estepm months
           }     * This is mainly to measure the difference between two models: for example
         }     * if stepm=24 months pijx are given only every 2 years and by summing them
         else /*= 0 Unknown */     * we are calculating an estimate of the Life Expectancy assuming a linear 
           agev[m][i]=1;     * progression in between and thus overestimating or underestimating according
       }     * to the curvature of the survival function. If, for the same date, we 
         * estimate the model with stepm=1 month, we can keep estepm to 24 months
     }     * to compare the new estimate of Life expectancy with the same linear 
     for (i=1; i<=imx; i++)  {     * hypothesis. A more precise result, taking into account a more precise
       for(m=1; (m<= maxwav); m++){     * curvature will be obtained if estepm is as small as stepm. */
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: Wrong value in nlstate or ndeath\n");      /* For example we decided to compute the life expectancy with the smallest unit */
           goto end;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         }       nhstepm is the number of hstepm from age to agelim 
       }       nstepm is the number of stepm from age to agelin. 
     }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
     free_vector(severity,1,maxwav);       means that if the survival funtion is printed only each two years of age and if
     free_imatrix(outcome,1,maxwav+1,1,n);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     free_vector(moisnais,1,n);       results. So we changed our mind and took the option of the best precision.
     free_vector(annais,1,n);    */
     /* free_matrix(mint,1,maxwav,1,n);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        free_matrix(anint,1,maxwav,1,n);*/  
     free_vector(moisdc,1,n);    agelim=AGESUP;
     free_vector(andc,1,n);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       /* nhstepm age range expressed in number of stepm */
          nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     wav=ivector(1,imx);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      /* if (stepm >= YEARM) hstepm=1;*/
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /* Concatenates waves */      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
       Tcode=ivector(1,100);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       ncodemax[1]=1;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);   
        
    codtab=imatrix(1,100,1,10);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    h=0;  
    m=pow(2,cptcoveff);      /* Computing Variances of health expectancies */
    
    for(k=1;k<=cptcoveff; k++){       for(theta=1; theta <=npar; theta++){
      for(i=1; i <=(m/pow(2,k));i++){        for(i=1; i<=npar; i++){ 
        for(j=1; j <= ncodemax[k]; j++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        }
            h++;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            if (h>m) h=1;codtab[h][k]=j;    
          }        cptj=0;
        }        for(j=1; j<= nlstate; j++){
      }          for(i=1; i<=nlstate; i++){
    }            cptj=cptj+1;
                for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
    /* Calculates basic frequencies. Computes observed prevalence at single age              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
        and prints on file fileres'p'. */            }
           }
            }
           
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1; i<=npar; i++) 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        
              cptj=0;
     /* For Powell, parameters are in a vector p[] starting at p[1]        for(j=1; j<= nlstate; j++){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          for(i=1;i<=nlstate;i++){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     if(mle==1){  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     }            }
              }
     /*--------- results files --------------*/        }
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);        for(j=1; j<= nlstate*nlstate; j++)
            for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
    jk=1;          }
    fprintf(ficres,"# Parameters\n");       } 
    printf("# Parameters\n");     
    for(i=1,jk=1; i <=nlstate; i++){  /* End theta */
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
          {  
            printf("%d%d ",i,k);       for(h=0; h<=nhstepm-1; h++)
            fprintf(ficres,"%1d%1d ",i,k);        for(j=1; j<=nlstate*nlstate;j++)
            for(j=1; j <=ncovmodel; j++){          for(theta=1; theta <=npar; theta++)
              printf("%f ",p[jk]);            trgradg[h][j][theta]=gradg[h][theta][j];
              fprintf(ficres,"%f ",p[jk]);       
              jk++;  
            }       for(i=1;i<=nlstate*nlstate;i++)
            printf("\n");        for(j=1;j<=nlstate*nlstate;j++)
            fprintf(ficres,"\n");          varhe[i][j][(int)age] =0.;
          }  
      }       printf("%d|",(int)age);fflush(stdout);
    }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
  if(mle==1){       for(h=0;h<=nhstepm-1;h++){
     /* Computing hessian and covariance matrix */        for(k=0;k<=nhstepm-1;k++){
     ftolhess=ftol; /* Usually correct */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     hesscov(matcov, p, npar, delti, ftolhess, func);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
  }          for(i=1;i<=nlstate*nlstate;i++)
     fprintf(ficres,"# Scales\n");            for(j=1;j<=nlstate*nlstate;j++)
     printf("# Scales\n");              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
      for(i=1,jk=1; i <=nlstate; i++){        }
       for(j=1; j <=nlstate+ndeath; j++){      }
         if (j!=i) {      /* Computing expectancies */
           fprintf(ficres,"%1d%1d",i,j);      for(i=1; i<=nlstate;i++)
           printf("%1d%1d",i,j);        for(j=1; j<=nlstate;j++)
           for(k=1; k<=ncovmodel;k++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             printf(" %.5e",delti[jk]);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             fprintf(ficres," %.5e",delti[jk]);            
             jk++;  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           }  
           printf("\n");          }
           fprintf(ficres,"\n");  
         }      fprintf(ficreseij,"%3.0f",age );
       }      cptj=0;
      }      for(i=1; i<=nlstate;i++)
            for(j=1; j<=nlstate;j++){
     k=1;          cptj++;
     fprintf(ficres,"# Covariance\n");          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
     printf("# Covariance\n");        }
     for(i=1;i<=npar;i++){      fprintf(ficreseij,"\n");
       /*  if (k>nlstate) k=1;     
       i1=(i-1)/(ncovmodel*nlstate)+1;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       printf("%s%d%d",alph[k],i1,tab[i]);*/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       fprintf(ficres,"%3d",i);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       printf("%3d",i);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(j=1; j<=i;j++){    }
         fprintf(ficres," %.5e",matcov[i][j]);    printf("\n");
         printf(" %.5e",matcov[i][j]);    fprintf(ficlog,"\n");
       }  
       fprintf(ficres,"\n");    free_vector(xp,1,npar);
       printf("\n");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       k++;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
      }
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);  /************ Variance ******************/
       fgets(line, MAXLINE, ficpar);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
       puts(line);  {
       fputs(line,ficparo);    /* Variance of health expectancies */
     }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     ungetc(c,ficpar);    /* double **newm;*/
      double **dnewm,**doldm;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    double **dnewmp,**doldmp;
        int i, j, nhstepm, hstepm, h, nstepm ;
     if (fage <= 2) {    int k, cptcode;
       bage = agemin;    double *xp;
       fage = agemax;    double **gp, **gm;  /* for var eij */
     }    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     fprintf(ficres,"# agemin agemax for life expectancy.\n");    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    double ***p3mat;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    double age,agelim, hf;
      double ***mobaverage;
     while((c=getc(ficpar))=='#' && c!= EOF){    int theta;
     ungetc(c,ficpar);    char digit[4];
     fgets(line, MAXLINE, ficpar);    char digitp[25];
     puts(line);  
     fputs(line,ficparo);    char fileresprobmorprev[FILENAMELENGTH];
   }  
   ungetc(c,ficpar);    if(popbased==1){
        if(mobilav!=0)
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);        strcpy(digitp,"-populbased-mobilav-");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      else strcpy(digitp,"-populbased-nomobil-");
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    }
          else 
   while((c=getc(ficpar))=='#' && c!= EOF){      strcpy(digitp,"-stablbased-");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    if (mobilav!=0) {
     puts(line);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fputs(line,ficparo);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   ungetc(c,ficpar);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        }
     }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
   fscanf(ficpar,"pop_based=%d\n",&popbased);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
    fprintf(ficparo,"pop_based=%d\n",popbased);      strcat(fileresprobmorprev,digit); /* Tvar to be done */
    fprintf(ficres,"pop_based=%d\n",popbased);      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   while((c=getc(ficpar))=='#' && c!= EOF){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     puts(line);    }
     fputs(line,ficparo);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   ungetc(c,ficpar);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
  /*------------ gnuplot -------------*/    fprintf(ficresprobmorprev,"\n");
 chdir(pathcd);    fprintf(ficgp,"\n# Routine varevsij");
   if((ficgp=fopen("graph.plt","w"))==NULL) {    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     printf("Problem with file graph.gp");goto end;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   }  /*   } */
 #ifdef windows    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
 m=pow(2,cptcoveff);    fprintf(ficresvij,"# Age");
      for(i=1; i<=nlstate;i++)
  /* 1eme*/      for(j=1; j<=nlstate;j++)
   for (cpt=1; cpt<= nlstate ; cpt ++) {        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
    for (k1=1; k1<= m ; k1 ++) {    fprintf(ficresvij,"\n");
   
 #ifdef windows    xp=vector(1,npar);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    dnewm=matrix(1,nlstate,1,npar);
 #endif    doldm=matrix(1,nlstate,1,nlstate);
 #ifdef unix    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 #endif  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 for (i=1; i<= nlstate ; i ++) {    gpp=vector(nlstate+1,nlstate+ndeath);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    gmp=vector(nlstate+1,nlstate+ndeath);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 }    
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    if(estepm < stepm){
     for (i=1; i<= nlstate ; i ++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    else  hstepm=estepm;   
 }    /* For example we decided to compute the life expectancy with the smallest unit */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      for (i=1; i<= nlstate ; i ++) {       nhstepm is the number of hstepm from age to agelim 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       nstepm is the number of stepm from age to agelin. 
   else fprintf(ficgp," \%%*lf (\%%*lf)");       Look at hpijx to understand the reason of that which relies in memory size
 }         and note for a fixed period like k years */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 #ifdef unix       survival function given by stepm (the optimization length). Unfortunately it
 fprintf(ficgp,"\nset ter gif small size 400,300");       means that if the survival funtion is printed every two years of age and if
 #endif       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);       results. So we changed our mind and took the option of the best precision.
    }    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /*2 eme*/    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   for (k1=1; k1<= m ; k1 ++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for (i=1; i<= nlstate+1 ; i ++) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       k=2*i;      gp=matrix(0,nhstepm,1,nlstate);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      gm=matrix(0,nhstepm,1,nlstate);
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(theta=1; theta <=npar; theta++){
 }          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for (j=1; j<= nlstate+1 ; j ++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");        if (popbased==1) {
 }            if(mobilav ==0){
       fprintf(ficgp,"\" t\"\" w l 0,");            for(i=1; i<=nlstate;i++)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              prlim[i][i]=probs[(int)age][i][ij];
       for (j=1; j<= nlstate+1 ; j ++) {          }else{ /* mobilav */ 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(i=1; i<=nlstate;i++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");              prlim[i][i]=mobaverage[(int)age][i][ij];
 }            }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        }
       else fprintf(ficgp,"\" t\"\" w l 0,");    
     }        for(j=1; j<= nlstate; j++){
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          for(h=0; h<=nhstepm; h++){
   }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   /*3eme*/          }
         }
   for (k1=1; k1<= m ; k1 ++) {        /* This for computing probability of death (h=1 means
     for (cpt=1; cpt<= nlstate ; cpt ++) {           computed over hstepm matrices product = hstepm*stepm months) 
       k=2+nlstate*(cpt-1);           as a weighted average of prlim.
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);        */
       for (i=1; i< nlstate ; i ++) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        }    
     }        /* end probability of death */
   }  
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   /* CV preval stat */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   for (k1=1; k1<= m ; k1 ++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     for (cpt=1; cpt<nlstate ; cpt ++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       k=3;   
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);        if (popbased==1) {
       for (i=1; i< nlstate ; i ++)          if(mobilav ==0){
         fprintf(ficgp,"+$%d",k+i+1);            for(i=1; i<=nlstate;i++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              prlim[i][i]=probs[(int)age][i][ij];
                }else{ /* mobilav */ 
       l=3+(nlstate+ndeath)*cpt;            for(i=1; i<=nlstate;i++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              prlim[i][i]=mobaverage[(int)age][i][ij];
       for (i=1; i< nlstate ; i ++) {          }
         l=3+(nlstate+ndeath)*cpt;        }
         fprintf(ficgp,"+$%d",l+i+1);  
       }        for(j=1; j<= nlstate; j++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            for(h=0; h<=nhstepm; h++){
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   }            }
         }
   /* proba elementaires */        /* This for computing probability of death (h=1 means
    for(i=1,jk=1; i <=nlstate; i++){           computed over hstepm matrices product = hstepm*stepm months) 
     for(k=1; k <=(nlstate+ndeath); k++){           as a weighted average of prlim.
       if (k != i) {        */
         for(j=1; j <=ncovmodel; j++){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           /*fprintf(ficgp,"%s",alph[1]);*/           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        }    
           jk++;        /* end probability of death */
           fprintf(ficgp,"\n");  
         }        for(j=1; j<= nlstate; j++) /* vareij */
       }          for(h=0; h<=nhstepm; h++){
     }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     }          }
   
   for(jk=1; jk <=m; jk++) {        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
    i=1;        }
    for(k2=1; k2<=nlstate; k2++) {  
      k3=i;      } /* End theta */
      for(k=1; k<=(nlstate+ndeath); k++) {  
        if (k != k2){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
 ij=1;      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=3; j <=ncovmodel; j++) {        for(j=1; j<=nlstate;j++)
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          for(theta=1; theta <=npar; theta++)
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            trgradg[h][j][theta]=gradg[h][theta][j];
             ij++;  
           }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           else        for(theta=1; theta <=npar; theta++)
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          trgradgp[j][theta]=gradgp[theta][j];
         }    
           fprintf(ficgp,")/(1");  
              hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for(k1=1; k1 <=nlstate; k1++){        for(i=1;i<=nlstate;i++)
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        for(j=1;j<=nlstate;j++)
 ij=1;          vareij[i][j][(int)age] =0.;
           for(j=3; j <=ncovmodel; j++){  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      for(h=0;h<=nhstepm;h++){
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(k=0;k<=nhstepm;k++){
             ij++;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           else          for(i=1;i<=nlstate;i++)
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            for(j=1;j<=nlstate;j++)
           }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           fprintf(ficgp,")");        }
         }      }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      /* pptj */
         i=i+ncovmodel;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
      }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
    }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          varppt[j][i]=doldmp[j][i];
   }      /* end ppptj */
          /*  x centered again */
   fclose(ficgp);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 chdir(path);   
          if (popbased==1) {
     free_ivector(wav,1,imx);        if(mobilav ==0){
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          for(i=1; i<=nlstate;i++)
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              prlim[i][i]=probs[(int)age][i][ij];
     free_ivector(num,1,n);        }else{ /* mobilav */ 
     free_vector(agedc,1,n);          for(i=1; i<=nlstate;i++)
     /*free_matrix(covar,1,NCOVMAX,1,n);*/            prlim[i][i]=mobaverage[(int)age][i][ij];
     fclose(ficparo);        }
     fclose(ficres);      }
     /*  }*/               
          /* This for computing probability of death (h=1 means
    /*________fin mle=1_________*/         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
       */
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     /* No more information from the sample is required now */        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   /* Reads comments: lines beginning with '#' */          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   while((c=getc(ficpar))=='#' && c!= EOF){      }    
     ungetc(c,ficpar);      /* end probability of death */
     fgets(line, MAXLINE, ficpar);  
     puts(line);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     fputs(line,ficparo);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   ungetc(c,ficpar);        for(i=1; i<=nlstate;i++){
            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        }
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);      } 
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      fprintf(ficresprobmorprev,"\n");
 /*--------- index.htm --------*/  
       fprintf(ficresvij,"%.0f ",age );
   strcpy(optionfilehtm,optionfile);      for(i=1; i<=nlstate;i++)
   strcat(optionfilehtm,".htm");        for(j=1; j<=nlstate;j++){
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     printf("Problem with %s \n",optionfilehtm);goto end;        }
   }      fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">      free_matrix(gm,0,nhstepm,1,nlstate);
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 Total number of observations=%d <br>      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 <hr  size=\"2\" color=\"#EC5E5E\">    } /* End age */
 <li>Outputs files<br><br>\n    free_vector(gpp,nlstate+1,nlstate+ndeath);
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    free_vector(gmp,nlstate+1,nlstate+ndeath);
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
  fprintf(fichtm," <li>Graphs</li><p>");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
  m=cptcoveff;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
  j1=0;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){    free_vector(xp,1,npar);
        j1++;    free_matrix(doldm,1,nlstate,1,nlstate);
        if (cptcovn > 0) {    free_matrix(dnewm,1,nlstate,1,npar);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          for (cpt=1; cpt<=cptcoveff;cpt++)    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        }    fclose(ficresprobmorprev);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    fflush(ficgp);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        fflush(fichtm); 
        for(cpt=1; cpt<nlstate;cpt++){  }  /* end varevsij */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);  /************ Variance of prevlim ******************/
        }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
     for(cpt=1; cpt<=nlstate;cpt++) {  {
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    /* Variance of prevalence limit */
 interval) in state (%d): v%s%d%d.gif <br>    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      double **newm;
      }    double **dnewm,**doldm;
      for(cpt=1; cpt<=nlstate;cpt++) {    int i, j, nhstepm, hstepm;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    int k, cptcode;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    double *xp;
      }    double *gp, *gm;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    double **gradg, **trgradg;
 health expectancies in states (1) and (2): e%s%d.gif<br>    double age,agelim;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    int theta;
 fprintf(fichtm,"\n</body>");     
    }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
  }    fprintf(ficresvpl,"# Age");
 fclose(fichtm);    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
   /*--------------- Prevalence limit --------------*/    fprintf(ficresvpl,"\n");
    
   strcpy(filerespl,"pl");    xp=vector(1,npar);
   strcat(filerespl,fileres);    dnewm=matrix(1,nlstate,1,npar);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    doldm=matrix(1,nlstate,1,nlstate);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    
   }    hstepm=1*YEARM; /* Every year of age */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   fprintf(ficrespl,"#Prevalence limit\n");    agelim = AGESUP;
   fprintf(ficrespl,"#Age ");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   fprintf(ficrespl,"\n");      if (stepm >= YEARM) hstepm=1;
        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   prlim=matrix(1,nlstate,1,nlstate);      gradg=matrix(1,npar,1,nlstate);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      gp=vector(1,nlstate);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      gm=vector(1,nlstate);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(theta=1; theta <=npar; theta++){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(i=1; i<=npar; i++){ /* Computes gradient */
   k=0;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   agebase=agemin;        }
   agelim=agemax;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   ftolpl=1.e-10;        for(i=1;i<=nlstate;i++)
   i1=cptcoveff;          gp[i] = prlim[i][i];
   if (cptcovn < 1){i1=1;}      
         for(i=1; i<=npar; i++) /* Computes gradient */
   for(cptcov=1;cptcov<=i1;cptcov++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         k=k+1;        for(i=1;i<=nlstate;i++)
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          gm[i] = prlim[i][i];
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)        for(i=1;i<=nlstate;i++)
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         fprintf(ficrespl,"******\n");      } /* End theta */
          
         for (age=agebase; age<=agelim; age++){      trgradg =matrix(1,nlstate,1,npar);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );      for(j=1; j<=nlstate;j++)
           for(i=1; i<=nlstate;i++)        for(theta=1; theta <=npar; theta++)
           fprintf(ficrespl," %.5f", prlim[i][i]);          trgradg[j][theta]=gradg[theta][j];
           fprintf(ficrespl,"\n");  
         }      for(i=1;i<=nlstate;i++)
       }        varpl[i][(int)age] =0.;
     }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   fclose(ficrespl);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
   /*------------- h Pij x at various ages ------------*/        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      fprintf(ficresvpl,"%.0f ",age );
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      for(i=1; i<=nlstate;i++)
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   }      fprintf(ficresvpl,"\n");
   printf("Computing pij: result on file '%s' \n", filerespij);      free_vector(gp,1,nlstate);
        free_vector(gm,1,nlstate);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      free_matrix(gradg,1,npar,1,nlstate);
   /*if (stepm<=24) stepsize=2;*/      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */    free_vector(xp,1,npar);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    free_matrix(doldm,1,nlstate,1,npar);
      free_matrix(dnewm,1,nlstate,1,nlstate);
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){  }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;  /************ Variance of one-step probabilities  ******************/
         fprintf(ficrespij,"\n#****** ");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
         for(j=1;j<=cptcoveff;j++)  {
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int i, j=0,  i1, k1, l1, t, tj;
         fprintf(ficrespij,"******\n");    int k2, l2, j1,  z1;
            int k=0,l, cptcode;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    int first=1, first1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double **dnewm,**doldm;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double *xp;
           oldm=oldms;savm=savms;    double *gp, *gm;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double **gradg, **trgradg;
           fprintf(ficrespij,"# Age");    double **mu;
           for(i=1; i<=nlstate;i++)    double age,agelim, cov[NCOVMAX];
             for(j=1; j<=nlstate+ndeath;j++)    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
               fprintf(ficrespij," %1d-%1d",i,j);    int theta;
           fprintf(ficrespij,"\n");    char fileresprob[FILENAMELENGTH];
           for (h=0; h<=nhstepm; h++){    char fileresprobcov[FILENAMELENGTH];
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    char fileresprobcor[FILENAMELENGTH];
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)    double ***varpij;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");    strcpy(fileresprob,"prob"); 
           }    strcat(fileresprob,fileres);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           fprintf(ficrespij,"\n");      printf("Problem with resultfile: %s\n", fileresprob);
         }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }    }
   }    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
   fclose(ficrespij);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
   /*---------- Forecasting ------------------*/    strcpy(fileresprobcor,"probcor"); 
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
   strcpy(fileresf,"f");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   strcat(fileresf,fileres);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
   free_matrix(mint,1,maxwav,1,n);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   free_matrix(anint,1,maxwav,1,n);    fprintf(ficresprob,"# Age");
   free_matrix(agev,1,maxwav,1,imx);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   /* Mobile average */    fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(ficresprobcov,"# Age");
   
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(i=1; i<=nlstate;i++)
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)      for(j=1; j<=(nlstate+ndeath);j++){
       for (i=1; i<=nlstate;i++)        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           mobaverage[(int)agedeb][i][cptcod]=0.;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
          }  
     for (agedeb=bage+4; agedeb<=fage; agedeb++){   /* fprintf(ficresprob,"\n");
       for (i=1; i<=nlstate;i++){    fprintf(ficresprobcov,"\n");
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficresprobcor,"\n");
           for (cpt=0;cpt<=4;cpt++){   */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];   xp=vector(1,npar);
           }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     }      first=1;
   }    fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(fichtm,"\n");
   if (stepm<=12) stepsize=1;  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
   agelim=AGESUP;    fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
   /*hstepm=stepsize*YEARM; *//* Every year of age */    file %s<br>\n",optionfilehtmcov);
   hstepm=1;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */  and drawn. It helps understanding how is the covariance between two incidences.\
   yp1=modf(dateintmean,&yp);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   anprojmean=yp;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   yp2=modf((yp1*12),&yp);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   mprojmean=yp;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   yp1=modf((yp2*30.5),&yp);  standard deviations wide on each axis. <br>\
   jprojmean=yp;   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   if(jprojmean==0) jprojmean=1;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   if(mprojmean==0) jprojmean=1;  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    cov[1]=1;
     tj=cptcoveff;
   if (popforecast==1) {    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     if((ficpop=fopen(popfile,"r"))==NULL)    {    j1=0;
       printf("Problem with population file : %s\n",popfile);goto end;    for(t=1; t<=tj;t++){
     }      for(i1=1; i1<=ncodemax[t];i1++){ 
     popage=ivector(0,AGESUP);        j1++;
     popeffectif=vector(0,AGESUP);        if  (cptcovn>0) {
     popcount=vector(0,AGESUP);          fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     i=1;            fprintf(ficresprob, "**********\n#\n");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)          fprintf(ficresprobcov, "\n#********** Variable "); 
       {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         i=i+1;          fprintf(ficresprobcov, "**********\n#\n");
       }          
     imx=i;          fprintf(ficgp, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          fprintf(ficgp, "**********\n#\n");
   }          
           
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       k=k+1;          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficresf,"\n#******");          
       for(j=1;j<=cptcoveff;j++) {          fprintf(ficresprobcor, "\n#********** Variable ");    
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficresprobcor, "**********\n#");    
       fprintf(ficresf,"******\n");        }
       fprintf(ficresf,"# StartingAge FinalAge");        
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        for (age=bage; age<=fage; age ++){ 
       if (popforecast==1)  fprintf(ficresf," [Population]");          cov[2]=age;
            for (k=1; k<=cptcovn;k++) {
       for (cpt=0; cpt<=5;cpt++) {            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         fprintf(ficresf,"\n");          }
   fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */          for (k=1; k<=cptcovprod;k++)
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         nhstepm = nhstepm/hstepm;          
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          gp=vector(1,(nlstate)*(nlstate+ndeath));
         oldm=oldms;savm=savms;          gm=vector(1,(nlstate)*(nlstate+ndeath));
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        
                          for(theta=1; theta <=npar; theta++){
         for (h=0; h<=nhstepm; h++){            for(i=1; i<=npar; i++)
           if (h==(int) (calagedate+YEARM*cpt)) {              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);            
           }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           for(j=1; j<=nlstate+ndeath;j++) {            
             kk1=0.;kk2=0;            k=0;
             for(i=1; i<=nlstate;i++) {                    for(i=1; i<= (nlstate); i++){
               if (mobilav==1)              for(j=1; j<=(nlstate+ndeath);j++){
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                k=k+1;
               else {                gp[k]=pmmij[i][j];
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              }
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/            }
               }            
             for(i=1; i<=npar; i++)
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
             }      
                      pmij(pmmij,cov,ncovmodel,xp,nlstate);
             if (h==(int)(calagedate+12*cpt)){            k=0;
               fprintf(ficresf," %.3f", kk1);            for(i=1; i<=(nlstate); i++){
                            for(j=1; j<=(nlstate+ndeath);j++){
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);                k=k+1;
             }                gm[k]=pmmij[i][j];
           }              }
         }            }
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       
       }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     }          }
   }  
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   if (popforecast==1) {            for(theta=1; theta <=npar; theta++)
     free_ivector(popage,0,AGESUP);              trgradg[j][theta]=gradg[theta][j];
     free_vector(popeffectif,0,AGESUP);          
     free_vector(popcount,0,AGESUP);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   free_imatrix(s,1,maxwav+1,1,n);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   free_vector(weight,1,n);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   fclose(ficresf);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   /*---------- Health expectancies and variances ------------*/          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
   strcpy(filerest,"t");          pmij(pmmij,cov,ncovmodel,x,nlstate);
   strcat(filerest,fileres);          
   if((ficrest=fopen(filerest,"w"))==NULL) {          k=0;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          for(i=1; i<=(nlstate); i++){
   }            for(j=1; j<=(nlstate+ndeath);j++){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);              k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
   strcpy(filerese,"e");          }
   strcat(filerese,fileres);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   if((ficreseij=fopen(filerese,"w"))==NULL) {            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              varpij[i][j][(int)age] = doldm[i][j];
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  strcpy(fileresv,"v");            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   strcat(fileresv,fileres);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            }*/
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }          fprintf(ficresprob,"\n%d ",(int)age);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       k=k+1;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       fprintf(ficrest,"\n#****** ");            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       for(j=1;j<=cptcoveff;j++)            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
       fprintf(ficrest,"******\n");          i=0;
           for (k=1; k<=(nlstate);k++){
       fprintf(ficreseij,"\n#****** ");            for (l=1; l<=(nlstate+ndeath);l++){ 
       for(j=1;j<=cptcoveff;j++)              i=i++;
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       fprintf(ficreseij,"******\n");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
       fprintf(ficresvij,"\n#****** ");                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       for(j=1;j<=cptcoveff;j++)                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);              }
       fprintf(ficresvij,"******\n");            }
           }/* end of loop for state */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        } /* end of loop for age */
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);          /* Confidence intervalle of pij  */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        /*
       oldm=oldms;savm=savms;          fprintf(ficgp,"\nset noparametric;unset label");
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       fprintf(ficrest,"\n");          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                  fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       hf=1;        */
       if (stepm >= YEARM) hf=stepm/YEARM;  
       epj=vector(1,nlstate+1);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       for(age=bage; age <=fage ;age++){        first1=1;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for (k2=1; k2<=(nlstate);k2++){
         if (popbased==1) {          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
           for(i=1; i<=nlstate;i++)            if(l2==k2) continue;
             prlim[i][i]=probs[(int)age][i][k];            j=(k2-1)*(nlstate+ndeath)+l2;
         }            for (k1=1; k1<=(nlstate);k1++){
                      for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         fprintf(ficrest," %.0f",age);                if(l1==k1) continue;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                i=(k1-1)*(nlstate+ndeath)+l1;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                if(i<=j) continue;
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];                for (age=bage; age<=fage; age ++){ 
           }                  if ((int)age %5==0){
           epj[nlstate+1] +=epj[j];                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
         }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         for(i=1, vepp=0.;i <=nlstate;i++)                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
           for(j=1;j <=nlstate;j++)                    mu1=mu[i][(int) age]/stepm*YEARM ;
             vepp += vareij[i][j][(int)age];                    mu2=mu[j][(int) age]/stepm*YEARM;
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));                    c12=cv12/sqrt(v1*v2);
         for(j=1;j <=nlstate;j++){                    /* Computing eigen value of matrix of covariance */
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         fprintf(ficrest,"\n");                    /* Eigen vectors */
       }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     }                    /*v21=sqrt(1.-v11*v11); *//* error */
   }                    v21=(lc1-v1)/cv12*v11;
                            v12=-v21;
                            v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
  fclose(ficreseij);                      first1=0;
  fclose(ficresvij);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   fclose(ficrest);                    }
   fclose(ficpar);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   free_vector(epj,1,nlstate+1);                    /*printf(fignu*/
   /*  scanf("%d ",i); */                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   /*------- Variance limit prevalence------*/                      if(first==1){
                       first=0;
 strcpy(fileresvpl,"vpl");                      fprintf(ficgp,"\nset parametric;unset label");
   strcat(fileresvpl,fileres);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     exit(0);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  k=0;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  for(cptcov=1;cptcov<=i1;cptcov++){                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
      k=k+1;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
      fprintf(ficresvpl,"\n#****** ");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
      for(j=1;j<=cptcoveff;j++)                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
      fprintf(ficresvpl,"******\n");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                          }else{
      varpl=matrix(1,nlstate,(int) bage, (int) fage);                      first=0;
      oldm=oldms;savm=savms;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
    }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
  }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   fclose(ficresvpl);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
   /*---------- End : free ----------------*/                  } /* age mod 5 */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                } /* end loop age */
                  fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                first=1;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);              } /*l12 */
              } /* k12 */
            } /*l1 */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        }/* k1 */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      } /* loop covariates */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
      free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   free_matrix(matcov,1,npar,1,npar);    free_vector(xp,1,npar);
   free_vector(delti,1,npar);    fclose(ficresprob);
      fclose(ficresprobcov);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    fclose(ficresprobcor);
     fflush(ficgp);
   printf("End of Imach\n");    fflush(fichtmcov);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  }
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/  /******************* Printing html file ***********/
   /*------ End -----------*/  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
  end:                    int popforecast, int estepm ,\
 #ifdef windows                    double jprev1, double mprev1,double anprev1, \
  chdir(pathcd);                    double jprev2, double mprev2,double anprev2){
 #endif    int jj1, k1, i1, cpt;
      /*char optionfilehtm[FILENAMELENGTH];*/
  system("..\\gp37mgw\\wgnuplot graph.plt");  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
 #ifdef windows  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   while (z[0] != 'q') {  /*   } */
     chdir(pathcd);  
     printf("\nType e to edit output files, c to start again, and q for exiting: ");     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
     scanf("%s",z);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
     if (z[0] == 'c') system("./imach");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
     else if (z[0] == 'e') {   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
       chdir(path);   - Life expectancies by age and initial health status (estepm=%2d months): \
       system(optionfilehtm);     <a href=\"%s\">%s</a> <br>\n</li>", \
     }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
     else if (z[0] == 'q') exit(0);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
   }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
 #endif             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 }  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            rfileres,rfileres,\
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
            subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.20  
changed lines
  Added in v.1.91


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>