Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.215

version 1.41.2.1, 2003/06/12 10:43:20 version 1.215, 2015/12/16 08:52:24
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.215  2015/12/16 08:52:24  brouard
      Summary: 0.98r4 working
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.214  2015/12/16 06:57:54  brouard
   first survey ("cross") where individuals from different ages are    Summary: temporary not working
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.213  2015/12/11 18:22:17  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: 0.98r4
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.212  2015/11/21 12:47:24  brouard
   model. More health states you consider, more time is necessary to reach the    Summary: minor typo
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.211  2015/11/21 12:41:11  brouard
   probability to be observed in state j at the second wave    Summary: 0.98r3 with some graph of projected cross-sectional
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Author: Nicolas Brouard
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.210  2015/11/18 17:41:20  brouard
   where the markup *Covariates have to be included here again* invites    Summary: Start working on projected prevalences
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.209  2015/11/17 22:12:03  brouard
     Summary: Adding ftolpl parameter
   The advantage of this computer programme, compared to a simple    Author: N Brouard
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    We had difficulties to get smoothed confidence intervals. It was due
   intermediate interview, the information is lost, but taken into    to the period prevalence which wasn't computed accurately. The inner
   account using an interpolation or extrapolation.      parameter ftolpl is now an outer parameter of the .imach parameter
     file after estepm. If ftolpl is small 1.e-4 and estepm too,
   hPijx is the probability to be observed in state i at age x+h    computation are long.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.208  2015/11/17 14:31:57  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: temporary
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.207  2015/10/27 17:36:57  brouard
   and the contribution of each individual to the likelihood is simply    *** empty log message ***
   hPijx.  
     Revision 1.206  2015/10/24 07:14:11  brouard
   Also this programme outputs the covariance matrix of the parameters but also    *** empty log message ***
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.205  2015/10/23 15:50:53  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Summary: 0.98r3 some clarification for graphs on likelihood contributions
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.204  2015/10/01 16:20:26  brouard
   from the European Union.    Summary: Some new graphs of contribution to likelihood
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.203  2015/09/30 17:45:14  brouard
   can be accessed at http://euroreves.ined.fr/imach .    Summary: looking at better estimation of the hessian
   **********************************************************************/  
      Also a better criteria for convergence to the period prevalence And
 #include <math.h>    therefore adding the number of years needed to converge. (The
 #include <stdio.h>    prevalence in any alive state shold sum to one
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.202  2015/09/22 19:45:16  brouard
     Summary: Adding some overall graph on contribution to likelihood. Might change
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "wgnuplot"    Revision 1.201  2015/09/15 17:34:58  brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Summary: 0.98r0
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    - Some new graphs like suvival functions
     - Some bugs fixed like model=1+age+V2.
 /*#define windows*/  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.200  2015/09/09 16:53:55  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: Big bug thanks to Flavia
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Even model=1+age+V2. did not work anymore
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.199  2015/09/07 14:09:23  brouard
 #define NINTERVMAX 8    Summary: 0.98q6 changing default small png format for graph to vectorized svg.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.198  2015/09/03 07:14:39  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Summary: 0.98q5 Flavia
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.197  2015/09/01 18:24:39  brouard
 #define AGESUP 130    *** empty log message ***
 #define AGEBASE 40  
     Revision 1.196  2015/08/18 23:17:52  brouard
     Summary: 0.98q5
 int erreur; /* Error number */  
 int nvar;    Revision 1.195  2015/08/18 16:28:39  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Summary: Adding a hack for testing purpose
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    After reading the title, ftol and model lines, if the comment line has
 int ndeath=1; /* Number of dead states */    a q, starting with #q, the answer at the end of the run is quit. It
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    permits to run test files in batch with ctest. The former workaround was
 int popbased=0;    $ echo q | imach foo.imach
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.194  2015/08/18 13:32:00  brouard
 int maxwav; /* Maxim number of waves */    Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.193  2015/08/04 07:17:42  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Summary: 0.98q4
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.192  2015/07/16 16:49:02  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Summary: Fixing some outputs
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.191  2015/07/14 10:00:33  brouard
 FILE *ficgp,*ficresprob,*ficpop;    Summary: Some fixes
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.190  2015/05/05 08:51:13  brouard
  FILE  *ficresvij;    Summary: Adding digits in output parameters (7 digits instead of 6)
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Fix 1+age+.
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.189  2015/04/30 14:45:16  brouard
 #define NR_END 1    Summary: 0.98q2
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.188  2015/04/30 08:27:53  brouard
     *** empty log message ***
 #define NRANSI  
 #define ITMAX 200    Revision 1.187  2015/04/29 09:11:15  brouard
     *** empty log message ***
 #define TOL 2.0e-4  
     Revision 1.186  2015/04/23 12:01:52  brouard
 #define CGOLD 0.3819660    Summary: V1*age is working now, version 0.98q1
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Some codes had been disabled in order to simplify and Vn*age was
     working in the optimization phase, ie, giving correct MLE parameters,
 #define GOLD 1.618034    but, as usual, outputs were not correct and program core dumped.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.185  2015/03/11 13:26:42  brouard
     Summary: Inclusion of compile and links command line for Intel Compiler
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.184  2015/03/11 11:52:39  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Summary: Back from Windows 8. Intel Compiler
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.183  2015/03/10 20:34:32  brouard
 #define rint(a) floor(a+0.5)    Summary: 0.98q0, trying with directest, mnbrak fixed
   
 static double sqrarg;    We use directest instead of original Powell test; probably no
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    incidence on the results, but better justifications;
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    We fixed Numerical Recipes mnbrak routine which was wrong and gave
     wrong results.
 int imx;  
 int stepm;    Revision 1.182  2015/02/12 08:19:57  brouard
 /* Stepm, step in month: minimum step interpolation*/    Summary: Trying to keep directest which seems simpler and more general
     Author: Nicolas Brouard
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.181  2015/02/11 23:22:24  brouard
     Summary: Comments on Powell added
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Author:
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.180  2015/02/11 17:33:45  brouard
 double dateintmean=0;    Summary: Finishing move from main to function (hpijx and prevalence_limit)
   
 double *weight;    Revision 1.179  2015/01/04 09:57:06  brouard
 int **s; /* Status */    Summary: back to OS/X
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.178  2015/01/04 09:35:48  brouard
     *** empty log message ***
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.177  2015/01/03 18:40:56  brouard
     Summary: Still testing ilc32 on OSX
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.176  2015/01/03 16:45:04  brouard
 {    *** empty log message ***
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.175  2015/01/03 16:33:42  brouard
     *** empty log message ***
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.174  2015/01/03 16:15:49  brouard
 #ifdef windows    Summary: Still in cross-compilation
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Revision 1.173  2015/01/03 12:06:26  brouard
    s = strrchr( path, '/' );            /* find last / */    Summary: trying to detect cross-compilation
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.172  2014/12/27 12:07:47  brouard
 #if     defined(__bsd__)                /* get current working directory */    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
       extern char       *getwd( );  
     Revision 1.171  2014/12/23 13:26:59  brouard
       if ( getwd( dirc ) == NULL ) {    Summary: Back from Visual C
 #else  
       extern char       *getcwd( );    Still problem with utsname.h on Windows
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.170  2014/12/23 11:17:12  brouard
 #endif    Summary: Cleaning some \%% back to %%
          return( GLOCK_ERROR_GETCWD );  
       }    The escape was mandatory for a specific compiler (which one?), but too many warnings.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.169  2014/12/22 23:08:31  brouard
       s++;                              /* after this, the filename */    Summary: 0.98p
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Outputs some informations on compiler used, OS etc. Testing on different platforms.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.168  2014/12/22 15:17:42  brouard
       dirc[l1-l2] = 0;                  /* add zero */    Summary: update
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.167  2014/12/22 13:50:56  brouard
 #ifdef windows    Summary: Testing uname and compiler version and if compiled 32 or 64
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Testing on Linux 64
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.166  2014/12/22 11:40:47  brouard
    s = strrchr( name, '.' );            /* find last / */    *** empty log message ***
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.165  2014/12/16 11:20:36  brouard
    l1= strlen( name);    Summary: After compiling on Visual C
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    * imach.c (Module): Merging 1.61 to 1.162
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.164  2014/12/16 10:52:11  brouard
 }    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   
     * imach.c (Module): Merging 1.61 to 1.162
 /******************************************/  
     Revision 1.163  2014/12/16 10:30:11  brouard
 void replace(char *s, char*t)    * imach.c (Module): Merging 1.61 to 1.162
 {  
   int i;    Revision 1.162  2014/09/25 11:43:39  brouard
   int lg=20;    Summary: temporary backup 0.99!
   i=0;  
   lg=strlen(t);    Revision 1.1  2014/09/16 11:06:58  brouard
   for(i=0; i<= lg; i++) {    Summary: With some code (wrong) for nlopt
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Author:
   }  
 }    Revision 1.161  2014/09/15 20:41:41  brouard
     Summary: Problem with macro SQR on Intel compiler
 int nbocc(char *s, char occ)  
 {    Revision 1.160  2014/09/02 09:24:05  brouard
   int i,j=0;    *** empty log message ***
   int lg=20;  
   i=0;    Revision 1.159  2014/09/01 10:34:10  brouard
   lg=strlen(s);    Summary: WIN32
   for(i=0; i<= lg; i++) {    Author: Brouard
   if  (s[i] == occ ) j++;  
   }    Revision 1.158  2014/08/27 17:11:51  brouard
   return j;    *** empty log message ***
 }  
     Revision 1.157  2014/08/27 16:26:55  brouard
 void cutv(char *u,char *v, char*t, char occ)    Summary: Preparing windows Visual studio version
 {    Author: Brouard
   int i,lg,j,p=0;  
   i=0;    In order to compile on Visual studio, time.h is now correct and time_t
   for(j=0; j<=strlen(t)-1; j++) {    and tm struct should be used. difftime should be used but sometimes I
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    just make the differences in raw time format (time(&now).
   }    Trying to suppress #ifdef LINUX
     Add xdg-open for __linux in order to open default browser.
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.156  2014/08/25 20:10:10  brouard
     (u[j] = t[j]);    *** empty log message ***
   }  
      u[p]='\0';    Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
    for(j=0; j<= lg; j++) {    Author: Brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.154  2014/06/20 17:32:08  brouard
 }    Summary: Outputs now all graphs of convergence to period prevalence
   
 /********************** nrerror ********************/    Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
 void nrerror(char error_text[])    Author: Brouard
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.152  2014/06/18 17:54:09  brouard
   fprintf(stderr,"%s\n",error_text);    Summary: open browser, use gnuplot on same dir than imach if not found in the path
   exit(1);  
 }    Revision 1.151  2014/06/18 16:43:30  brouard
 /*********************** vector *******************/    *** empty log message ***
 double *vector(int nl, int nh)  
 {    Revision 1.150  2014/06/18 16:42:35  brouard
   double *v;    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Author: brouard
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.149  2014/06/18 15:51:14  brouard
 }    Summary: Some fixes in parameter files errors
     Author: Nicolas Brouard
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.148  2014/06/17 17:38:48  brouard
 {    Summary: Nothing new
   free((FREE_ARG)(v+nl-NR_END));    Author: Brouard
 }  
     Just a new packaging for OS/X version 0.98nS
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.147  2014/06/16 10:33:11  brouard
 {    *** empty log message ***
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.146  2014/06/16 10:20:28  brouard
   if (!v) nrerror("allocation failure in ivector");    Summary: Merge
   return v-nl+NR_END;    Author: Brouard
 }  
     Merge, before building revised version.
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.145  2014/06/10 21:23:15  brouard
 {    Summary: Debugging with valgrind
   free((FREE_ARG)(v+nl-NR_END));    Author: Nicolas Brouard
 }  
     Lot of changes in order to output the results with some covariates
 /******************* imatrix *******************************/    After the Edimburgh REVES conference 2014, it seems mandatory to
 int **imatrix(long nrl, long nrh, long ncl, long nch)    improve the code.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    No more memory valgrind error but a lot has to be done in order to
 {    continue the work of splitting the code into subroutines.
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Also, decodemodel has been improved. Tricode is still not
   int **m;    optimal. nbcode should be improved. Documentation has been added in
      the source code.
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.143  2014/01/26 09:45:38  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   m += NR_END;  
   m -= nrl;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
      (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
    
   /* allocate rows and set pointers to them */    Revision 1.142  2014/01/26 03:57:36  brouard
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   m[nrl] -= ncl;  
      Revision 1.141  2014/01/26 02:42:01  brouard
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
    
   /* return pointer to array of pointers to rows */    Revision 1.140  2011/09/02 10:37:54  brouard
   return m;    Summary: times.h is ok with mingw32 now.
 }  
     Revision 1.139  2010/06/14 07:50:17  brouard
 /****************** free_imatrix *************************/    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 void free_imatrix(m,nrl,nrh,ncl,nch)    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.138  2010/04/30 18:19:40  brouard
      /* free an int matrix allocated by imatrix() */    *** empty log message ***
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Revision 1.137  2010/04/29 18:11:38  brouard
   free((FREE_ARG) (m+nrl-NR_END));    (Module): Checking covariates for more complex models
 }    than V1+V2. A lot of change to be done. Unstable.
   
 /******************* matrix *******************************/    Revision 1.136  2010/04/26 20:30:53  brouard
 double **matrix(long nrl, long nrh, long ncl, long nch)    (Module): merging some libgsl code. Fixing computation
 {    of likelione (using inter/intrapolation if mle = 0) in order to
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    get same likelihood as if mle=1.
   double **m;    Some cleaning of code and comments added.
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.135  2009/10/29 15:33:14  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   m += NR_END;  
   m -= nrl;    Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.133  2009/07/06 10:21:25  brouard
   m[nrl] += NR_END;    just nforces
   m[nrl] -= ncl;  
     Revision 1.132  2009/07/06 08:22:05  brouard
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Many tings
   return m;  
 }    Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Revision 1.130  2009/05/26 06:44:34  brouard
 {    (Module): Max Covariate is now set to 20 instead of 8. A
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    lot of cleaning with variables initialized to 0. Trying to make
   free((FREE_ARG)(m+nrl-NR_END));    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 }  
     Revision 1.129  2007/08/31 13:49:27  lievre
 /******************* ma3x *******************************/    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    Revision 1.128  2006/06/30 13:02:05  brouard
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    (Module): Clarifications on computing e.j
   double ***m;  
     Revision 1.127  2006/04/28 18:11:50  brouard
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (Module): Yes the sum of survivors was wrong since
   if (!m) nrerror("allocation failure 1 in matrix()");    imach-114 because nhstepm was no more computed in the age
   m += NR_END;    loop. Now we define nhstepma in the age loop.
   m -= nrl;    (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    and then all the health expectancies with variances or standard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    deviation (needs data from the Hessian matrices) which slows the
   m[nrl] += NR_END;    computation.
   m[nrl] -= ncl;    In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     Revision 1.126  2006/04/28 17:23:28  brouard
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    (Module): Yes the sum of survivors was wrong since
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    imach-114 because nhstepm was no more computed in the age
   m[nrl][ncl] += NR_END;    loop. Now we define nhstepma in the age loop.
   m[nrl][ncl] -= nll;    Version 0.98h
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    Revision 1.125  2006/04/04 15:20:31  lievre
      Errors in calculation of health expectancies. Age was not initialized.
   for (i=nrl+1; i<=nrh; i++) {    Forecasting file added.
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)    Revision 1.124  2006/03/22 17:13:53  lievre
       m[i][j]=m[i][j-1]+nlay;    Parameters are printed with %lf instead of %f (more numbers after the comma).
   }    The log-likelihood is printed in the log file
   return m;  
 }    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
 /*************************free ma3x ************************/    name. <head> headers where missing.
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {    * imach.c (Module): Weights can have a decimal point as for
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    English (a comma might work with a correct LC_NUMERIC environment,
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    otherwise the weight is truncated).
   free((FREE_ARG)(m+nrl-NR_END));    Modification of warning when the covariates values are not 0 or
 }    1.
     Version 0.98g
 /***************** f1dim *************************/  
 extern int ncom;    Revision 1.122  2006/03/20 09:45:41  brouard
 extern double *pcom,*xicom;    (Module): Weights can have a decimal point as for
 extern double (*nrfunc)(double []);    English (a comma might work with a correct LC_NUMERIC environment,
      otherwise the weight is truncated).
 double f1dim(double x)    Modification of warning when the covariates values are not 0 or
 {    1.
   int j;    Version 0.98g
   double f;  
   double *xt;    Revision 1.121  2006/03/16 17:45:01  lievre
      * imach.c (Module): Comments concerning covariates added
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    * imach.c (Module): refinements in the computation of lli if
   f=(*nrfunc)(xt);    status=-2 in order to have more reliable computation if stepm is
   free_vector(xt,1,ncom);    not 1 month. Version 0.98f
   return f;  
 }    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 /*****************brent *************************/    status=-2 in order to have more reliable computation if stepm is
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    not 1 month. Version 0.98f
 {  
   int iter;    Revision 1.119  2006/03/15 17:42:26  brouard
   double a,b,d,etemp;    (Module): Bug if status = -2, the loglikelihood was
   double fu,fv,fw,fx;    computed as likelihood omitting the logarithm. Version O.98e
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    Revision 1.118  2006/03/14 18:20:07  brouard
   double e=0.0;    (Module): varevsij Comments added explaining the second
      table of variances if popbased=1 .
   a=(ax < cx ? ax : cx);    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   b=(ax > cx ? ax : cx);    (Module): Function pstamp added
   x=w=v=bx;    (Module): Version 0.98d
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {    Revision 1.117  2006/03/14 17:16:22  brouard
     xm=0.5*(a+b);    (Module): varevsij Comments added explaining the second
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    table of variances if popbased=1 .
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     printf(".");fflush(stdout);    (Module): Function pstamp added
 #ifdef DEBUG    (Module): Version 0.98d
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    Revision 1.116  2006/03/06 10:29:27  brouard
 #endif    (Module): Variance-covariance wrong links and
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    varian-covariance of ej. is needed (Saito).
       *xmin=x;  
       return fx;    Revision 1.115  2006/02/27 12:17:45  brouard
     }    (Module): One freematrix added in mlikeli! 0.98c
     ftemp=fu;  
     if (fabs(e) > tol1) {    Revision 1.114  2006/02/26 12:57:58  brouard
       r=(x-w)*(fx-fv);    (Module): Some improvements in processing parameter
       q=(x-v)*(fx-fw);    filename with strsep.
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);    Revision 1.113  2006/02/24 14:20:24  brouard
       if (q > 0.0) p = -p;    (Module): Memory leaks checks with valgrind and:
       q=fabs(q);    datafile was not closed, some imatrix were not freed and on matrix
       etemp=e;    allocation too.
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    Revision 1.112  2006/01/30 09:55:26  brouard
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    (Module): Back to gnuplot.exe instead of wgnuplot.exe
       else {  
         d=p/q;    Revision 1.111  2006/01/25 20:38:18  brouard
         u=x+d;    (Module): Lots of cleaning and bugs added (Gompertz)
         if (u-a < tol2 || b-u < tol2)    (Module): Comments can be added in data file. Missing date values
           d=SIGN(tol1,xm-x);    can be a simple dot '.'.
       }  
     } else {    Revision 1.110  2006/01/25 00:51:50  brouard
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    (Module): Lots of cleaning and bugs added (Gompertz)
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    Revision 1.109  2006/01/24 19:37:15  brouard
     fu=(*f)(u);    (Module): Comments (lines starting with a #) are allowed in data.
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;    Revision 1.108  2006/01/19 18:05:42  lievre
       SHFT(v,w,x,u)    Gnuplot problem appeared...
         SHFT(fv,fw,fx,fu)    To be fixed
         } else {  
           if (u < x) a=u; else b=u;    Revision 1.107  2006/01/19 16:20:37  brouard
           if (fu <= fw || w == x) {    Test existence of gnuplot in imach path
             v=w;  
             w=u;    Revision 1.106  2006/01/19 13:24:36  brouard
             fv=fw;    Some cleaning and links added in html output
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    Revision 1.105  2006/01/05 20:23:19  lievre
             v=u;    *** empty log message ***
             fv=fu;  
           }    Revision 1.104  2005/09/30 16:11:43  lievre
         }    (Module): sump fixed, loop imx fixed, and simplifications.
   }    (Module): If the status is missing at the last wave but we know
   nrerror("Too many iterations in brent");    that the person is alive, then we can code his/her status as -2
   *xmin=x;    (instead of missing=-1 in earlier versions) and his/her
   return fx;    contributions to the likelihood is 1 - Prob of dying from last
 }    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 /****************** mnbrak ***********************/  
     Revision 1.103  2005/09/30 15:54:49  lievre
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    (Module): sump fixed, loop imx fixed, and simplifications.
             double (*func)(double))  
 {    Revision 1.102  2004/09/15 17:31:30  brouard
   double ulim,u,r,q, dum;    Add the possibility to read data file including tab characters.
   double fu;  
      Revision 1.101  2004/09/15 10:38:38  brouard
   *fa=(*func)(*ax);    Fix on curr_time
   *fb=(*func)(*bx);  
   if (*fb > *fa) {    Revision 1.100  2004/07/12 18:29:06  brouard
     SHFT(dum,*ax,*bx,dum)    Add version for Mac OS X. Just define UNIX in Makefile
       SHFT(dum,*fb,*fa,dum)  
       }    Revision 1.99  2004/06/05 08:57:40  brouard
   *cx=(*bx)+GOLD*(*bx-*ax);    *** empty log message ***
   *fc=(*func)(*cx);  
   while (*fb > *fc) {    Revision 1.98  2004/05/16 15:05:56  brouard
     r=(*bx-*ax)*(*fb-*fc);    New version 0.97 . First attempt to estimate force of mortality
     q=(*bx-*cx)*(*fb-*fa);    directly from the data i.e. without the need of knowing the health
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    state at each age, but using a Gompertz model: log u =a + b*age .
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    This is the basic analysis of mortality and should be done before any
     ulim=(*bx)+GLIMIT*(*cx-*bx);    other analysis, in order to test if the mortality estimated from the
     if ((*bx-u)*(u-*cx) > 0.0) {    cross-longitudinal survey is different from the mortality estimated
       fu=(*func)(u);    from other sources like vital statistic data.
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    The same imach parameter file can be used but the option for mle should be -3.
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    Agnès, who wrote this part of the code, tried to keep most of the
           SHFT(*fb,*fc,fu,(*func)(u))    former routines in order to include the new code within the former code.
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    The output is very simple: only an estimate of the intercept and of
       u=ulim;    the slope with 95% confident intervals.
       fu=(*func)(u);  
     } else {    Current limitations:
       u=(*cx)+GOLD*(*cx-*bx);    A) Even if you enter covariates, i.e. with the
       fu=(*func)(u);    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     }    B) There is no computation of Life Expectancy nor Life Table.
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)    Revision 1.97  2004/02/20 13:25:42  lievre
       }    Version 0.96d. Population forecasting command line is (temporarily)
 }    suppressed.
   
 /*************** linmin ************************/    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int ncom;    rewritten within the same printf. Workaround: many printfs.
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    Revision 1.95  2003/07/08 07:54:34  brouard
      * imach.c (Repository):
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    (Repository): Using imachwizard code to output a more meaningful covariance
 {    matrix (cov(a12,c31) instead of numbers.
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);    Revision 1.94  2003/06/27 13:00:02  brouard
   double f1dim(double x);    Just cleaning
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));    Revision 1.93  2003/06/25 16:33:55  brouard
   int j;    (Module): On windows (cygwin) function asctime_r doesn't
   double xx,xmin,bx,ax;    exist so I changed back to asctime which exists.
   double fx,fb,fa;    (Module): Version 0.96b
    
   ncom=n;    Revision 1.92  2003/06/25 16:30:45  brouard
   pcom=vector(1,n);    (Module): On windows (cygwin) function asctime_r doesn't
   xicom=vector(1,n);    exist so I changed back to asctime which exists.
   nrfunc=func;  
   for (j=1;j<=n;j++) {    Revision 1.91  2003/06/25 15:30:29  brouard
     pcom[j]=p[j];    * imach.c (Repository): Duplicated warning errors corrected.
     xicom[j]=xi[j];    (Repository): Elapsed time after each iteration is now output. It
   }    helps to forecast when convergence will be reached. Elapsed time
   ax=0.0;    is stamped in powell.  We created a new html file for the graphs
   xx=1.0;    concerning matrix of covariance. It has extension -cov.htm.
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    Revision 1.90  2003/06/24 12:34:15  brouard
 #ifdef DEBUG    (Module): Some bugs corrected for windows. Also, when
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    mle=-1 a template is output in file "or"mypar.txt with the design
 #endif    of the covariance matrix to be input.
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;    Revision 1.89  2003/06/24 12:30:52  brouard
     p[j] += xi[j];    (Module): Some bugs corrected for windows. Also, when
   }    mle=-1 a template is output in file "or"mypar.txt with the design
   free_vector(xicom,1,n);    of the covariance matrix to be input.
   free_vector(pcom,1,n);  
 }    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    Revision 1.87  2003/06/18 12:26:01  brouard
             double (*func)(double []))    Version 0.96
 {  
   void linmin(double p[], double xi[], int n, double *fret,    Revision 1.86  2003/06/17 20:04:08  brouard
               double (*func)(double []));    (Module): Change position of html and gnuplot routines and added
   int i,ibig,j;    routine fileappend.
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;    Revision 1.85  2003/06/17 13:12:43  brouard
   double *xits;    * imach.c (Repository): Check when date of death was earlier that
   pt=vector(1,n);    current date of interview. It may happen when the death was just
   ptt=vector(1,n);    prior to the death. In this case, dh was negative and likelihood
   xit=vector(1,n);    was wrong (infinity). We still send an "Error" but patch by
   xits=vector(1,n);    assuming that the date of death was just one stepm after the
   *fret=(*func)(p);    interview.
   for (j=1;j<=n;j++) pt[j]=p[j];    (Repository): Because some people have very long ID (first column)
   for (*iter=1;;++(*iter)) {    we changed int to long in num[] and we added a new lvector for
     fp=(*fret);    memory allocation. But we also truncated to 8 characters (left
     ibig=0;    truncation)
     del=0.0;    (Repository): No more line truncation errors.
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)    Revision 1.84  2003/06/13 21:44:43  brouard
       printf(" %d %.12f",i, p[i]);    * imach.c (Repository): Replace "freqsummary" at a correct
     printf("\n");    place. It differs from routine "prevalence" which may be called
     for (i=1;i<=n;i++) {    many times. Probs is memory consuming and must be used with
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    parcimony.
       fptt=(*fret);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);    Revision 1.83  2003/06/10 13:39:11  lievre
 #endif    *** empty log message ***
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);    Revision 1.82  2003/06/05 15:57:20  brouard
       if (fabs(fptt-(*fret)) > del) {    Add log in  imach.c and  fullversion number is now printed.
         del=fabs(fptt-(*fret));  
         ibig=i;  */
       }  /*
 #ifdef DEBUG     Interpolated Markov Chain
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {    Short summary of the programme:
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    
         printf(" x(%d)=%.12e",j,xit[j]);    This program computes Healthy Life Expectancies from
       }    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       for(j=1;j<=n;j++)    first survey ("cross") where individuals from different ages are
         printf(" p=%.12e",p[j]);    interviewed on their health status or degree of disability (in the
       printf("\n");    case of a health survey which is our main interest) -2- at least a
 #endif    second wave of interviews ("longitudinal") which measure each change
     }    (if any) in individual health status.  Health expectancies are
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    computed from the time spent in each health state according to a
 #ifdef DEBUG    model. More health states you consider, more time is necessary to reach the
       int k[2],l;    Maximum Likelihood of the parameters involved in the model.  The
       k[0]=1;    simplest model is the multinomial logistic model where pij is the
       k[1]=-1;    probability to be observed in state j at the second wave
       printf("Max: %.12e",(*func)(p));    conditional to be observed in state i at the first wave. Therefore
       for (j=1;j<=n;j++)    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
         printf(" %.12e",p[j]);    'age' is age and 'sex' is a covariate. If you want to have a more
       printf("\n");    complex model than "constant and age", you should modify the program
       for(l=0;l<=1;l++) {    where the markup *Covariates have to be included here again* invites
         for (j=1;j<=n;j++) {    you to do it.  More covariates you add, slower the
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    convergence.
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }    The advantage of this computer programme, compared to a simple
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    multinomial logistic model, is clear when the delay between waves is not
       }    identical for each individual. Also, if a individual missed an
 #endif    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
   
       free_vector(xit,1,n);    hPijx is the probability to be observed in state i at age x+h
       free_vector(xits,1,n);    conditional to the observed state i at age x. The delay 'h' can be
       free_vector(ptt,1,n);    split into an exact number (nh*stepm) of unobserved intermediate
       free_vector(pt,1,n);    states. This elementary transition (by month, quarter,
       return;    semester or year) is modelled as a multinomial logistic.  The hPx
     }    matrix is simply the matrix product of nh*stepm elementary matrices
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    and the contribution of each individual to the likelihood is simply
     for (j=1;j<=n;j++) {    hPijx.
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];    Also this programme outputs the covariance matrix of the parameters but also
       pt[j]=p[j];    of the life expectancies. It also computes the period (stable) prevalence. 
     }    
     fptt=(*func)(ptt);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
     if (fptt < fp) {             Institut national d'études démographiques, Paris.
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    This software have been partly granted by Euro-REVES, a concerted action
       if (t < 0.0) {    from the European Union.
         linmin(p,xit,n,fret,func);    It is copyrighted identically to a GNU software product, ie programme and
         for (j=1;j<=n;j++) {    software can be distributed freely for non commercial use. Latest version
           xi[j][ibig]=xi[j][n];    can be accessed at http://euroreves.ined.fr/imach .
           xi[j][n]=xit[j];  
         }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #ifdef DEBUG    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    
         for(j=1;j<=n;j++)    **********************************************************************/
           printf(" %.12e",xit[j]);  /*
         printf("\n");    main
 #endif    read parameterfile
       }    read datafile
     }    concatwav
   }    freqsummary
 }    if (mle >= 1)
       mlikeli
 /**** Prevalence limit ****************/    print results files
     if mle==1 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)       computes hessian
 {    read end of parameter file: agemin, agemax, bage, fage, estepm
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        begin-prev-date,...
      matrix by transitions matrix until convergence is reached */    open gnuplot file
     open html file
   int i, ii,j,k;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   double min, max, maxmin, maxmax,sumnew=0.;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   double **matprod2();                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   double **out, cov[NCOVMAX], **pmij();      freexexit2 possible for memory heap.
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */    h Pij x                         | pij_nom  ficrestpij
      # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   for (ii=1;ii<=nlstate+ndeath;ii++)         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
     for (j=1;j<=nlstate+ndeath;j++){         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
          1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
    cov[1]=1.;    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;    forecasting if prevfcast==1 prevforecast call prevalence()
     /* Covariates have to be included here again */    health expectancies
      cov[2]=agefin;    Variance-covariance of DFLE
      prevalence()
       for (k=1; k<=cptcovn;k++) {     movingaverage()
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    varevsij() 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    if popbased==1 varevsij(,popbased)
       }    total life expectancies
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    Variance of period (stable) prevalence
       for (k=1; k<=cptcovprod;k++)   end
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  */
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /* #define DEBUG */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /* #define DEBUGBRENT */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /* #define DEBUGLINMIN */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /* #define DEBUGHESS */
   #define DEBUGHESSIJ
     savm=oldm;  /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan)*\/ */
     oldm=newm;  #define POWELL /* Instead of NLOPT */
     maxmax=0.;  #define POWELLF1F3 /* Skip test */
     for(j=1;j<=nlstate;j++){  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
       min=1.;  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
       max=0.;  
       for(i=1; i<=nlstate; i++) {  #include <math.h>
         sumnew=0;  #include <stdio.h>
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #include <stdlib.h>
         prlim[i][j]= newm[i][j]/(1-sumnew);  #include <string.h>
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  #ifdef _WIN32
       }  #include <io.h>
       maxmin=max-min;  #include <windows.h>
       maxmax=FMAX(maxmax,maxmin);  #include <tchar.h>
     }  #else
     if(maxmax < ftolpl){  #include <unistd.h>
       return prlim;  #endif
     }  
   }  #include <limits.h>
 }  #include <sys/types.h>
   
 /*************** transition probabilities ***************/  #if defined(__GNUC__)
   #include <sys/utsname.h> /* Doesn't work on Windows */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #endif
 {  
   double s1, s2;  #include <sys/stat.h>
   /*double t34;*/  #include <errno.h>
   int i,j,j1, nc, ii, jj;  /* extern int errno; */
   
     for(i=1; i<= nlstate; i++){  /* #ifdef LINUX */
     for(j=1; j<i;j++){  /* #include <time.h> */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /* #include "timeval.h" */
         /*s2 += param[i][j][nc]*cov[nc];*/  /* #else */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /* #include <sys/time.h> */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /* #endif */
       }  
       ps[i][j]=s2;  #include <time.h>
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  #ifdef GSL
     for(j=i+1; j<=nlstate+ndeath;j++){  #include <gsl/gsl_errno.h>
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #include <gsl/gsl_multimin.h>
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #endif
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  
       ps[i][j]=s2;  #ifdef NLOPT
     }  #include <nlopt.h>
   }  typedef struct {
     /*ps[3][2]=1;*/    double (* function)(double [] );
   } myfunc_data ;
   for(i=1; i<= nlstate; i++){  #endif
      s1=0;  
     for(j=1; j<i; j++)  /* #include <libintl.h> */
       s1+=exp(ps[i][j]);  /* #define _(String) gettext (String) */
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  #define GNUPLOTPROGRAM "gnuplot"
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     for(j=i+1; j<=nlstate+ndeath; j++)  #define FILENAMELENGTH 132
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   } /* end i */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     for(jj=1; jj<= nlstate+ndeath; jj++){  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  #define NINTERVMAX 8
     }  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   }  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
     for(jj=1; jj<= nlstate+ndeath; jj++){  #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
      printf("%lf ",ps[ii][jj]);  #define MAXN 20000
    }  #define YEARM 12. /**< Number of months per year */
     printf("\n ");  #define AGESUP 130
     }  #define AGEBASE 40
     printf("\n ");printf("%lf ",cov[2]);*/  #define AGEOVERFLOW 1.e20
 /*  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  #ifdef _WIN32
   goto end;*/  #define DIRSEPARATOR '\\'
     return ps;  #define CHARSEPARATOR "\\"
 }  #define ODIRSEPARATOR '/'
   #else
 /**************** Product of 2 matrices ******************/  #define DIRSEPARATOR '/'
   #define CHARSEPARATOR "/"
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  #define ODIRSEPARATOR '\\'
 {  #endif
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /* $Id$ */
   /* in, b, out are matrice of pointers which should have been initialized  /* $State$ */
      before: only the contents of out is modified. The function returns  #include "version.h"
      a pointer to pointers identical to out */  char version[]=__IMACH_VERSION__;
   long i, j, k;  char copyright[]="October 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
   for(i=nrl; i<= nrh; i++)  char fullversion[]="$Revision$ $Date$"; 
     for(k=ncolol; k<=ncoloh; k++)  char strstart[80];
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
         out[i][k] +=in[i][j]*b[j][k];  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
   return out;  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
 }  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 /************* Higher Matrix Product ***************/  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   int cptcovprodnoage=0; /**< Number of covariate products without age */   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 {  int cptcov=0; /* Working variable */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  int npar=NPARMAX;
      duration (i.e. until  int nlstate=2; /* Number of live states */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  int ndeath=1; /* Number of dead states */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
      (typically every 2 years instead of every month which is too big).  int popbased=0;
      Model is determined by parameters x and covariates have to be  
      included manually here.  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav=0; /* Maxim number of waves */
      */  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   int i, j, d, h, k;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   double **out, cov[NCOVMAX];                     to the likelihood and the sum of weights (done by funcone)*/
   double **newm;  int mle=1, weightopt=0;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   /* Hstepm could be zero and should return the unit matrix */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   for (i=1;i<=nlstate+ndeath;i++)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     for (j=1;j<=nlstate+ndeath;j++){             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       oldm[i][j]=(i==j ? 1.0 : 0.0);  int countcallfunc=0;  /* Count the number of calls to func */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  double jmean=1; /* Mean space between 2 waves */
     }  double **matprod2(); /* test */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  double **oldm, **newm, **savm; /* Working pointers to matrices */
   for(h=1; h <=nhstepm; h++){  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     for(d=1; d <=hstepm; d++){  /*FILE *fic ; */ /* Used in readdata only */
       newm=savm;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       /* Covariates have to be included here again */  FILE *ficlog, *ficrespow;
       cov[1]=1.;  int globpr=0; /* Global variable for printing or not */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  double fretone; /* Only one call to likelihood */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  long ipmx=0; /* Number of contributions */
       for (k=1; k<=cptcovage;k++)  double sw; /* Sum of weights */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  char filerespow[FILENAMELENGTH];
       for (k=1; k<=cptcovprod;k++)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  FILE *fichtm, *fichtmcov; /* Html File */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  FILE *ficreseij;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  char filerese[FILENAMELENGTH];
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  FILE *ficresstdeij;
       savm=oldm;  char fileresstde[FILENAMELENGTH];
       oldm=newm;  FILE *ficrescveij;
     }  char filerescve[FILENAMELENGTH];
     for(i=1; i<=nlstate+ndeath; i++)  FILE  *ficresvij;
       for(j=1;j<=nlstate+ndeath;j++) {  char fileresv[FILENAMELENGTH];
         po[i][j][h]=newm[i][j];  FILE  *ficresvpl;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  char fileresvpl[FILENAMELENGTH];
          */  char title[MAXLINE];
       }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   } /* end h */  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   return po;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 }  char command[FILENAMELENGTH];
   int  outcmd=0;
   
 /*************** log-likelihood *************/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 double func( double *x)  char fileresu[FILENAMELENGTH]; /* fileres without r in front */
 {  char filelog[FILENAMELENGTH]; /* Log file */
   int i, ii, j, k, mi, d, kk;  char filerest[FILENAMELENGTH];
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  char fileregp[FILENAMELENGTH];
   double **out;  char popfile[FILENAMELENGTH];
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   long ipmx;  
   /*extern weight */  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
   /* We are differentiating ll according to initial status */  /* struct timezone tzp; */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /* extern int gettimeofday(); */
   /*for(i=1;i<imx;i++)  struct tm tml, *gmtime(), *localtime();
     printf(" %d\n",s[4][i]);  
   */  extern time_t time();
   cov[1]=1.;  
   struct tm start_time, end_time, curr_time, last_time, forecast_time;
   for(k=1; k<=nlstate; k++) ll[k]=0.;  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  struct tm tm;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  char strcurr[80], strfor[80];
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  char *endptr;
       for(d=0; d<dh[mi][i]; d++){  long lval;
         newm=savm;  double dval;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  #define NR_END 1
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  #define FREE_ARG char*
         }  #define FTOL 1.0e-10
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #define NRANSI 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #define ITMAX 200 
         savm=oldm;  
         oldm=newm;  #define TOL 2.0e-4 
          
          #define CGOLD 0.3819660 
       } /* end mult */  #define ZEPS 1.0e-10 
        #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  #define GOLD 1.618034 
       ipmx +=1;  #define GLIMIT 100.0 
       sw += weight[i];  #define TINY 1.0e-20 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  static double maxarg1,maxarg2;
   } /* end of individual */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  #define rint(a) floor(a+0.5)
   return -l;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
 }  #define mytinydouble 1.0e-16
   /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
 /*********** Maximum Likelihood Estimation ***************/  /* static double dsqrarg; */
   /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  static double sqrarg;
 {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   int i,j, iter;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double **xi,*delti;  int agegomp= AGEGOMP;
   double fret;  
   xi=matrix(1,npar,1,npar);  int imx; 
   for (i=1;i<=npar;i++)  int stepm=1;
     for (j=1;j<=npar;j++)  /* Stepm, step in month: minimum step interpolation*/
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  int estepm;
   powell(p,xi,npar,ftol,&iter,&fret,func);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  int m,nb;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  long *num;
   int firstpass=0, lastpass=4,*cod, *cens;
 }  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
                      covariate for which somebody answered excluding 
 /**** Computes Hessian and covariance matrix ***/                     undefined. Usually 2: 0 and 1. */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
 {                               covariate for which somebody answered including 
   double  **a,**y,*x,pd;                               undefined. Usually 3: -1, 0 and 1. */
   double **hess;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   int i, j,jk;  double **pmmij, ***probs;
   int *indx;  double *ageexmed,*agecens;
   double dateintmean=0;
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);  double *weight;
   void lubksb(double **a, int npar, int *indx, double b[]) ;  int **s; /* Status */
   void ludcmp(double **a, int npar, int *indx, double *d) ;  double *agedc;
   double  **covar; /**< covar[j,i], value of jth covariate for individual i,
   hess=matrix(1,npar,1,npar);                    * covar=matrix(0,NCOVMAX,1,n); 
                     * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
   printf("\nCalculation of the hessian matrix. Wait...\n");  double  idx; 
   for (i=1;i<=npar;i++){  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
     printf("%d",i);fflush(stdout);  int *Tage;
     hess[i][i]=hessii(p,ftolhess,i,delti);  int *Ndum; /** Freq of modality (tricode */
     /*printf(" %f ",p[i]);*/  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
     /*printf(" %lf ",hess[i][i]);*/  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   }  double *lsurv, *lpop, *tpop;
    
   for (i=1;i<=npar;i++) {  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     for (j=1;j<=npar;j++)  {  double ftolhess; /**< Tolerance for computing hessian */
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  /**************** split *************************/
         hess[i][j]=hessij(p,delti,i,j);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
         hess[j][i]=hess[i][j];      {
         /*printf(" %lf ",hess[i][j]);*/    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     }    */ 
   }    char  *ss;                            /* pointer */
   printf("\n");    int   l1=0, l2=0;                             /* length counters */
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    l1 = strlen(path );                   /* length of path */
      if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   a=matrix(1,npar,1,npar);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   y=matrix(1,npar,1,npar);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   x=vector(1,npar);      strcpy( name, path );               /* we got the fullname name because no directory */
   indx=ivector(1,npar);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   for (i=1;i<=npar;i++)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      /* get current working directory */
   ludcmp(a,npar,indx,&pd);      /*    extern  char* getcwd ( char *buf , int len);*/
   #ifdef WIN32
   for (j=1;j<=npar;j++) {      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
     for (i=1;i<=npar;i++) x[i]=0;  #else
     x[j]=1;          if (getcwd(dirc, FILENAME_MAX) == NULL) {
     lubksb(a,npar,indx,x);  #endif
     for (i=1;i<=npar;i++){        return( GLOCK_ERROR_GETCWD );
       matcov[i][j]=x[i];      }
     }      /* got dirc from getcwd*/
   }      printf(" DIRC = %s \n",dirc);
     } else {                              /* strip directory from path */
   printf("\n#Hessian matrix#\n");      ss++;                               /* after this, the filename */
   for (i=1;i<=npar;i++) {      l2 = strlen( ss );                  /* length of filename */
     for (j=1;j<=npar;j++) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       printf("%.3e ",hess[i][j]);      strcpy( name, ss );         /* save file name */
     }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     printf("\n");      dirc[l1-l2] = '\0';                 /* add zero */
   }      printf(" DIRC2 = %s \n",dirc);
     }
   /* Recompute Inverse */    /* We add a separator at the end of dirc if not exists */
   for (i=1;i<=npar;i++)    l1 = strlen( dirc );                  /* length of directory */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    if( dirc[l1-1] != DIRSEPARATOR ){
   ludcmp(a,npar,indx,&pd);      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
   /*  printf("\n#Hessian matrix recomputed#\n");      printf(" DIRC3 = %s \n",dirc);
     }
   for (j=1;j<=npar;j++) {    ss = strrchr( name, '.' );            /* find last / */
     for (i=1;i<=npar;i++) x[i]=0;    if (ss >0){
     x[j]=1;      ss++;
     lubksb(a,npar,indx,x);      strcpy(ext,ss);                     /* save extension */
     for (i=1;i<=npar;i++){      l1= strlen( name);
       y[i][j]=x[i];      l2= strlen(ss)+1;
       printf("%.3e ",y[i][j]);      strncpy( finame, name, l1-l2);
     }      finame[l1-l2]= 0;
     printf("\n");    }
   }  
   */    return( 0 );                          /* we're done */
   }
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);  /******************************************/
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);  void replace_back_to_slash(char *s, char*t)
   {
     int i;
 }    int lg=0;
     i=0;
 /*************** hessian matrix ****************/    lg=strlen(t);
 double hessii( double x[], double delta, int theta, double delti[])    for(i=0; i<= lg; i++) {
 {      (s[i] = t[i]);
   int i;      if (t[i]== '\\') s[i]='/';
   int l=1, lmax=20;    }
   double k1,k2;  }
   double p2[NPARMAX+1];  
   double res;  char *trimbb(char *out, char *in)
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   double fx;    char *s;
   int k=0,kmax=10;    s=out;
   double l1;    while (*in != '\0'){
       while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   fx=func(x);        in++;
   for (i=1;i<=npar;i++) p2[i]=x[i];      }
   for(l=0 ; l <=lmax; l++){      *out++ = *in++;
     l1=pow(10,l);    }
     delts=delt;    *out='\0';
     for(k=1 ; k <kmax; k=k+1){    return s;
       delt = delta*(l1*k);  }
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;  /* char *substrchaine(char *out, char *in, char *chain) */
       p2[theta]=x[theta]-delt;  /* { */
       k2=func(p2)-fx;  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /*   char *s, *t; */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /*   t=in;s=out; */
        /*   while ((*in != *chain) && (*in != '\0')){ */
 #ifdef DEBUG  /*     *out++ = *in++; */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  /*   } */
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  /*   /\* *in matches *chain *\/ */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
         k=kmax;  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
       }  /*   } */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  /*   in--; chain--; */
         k=kmax; l=lmax*10.;  /*   while ( (*in != '\0')){ */
       }  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  /*     *out++ = *in++; */
         delts=delt;  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
       }  /*   } */
     }  /*   *out='\0'; */
   }  /*   out=s; */
   delti[theta]=delts;  /*   return out; */
   return res;  /* } */
    char *substrchaine(char *out, char *in, char *chain)
 }  {
     /* Substract chain 'chain' from 'in', return and output 'out' */
 double hessij( double x[], double delti[], int thetai,int thetaj)    /* in="V1+V1*age+age*age+V2", chain="age*age" */
 {  
   int i;    char *strloc;
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;    strcpy (out, in); 
   double p2[NPARMAX+1];    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
   int k;    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
     if(strloc != NULL){ 
   fx=func(x);      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
   for (k=1; k<=2; k++) {      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
     for (i=1;i<=npar;i++) p2[i]=x[i];      /* strcpy (strloc, strloc +strlen(chain));*/
     p2[thetai]=x[thetai]+delti[thetai]/k;    }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
     k1=func(p2)-fx;    return out;
    }
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;  char *cutl(char *blocc, char *alocc, char *in, char occ)
    {
     p2[thetai]=x[thetai]-delti[thetai]/k;    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     k3=func(p2)-fx;       gives blocc="abcdef" and alocc="ghi2j".
         If occ is not found blocc is null and alocc is equal to in. Returns blocc
     p2[thetai]=x[thetai]-delti[thetai]/k;    */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    char *s, *t;
     k4=func(p2)-fx;    t=in;s=in;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    while ((*in != occ) && (*in != '\0')){
 #ifdef DEBUG      *alocc++ = *in++;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    }
 #endif    if( *in == occ){
   }      *(alocc)='\0';
   return res;      s=++in;
 }    }
    
 /************** Inverse of matrix **************/    if (s == t) {/* occ not found */
 void ludcmp(double **a, int n, int *indx, double *d)      *(alocc-(in-s))='\0';
 {      in=s;
   int i,imax,j,k;    }
   double big,dum,sum,temp;    while ( *in != '\0'){
   double *vv;      *blocc++ = *in++;
      }
   vv=vector(1,n);  
   *d=1.0;    *blocc='\0';
   for (i=1;i<=n;i++) {    return t;
     big=0.0;  }
     for (j=1;j<=n;j++)  char *cutv(char *blocc, char *alocc, char *in, char occ)
       if ((temp=fabs(a[i][j])) > big) big=temp;  {
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
     vv[i]=1.0/big;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   }       gives blocc="abcdef2ghi" and alocc="j".
   for (j=1;j<=n;j++) {       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     for (i=1;i<j;i++) {    */
       sum=a[i][j];    char *s, *t;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    t=in;s=in;
       a[i][j]=sum;    while (*in != '\0'){
     }      while( *in == occ){
     big=0.0;        *blocc++ = *in++;
     for (i=j;i<=n;i++) {        s=in;
       sum=a[i][j];      }
       for (k=1;k<j;k++)      *blocc++ = *in++;
         sum -= a[i][k]*a[k][j];    }
       a[i][j]=sum;    if (s == t) /* occ not found */
       if ( (dum=vv[i]*fabs(sum)) >= big) {      *(blocc-(in-s))='\0';
         big=dum;    else
         imax=i;      *(blocc-(in-s)-1)='\0';
       }    in=s;
     }    while ( *in != '\0'){
     if (j != imax) {      *alocc++ = *in++;
       for (k=1;k<=n;k++) {    }
         dum=a[imax][k];  
         a[imax][k]=a[j][k];    *alocc='\0';
         a[j][k]=dum;    return s;
       }  }
       *d = -(*d);  
       vv[imax]=vv[j];  int nbocc(char *s, char occ)
     }  {
     indx[j]=imax;    int i,j=0;
     if (a[j][j] == 0.0) a[j][j]=TINY;    int lg=20;
     if (j != n) {    i=0;
       dum=1.0/(a[j][j]);    lg=strlen(s);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    for(i=0; i<= lg; i++) {
     }    if  (s[i] == occ ) j++;
   }    }
   free_vector(vv,1,n);  /* Doesn't work */    return j;
 ;  }
 }  
   /* void cutv(char *u,char *v, char*t, char occ) */
 void lubksb(double **a, int n, int *indx, double b[])  /* { */
 {  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   int i,ii=0,ip,j;  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   double sum;  /*      gives u="abcdef2ghi" and v="j" *\/ */
    /*   int i,lg,j,p=0; */
   for (i=1;i<=n;i++) {  /*   i=0; */
     ip=indx[i];  /*   lg=strlen(t); */
     sum=b[ip];  /*   for(j=0; j<=lg-1; j++) { */
     b[ip]=b[i];  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
     if (ii)  /*   } */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;  /*   for(j=0; j<p; j++) { */
     b[i]=sum;  /*     (u[j] = t[j]); */
   }  /*   } */
   for (i=n;i>=1;i--) {  /*      u[p]='\0'; */
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  /*    for(j=0; j<= lg; j++) { */
     b[i]=sum/a[i][i];  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   }  /*   } */
 }  /* } */
   
 /************ Frequencies ********************/  #ifdef _WIN32
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  char * strsep(char **pp, const char *delim)
 {  /* Some frequencies */  {
      char *p, *q;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;           
   double ***freq; /* Frequencies */    if ((p = *pp) == NULL)
   double *pp;      return 0;
   double pos, k2, dateintsum=0,k2cpt=0;    if ((q = strpbrk (p, delim)) != NULL)
   FILE *ficresp;    {
   char fileresp[FILENAMELENGTH];      *pp = q + 1;
        *q = '\0';
   pp=vector(1,nlstate);    }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    else
   strcpy(fileresp,"p");      *pp = 0;
   strcat(fileresp,fileres);    return p;
   if((ficresp=fopen(fileresp,"w"))==NULL) {  }
     printf("Problem with prevalence resultfile: %s\n", fileresp);  #endif
     exit(0);  
   }  /********************** nrerror ********************/
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  void nrerror(char error_text[])
    {
   j=cptcoveff;    fprintf(stderr,"ERREUR ...\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    fprintf(stderr,"%s\n",error_text);
      exit(EXIT_FAILURE);
   for(k1=1; k1<=j;k1++){  }
     for(i1=1; i1<=ncodemax[k1];i1++){  /*********************** vector *******************/
       j1++;  double *vector(int nl, int nh)
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  {
         scanf("%d", i);*/    double *v;
       for (i=-1; i<=nlstate+ndeath; i++)      v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         for (jk=-1; jk<=nlstate+ndeath; jk++)      if (!v) nrerror("allocation failure in vector");
           for(m=agemin; m <= agemax+3; m++)    return v-nl+NR_END;
             freq[i][jk][m]=0;  }
        
       dateintsum=0;  /************************ free vector ******************/
       k2cpt=0;  void free_vector(double*v, int nl, int nh)
       for (i=1; i<=imx; i++) {  {
         bool=1;    free((FREE_ARG)(v+nl-NR_END));
         if  (cptcovn>0) {  }
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /************************ivector *******************************/
               bool=0;  int *ivector(long nl,long nh)
         }  {
         if (bool==1) {    int *v;
           for(m=firstpass; m<=lastpass; m++){    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
             k2=anint[m][i]+(mint[m][i]/12.);    if (!v) nrerror("allocation failure in ivector");
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    return v-nl+NR_END;
               if(agev[m][i]==0) agev[m][i]=agemax+1;  }
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {  /******************free ivector **************************/
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  void free_ivector(int *v, long nl, long nh)
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  {
               }    free((FREE_ARG)(v+nl-NR_END));
                }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;  /************************lvector *******************************/
                 k2cpt++;  long *lvector(long nl,long nh)
               }  {
             }    long *v;
           }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         }    if (!v) nrerror("allocation failure in ivector");
       }    return v-nl+NR_END;
          }
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
   /******************free lvector **************************/
       if  (cptcovn>0) {  void free_lvector(long *v, long nl, long nh)
         fprintf(ficresp, "\n#********** Variable ");  {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free((FREE_ARG)(v+nl-NR_END));
         fprintf(ficresp, "**********\n#");  }
       }  
       for(i=1; i<=nlstate;i++)  /******************* imatrix *******************************/
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       fprintf(ficresp, "\n");       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
        { 
       for(i=(int)agemin; i <= (int)agemax+3; i++){    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         if(i==(int)agemax+3)    int **m; 
           printf("Total");    
         else    /* allocate pointers to rows */ 
           printf("Age %d", i);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         for(jk=1; jk <=nlstate ; jk++){    if (!m) nrerror("allocation failure 1 in matrix()"); 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    m += NR_END; 
             pp[jk] += freq[jk][m][i];    m -= nrl; 
         }    
         for(jk=1; jk <=nlstate ; jk++){    
           for(m=-1, pos=0; m <=0 ; m++)    /* allocate rows and set pointers to them */ 
             pos += freq[jk][m][i];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
           if(pp[jk]>=1.e-10)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    m[nrl] += NR_END; 
           else    m[nrl] -= ncl; 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    
         }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
         for(jk=1; jk <=nlstate ; jk++){    /* return pointer to array of pointers to rows */ 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    return m; 
             pp[jk] += freq[jk][m][i];  } 
         }  
   /****************** free_imatrix *************************/
         for(jk=1,pos=0; jk <=nlstate ; jk++)  void free_imatrix(m,nrl,nrh,ncl,nch)
           pos += pp[jk];        int **m;
         for(jk=1; jk <=nlstate ; jk++){        long nch,ncl,nrh,nrl; 
           if(pos>=1.e-5)       /* free an int matrix allocated by imatrix() */ 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  { 
           else    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    free((FREE_ARG) (m+nrl-NR_END)); 
           if( i <= (int) agemax){  } 
             if(pos>=1.e-5){  
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  /******************* matrix *******************************/
               probs[i][jk][j1]= pp[jk]/pos;  double **matrix(long nrl, long nrh, long ncl, long nch)
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  {
             }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
             else    double **m;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
           }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         }    if (!m) nrerror("allocation failure 1 in matrix()");
            m += NR_END;
         for(jk=-1; jk <=nlstate+ndeath; jk++)    m -= nrl;
           for(m=-1; m <=nlstate+ndeath; m++)  
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         if(i <= (int) agemax)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           fprintf(ficresp,"\n");    m[nrl] += NR_END;
         printf("\n");    m[nrl] -= ncl;
       }  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   }    return m;
   dateintmean=dateintsum/k2cpt;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
    m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   fclose(ficresp);  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);     */
   free_vector(pp,1,nlstate);  }
    
   /* End of Freq */  /*************************free matrix ************************/
 }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
 /************ Prevalence ********************/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    free((FREE_ARG)(m+nrl-NR_END));
 {  /* Some frequencies */  }
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  /******************* ma3x *******************************/
   double ***freq; /* Frequencies */  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double *pp;  {
   double pos, k2;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      if (!m) nrerror("allocation failure 1 in matrix()");
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    m += NR_END;
   j1=0;    m -= nrl;
    
   j=cptcoveff;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      m[nrl] += NR_END;
  for(k1=1; k1<=j;k1++){    m[nrl] -= ncl;
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
    
       for (i=-1; i<=nlstate+ndeath; i++)      m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         for (jk=-1; jk<=nlstate+ndeath; jk++)      if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
           for(m=agemin; m <= agemax+3; m++)    m[nrl][ncl] += NR_END;
             freq[i][jk][m]=0;    m[nrl][ncl] -= nll;
          for (j=ncl+1; j<=nch; j++) 
       for (i=1; i<=imx; i++) {      m[nrl][j]=m[nrl][j-1]+nlay;
         bool=1;    
         if  (cptcovn>0) {    for (i=nrl+1; i<=nrh; i++) {
           for (z1=1; z1<=cptcoveff; z1++)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      for (j=ncl+1; j<=nch; j++) 
               bool=0;        m[i][j]=m[i][j-1]+nlay;
         }    }
         if (bool==1) {    return m; 
           for(m=firstpass; m<=lastpass; m++){    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
             k2=anint[m][i]+(mint[m][i]/12.);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    */
               if(agev[m][i]==0) agev[m][i]=agemax+1;  }
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass)  /*************************free ma3x ************************/
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
               else  {
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
             }    free((FREE_ARG)(m+nrl-NR_END));
           }  }
         }  
       }  /*************** function subdirf ***********/
         for(i=(int)agemin; i <= (int)agemax+3; i++){  char *subdirf(char fileres[])
           for(jk=1; jk <=nlstate ; jk++){  {
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    /* Caution optionfilefiname is hidden */
               pp[jk] += freq[jk][m][i];    strcpy(tmpout,optionfilefiname);
           }    strcat(tmpout,"/"); /* Add to the right */
           for(jk=1; jk <=nlstate ; jk++){    strcat(tmpout,fileres);
             for(m=-1, pos=0; m <=0 ; m++)    return tmpout;
             pos += freq[jk][m][i];  }
         }  
          /*************** function subdirf2 ***********/
          for(jk=1; jk <=nlstate ; jk++){  char *subdirf2(char fileres[], char *preop)
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  {
              pp[jk] += freq[jk][m][i];    
          }    /* Caution optionfilefiname is hidden */
              strcpy(tmpout,optionfilefiname);
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    strcat(tmpout,"/");
     strcat(tmpout,preop);
          for(jk=1; jk <=nlstate ; jk++){              strcat(tmpout,fileres);
            if( i <= (int) agemax){    return tmpout;
              if(pos>=1.e-5){  }
                probs[i][jk][j1]= pp[jk]/pos;  
              }  /*************** function subdirf3 ***********/
            }  char *subdirf3(char fileres[], char *preop, char *preop2)
          }  {
              
         }    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/");
     strcat(tmpout,preop);
      strcat(tmpout,preop2);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    strcat(tmpout,fileres);
   free_vector(pp,1,nlstate);    return tmpout;
    }
 }  /* End of Freq */   
   /*************** function subdirfext ***********/
 /************* Waves Concatenation ***************/  char *subdirfext(char fileres[], char *preop, char *postop)
   {
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    
 {    strcpy(tmpout,preop);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    strcat(tmpout,fileres);
      Death is a valid wave (if date is known).    strcat(tmpout,postop);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    return tmpout;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  }
      and mw[mi+1][i]. dh depends on stepm.  
      */  /*************** function subdirfext3 ***********/
   char *subdirfext3(char fileres[], char *preop, char *postop)
   int i, mi, m;  {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    
      double sum=0., jmean=0.;*/    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   int j, k=0,jk, ju, jl;    strcat(tmpout,"/");
   double sum=0.;    strcat(tmpout,preop);
   jmin=1e+5;    strcat(tmpout,fileres);
   jmax=-1;    strcat(tmpout,postop);
   jmean=0.;    return tmpout;
   for(i=1; i<=imx; i++){  }
     mi=0;   
     m=firstpass;  char *asc_diff_time(long time_sec, char ascdiff[])
     while(s[m][i] <= nlstate){  {
       if(s[m][i]>=1)    long sec_left, days, hours, minutes;
         mw[++mi][i]=m;    days = (time_sec) / (60*60*24);
       if(m >=lastpass)    sec_left = (time_sec) % (60*60*24);
         break;    hours = (sec_left) / (60*60) ;
       else    sec_left = (sec_left) %(60*60);
         m++;    minutes = (sec_left) /60;
     }/* end while */    sec_left = (sec_left) % (60);
     if (s[m][i] > nlstate){    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
       mi++;     /* Death is another wave */    return ascdiff;
       /* if(mi==0)  never been interviewed correctly before death */  }
          /* Only death is a correct wave */  
       mw[mi][i]=m;  /***************** f1dim *************************/
     }  extern int ncom; 
   extern double *pcom,*xicom;
     wav[i]=mi;  extern double (*nrfunc)(double []); 
     if(mi==0)   
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  double f1dim(double x) 
   }  { 
     int j; 
   for(i=1; i<=imx; i++){    double f;
     for(mi=1; mi<wav[i];mi++){    double *xt; 
       if (stepm <=0)   
         dh[mi][i]=1;    xt=vector(1,ncom); 
       else{    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         if (s[mw[mi+1][i]][i] > nlstate) {    f=(*nrfunc)(xt); 
           if (agedc[i] < 2*AGESUP) {    free_vector(xt,1,ncom); 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    return f; 
           if(j==0) j=1;  /* Survives at least one month after exam */  } 
           k=k+1;  
           if (j >= jmax) jmax=j;  /*****************brent *************************/
           if (j <= jmin) jmin=j;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
           sum=sum+j;  {
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
           }     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
         }     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
         else{     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));     * returned function value. 
           k=k+1;    */
           if (j >= jmax) jmax=j;    int iter; 
           else if (j <= jmin)jmin=j;    double a,b,d,etemp;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    double fu=0,fv,fw,fx;
           sum=sum+j;    double ftemp=0.;
         }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         jk= j/stepm;    double e=0.0; 
         jl= j -jk*stepm;   
         ju= j -(jk+1)*stepm;    a=(ax < cx ? ax : cx); 
         if(jl <= -ju)    b=(ax > cx ? ax : cx); 
           dh[mi][i]=jk;    x=w=v=bx; 
         else    fw=fv=fx=(*f)(x); 
           dh[mi][i]=jk+1;    for (iter=1;iter<=ITMAX;iter++) { 
         if(dh[mi][i]==0)      xm=0.5*(a+b); 
           dh[mi][i]=1; /* At least one step */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }      printf(".");fflush(stdout);
   }      fprintf(ficlog,".");fflush(ficlog);
   jmean=sum/k;  #ifdef DEBUGBRENT
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 /*********** Tricode ****************************/      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 void tricode(int *Tvar, int **nbcode, int imx)  #endif
 {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   int Ndum[20],ij=1, k, j, i;        *xmin=x; 
   int cptcode=0;        return fx; 
   cptcoveff=0;      } 
        ftemp=fu;
   for (k=0; k<19; k++) Ndum[k]=0;      if (fabs(e) > tol1) { 
   for (k=1; k<=7; k++) ncodemax[k]=0;        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        p=(x-v)*q-(x-w)*r; 
     for (i=1; i<=imx; i++) {        q=2.0*(q-r); 
       ij=(int)(covar[Tvar[j]][i]);        if (q > 0.0) p = -p; 
       Ndum[ij]++;        q=fabs(q); 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        etemp=e; 
       if (ij > cptcode) cptcode=ij;        e=d; 
     }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for (i=0; i<=cptcode; i++) {        else { 
       if(Ndum[i]!=0) ncodemax[j]++;          d=p/q; 
     }          u=x+d; 
     ij=1;          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
         } 
     for (i=1; i<=ncodemax[j]; i++) {      } else { 
       for (k=0; k<=19; k++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         if (Ndum[k] != 0) {      } 
           nbcode[Tvar[j]][ij]=k;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
                fu=(*f)(u); 
           ij++;      if (fu <= fx) { 
         }        if (u >= x) a=x; else b=x; 
         if (ij > ncodemax[j]) break;        SHFT(v,w,x,u) 
       }          SHFT(fv,fw,fx,fu) 
     }      } else { 
   }          if (u < x) a=u; else b=u; 
         if (fu <= fw || w == x) { 
  for (k=0; k<19; k++) Ndum[k]=0;          v=w; 
           w=u; 
  for (i=1; i<=ncovmodel-2; i++) {          fv=fw; 
       ij=Tvar[i];          fw=fu; 
       Ndum[ij]++;        } else if (fu <= fv || v == x || v == w) { 
     }          v=u; 
           fv=fu; 
  ij=1;        } 
  for (i=1; i<=10; i++) {      } 
    if((Ndum[i]!=0) && (i<=ncovcol)){    } 
      Tvaraff[ij]=i;    nrerror("Too many iterations in brent"); 
      ij++;    *xmin=x; 
    }    return fx; 
  }  } 
    
     cptcoveff=ij-1;  /****************** mnbrak ***********************/
 }  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 /*********** Health Expectancies ****************/              double (*func)(double)) 
   { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  the downhill direction (defined by the function as evaluated at the initial points) and returns
   new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
 {  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
   /* Health expectancies */     */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    double ulim,u,r,q, dum;
   double age, agelim, hf;    double fu; 
   double ***p3mat,***varhe;  
   double **dnewm,**doldm;    double scale=10.;
   double *xp;    int iterscale=0;
   double **gp, **gm;  
   double ***gradg, ***trgradg;    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
   int theta;    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
   
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  
   xp=vector(1,npar);    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
   dnewm=matrix(1,nlstate*2,1,npar);    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
   doldm=matrix(1,nlstate*2,1,nlstate*2);    /*   *bx = *ax - (*ax - *bx)/scale; */
      /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
   fprintf(ficreseij,"# Health expectancies\n");    /* } */
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)    if (*fb > *fa) { 
     for(j=1; j<=nlstate;j++)      SHFT(dum,*ax,*bx,dum) 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      SHFT(dum,*fb,*fa,dum) 
   fprintf(ficreseij,"\n");    } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
   if(estepm < stepm){    *fc=(*func)(*cx); 
     printf ("Problem %d lower than %d\n",estepm, stepm);  #ifdef DEBUG
   }    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
   else  hstepm=estepm;      fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
   /* We compute the life expectancy from trapezoids spaced every estepm months  #endif
    * This is mainly to measure the difference between two models: for example    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
    * if stepm=24 months pijx are given only every 2 years and by summing them      r=(*bx-*ax)*(*fb-*fc); 
    * we are calculating an estimate of the Life Expectancy assuming a linear      q=(*bx-*cx)*(*fb-*fa); 
    * progression inbetween and thus overestimating or underestimating according      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
    * to the curvature of the survival function. If, for the same date, we        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
    * to compare the new estimate of Life expectancy with the same linear      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
    * hypothesis. A more precise result, taking into account a more precise        fu=(*func)(u); 
    * curvature will be obtained if estepm is as small as stepm. */  #ifdef DEBUG
         /* f(x)=A(x-u)**2+f(u) */
   /* For example we decided to compute the life expectancy with the smallest unit */        double A, fparabu; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
      nhstepm is the number of hstepm from age to agelim        fparabu= *fa - A*(*ax-u)*(*ax-u);
      nstepm is the number of stepm from age to agelin.        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
      Look at hpijx to understand the reason of that which relies in memory size        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
      and note for a fixed period like estepm months */        /* And thus,it can be that fu > *fc even if fparabu < *fc */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
      survival function given by stepm (the optimization length). Unfortunately it          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
      means that if the survival funtion is printed only each two years of age and if        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  #endif 
      results. So we changed our mind and took the option of the best precision.  #ifdef MNBRAKORIGINAL
   */  #else
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  /*       if (fu > *fc) { */
   /* #ifdef DEBUG */
   agelim=AGESUP;  /*       printf("mnbrak4  fu > fc \n"); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
     /* nhstepm age range expressed in number of stepm */  /* #endif */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
     /* if (stepm >= YEARM) hstepm=1;*/  /*      dum=u; /\* Shifting c and u *\/ */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  /*      u = *cx; */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*      *cx = dum; */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  /*      dum = fu; */
     gp=matrix(0,nhstepm,1,nlstate*2);  /*      fu = *fc; */
     gm=matrix(0,nhstepm,1,nlstate*2);  /*      *fc =dum; */
   /*       } else { /\* end *\/ */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  /* #ifdef DEBUG */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  /*       printf("mnbrak3  fu < fc \n"); */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
    /* #endif */
   /*      dum=u; /\* Shifting c and u *\/ */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  /*      u = *cx; */
   /*      *cx = dum; */
     /* Computing Variances of health expectancies */  /*      dum = fu; */
   /*      fu = *fc; */
      for(theta=1; theta <=npar; theta++){  /*      *fc =dum; */
       for(i=1; i<=npar; i++){  /*       } */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  #ifdef DEBUG
       }        printf("mnbrak34  fu < or >= fc \n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          fprintf(ficlog, "mnbrak34 fu < fc\n");
    #endif
       cptj=0;        dum=u; /* Shifting c and u */
       for(j=1; j<= nlstate; j++){        u = *cx;
         for(i=1; i<=nlstate; i++){        *cx = dum;
           cptj=cptj+1;        dum = fu;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        fu = *fc;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        *fc =dum;
           }  #endif
         }      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
       }  #ifdef DEBUG
              printf("mnbrak2  u after c but before ulim\n");
              fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
       for(i=1; i<=npar; i++)  #endif
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        fu=(*func)(u); 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          if (fu < *fc) { 
        #ifdef DEBUG
       cptj=0;        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
       for(j=1; j<= nlstate; j++){        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
         for(i=1;i<=nlstate;i++){  #endif
           cptj=cptj+1;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          SHFT(*fb,*fc,fu,(*func)(u)) 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        } 
           }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
         }  #ifdef DEBUG
       }        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
              fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
      #endif
         u=ulim; 
       for(j=1; j<= nlstate*2; j++)        fu=(*func)(u); 
         for(h=0; h<=nhstepm-1; h++){      } else { /* u could be left to b (if r > q parabola has a maximum) */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  #ifdef DEBUG
         }        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
         fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
      }  #endif
            u=(*cx)+GOLD*(*cx-*bx); 
 /* End theta */        fu=(*func)(u); 
       } /* end tests */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      SHFT(*ax,*bx,*cx,u) 
       SHFT(*fa,*fb,*fc,fu) 
      for(h=0; h<=nhstepm-1; h++)  #ifdef DEBUG
       for(j=1; j<=nlstate*2;j++)        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
         for(theta=1; theta <=npar; theta++)        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
         trgradg[h][j][theta]=gradg[h][theta][j];  #endif
     } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
   } 
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)  /*************** linmin ************************/
         varhe[i][j][(int)age] =0.;  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
   resets p to where the function func(p) takes on a minimum along the direction xi from p ,
     for(h=0;h<=nhstepm-1;h++){  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
       for(k=0;k<=nhstepm-1;k++){  the value of func at the returned location p . This is actually all accomplished by calling the
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  routines mnbrak and brent .*/
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  int ncom; 
         for(i=1;i<=nlstate*2;i++)  double *pcom,*xicom;
           for(j=1;j<=nlstate*2;j++)  double (*nrfunc)(double []); 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;   
       }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     }  { 
     double brent(double ax, double bx, double cx, 
                       double (*f)(double), double tol, double *xmin); 
     /* Computing expectancies */    double f1dim(double x); 
     for(i=1; i<=nlstate;i++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       for(j=1; j<=nlstate;j++)                double *fc, double (*func)(double)); 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    int j; 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    double xx,xmin,bx,ax; 
              double fx,fb,fa;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
   #ifdef LINMINORIGINAL
         }  #else
     double scale=10., axs, xxs; /* Scale added for infinity */
     fprintf(ficreseij,"%3.0f",age );  #endif
     cptj=0;    
     for(i=1; i<=nlstate;i++)    ncom=n; 
       for(j=1; j<=nlstate;j++){    pcom=vector(1,n); 
         cptj++;    xicom=vector(1,n); 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    nrfunc=func; 
       }    for (j=1;j<=n;j++) { 
     fprintf(ficreseij,"\n");      pcom[j]=p[j]; 
          xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
     free_matrix(gm,0,nhstepm,1,nlstate*2);    } 
     free_matrix(gp,0,nhstepm,1,nlstate*2);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  #ifdef LINMINORIGINAL
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    xx=1.;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #else
   }    axs=0.0;
   free_vector(xp,1,npar);    xxs=1.;
   free_matrix(dnewm,1,nlstate*2,1,npar);    do{
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      xx= xxs;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  #endif
 }      ax=0.;
       mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
 /************ Variance ******************/      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
 {      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
   /* Variance of health expectancies */      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
   double **newm;      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
   double **dnewm,**doldm;  #ifdef LINMINORIGINAL
   int i, j, nhstepm, hstepm, h, nstepm ;  #else
   int k, cptcode;      if (fx != fx){
   double *xp;          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
   double **gp, **gm;          printf("|");
   double ***gradg, ***trgradg;          fprintf(ficlog,"|");
   double ***p3mat;  #ifdef DEBUGLINMIN
   double age,agelim, hf;          printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
   int theta;  #endif
       }
    fprintf(ficresvij,"# Covariances of life expectancies\n");    }while(fx != fx);
   fprintf(ficresvij,"# Age");  #endif
   for(i=1; i<=nlstate;i++)    
     for(j=1; j<=nlstate;j++)  #ifdef DEBUGLINMIN
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
   fprintf(ficresvij,"\n");    fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
   #endif
   xp=vector(1,npar);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
   dnewm=matrix(1,nlstate,1,npar);    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
   doldm=matrix(1,nlstate,1,nlstate);    /* fmin = f(p[j] + xmin * xi[j]) */
      /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
   if(estepm < stepm){    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
     printf ("Problem %d lower than %d\n",estepm, stepm);  #ifdef DEBUG
   }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   else  hstepm=estepm;      fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /* For example we decided to compute the life expectancy with the smallest unit */  #endif
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  #ifdef DEBUGLINMIN
      nhstepm is the number of hstepm from age to agelim    printf("linmin end ");
      nstepm is the number of stepm from age to agelin.    fprintf(ficlog,"linmin end ");
      Look at hpijx to understand the reason of that which relies in memory size  #endif
      and note for a fixed period like k years */    for (j=1;j<=n;j++) { 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  #ifdef LINMINORIGINAL
      survival function given by stepm (the optimization length). Unfortunately it      xi[j] *= xmin; 
      means that if the survival funtion is printed only each two years of age and if  #else
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  #ifdef DEBUGLINMIN
      results. So we changed our mind and took the option of the best precision.      if(xxs <1.0)
   */        printf(" before xi[%d]=%12.8f", j,xi[j]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  #endif
   agelim = AGESUP;      xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  #ifdef DEBUGLINMIN
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      if(xxs <1.0)
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #endif
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  #endif
     gp=matrix(0,nhstepm,1,nlstate);      p[j] += xi[j]; /* Parameters values are updated accordingly */
     gm=matrix(0,nhstepm,1,nlstate);    } 
   #ifdef DEBUGLINMIN
     for(theta=1; theta <=npar; theta++){    printf("\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
       }    for (j=1;j<=n;j++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
       if(j % ncovmodel == 0){
       if (popbased==1) {        printf("\n");
         for(i=1; i<=nlstate;i++)        fprintf(ficlog,"\n");
           prlim[i][i]=probs[(int)age][i][ij];      }
       }    }
    #else
       for(j=1; j<= nlstate; j++){  #endif
         for(h=0; h<=nhstepm; h++){    free_vector(xicom,1,n); 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    free_vector(pcom,1,n); 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  } 
         }  
       }  
      /*************** powell ************************/
       for(i=1; i<=npar; i++) /* Computes gradient */  /*
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  Minimization of a function func of n variables. Input consists of an initial starting point
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
    such that failure to decrease by more than this amount on one iteration signals doneness. On
       if (popbased==1) {  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
         for(i=1; i<=nlstate;i++)  function value at p , and iter is the number of iterations taken. The routine linmin is used.
           prlim[i][i]=probs[(int)age][i][ij];   */
       }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
       for(j=1; j<= nlstate; j++){  { 
         for(h=0; h<=nhstepm; h++){    void linmin(double p[], double xi[], int n, double *fret, 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)                double (*func)(double [])); 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    int i,ibig,j; 
         }    double del,t,*pt,*ptt,*xit;
       }    double directest;
     double fp,fptt;
       for(j=1; j<= nlstate; j++)    double *xits;
         for(h=0; h<=nhstepm; h++){    int niterf, itmp;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }    pt=vector(1,n); 
     } /* End theta */    ptt=vector(1,n); 
     xit=vector(1,n); 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    xits=vector(1,n); 
     *fret=(*func)(p); 
     for(h=0; h<=nhstepm; h++)    for (j=1;j<=n;j++) pt[j]=p[j]; 
       for(j=1; j<=nlstate;j++)    rcurr_time = time(NULL);  
         for(theta=1; theta <=npar; theta++)    for (*iter=1;;++(*iter)) { 
           trgradg[h][j][theta]=gradg[h][theta][j];      fp=(*fret); /* From former iteration or initial value */
       ibig=0; 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      del=0.0; 
     for(i=1;i<=nlstate;i++)      rlast_time=rcurr_time;
       for(j=1;j<=nlstate;j++)      /* (void) gettimeofday(&curr_time,&tzp); */
         vareij[i][j][(int)age] =0.;      rcurr_time = time(NULL);  
       curr_time = *localtime(&rcurr_time);
     for(h=0;h<=nhstepm;h++){      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
       for(k=0;k<=nhstepm;k++){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      for (i=1;i<=n;i++) {
         for(i=1;i<=nlstate;i++)        printf(" %d %.12f",i, p[i]);
           for(j=1;j<=nlstate;j++)        fprintf(ficlog," %d %.12lf",i, p[i]);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        fprintf(ficrespow," %.12lf", p[i]);
       }      }
     }      printf("\n");
       fprintf(ficlog,"\n");
     fprintf(ficresvij,"%.0f ",age );      fprintf(ficrespow,"\n");fflush(ficrespow);
     for(i=1; i<=nlstate;i++)      if(*iter <=3){
       for(j=1; j<=nlstate;j++){        tml = *localtime(&rcurr_time);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        strcpy(strcurr,asctime(&tml));
       }        rforecast_time=rcurr_time; 
     fprintf(ficresvij,"\n");        itmp = strlen(strcurr);
     free_matrix(gp,0,nhstepm,1,nlstate);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     free_matrix(gm,0,nhstepm,1,nlstate);          strcurr[itmp-1]='\0';
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(niterf=10;niterf<=30;niterf+=10){
   } /* End age */          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
            forecast_time = *localtime(&rforecast_time);
   free_vector(xp,1,npar);          strcpy(strfor,asctime(&forecast_time));
   free_matrix(doldm,1,nlstate,1,npar);          itmp = strlen(strfor);
   free_matrix(dnewm,1,nlstate,1,nlstate);          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
 }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 /************ Variance of prevlim ******************/        }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      }
 {      for (i=1;i<=n;i++) { /* For each direction i */
   /* Variance of prevalence limit */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        fptt=(*fret); 
   double **newm;  #ifdef DEBUG
   double **dnewm,**doldm;        printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   int i, j, nhstepm, hstepm;        fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   int k, cptcode;  #endif
   double *xp;        printf("%d",i);fflush(stdout); /* print direction (parameter) i */
   double *gp, *gm;        fprintf(ficlog,"%d",i);fflush(ficlog);
   double **gradg, **trgradg;        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
   double age,agelim;                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
   int theta;        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
              /* because that direction will be replaced unless the gain del is small */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
   fprintf(ficresvpl,"# Age");          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
   for(i=1; i<=nlstate;i++)          /* with the new direction. */
       fprintf(ficresvpl," %1d-%1d",i,i);          del=fabs(fptt-(*fret)); 
   fprintf(ficresvpl,"\n");          ibig=i; 
         } 
   xp=vector(1,npar);  #ifdef DEBUG
   dnewm=matrix(1,nlstate,1,npar);        printf("%d %.12e",i,(*fret));
   doldm=matrix(1,nlstate,1,nlstate);        fprintf(ficlog,"%d %.12e",i,(*fret));
          for (j=1;j<=n;j++) {
   hstepm=1*YEARM; /* Every year of age */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          printf(" x(%d)=%.12e",j,xit[j]);
   agelim = AGESUP;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(j=1;j<=n;j++) {
     if (stepm >= YEARM) hstepm=1;          printf(" p(%d)=%.12e",j,p[j]);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
     gradg=matrix(1,npar,1,nlstate);        }
     gp=vector(1,nlstate);        printf("\n");
     gm=vector(1,nlstate);        fprintf(ficlog,"\n");
   #endif
     for(theta=1; theta <=npar; theta++){      } /* end loop on each direction i */
       for(i=1; i<=npar; i++){ /* Computes gradient */      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
       }      /* New value of last point Pn is not computed, P(n-1) */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
       for(i=1;i<=nlstate;i++)        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
         gp[i] = prlim[i][i];        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
            /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
       for(i=1; i<=npar; i++) /* Computes gradient */        /* decreased of more than 3.84  */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
       for(i=1;i<=nlstate;i++)        /* By adding 10 parameters more the gain should be 18.31 */
         gm[i] = prlim[i][i];  
         /* Starting the program with initial values given by a former maximization will simply change */
       for(i=1;i<=nlstate;i++)        /* the scales of the directions and the directions, because the are reset to canonical directions */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
     } /* End theta */        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
   #ifdef DEBUG
     trgradg =matrix(1,nlstate,1,npar);        int k[2],l;
         k[0]=1;
     for(j=1; j<=nlstate;j++)        k[1]=-1;
       for(theta=1; theta <=npar; theta++)        printf("Max: %.12e",(*func)(p));
         trgradg[j][theta]=gradg[theta][j];        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
     for(i=1;i<=nlstate;i++)          printf(" %.12e",p[j]);
       varpl[i][(int)age] =0.;          fprintf(ficlog," %.12e",p[j]);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        printf("\n");
     for(i=1;i<=nlstate;i++)        fprintf(ficlog,"\n");
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
     fprintf(ficresvpl,"%.0f ",age );            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     for(i=1; i<=nlstate;i++)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     fprintf(ficresvpl,"\n");          }
     free_vector(gp,1,nlstate);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     free_vector(gm,1,nlstate);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     free_matrix(gradg,1,npar,1,nlstate);        }
     free_matrix(trgradg,1,nlstate,1,npar);  #endif
   } /* End age */  
   
   free_vector(xp,1,npar);        free_vector(xit,1,n); 
   free_matrix(doldm,1,nlstate,1,npar);        free_vector(xits,1,n); 
   free_matrix(dnewm,1,nlstate,1,nlstate);        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
 }        return; 
       } /* enough precision */ 
 /************ Variance of one-step probabilities  ******************/      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
 {        ptt[j]=2.0*p[j]-pt[j]; 
   int i, j, i1, k1, j1, z1;        xit[j]=p[j]-pt[j]; 
   int k=0, cptcode;        pt[j]=p[j]; 
   double **dnewm,**doldm;      } 
   double *xp;      fptt=(*func)(ptt); /* f_3 */
   double *gp, *gm;  #ifdef POWELLF1F3
   double **gradg, **trgradg;  #else
   double age,agelim, cov[NCOVMAX];      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
   int theta;  #endif
   char fileresprob[FILENAMELENGTH];        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
         /* From x1 (P0) distance of x2 is at h and x3 is 2h */
   strcpy(fileresprob,"prob");        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
   strcat(fileresprob,fileres);        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
     printf("Problem with resultfile: %s\n", fileresprob);        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
   }        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  #ifdef NRCORIGINAL
          t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");  #else
   fprintf(ficresprob,"# Age");        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
   for(i=1; i<=nlstate;i++)        t= t- del*SQR(fp-fptt);
     for(j=1; j<=(nlstate+ndeath);j++)  #endif
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
   #ifdef DEBUG
         printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   fprintf(ficresprob,"\n");        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
         printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   xp=vector(1,npar);        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
          fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   cov[1]=1;  #endif
   j=cptcoveff;  #ifdef POWELLORIGINAL
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        if (t < 0.0) { /* Then we use it for new direction */
   j1=0;  #else
   for(k1=1; k1<=1;k1++){        if (directest*t < 0.0) { /* Contradiction between both tests */
     for(i1=1; i1<=ncodemax[k1];i1++){          printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
     j1++;          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
           fprintf(ficlog,"directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
     if  (cptcovn>0) {          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
       fprintf(ficresprob, "\n#********** Variable ");        } 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        if (directest < 0.0) { /* Then we use it for new direction */
       fprintf(ficresprob, "**********\n#");  #endif
     }  #ifdef DEBUGLINMIN
              printf("Before linmin in direction P%d-P0\n",n);
       for (age=bage; age<=fage; age ++){          for (j=1;j<=n;j++) { 
         cov[2]=age;            printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
         for (k=1; k<=cptcovn;k++) {            fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            if(j % ncovmodel == 0){
                        printf("\n");
         }              fprintf(ficlog,"\n");
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            }
         for (k=1; k<=cptcovprod;k++)          }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #endif
                  linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
         gradg=matrix(1,npar,1,9);  #ifdef DEBUGLINMIN
         trgradg=matrix(1,9,1,npar);          for (j=1;j<=n;j++) { 
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                if(j % ncovmodel == 0){
         for(theta=1; theta <=npar; theta++){              printf("\n");
           for(i=1; i<=npar; i++)              fprintf(ficlog,"\n");
             xp[i] = x[i] + (i==theta ?delti[theta]:0);            }
                    }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  #endif
                    for (j=1;j<=n;j++) { 
           k=0;            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
           for(i=1; i<= (nlstate+ndeath); i++){            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
             for(j=1; j<=(nlstate+ndeath);j++){          }
               k=k+1;          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
               gp[k]=pmmij[i][j];          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
             }  
           }  #ifdef DEBUG
                    printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(i=1; i<=npar; i++)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(j=1;j<=n;j++){
                printf(" %.12e",xit[j]);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            fprintf(ficlog," %.12e",xit[j]);
           k=0;          }
           for(i=1; i<=(nlstate+ndeath); i++){          printf("\n");
             for(j=1; j<=(nlstate+ndeath);j++){          fprintf(ficlog,"\n");
               k=k+1;  #endif
               gm[k]=pmmij[i][j];        } /* end of t or directest negative */
             }  #ifdef POWELLF1F3
           }  #else
            } /* end if (fptt < fp)  */
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  #endif
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      } /* loop iteration */ 
         }  } 
   
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  /**** Prevalence limit (stable or period prevalence)  ****************/
           for(theta=1; theta <=npar; theta++)  
             trgradg[j][theta]=gradg[theta][j];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij)
          {
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);       matrix by transitions matrix until convergence is reached with precision ftolpl */
            /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
         pmij(pmmij,cov,ncovmodel,x,nlstate);    /* Wx is row vector: population in state 1, population in state 2, population dead */
            /* or prevalence in state 1, prevalence in state 2, 0 */
         k=0;    /* newm is the matrix after multiplications, its rows are identical at a factor */
         for(i=1; i<=(nlstate+ndeath); i++){    /* Initial matrix pimij */
           for(j=1; j<=(nlstate+ndeath);j++){    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
             k=k+1;    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
             gm[k]=pmmij[i][j];    /*  0,                   0                  , 1} */
           }    /*
         }     * and after some iteration: */
          /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
      /*printf("\n%d ",(int)age);    /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    /*  0,                   0                  , 1} */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
      }*/    /* {0.51571254859325999, 0.4842874514067399, */
     /*  0.51326036147820708, 0.48673963852179264} */
         fprintf(ficresprob,"\n%d ",(int)age);    /* If we start from prlim again, prlim tends to a constant matrix */
   
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    int i, ii,j,k;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));    double *min, *max, *meandiff, maxmax,sumnew=0.;
      /* double **matprod2(); */ /* test */
       }    double **out, cov[NCOVMAX+1], **pmij();
     }    double **newm;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    int ncvloop=0;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    min=vector(1,nlstate);
   }    max=vector(1,nlstate);
   free_vector(xp,1,npar);    meandiff=vector(1,nlstate);
   fclose(ficresprob);  
      for (ii=1;ii<=nlstate+ndeath;ii++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /******************* Printing html file ***********/      }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    
  int lastpass, int stepm, int weightopt, char model[],\    cov[1]=1.;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
  char version[], int popforecast, int estepm ){    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
   int jj1, k1, i1, cpt;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   FILE *fichtm;      ncvloop++;
   /*char optionfilehtm[FILENAMELENGTH];*/      newm=savm;
       /* Covariates have to be included here again */
   strcpy(optionfilehtm,optionfile);      cov[2]=agefin;
   strcat(optionfilehtm,".htm");      if(nagesqr==1)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        cov[3]= agefin*agefin;;
     printf("Problem with %s \n",optionfilehtm), exit(0);      for (k=1; k<=cptcovn;k++) {
   }        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      }
 \n      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 Total number of observations=%d <br>\n      /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
 <hr  size=\"2\" color=\"#EC5E5E\">      for (k=1; k<=cptcovprod;k++) /* Useless */
  <ul><li>Outputs files<br>\n        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n      
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
  fprintf(fichtm,"\n      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n      
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      savm=oldm;
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      oldm=newm;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      for(j=1; j<=nlstate; j++){
         max[j]=0.;
  if(popforecast==1) fprintf(fichtm,"\n        min[j]=1.;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      for(i=1;i<=nlstate;i++){
         <br>",fileres,fileres,fileres,fileres);        sumnew=0;
  else        for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        for(j=1; j<=nlstate; j++){ 
 fprintf(fichtm," <li>Graphs</li><p>");          prlim[i][j]= newm[i][j]/(1-sumnew);
           max[j]=FMAX(max[j],prlim[i][j]);
  m=cptcoveff;          min[j]=FMIN(min[j],prlim[i][j]);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        }
       }
  jj1=0;  
  for(k1=1; k1<=m;k1++){      maxmax=0.;
    for(i1=1; i1<=ncodemax[k1];i1++){      for(j=1; j<=nlstate; j++){
        jj1++;        meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
        if (cptcovn > 0) {        maxmax=FMAX(maxmax,meandiff[j]);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
          for (cpt=1; cpt<=cptcoveff;cpt++)      } /* j loop */
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      *ncvyear= (int)age- (int)agefin;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
        }      if(maxmax < ftolpl){
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            free_vector(min,1,nlstate);
        for(cpt=1; cpt<nlstate;cpt++){        free_vector(max,1,nlstate);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        free_vector(meandiff,1,nlstate);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        return prlim;
        }      }
     for(cpt=1; cpt<=nlstate;cpt++) {    } /* age loop */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      /* After some age loop it doesn't converge */
 interval) in state (%d): v%s%d%d.gif <br>    printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
      }    /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
      for(cpt=1; cpt<=nlstate;cpt++) {    free_vector(min,1,nlstate);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    free_vector(max,1,nlstate);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    free_vector(meandiff,1,nlstate);
      }    
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    return prlim; /* should not reach here */
 health expectancies in states (1) and (2): e%s%d.gif<br>  }
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
 fprintf(fichtm,"\n</body>");  /*************** transition probabilities ***************/ 
    }  
    }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 fclose(fichtm);  {
 }    /* According to parameters values stored in x and the covariate's values stored in cov,
        computes the probability to be observed in state j being in state i by appying the
 /******************* Gnuplot file **************/       model to the ncovmodel covariates (including constant and age).
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
        and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;       ncth covariate in the global vector x is given by the formula:
        j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   strcpy(optionfilegnuplot,optionfilefiname);       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
   strcat(optionfilegnuplot,".gp.txt");       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
     printf("Problem with file %s",optionfilegnuplot);       Outputs ps[i][j] the probability to be observed in j being in j according to
   }       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     */
 #ifdef windows    double s1, lnpijopii;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    /*double t34;*/
 #endif    int i,j, nc, ii, jj;
 m=pow(2,cptcoveff);  
        for(i=1; i<= nlstate; i++){
  /* 1eme*/        for(j=1; j<i;j++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
    for (k1=1; k1<= m ; k1 ++) {            /*lnpijopii += param[i][j][nc]*cov[nc];*/
             lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           }
 for (i=1; i<= nlstate ; i ++) {          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }        for(j=i+1; j<=nlstate+ndeath;j++){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     for (i=1; i<= nlstate ; i ++) {            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
 }          }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
      for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      
 }        for(i=1; i<= nlstate; i++){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        s1=0;
         for(j=1; j<i; j++){
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
    }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   }        }
   /*2 eme*/        for(j=i+1; j<=nlstate+ndeath; j++){
           s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   for (k1=1; k1<= m ; k1 ++) {          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);        }
            /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
     for (i=1; i<= nlstate+1 ; i ++) {        ps[i][i]=1./(s1+1.);
       k=2*i;        /* Computing other pijs */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<i; j++)
       for (j=1; j<= nlstate+1 ; j ++) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(j=i+1; j<=nlstate+ndeath; j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");          ps[i][j]= exp(ps[i][j])*ps[i][i];
 }          /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      } /* end i */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for (j=1; j<= nlstate+1 ; j ++) {        for(jj=1; jj<= nlstate+ndeath; jj++){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          ps[ii][jj]=0;
         else fprintf(ficgp," \%%*lf (\%%*lf)");          ps[ii][ii]=1;
 }          }
       fprintf(ficgp,"\" t\"\" w l 0,");      }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      
       for (j=1; j<= nlstate+1 ; j ++) {      
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
 }        /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      /*   } */
       else fprintf(ficgp,"\" t\"\" w l 0,");      /*   printf("\n "); */
     }      /* } */
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      /* printf("\n ");printf("%lf ",cov[2]);*/
   }      /*
          for(i=1; i<= npar; i++) printf("%f ",x[i]);
   /*3eme*/        goto end;*/
       return ps;
   for (k1=1; k1<= m ; k1 ++) {  }
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(2*cpt-2);  /**************** Product of 2 matrices ******************/
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  {
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    /* in, b, out are matrice of pointers which should have been initialized 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
 */    int i, j, k;
       for (i=1; i< nlstate ; i ++) {    for(i=nrl; i<= nrh; i++)
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      for(k=ncolol; k<=ncoloh; k++){
         out[i][k]=0.;
       }        for(j=ncl; j<=nch; j++)
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          out[i][k] +=in[i][j]*b[j][k];
     }      }
     }    return out;
    }
   /* CV preval stat */  
     for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {  /************* Higher Matrix Product ***************/
       k=3;  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
       for (i=1; i< nlstate ; i ++)    /* Computes the transition matrix starting at age 'age' over 
         fprintf(ficgp,"+$%d",k+i+1);       'nhstepm*hstepm*stepm' months (i.e. until
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
             nhstepm*hstepm matrices. 
       l=3+(nlstate+ndeath)*cpt;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);       (typically every 2 years instead of every month which is too big 
       for (i=1; i< nlstate ; i ++) {       for the memory).
         l=3+(nlstate+ndeath)*cpt;       Model is determined by parameters x and covariates have to be 
         fprintf(ficgp,"+$%d",l+i+1);       included manually here. 
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);         */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }    int i, j, d, h, k;
   }      double **out, cov[NCOVMAX+1];
      double **newm;
   /* proba elementaires */    double agexact;
    for(i=1,jk=1; i <=nlstate; i++){    double agebegin, ageend;
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {    /* Hstepm could be zero and should return the unit matrix */
         for(j=1; j <=ncovmodel; j++){    for (i=1;i<=nlstate+ndeath;i++)
              for (j=1;j<=nlstate+ndeath;j++){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        oldm[i][j]=(i==j ? 1.0 : 0.0);
           jk++;        po[i][j][0]=(i==j ? 1.0 : 0.0);
           fprintf(ficgp,"\n");      }
         }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       }    for(h=1; h <=nhstepm; h++){
     }      for(d=1; d <=hstepm; d++){
     }        newm=savm;
         /* Covariates have to be included here again */
     for(jk=1; jk <=m; jk++) {        cov[1]=1.;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
    i=1;        cov[2]=agexact;
    for(k2=1; k2<=nlstate; k2++) {        if(nagesqr==1)
      k3=i;          cov[3]= agexact*agexact;
      for(k=1; k<=(nlstate+ndeath); k++) {        for (k=1; k<=cptcovn;k++) 
        if (k != k2){          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
 ij=1;        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
         for(j=3; j <=ncovmodel; j++) {          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
             ij++;        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
           }          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
           else          /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
         }  
           fprintf(ficgp,")/(1");        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
                /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         for(k1=1; k1 <=nlstate; k1++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
 ij=1;        savm=oldm;
           for(j=3; j <=ncovmodel; j++){        oldm=newm;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      }
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      for(i=1; i<=nlstate+ndeath; i++)
             ij++;        for(j=1;j<=nlstate+ndeath;j++) {
           }          po[i][j][h]=newm[i][j];
           else          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        }
           }      /*printf("h=%d ",h);*/
           fprintf(ficgp,")");    } /* end h */
         }  /*     printf("\n H=%d \n",h); */
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    return po;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  }
         i=i+ncovmodel;  
        }  #ifdef NLOPT
      }    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
    }    double fret;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    double *xt;
    }    int j;
        myfunc_data *d2 = (myfunc_data *) pd;
   fclose(ficgp);  /* xt = (p1-1); */
 }  /* end gnuplot */    xt=vector(1,n); 
     for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   
 /*************** Moving average **************/    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
     printf("Function = %.12lf ",fret);
   int i, cpt, cptcod;    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    printf("\n");
       for (i=1; i<=nlstate;i++)   free_vector(xt,1,n);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    return fret;
           mobaverage[(int)agedeb][i][cptcod]=0.;  }
      #endif
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){  /*************** log-likelihood *************/
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  double func( double *x)
           for (cpt=0;cpt<=4;cpt++){  {
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    int i, ii, j, k, mi, d, kk;
           }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    double **out;
         }    double sw; /* Sum of weights */
       }    double lli; /* Individual log likelihood */
     }    int s1, s2;
        double bbh, survp;
 }    long ipmx;
     double agexact;
     /*extern weight */
 /************** Forecasting ******************/    /* We are differentiating ll according to initial status */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      /*for(i=1;i<imx;i++) 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      printf(" %d\n",s[4][i]);
   int *popage;    */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;    ++countcallfunc;
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];    cov[1]=1.;
   
  agelim=AGESUP;    for(k=1; k<=nlstate; k++) ll[k]=0.;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  
     if(mle==1){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          /* Computes the values of the ncovmodel covariates of the model
             depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
   strcpy(fileresf,"f");           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   strcat(fileresf,fileres);           to be observed in j being in i according to the model.
   if((ficresf=fopen(fileresf,"w"))==NULL) {         */
     printf("Problem with forecast resultfile: %s\n", fileresf);        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   }            cov[2+nagesqr+k]=covar[Tvar[k]][i];
   printf("Computing forecasting: result on file '%s' \n", fileresf);        }
         /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
            has been calculated etc */
   if (mobilav==1) {        for(mi=1; mi<= wav[i]-1; mi++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (ii=1;ii<=nlstate+ndeath;ii++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   stepsize=(int) (stepm+YEARM-1)/YEARM;            }
   if (stepm<=12) stepsize=1;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   agelim=AGESUP;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
              cov[2]=agexact;
   hstepm=1;            if(nagesqr==1)
   hstepm=hstepm/stepm;              cov[3]= agexact*agexact;
   yp1=modf(dateintmean,&yp);            for (kk=1; kk<=cptcovage;kk++) {
   anprojmean=yp;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
   yp2=modf((yp1*12),&yp);            }
   mprojmean=yp;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   yp1=modf((yp2*30.5),&yp);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   jprojmean=yp;            savm=oldm;
   if(jprojmean==0) jprojmean=1;            oldm=newm;
   if(mprojmean==0) jprojmean=1;          } /* end mult */
          
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            /* But now since version 0.9 we anticipate for bias at large stepm.
   for(cptcov=1;cptcov<=i2;cptcov++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
       k=k+1;           * the nearest (and in case of equal distance, to the lowest) interval but now
       fprintf(ficresf,"\n#******");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       for(j=1;j<=cptcoveff;j++) {           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           * probability in order to take into account the bias as a fraction of the way
       }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       fprintf(ficresf,"******\n");           * -stepm/2 to stepm/2 .
       fprintf(ficresf,"# StartingAge FinalAge");           * For stepm=1 the results are the same as for previous versions of Imach.
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);           * For stepm > 1 the results are less biased than in previous versions. 
                 */
                s1=s[mw[mi][i]][i];
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          s2=s[mw[mi+1][i]][i];
         fprintf(ficresf,"\n");          bbh=(double)bh[mi][i]/(double)stepm; 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){           */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           nhstepm = nhstepm/hstepm;          if( s2 > nlstate){ 
                      /* i.e. if s2 is a death state and if the date of death is known 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               then the contribution to the likelihood is the probability to 
           oldm=oldms;savm=savms;               die between last step unit time and current  step unit time, 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                 which is also equal to probability to die before dh 
                       minus probability to die before dh-stepm . 
           for (h=0; h<=nhstepm; h++){               In version up to 0.92 likelihood was computed
             if (h==(int) (calagedate+YEARM*cpt)) {          as if date of death was unknown. Death was treated as any other
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          health state: the date of the interview describes the actual state
             }          and not the date of a change in health state. The former idea was
             for(j=1; j<=nlstate+ndeath;j++) {          to consider that at each interview the state was recorded
               kk1=0.;kk2=0;          (healthy, disable or death) and IMaCh was corrected; but when we
               for(i=1; i<=nlstate;i++) {                        introduced the exact date of death then we should have modified
                 if (mobilav==1)          the contribution of an exact death to the likelihood. This new
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          contribution is smaller and very dependent of the step unit
                 else {          stepm. It is no more the probability to die between last interview
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          and month of death but the probability to survive from last
                 }          interview up to one month before death multiplied by the
                          probability to die within a month. Thanks to Chris
               }          Jackson for correcting this bug.  Former versions increased
               if (h==(int)(calagedate+12*cpt)){          mortality artificially. The bad side is that we add another loop
                 fprintf(ficresf," %.3f", kk1);          which slows down the processing. The difference can be up to 10%
                                  lower mortality.
               }            */
             }          /* If, at the beginning of the maximization mostly, the
           }             cumulative probability or probability to be dead is
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);             constant (ie = 1) over time d, the difference is equal to
         }             0.  out[s1][3] = savm[s1][3]: probability, being at state
       }             s1 at precedent wave, to be dead a month before current
     }             wave is equal to probability, being at state s1 at
   }             precedent wave, to be dead at mont of the current
                     wave. Then the observed probability (that this person died)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);             is null according to current estimated parameter. In fact,
              it should be very low but not zero otherwise the log go to
   fclose(ficresf);             infinity.
 }          */
 /************** Forecasting ******************/  /* #ifdef INFINITYORIGINAL */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
    /* #else */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
   int *popage;  /*          lli=log(mytinydouble); */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  /*        else */
   double *popeffectif,*popcount;  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   double ***p3mat,***tabpop,***tabpopprev;  /* #endif */
   char filerespop[FILENAMELENGTH];              lli=log(out[s1][s2] - savm[s1][s2]);
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          } else if  (s2==-2) {
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for (j=1,survp=0. ; j<=nlstate; j++) 
   agelim=AGESUP;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            /*survp += out[s1][j]; */
              lli= log(survp);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          }
            
            else if  (s2==-4) { 
   strcpy(filerespop,"pop");            for (j=3,survp=0. ; j<=nlstate; j++)  
   strcat(filerespop,fileres);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            lli= log(survp); 
     printf("Problem with forecast resultfile: %s\n", filerespop);          } 
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);          else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
   if (mobilav==1) {          } 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          
     movingaverage(agedeb, fage, ageminpar, mobaverage);          else{
   }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   stepsize=(int) (stepm+YEARM-1)/YEARM;          } 
   if (stepm<=12) stepsize=1;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            /*if(lli ==000.0)*/
   agelim=AGESUP;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
            ipmx +=1;
   hstepm=1;          sw += weight[i];
   hstepm=hstepm/stepm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            /* if (lli < log(mytinydouble)){ */
   if (popforecast==1) {          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
     if((ficpop=fopen(popfile,"r"))==NULL) {          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
       printf("Problem with population file : %s\n",popfile);exit(0);          /* } */
     }        } /* end of wave */
     popage=ivector(0,AGESUP);      } /* end of individual */
     popeffectif=vector(0,AGESUP);    }  else if(mle==2){
     popcount=vector(0,AGESUP);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
     i=1;          for(mi=1; mi<= wav[i]-1; mi++){
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          for (ii=1;ii<=nlstate+ndeath;ii++)
                for (j=1;j<=nlstate+ndeath;j++){
     imx=i;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
           for(d=0; d<=dh[mi][i]; d++){
   for(cptcov=1;cptcov<=i2;cptcov++){            newm=savm;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
       k=k+1;            cov[2]=agexact;
       fprintf(ficrespop,"\n#******");            if(nagesqr==1)
       for(j=1;j<=cptcoveff;j++) {              cov[3]= agexact*agexact;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
       fprintf(ficrespop,"******\n");            }
       fprintf(ficrespop,"# Age");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if (popforecast==1)  fprintf(ficrespop," [Population]");            savm=oldm;
                  oldm=newm;
       for (cpt=0; cpt<=0;cpt++) {          } /* end mult */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          
                  s1=s[mw[mi][i]][i];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          s2=s[mw[mi+1][i]][i];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          bbh=(double)bh[mi][i]/(double)stepm; 
           nhstepm = nhstepm/hstepm;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                    ipmx +=1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          sw += weight[i];
           oldm=oldms;savm=savms;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          } /* end of wave */
              } /* end of individual */
           for (h=0; h<=nhstepm; h++){    }  else if(mle==3){  /* exponential inter-extrapolation */
             if (h==(int) (calagedate+YEARM*cpt)) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
             }        for(mi=1; mi<= wav[i]-1; mi++){
             for(j=1; j<=nlstate+ndeath;j++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
               kk1=0.;kk2=0;            for (j=1;j<=nlstate+ndeath;j++){
               for(i=1; i<=nlstate;i++) {                            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                 if (mobilav==1)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            }
                 else {          for(d=0; d<dh[mi][i]; d++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            newm=savm;
                 }            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
               }            cov[2]=agexact;
               if (h==(int)(calagedate+12*cpt)){            if(nagesqr==1)
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              cov[3]= agexact*agexact;
                   /*fprintf(ficrespop," %.3f", kk1);            for (kk=1; kk<=cptcovage;kk++) {
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
               }            }
             }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             for(i=1; i<=nlstate;i++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               kk1=0.;            savm=oldm;
                 for(j=1; j<=nlstate;j++){            oldm=newm;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          } /* end mult */
                 }        
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          s1=s[mw[mi][i]][i];
             }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          ipmx +=1;
           }          sw += weight[i];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
       }      } /* end of individual */
      }else if (mle==4){  /* ml=4 no inter-extrapolation */
   /******/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        for(mi=1; mi<= wav[i]-1; mi++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            for (ii=1;ii<=nlstate+ndeath;ii++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            for (j=1;j<=nlstate+ndeath;j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           nhstepm = nhstepm/hstepm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                      }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(d=0; d<dh[mi][i]; d++){
           oldm=oldms;savm=savms;            newm=savm;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (h=0; h<=nhstepm; h++){            cov[2]=agexact;
             if (h==(int) (calagedate+YEARM*cpt)) {            if(nagesqr==1)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              cov[3]= agexact*agexact;
             }            for (kk=1; kk<=cptcovage;kk++) {
             for(j=1; j<=nlstate+ndeath;j++) {              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
               kk1=0.;kk2=0;            }
               for(i=1; i<=nlstate;i++) {                        
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);            savm=oldm;
             }            oldm=newm;
           }          } /* end mult */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
         }          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
    }          if( s2 > nlstate){ 
   }            lli=log(out[s1][s2] - savm[s1][s2]);
            }else{
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
   if (popforecast==1) {          ipmx +=1;
     free_ivector(popage,0,AGESUP);          sw += weight[i];
     free_vector(popeffectif,0,AGESUP);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_vector(popcount,0,AGESUP);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   }        } /* end of wave */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      } /* end of individual */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   fclose(ficrespop);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /***********************************************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 /**************** Main Program *****************/            for (j=1;j<=nlstate+ndeath;j++){
 /***********************************************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 int main(int argc, char *argv[])            }
 {          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double agedeb, agefin,hf;            cov[2]=agexact;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            if(nagesqr==1)
               cov[3]= agexact*agexact;
   double fret;            for (kk=1; kk<=cptcovage;kk++) {
   double **xi,tmp,delta;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             }
   double dum; /* Dummy variable */          
   double ***p3mat;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int *indx;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   char line[MAXLINE], linepar[MAXLINE];            savm=oldm;
   char title[MAXLINE];            oldm=newm;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          } /* end mult */
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        
            s1=s[mw[mi][i]][i];
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   char filerest[FILENAMELENGTH];          ipmx +=1;
   char fileregp[FILENAMELENGTH];          sw += weight[i];
   char popfile[FILENAMELENGTH];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   int firstobs=1, lastobs=10;        } /* end of wave */
   int sdeb, sfin; /* Status at beginning and end */      } /* end of individual */
   int c,  h , cpt,l;    } /* End of if */
   int ju,jl, mi;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int mobilav=0,popforecast=0;    return -l;
   int hstepm, nhstepm;  }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
   /*************** log-likelihood *************/
   double bage, fage, age, agelim, agebase;  double funcone( double *x)
   double ftolpl=FTOL;  {
   double **prlim;    /* Same as likeli but slower because of a lot of printf and if */
   double *severity;    int i, ii, j, k, mi, d, kk;
   double ***param; /* Matrix of parameters */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   double  *p;    double **out;
   double **matcov; /* Matrix of covariance */    double lli; /* Individual log likelihood */
   double ***delti3; /* Scale */    double llt;
   double *delti; /* Scale */    int s1, s2;
   double ***eij, ***vareij;    double bbh, survp;
   double **varpl; /* Variances of prevalence limits by age */    double agexact;
   double *epj, vepp;    double agebegin, ageend;
   double kk1, kk2;    /*extern weight */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";      printf(" %d\n",s[4][i]);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    */
     cov[1]=1.;
   
   char z[1]="c", occ;    for(k=1; k<=nlstate; k++) ll[k]=0.;
 #include <sys/time.h>  
 #include <time.h>    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
        for(mi=1; mi<= wav[i]-1; mi++){
   /* long total_usecs;        for (ii=1;ii<=nlstate+ndeath;ii++)
   struct timeval start_time, end_time;          for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   getcwd(pathcd, size);          }
         
   printf("\n%s",version);        agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
   if(argc <=1){        ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
     printf("\nEnter the parameter file name: ");        for(d=0; d<dh[mi][i]; d++){  /* Delay between two effective waves */
     scanf("%s",pathtot);          /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   }            and mw[mi+1][i]. dh depends on stepm.*/
   else{          newm=savm;
     strcpy(pathtot,argv[1]);          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }          cov[2]=agexact;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          if(nagesqr==1)
   /*cygwin_split_path(pathtot,path,optionfile);            cov[3]= agexact*agexact;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          for (kk=1; kk<=cptcovage;kk++) {
   /* cutv(path,optionfile,pathtot,'\\');*/            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
           }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   chdir(path);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   replace(pathc,path);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
 /*-------- arguments in the command line --------*/          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
           savm=oldm;
   strcpy(fileres,"r");          oldm=newm;
   strcat(fileres, optionfilefiname);        } /* end mult */
   strcat(fileres,".txt");    /* Other files have txt extension */        
         s1=s[mw[mi][i]][i];
   /*---------arguments file --------*/        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        /* bias is positive if real duration
     printf("Problem with optionfile %s\n",optionfile);         * is higher than the multiple of stepm and negative otherwise.
     goto end;         */
   }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
   strcpy(filereso,"o");        } else if  (s2==-2) {
   strcat(filereso,fileres);          for (j=1,survp=0. ; j<=nlstate; j++) 
   if((ficparo=fopen(filereso,"w"))==NULL) {            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          lli= log(survp);
   }        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /* Reads comments: lines beginning with '#' */        } else if(mle==2){
   while((c=getc(ficpar))=='#' && c!= EOF){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     ungetc(c,ficpar);        } else if(mle==3){  /* exponential inter-extrapolation */
     fgets(line, MAXLINE, ficpar);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     puts(line);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     fputs(line,ficparo);          lli=log(out[s1][s2]); /* Original formula */
   }        } else{  /* mle=0 back to 1 */
   ungetc(c,ficpar);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           /*lli=log(out[s1][s2]); */ /* Original formula */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        } /* End of if */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        ipmx +=1;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        sw += weight[i];
 while((c=getc(ficpar))=='#' && c!= EOF){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     ungetc(c,ficpar);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     fgets(line, MAXLINE, ficpar);        if(globpr){
     puts(line);          fprintf(ficresilk,"%9ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %11.6f %8.4f %8.3f\
     fputs(line,ficparo);   %11.6f %11.6f %11.6f ", \
   }                  num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
   ungetc(c,ficpar);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
            for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                llt +=ll[k]*gipmx/gsw;
   covar=matrix(0,NCOVMAX,1,n);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   cptcovn=0;          }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          fprintf(ficresilk," %10.6f\n", -llt);
         }
   ncovmodel=2+cptcovn;      } /* end of wave */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    } /* end of individual */
      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* Read guess parameters */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /* Reads comments: lines beginning with '#' */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   while((c=getc(ficpar))=='#' && c!= EOF){    if(globpr==0){ /* First time we count the contributions and weights */
     ungetc(c,ficpar);      gipmx=ipmx;
     fgets(line, MAXLINE, ficpar);      gsw=sw;
     puts(line);    }
     fputs(line,ficparo);    return -l;
   }  }
   ungetc(c,ficpar);  
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  /*************** function likelione ***********/
     for(i=1; i <=nlstate; i++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     for(j=1; j <=nlstate+ndeath-1; j++){  {
       fscanf(ficpar,"%1d%1d",&i1,&j1);    /* This routine should help understanding what is done with 
       fprintf(ficparo,"%1d%1d",i1,j1);       the selection of individuals/waves and
       printf("%1d%1d",i,j);       to check the exact contribution to the likelihood.
       for(k=1; k<=ncovmodel;k++){       Plotting could be done.
         fscanf(ficpar," %lf",&param[i][j][k]);     */
         printf(" %lf",param[i][j][k]);    int k;
         fprintf(ficparo," %lf",param[i][j][k]);  
       }    if(*globpri !=0){ /* Just counts and sums, no printings */
       fscanf(ficpar,"\n");      strcpy(fileresilk,"ILK_"); 
       printf("\n");      strcat(fileresilk,fileresu);
       fprintf(ficparo,"\n");      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     }        printf("Problem with resultfile: %s\n", fileresilk);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      }
       fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   p=param[1][1];      fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
        /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   /* Reads comments: lines beginning with '#' */      for(k=1; k<=nlstate; k++) 
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     ungetc(c,ficpar);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     fgets(line, MAXLINE, ficpar);    }
     puts(line);  
     fputs(line,ficparo);    *fretone=(*funcone)(p);
   }    if(*globpri !=0){
   ungetc(c,ficpar);      fclose(ficresilk);
       if (mle ==0)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      else if(mle >=1)
   for(i=1; i <=nlstate; i++){        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
     for(j=1; j <=nlstate+ndeath-1; j++){      fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fscanf(ficpar,"%1d%1d",&i1,&j1);      
       printf("%1d%1d",i,j);        
       fprintf(ficparo,"%1d%1d",i1,j1);      for (k=1; k<= nlstate ; k++) {
       for(k=1; k<=ncovmodel;k++){        fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
         fscanf(ficpar,"%le",&delti3[i][j][k]);  <img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
         printf(" %le",delti3[i][j][k]);      }
         fprintf(ficparo," %le",delti3[i][j][k]);      fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
       }  <img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
       fscanf(ficpar,"\n");      fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
       printf("\n");  <img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
       fprintf(ficparo,"\n");      fflush(fichtm);
     }    }
   }    return;
   delti=delti3[1][1];  }
    
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  /*********** Maximum Likelihood Estimation ***************/
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     puts(line);  {
     fputs(line,ficparo);    int i,j, iter=0;
   }    double **xi;
   ungetc(c,ficpar);    double fret;
      double fretone; /* Only one call to likelihood */
   matcov=matrix(1,npar,1,npar);    /*  char filerespow[FILENAMELENGTH];*/
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);  #ifdef NLOPT
     printf("%s",str);    int creturn;
     fprintf(ficparo,"%s",str);    nlopt_opt opt;
     for(j=1; j <=i; j++){    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
       fscanf(ficpar," %le",&matcov[i][j]);    double *lb;
       printf(" %.5le",matcov[i][j]);    double minf; /* the minimum objective value, upon return */
       fprintf(ficparo," %.5le",matcov[i][j]);    double * p1; /* Shifted parameters from 0 instead of 1 */
     }    myfunc_data dinst, *d = &dinst;
     fscanf(ficpar,"\n");  #endif
     printf("\n");  
     fprintf(ficparo,"\n");  
   }    xi=matrix(1,npar,1,npar);
   for(i=1; i <=npar; i++)    for (i=1;i<=npar;i++)
     for(j=i+1;j<=npar;j++)      for (j=1;j<=npar;j++)
       matcov[i][j]=matcov[j][i];        xi[i][j]=(i==j ? 1.0 : 0.0);
        printf("Powell\n");  fprintf(ficlog,"Powell\n");
   printf("\n");    strcpy(filerespow,"POW_"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
     /*-------- Rewriting paramater file ----------*/      printf("Problem with resultfile: %s\n", filerespow);
      strcpy(rfileres,"r");    /* "Rparameterfile */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    }
      strcat(rfileres,".");    /* */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    for (i=1;i<=nlstate;i++)
     if((ficres =fopen(rfileres,"w"))==NULL) {      for(j=1;j<=nlstate+ndeath;j++)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     }    fprintf(ficrespow,"\n");
     fprintf(ficres,"#%s\n",version);  #ifdef POWELL
        powell(p,xi,npar,ftol,&iter,&fret,func);
     /*-------- data file ----------*/  #endif
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;  #ifdef NLOPT
     }  #ifdef NEWUOA
     opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
     n= lastobs;  #else
     severity = vector(1,maxwav);    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
     outcome=imatrix(1,maxwav+1,1,n);  #endif
     num=ivector(1,n);    lb=vector(0,npar-1);
     moisnais=vector(1,n);    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
     annais=vector(1,n);    nlopt_set_lower_bounds(opt, lb);
     moisdc=vector(1,n);    nlopt_set_initial_step1(opt, 0.1);
     andc=vector(1,n);    
     agedc=vector(1,n);    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
     cod=ivector(1,n);    d->function = func;
     weight=vector(1,n);    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    nlopt_set_min_objective(opt, myfunc, d);
     mint=matrix(1,maxwav,1,n);    nlopt_set_xtol_rel(opt, ftol);
     anint=matrix(1,maxwav,1,n);    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
     s=imatrix(1,maxwav+1,1,n);      printf("nlopt failed! %d\n",creturn); 
     adl=imatrix(1,maxwav+1,1,n);        }
     tab=ivector(1,NCOVMAX);    else {
     ncodemax=ivector(1,8);      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
     i=1;      iter=1; /* not equal */
     while (fgets(line, MAXLINE, fic) != NULL)    {    }
       if ((i >= firstobs) && (i <=lastobs)) {    nlopt_destroy(opt);
          #endif
         for (j=maxwav;j>=1;j--){    free_matrix(xi,1,npar,1,npar);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    fclose(ficrespow);
           strcpy(line,stra);    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
         }  
          }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  {
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    double  **a,**y,*x,pd;
     /* double **hess; */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    int i, j;
         for (j=ncovcol;j>=1;j--){    int *indx;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         num[i]=atol(stra);    double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
            void lubksb(double **a, int npar, int *indx, double b[]) ;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    void ludcmp(double **a, int npar, int *indx, double *d) ;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    double gompertz(double p[]);
     /* hess=matrix(1,npar,1,npar); */
         i=i+1;  
       }    printf("\nCalculation of the hessian matrix. Wait...\n");
     }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     /* printf("ii=%d", ij);    for (i=1;i<=npar;i++){
        scanf("%d",i);*/      printf("%d-",i);fflush(stdout);
   imx=i-1; /* Number of individuals */      fprintf(ficlog,"%d-",i);fflush(ficlog);
      
   /* for (i=1; i<=imx; i++){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      /*  printf(" %f ",p[i]);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }*/    }
    /*  for (i=1; i<=imx; i++){    
      if (s[4][i]==9)  s[4][i]=-1;    for (i=1;i<=npar;i++) {
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      for (j=1;j<=npar;j++)  {
          if (j>i) { 
            printf(".%d-%d",i,j);fflush(stdout);
   /* Calculation of the number of parameter from char model*/          fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
   Tvar=ivector(1,15);          hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
   Tprod=ivector(1,15);          
   Tvaraff=ivector(1,15);          hess[j][i]=hess[i][j];    
   Tvard=imatrix(1,15,1,2);          /*printf(" %lf ",hess[i][j]);*/
   Tage=ivector(1,15);              }
          }
   if (strlen(model) >1){    }
     j=0, j1=0, k1=1, k2=1;    printf("\n");
     j=nbocc(model,'+');    fprintf(ficlog,"\n");
     j1=nbocc(model,'*');  
     cptcovn=j+1;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     cptcovprod=j1;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
        
     strcpy(modelsav,model);    a=matrix(1,npar,1,npar);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    y=matrix(1,npar,1,npar);
       printf("Error. Non available option model=%s ",model);    x=vector(1,npar);
       goto end;    indx=ivector(1,npar);
     }    for (i=1;i<=npar;i++)
          for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     for(i=(j+1); i>=1;i--){    ludcmp(a,npar,indx,&pd);
       cutv(stra,strb,modelsav,'+');  
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    for (j=1;j<=npar;j++) {
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      for (i=1;i<=npar;i++) x[i]=0;
       /*scanf("%d",i);*/      x[j]=1;
       if (strchr(strb,'*')) {      lubksb(a,npar,indx,x);
         cutv(strd,strc,strb,'*');      for (i=1;i<=npar;i++){ 
         if (strcmp(strc,"age")==0) {        matcov[i][j]=x[i];
           cptcovprod--;      }
           cutv(strb,stre,strd,'V');    }
           Tvar[i]=atoi(stre);  
           cptcovage++;    printf("\n#Hessian matrix#\n");
             Tage[cptcovage]=i;    fprintf(ficlog,"\n#Hessian matrix#\n");
             /*printf("stre=%s ", stre);*/    for (i=1;i<=npar;i++) { 
         }      for (j=1;j<=npar;j++) { 
         else if (strcmp(strd,"age")==0) {        printf("%.6e ",hess[i][j]);
           cptcovprod--;        fprintf(ficlog,"%.6e ",hess[i][j]);
           cutv(strb,stre,strc,'V');      }
           Tvar[i]=atoi(stre);      printf("\n");
           cptcovage++;      fprintf(ficlog,"\n");
           Tage[cptcovage]=i;    }
         }  
         else {    /* printf("\n#Covariance matrix#\n"); */
           cutv(strb,stre,strc,'V');    /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
           Tvar[i]=ncovcol+k1;    /* for (i=1;i<=npar;i++) {  */
           cutv(strb,strc,strd,'V');    /*   for (j=1;j<=npar;j++) {  */
           Tprod[k1]=i;    /*     printf("%.6e ",matcov[i][j]); */
           Tvard[k1][1]=atoi(strc);    /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
           Tvard[k1][2]=atoi(stre);    /*   } */
           Tvar[cptcovn+k2]=Tvard[k1][1];    /*   printf("\n"); */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    /*   fprintf(ficlog,"\n"); */
           for (k=1; k<=lastobs;k++)    /* } */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;    /* Recompute Inverse */
           k2=k2+2;    /* for (i=1;i<=npar;i++) */
         }    /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
       }    /* ludcmp(a,npar,indx,&pd); */
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    /*  printf("\n#Hessian matrix recomputed#\n"); */
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');    /* for (j=1;j<=npar;j++) { */
       Tvar[i]=atoi(strc);    /*   for (i=1;i<=npar;i++) x[i]=0; */
       }    /*   x[j]=1; */
       strcpy(modelsav,stra);      /*   lubksb(a,npar,indx,x); */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    /*   for (i=1;i<=npar;i++){  */
         scanf("%d",i);*/    /*     y[i][j]=x[i]; */
     }    /*     printf("%.3e ",y[i][j]); */
 }    /*     fprintf(ficlog,"%.3e ",y[i][j]); */
      /*   } */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    /*   printf("\n"); */
   printf("cptcovprod=%d ", cptcovprod);    /*   fprintf(ficlog,"\n"); */
   scanf("%d ",i);*/    /* } */
     fclose(fic);  
     /* Verifying the inverse matrix */
     /*  if(mle==1){*/  #ifdef DEBUGHESS
     if (weightopt != 1) { /* Maximisation without weights*/    y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }     printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
     /*-calculation of age at interview from date of interview and age at death -*/     fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
     agev=matrix(1,maxwav,1,imx);  
     for (j=1;j<=npar;j++) {
     for (i=1; i<=imx; i++) {      for (i=1;i<=npar;i++){ 
       for(m=2; (m<= maxwav); m++) {        printf("%.2f ",y[i][j]);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        fprintf(ficlog,"%.2f ",y[i][j]);
          anint[m][i]=9999;      }
          s[m][i]=-1;      printf("\n");
        }      fprintf(ficlog,"\n");
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    }
       }  #endif
     }  
     free_matrix(a,1,npar,1,npar);
     for (i=1; i<=imx; i++)  {    free_matrix(y,1,npar,1,npar);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    free_vector(x,1,npar);
       for(m=1; (m<= maxwav); m++){    free_ivector(indx,1,npar);
         if(s[m][i] >0){    /* free_matrix(hess,1,npar,1,npar); */
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)  }
                 agev[m][i]=agedc[i];  
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  /*************** hessian matrix ****************/
            else {  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
               if (andc[i]!=9999){  { /* Around values of x, computes the function func and returns the scales delti and hessian */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    int i;
               agev[m][i]=-1;    int l=1, lmax=20;
               }    double k1,k2, res, fx;
             }    double p2[MAXPARM+1]; /* identical to x */
           }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           else if(s[m][i] !=9){ /* Should no more exist */    int k=0,kmax=10;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    double l1;
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;    fx=func(x);
             else if(agev[m][i] <agemin){    for (i=1;i<=npar;i++) p2[i]=x[i];
               agemin=agev[m][i];    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      l1=pow(10,l);
             }      delts=delt;
             else if(agev[m][i] >agemax){      for(k=1 ; k <kmax; k=k+1){
               agemax=agev[m][i];        delt = delta*(l1*k);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        p2[theta]=x[theta] +delt;
             }        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
             /*agev[m][i]=anint[m][i]-annais[i];*/        p2[theta]=x[theta]-delt;
             /*   agev[m][i] = age[i]+2*m;*/        k2=func(p2)-fx;
           }        /*res= (k1-2.0*fx+k2)/delt/delt; */
           else { /* =9 */        res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
             agev[m][i]=1;        
             s[m][i]=-1;  #ifdef DEBUGHESSII
           }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         else /*= 0 Unknown */  #endif
           agev[m][i]=1;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
              k=kmax;
     }        }
     for (i=1; i<=imx; i++)  {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       for(m=1; (m<= maxwav); m++){          k=kmax; l=lmax*10;
         if (s[m][i] > (nlstate+ndeath)) {        }
           printf("Error: Wrong value in nlstate or ndeath\n");          else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           goto end;          delts=delt;
         }        }
       }      } /* End loop k */
     }    }
     delti[theta]=delts;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    return res; 
     
     free_vector(severity,1,maxwav);  }
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);  double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     free_vector(annais,1,n);  {
     /* free_matrix(mint,1,maxwav,1,n);    int i;
        free_matrix(anint,1,maxwav,1,n);*/    int l=1, lmax=20;
     free_vector(moisdc,1,n);    double k1,k2,k3,k4,res,fx;
     free_vector(andc,1,n);    double p2[MAXPARM+1];
     int k, kmax=1;
        double v1, v2, cv12, lc1, lc2;
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    int firstime=0;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    
        fx=func(x);
     /* Concatenates waves */    for (k=1; k<=kmax; k=k+10) {
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]*k;
       p2[thetaj]=x[thetaj]+delti[thetaj]*k;
       Tcode=ivector(1,100);      k1=func(p2)-fx;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    
       ncodemax[1]=1;      p2[thetai]=x[thetai]+delti[thetai]*k;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
            k2=func(p2)-fx;
    codtab=imatrix(1,100,1,10);    
    h=0;      p2[thetai]=x[thetai]-delti[thetai]*k;
    m=pow(2,cptcoveff);      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
        k3=func(p2)-fx;
    for(k=1;k<=cptcoveff; k++){    
      for(i=1; i <=(m/pow(2,k));i++){      p2[thetai]=x[thetai]-delti[thetai]*k;
        for(j=1; j <= ncodemax[k]; j++){      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      k4=func(p2)-fx;
            h++;      res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      if(k1*k2*k3*k4 <0.){
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        firstime=1;
          }        kmax=kmax+10;
        }      }
      }      if(kmax >=10 || firstime ==1){
    }        printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
       codtab[1][2]=1;codtab[2][2]=2; */        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
    /* for(i=1; i <=m ;i++){        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(k=1; k <=cptcovn; k++){      }
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  #ifdef DEBUGHESSIJ
       }      v1=hess[thetai][thetai];
       printf("\n");      v2=hess[thetaj][thetaj];
       }      cv12=res;
       scanf("%d",i);*/      /* Computing eigen value of Hessian matrix */
          lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    /* Calculates basic frequencies. Computes observed prevalence at single age      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
        and prints on file fileres'p'. */      if ((lc2 <0) || (lc1 <0) ){
         printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
            fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
            printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  #endif
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    return res;
        }
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      /* Not done yet: Was supposed to fix if not exactly at the maximum */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
   /* { */
     if(mle==1){  /*   int i; */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  /*   int l=1, lmax=20; */
     }  /*   double k1,k2,k3,k4,res,fx; */
      /*   double p2[MAXPARM+1]; */
     /*--------- results files --------------*/  /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  /*   int k=0,kmax=10; */
    /*   double l1; */
     
    jk=1;  /*   fx=func(x); */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  /*     l1=pow(10,l); */
    for(i=1,jk=1; i <=nlstate; i++){  /*     delts=delt; */
      for(k=1; k <=(nlstate+ndeath); k++){  /*     for(k=1 ; k <kmax; k=k+1){ */
        if (k != i)  /*       delt = delti*(l1*k); */
          {  /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
            printf("%d%d ",i,k);  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
            fprintf(ficres,"%1d%1d ",i,k);  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
            for(j=1; j <=ncovmodel; j++){  /*       k1=func(p2)-fx; */
              printf("%f ",p[jk]);        
              fprintf(ficres,"%f ",p[jk]);  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
              jk++;  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
            }  /*       k2=func(p2)-fx; */
            printf("\n");        
            fprintf(ficres,"\n");  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
          }  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
      }  /*       k3=func(p2)-fx; */
    }        
  if(mle==1){  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
     /* Computing hessian and covariance matrix */  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
     ftolhess=ftol; /* Usually correct */  /*       k4=func(p2)-fx; */
     hesscov(matcov, p, npar, delti, ftolhess, func);  /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
  }  /* #ifdef DEBUGHESSIJ */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
     printf("# Scales (for hessian or gradient estimation)\n");  /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
      for(i=1,jk=1; i <=nlstate; i++){  /* #endif */
       for(j=1; j <=nlstate+ndeath; j++){  /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
         if (j!=i) {  /*      k=kmax; */
           fprintf(ficres,"%1d%1d",i,j);  /*       } */
           printf("%1d%1d",i,j);  /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
           for(k=1; k<=ncovmodel;k++){  /*      k=kmax; l=lmax*10; */
             printf(" %.5e",delti[jk]);  /*       } */
             fprintf(ficres," %.5e",delti[jk]);  /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
             jk++;  /*      delts=delt; */
           }  /*       } */
           printf("\n");  /*     } /\* End loop k *\/ */
           fprintf(ficres,"\n");  /*   } */
         }  /*   delti[theta]=delts; */
       }  /*   return res;  */
      }  /* } */
      
     k=1;  
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  /************** Inverse of matrix **************/
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  void ludcmp(double **a, int n, int *indx, double *d) 
     for(i=1;i<=npar;i++){  { 
       /*  if (k>nlstate) k=1;    int i,imax,j,k; 
       i1=(i-1)/(ncovmodel*nlstate)+1;    double big,dum,sum,temp; 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    double *vv; 
       printf("%s%d%d",alph[k],i1,tab[i]);*/   
       fprintf(ficres,"%3d",i);    vv=vector(1,n); 
       printf("%3d",i);    *d=1.0; 
       for(j=1; j<=i;j++){    for (i=1;i<=n;i++) { 
         fprintf(ficres," %.5e",matcov[i][j]);      big=0.0; 
         printf(" %.5e",matcov[i][j]);      for (j=1;j<=n;j++) 
       }        if ((temp=fabs(a[i][j])) > big) big=temp; 
       fprintf(ficres,"\n");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       printf("\n");      vv[i]=1.0/big; 
       k++;    } 
     }    for (j=1;j<=n;j++) { 
          for (i=1;i<j;i++) { 
     while((c=getc(ficpar))=='#' && c!= EOF){        sum=a[i][j]; 
       ungetc(c,ficpar);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       fgets(line, MAXLINE, ficpar);        a[i][j]=sum; 
       puts(line);      } 
       fputs(line,ficparo);      big=0.0; 
     }      for (i=j;i<=n;i++) { 
     ungetc(c,ficpar);        sum=a[i][j]; 
     estepm=0;        for (k=1;k<j;k++) 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          sum -= a[i][k]*a[k][j]; 
     if (estepm==0 || estepm < stepm) estepm=stepm;        a[i][j]=sum; 
     if (fage <= 2) {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       bage = ageminpar;          big=dum; 
       fage = agemaxpar;          imax=i; 
     }        } 
          } 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      if (j != imax) { 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for (k=1;k<=n;k++) { 
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          dum=a[imax][k]; 
            a[imax][k]=a[j][k]; 
     while((c=getc(ficpar))=='#' && c!= EOF){          a[j][k]=dum; 
     ungetc(c,ficpar);        } 
     fgets(line, MAXLINE, ficpar);        *d = -(*d); 
     puts(line);        vv[imax]=vv[j]; 
     fputs(line,ficparo);      } 
   }      indx[j]=imax; 
   ungetc(c,ficpar);      if (a[j][j] == 0.0) a[j][j]=TINY; 
        if (j != n) { 
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        dum=1.0/(a[j][j]); 
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      } 
          } 
   while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(vv,1,n);  /* Doesn't work */
     ungetc(c,ficpar);  ;
     fgets(line, MAXLINE, ficpar);  } 
     puts(line);  
     fputs(line,ficparo);  void lubksb(double **a, int n, int *indx, double b[]) 
   }  { 
   ungetc(c,ficpar);    int i,ii=0,ip,j; 
      double sum; 
    
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    for (i=1;i<=n;i++) { 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      ip=indx[i]; 
       sum=b[ip]; 
   fscanf(ficpar,"pop_based=%d\n",&popbased);      b[ip]=b[i]; 
   fprintf(ficparo,"pop_based=%d\n",popbased);        if (ii) 
   fprintf(ficres,"pop_based=%d\n",popbased);          for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
        else if (sum) ii=i; 
   while((c=getc(ficpar))=='#' && c!= EOF){      b[i]=sum; 
     ungetc(c,ficpar);    } 
     fgets(line, MAXLINE, ficpar);    for (i=n;i>=1;i--) { 
     puts(line);      sum=b[i]; 
     fputs(line,ficparo);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   }      b[i]=sum/a[i][i]; 
   ungetc(c,ficpar);    } 
   } 
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  void pstamp(FILE *fichier)
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  {
     fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
   }
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************ Frequencies ********************/
     fgets(line, MAXLINE, ficpar);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \
     puts(line);                    int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[],\
     fputs(line,ficparo);                    int firstpass,  int lastpass, int stepm, int weightopt, char model[])
   }  {  /* Some frequencies */
   ungetc(c,ficpar);    
     int i, m, jk, j1, bool, z1,j;
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    int mi; /* Effective wave */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    int first;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    double ***freq; /* Frequencies */
     double *pp, **prop;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH];
 /*------------ gnuplot -------------*/    double agebegin, ageend;
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);      
      pp=vector(1,nlstate);
 /*------------ free_vector  -------------*/    prop=matrix(1,nlstate,iagemin,iagemax+3);
  chdir(path);    strcpy(fileresp,"P_");
      strcat(fileresp,fileresu);
  free_ivector(wav,1,imx);    /*strcat(fileresphtm,fileresu);*/
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    if((ficresp=fopen(fileresp,"w"))==NULL) {
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        printf("Problem with prevalence resultfile: %s\n", fileresp);
  free_ivector(num,1,n);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
  free_vector(agedc,1,n);      exit(0);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    }
  fclose(ficparo);  
  fclose(ficres);    strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));
     if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {
 /*--------- index.htm --------*/      printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
       fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);      fflush(ficlog);
       exit(70); 
      }
   /*--------------- Prevalence limit --------------*/    else{
        fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   strcpy(filerespl,"pl");  <hr size=\"2\" color=\"#EC5E5E\"> \n\
   strcat(filerespl,fileres);  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    }
   }      fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition</h4>\n",fileresphtm, fileresphtm);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      
   fprintf(ficrespl,"#Prevalence limit\n");    strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
   fprintf(ficrespl,"#Age ");    if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
   fprintf(ficrespl,"\n");      fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
        fflush(ficlog);
   prlim=matrix(1,nlstate,1,nlstate);      exit(70); 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    else{
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  <hr size=\"2\" color=\"#EC5E5E\"> \n\
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
   k=0;            fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
   agebase=ageminpar;    }
   agelim=agemaxpar;    fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions by age at begin of transition </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr);
   ftolpl=1.e-10;  
   i1=cptcoveff;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   if (cptcovn < 1){i1=1;}    j1=0;
     
   for(cptcov=1;cptcov<=i1;cptcov++){    j=cptcoveff;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    first=1;
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){ /* Loop on covariates combination */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         fprintf(ficrespl,"******\n");          scanf("%d", i);*/
                for (i=-5; i<=nlstate+ndeath; i++)  
         for (age=agebase; age<=agelim; age++){          for (jk=-5; jk<=nlstate+ndeath; jk++)  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            for(m=iagemin; m <= iagemax+3; m++)
           fprintf(ficrespl,"%.0f",age );              freq[i][jk][m]=0;
           for(i=1; i<=nlstate;i++)        
           fprintf(ficrespl," %.5f", prlim[i][i]);        for (i=1; i<=nlstate; i++)  
           fprintf(ficrespl,"\n");          for(m=iagemin; m <= iagemax+3; m++)
         }            prop[i][m]=0;
       }        
     }        dateintsum=0;
   fclose(ficrespl);        k2cpt=0;
         for (i=1; i<=imx; i++) { /* For each individual i */
   /*------------- h Pij x at various ages ------------*/          bool=1;
            if (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);            for (z1=1; z1<=cptcoveff; z1++)       
   if((ficrespij=fopen(filerespij,"w"))==NULL) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
   }                bool=0;
   printf("Computing pij: result on file '%s' \n", filerespij);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
                    bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
   stepsize=(int) (stepm+YEARM-1)/YEARM;                  j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
   /*if (stepm<=24) stepsize=2;*/                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
               } 
   agelim=AGESUP;          } /* cptcovn > 0 */
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          if (bool==1){
              /* for(m=firstpass; m<=lastpass; m++){ */
   k=0;            for(mi=1; mi<wav[i];mi++){
   for(cptcov=1;cptcov<=i1;cptcov++){              m=mw[mi][i];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              /* dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective (mi) waves m=mw[mi][i]
       k=k+1;                 and mw[mi+1][i]. dh depends on stepm. */
         fprintf(ficrespij,"\n#****** ");              agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
         for(j=1;j<=cptcoveff;j++)              ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /* Age at end of wave and transition */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              if(m >=firstpass && m <=lastpass){
         fprintf(ficrespij,"******\n");                k2=anint[m][i]+(mint[m][i]/12.);
                        /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                if(agev[m][i]==0) agev[m][i]=iagemax+1;  /* All ages equal to 0 are in iagemax+1 */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                if(agev[m][i]==1) agev[m][i]=iagemax+2;  /* All ages equal to 1 are in iagemax+2 */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                if (s[m][i]>0 && s[m][i]<=nlstate)  /* If status at wave m is known and a live state */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];  /* At age of beginning of transition, where status is known */
           oldm=oldms;savm=savms;                if (m<lastpass) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                    /* if(s[m][i]==4 && s[m+1][i]==4) */
           fprintf(ficrespij,"# Age");                  /*   printf(" num=%ld m=%d, i=%d s1=%d s2=%d agev at m=%d\n", num[i], m, i,s[m][i],s[m+1][i], (int)agev[m][i]); */
           for(i=1; i<=nlstate;i++)                  if(s[m][i]==-1)
             for(j=1; j<=nlstate+ndeath;j++)                    printf(" num=%ld m=%d, i=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[i], m, i,s[m][i],s[m+1][i], (int)agev[m][i],agebegin, ageend, (int)((agebegin+ageend)/2.));
               fprintf(ficrespij," %1d-%1d",i,j);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; /* At age of beginning of transition, where status is known */
           fprintf(ficrespij,"\n");                  /* freq[s[m][i]][s[m+1][i]][(int)((agebegin+ageend)/2.)] += weight[i]; */
            for (h=0; h<=nhstepm; h++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                }
             for(i=1; i<=nlstate;i++)              }  
               for(j=1; j<=nlstate+ndeath;j++)              if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3)) && (anint[m][i]!=9999) && (mint[m][i]!=99)) {
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                dateintsum=dateintsum+k2;
             fprintf(ficrespij,"\n");                k2cpt++;
              }                /* printf("i=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",i, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              }
           fprintf(ficrespij,"\n");              /*}*/
         }            } /* end m */
     }          } /* end bool */
   }        } /* end i = 1 to imx */
          
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         pstamp(ficresp);
   fclose(ficrespij);        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
           fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); 
   /*---------- Forecasting ------------------*/          fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); 
   if((stepm == 1) && (strcmp(model,".")==0)){          for (z1=1; z1<=cptcoveff; z1++){
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);            fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);            fprintf(ficresphtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   }            fprintf(ficresphtmfr, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   else{          }
     erreur=108;            fprintf(ficresp, "**********\n#");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          fprintf(ficresphtm, "**********</h3>\n");
   }          fprintf(ficresphtmfr, "**********</h3>\n");
            fprintf(ficlog, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   /*---------- Health expectancies and variances ------------*/          fprintf(ficlog, "**********\n");
         }
   strcpy(filerest,"t");        fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");
   strcat(filerest,fileres);        for(i=1; i<=nlstate;i++) {
   if((ficrest=fopen(filerest,"w"))==NULL) {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);
   }        }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        fprintf(ficresp, "\n");
         fprintf(ficresphtm, "\n");
         
   strcpy(filerese,"e");        /* Header of frequency table by age */
   strcat(filerese,fileres);        fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">");
   if((ficreseij=fopen(filerese,"w"))==NULL) {        fprintf(ficresphtmfr,"<th>Age</th> ");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        for(jk=-1; jk <=nlstate+ndeath; jk++){
   }          for(m=-1; m <=nlstate+ndeath; m++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);            if(jk!=0 && m!=0)
               fprintf(ficresphtmfr,"<th>%d%d</th> ",jk,m);
  strcpy(fileresv,"v");          }
   strcat(fileresv,fileres);        }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        fprintf(ficresphtmfr, "\n");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        
   }        /* For each age */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        for(i=iagemin; i <= iagemax+3; i++){
   calagedate=-1;          fprintf(ficresphtm,"<tr>");
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          if(i==iagemax+1){
             fprintf(ficlog,"1");
   k=0;            fprintf(ficresphtmfr,"<tr><th>0</th> ");
   for(cptcov=1;cptcov<=i1;cptcov++){          }else if(i==iagemax+2){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            fprintf(ficlog,"0");
       k=k+1;            fprintf(ficresphtmfr,"<tr><th>Unknown</th> ");
       fprintf(ficrest,"\n#****** ");          }else if(i==iagemax+3){
       for(j=1;j<=cptcoveff;j++)            fprintf(ficlog,"Total");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            fprintf(ficresphtmfr,"<tr><th>Total</th> ");
       fprintf(ficrest,"******\n");          }else{
             if(first==1){
       fprintf(ficreseij,"\n#****** ");              first=0;
       for(j=1;j<=cptcoveff;j++)              printf("See log file for details...\n");
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
       fprintf(ficreseij,"******\n");            fprintf(ficresphtmfr,"<tr><th>%d</th> ",i);
             fprintf(ficlog,"Age %d", i);
       fprintf(ficresvij,"\n#****** ");          }
       for(j=1;j<=cptcoveff;j++)          for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       fprintf(ficresvij,"******\n");              pp[jk] += freq[jk][m][i]; 
           }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          for(jk=1; jk <=nlstate ; jk++){
       oldm=oldms;savm=savms;            for(m=-1, pos=0; m <=0 ; m++)
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                pos += freq[jk][m][i];
              if(pp[jk]>=1.e-10){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              if(first==1){
       oldm=oldms;savm=savms;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);              }
                  fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
                if(first==1)
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficrest,"\n");            }
           }
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){          for(jk=1; jk <=nlstate ; jk++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         if (popbased==1) {              pp[jk] += freq[jk][m][i];
           for(i=1; i<=nlstate;i++)          }       
             prlim[i][i]=probs[(int)age][i][k];          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         }            pos += pp[jk];
                    posprop += prop[jk][i];
         fprintf(ficrest," %4.0f",age);          }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          for(jk=1; jk <=nlstate ; jk++){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            if(pos>=1.e-5){
             epj[j] += prlim[i][i]*eij[i][j][(int)age];              if(first==1)
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           epj[nlstate+1] +=epj[j];            }else{
         }              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         for(i=1, vepp=0.;i <=nlstate;i++)              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           for(j=1;j <=nlstate;j++)            }
             vepp += vareij[i][j][(int)age];            if( i <= iagemax){
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));              if(pos>=1.e-5){
         for(j=1;j <=nlstate;j++){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         }                /*probs[i][jk][j1]= pp[jk]/pos;*/
         fprintf(ficrest,"\n");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       }              }
     }              else{
   }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 free_matrix(mint,1,maxwav,1,n);                fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",i, prop[jk][i],posprop);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);              }
     free_vector(weight,1,n);            }
   fclose(ficreseij);          }
   fclose(ficresvij);          
   fclose(ficrest);          for(jk=-1; jk <=nlstate+ndeath; jk++){
   fclose(ficpar);            for(m=-1; m <=nlstate+ndeath; m++){
   free_vector(epj,1,nlstate+1);              if(freq[jk][m][i] !=0 ) { /* minimizing output */
                  if(first==1){
   /*------- Variance limit prevalence------*/                    printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 }
   strcpy(fileresvpl,"vpl");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   strcat(fileresvpl,fileres);              }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {              if(jk!=0 && m!=0)
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[jk][m][i]);
     exit(0);            }
   }          }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          fprintf(ficresphtmfr,"</tr>\n ");
           if(i <= iagemax){
   k=0;            fprintf(ficresp,"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){            fprintf(ficresphtm,"</tr>\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          }
       k=k+1;          if(first==1)
       fprintf(ficresvpl,"\n#****** ");            printf("Others in log...\n");
       for(j=1;j<=cptcoveff;j++)          fprintf(ficlog,"\n");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        } /* end loop i */
       fprintf(ficresvpl,"******\n");        fprintf(ficresphtm,"</table>\n");
              fprintf(ficresphtmfr,"</table>\n");
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        /*}*/
       oldm=oldms;savm=savms;    } /* end j1 */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    dateintmean=dateintsum/k2cpt; 
     }   
  }    fclose(ficresp);
     fclose(ficresphtm);
   fclose(ficresvpl);    fclose(ficresphtmfr);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   /*---------- End : free ----------------*/    free_vector(pp,1,nlstate);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      /* End of Freq */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
    /************ Prevalence ********************/
    void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  {  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);       We still use firstpass and lastpass as another selection.
      */
   free_matrix(matcov,1,npar,1,npar);   
   free_vector(delti,1,npar);    int i, m, jk, j1, bool, z1,j;
   free_matrix(agev,1,maxwav,1,imx);    int mi; /* Effective wave */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    int iage;
     double agebegin, ageend;
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);    double **prop;
   else   printf("End of Imach\n");    double posprop; 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    double  y2; /* in fractional years */
      int iagemin, iagemax;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    int first; /** to stop verbosity which is redirected to log file */
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/    iagemin= (int) agemin;
     iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
  end:    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   /* chdir(pathcd);*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
  /*system("wgnuplot graph.plt");*/    j1=0;
  /*system("../gp37mgw/wgnuplot graph.plt");*/    
  /*system("cd ../gp37mgw");*/    /*j=cptcoveff;*/
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
  strcpy(plotcmd,GNUPLOTPROGRAM);    
  strcat(plotcmd," ");    first=1;
  strcat(plotcmd,optionfilegnuplot);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
  system(plotcmd);      for (i=1; i<=nlstate; i++)  
         for(iage=iagemin; iage <= iagemax+3; iage++)
  /*#ifdef windows*/          prop[i][iage]=0.0;
   while (z[0] != 'q') {      
     /* chdir(path); */      for (i=1; i<=imx; i++) { /* Each individual */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        bool=1;
     scanf("%s",z);        if  (cptcovn>0) {  /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
     if (z[0] == 'c') system("./imach");          for (z1=1; z1<=cptcoveff; z1++) 
     else if (z[0] == 'e') system(optionfilehtm);            if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) 
     else if (z[0] == 'g') system(plotcmd);              bool=0;
     else if (z[0] == 'q') exit(0);        } 
   }        if (bool==1) { 
   /*#endif */          /* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */
 }          for(mi=1; mi<wav[i];mi++){
             m=mw[mi][i];
             agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
             /* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */
             if(m >=firstpass && m <=lastpass){
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */
                   prop[s[m][i]][iagemax+3] += weight[i]; 
                 } /* end valid statuses */ 
               } /* end selection of dates */
             } /* end selection of waves */
           } /* end effective waves */
         } /* end bool */
       }
       for(i=iagemin; i <= iagemax+3; i++){  
         for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           posprop += prop[jk][i]; 
         } 
         
         for(jk=1; jk <=nlstate ; jk++){       
           if( i <=  iagemax){ 
             if(posprop>=1.e-5){ 
               probs[i][jk][j1]= prop[jk][i]/posprop;
             } else{
               if(first==1){
                 first=0;
                 printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
               }
             }
           } 
         }/* end jk */ 
       }/* end i */ 
       /*} *//* end i1 */
     } /* end j1 */
     
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
   
   /************* Waves Concatenation ***************/
   
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
        */
   
     int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
     int first, firstwo;
     int j, k=0,jk, ju, jl;
     double sum=0.;
     first=0;
     firstwo=0;
     jmin=100000;
     jmax=-1;
     jmean=0.;
     for(i=1; i<=imx; i++){  /* For simple cases and if state is death */
       mi=0;
       m=firstpass;
       while(s[m][i] <= nlstate){  /* a live state */
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
         if(m >=lastpass)
           break;
         else
           m++;
       }/* end while */
       if (s[m][i] > nlstate){  /* In a death state */
         mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
         mw[mi][i]=m;
       }else if (andc[i] != 9999) { /* A death occured after lastpass */
         m++;
         mi++;
         s[m][i]=nlstate+1;  /* We are setting the status to the last of non live state */
         mw[mi][i]=m;
         nbwarn++;
         if(firstwo==0){
           printf("Warning! Death for individual %ld line=%d  occurred after last wave %d. Since 0.98r4 we considered a status %d at wave %d\nOthers in log file only\n",num[i],i,lastpass,nlstate+1, m);
           fprintf(ficlog,"Warning! Death for individual %ld line=%d  occurred after last wave %d. Since 0.98r4 we considered a status %d at wave %d\n",num[i],i,lastpass,nlstate+1, m);
           firstwo=1;
         }
         if(firstwo==1){
           fprintf(ficlog,"Warning! Death for individual %ld line=%d  occurred after last wave %d. Since 0.98r4 we considered a status %d at wave %d\n",num[i],i,lastpass,nlstate+1, m);
         }
       }
       wav[i]=mi;
       if(mi==0){
         nbwarn++;
         if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
         }
         if(first==1){
           fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
       } /* end mi==0 */
     } /* End individuals */
     /* wav and mw are no more changed */
   
     
     for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
           dh[mi][i]=1;
         else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
                 nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
               k=k+1;
               if (j >= jmax){
                 jmax=j;
                 ijmax=i;
               }
               if (j <= jmin){
                 jmin=j;
                 ijmin=i;
               }
               sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
           }
           else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
             k=k+1;
             if (j >= jmax) {
               jmax=j;
               ijmax=i;
             }
             else if (j <= jmin){
               jmin=j;
               ijmin=i;
             }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
               nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
             sum=sum+j;
           }
           jk= j/stepm;
           jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
               dh[mi][i]=jk;
               bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
                     * to avoid the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
           }else{
             if(jl <= -ju){
               dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
                                    */
             }
             else{
               dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
             if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
           } /* end if mle */
         }
       } /* end wave */
     }
     jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
   
   /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   {
     /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
      * Boring subroutine which should only output nbcode[Tvar[j]][k]
      * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
      * nbcode[Tvar[j]][1]= 
     */
   
     int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     int modmaxcovj=0; /* Modality max of covariates j */
     int cptcode=0; /* Modality max of covariates j */
     int modmincovj=0; /* Modality min of covariates j */
   
   
     cptcoveff=0; 
    
     for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   
     /* Loop on covariates without age and products */
     for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
       for (k=-1; k < maxncov; k++) Ndum[k]=0;
       for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
                                  modality of this covariate Vj*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                                       * If product of Vn*Vm, still boolean *:
                                       * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                                       * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
         /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                         modality of the nth covariate of individual i. */
         if (ij > modmaxcovj)
           modmaxcovj=ij; 
         else if (ij < modmincovj) 
           modmincovj=ij; 
         if ((ij < -1) && (ij > NCOVMAX)){
           printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
           exit(1);
         }else
         Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         /* getting the maximum value of the modality of the covariate
            (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
            female is 1, then modmaxcovj=1.*/
       } /* end for loop on individuals i */
       printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
       fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
       cptcode=modmaxcovj;
       /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
      /*for (i=0; i<=cptcode; i++) {*/
       for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
         printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
         fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
         if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
           if( k != -1){
             ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
                                covariate for which somebody answered excluding 
                                undefined. Usually 2: 0 and 1. */
           }
           ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
                                covariate for which somebody answered including 
                                undefined. Usually 3: -1, 0 and 1. */
         }
         /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
            historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
       } /* Ndum[-1] number of undefined modalities */
   
       /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
          If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
          modmincovj=3; modmaxcovj = 7;
          There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
          which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
          defining two dummy variables: variables V1_1 and V1_2.
          nbcode[Tvar[j]][ij]=k;
          nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
          nbcode[Tvar[j]][3]=2;
          To be continued (not working yet).
       */
       ij=0; /* ij is similar to i but can jump over null modalities */
       for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
           if (Ndum[i] == 0) { /* If nobody responded to this modality k */
             break;
           }
           ij++;
           nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
           cptcode = ij; /* New max modality for covar j */
       } /* end of loop on modality i=-1 to 1 or more */
         
       /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
       /*  /\*recode from 0 *\/ */
       /*                               k is a modality. If we have model=V1+V1*sex  */
       /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
       /*  } */
       /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
       /*  if (ij > ncodemax[j]) { */
       /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
       /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
       /*    break; */
       /*  } */
       /*   }  /\* end of loop on modality k *\/ */
     } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     
     for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
      Ndum[ij]++; /* Might be supersed V1 + V1*age */
    } 
   
    ij=0;
    for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
      if((Ndum[i]!=0) && (i<=ncovcol)){
        ij++;
        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
        Tvaraff[ij]=i; /*For printing (unclear) */
      }else{
          /* Tvaraff[ij]=0; */
      }
    }
    /* ij--; */
    cptcoveff=ij; /*Number of total covariates*/
   
   }
   
   
   /*********** Health Expectancies ****************/
   
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   {
     /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3mat;
     double eip;
   
     pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
       }
       fprintf(ficreseij," e%1d. ",i);
     }
     fprintf(ficreseij,"\n");
   
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
    void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
     int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-POPULBASED-MOBILAV_");
       else strcpy(digitp,"-POPULBASED-NOMOBIL_");
     }
     else 
       strcpy(digitp,"-STABLBASED_");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"PRMORPREV-"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileresu);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     
     fprintf(ficgp,"\n# Routine varevsij");
     fprintf(ficgp,"\nunset title \n");
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelim. 
        Look at function hpijx to understand why because of memory size limitations, 
        we decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  /* Returns p3mat[i][j][h] for h=1 to nhstepm */
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* Next for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
   
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
     fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[])
   {
     /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mgm, **mgp;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       mgp=matrix(1,npar,1,nlstate);
       mgm=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         else
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         for(i=1;i<=nlstate;i++){
           gp[i] = prlim[i][i];
           mgp[theta][i] = prlim[i][i];
         }
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         else
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         for(i=1;i<=nlstate;i++){
           gm[i] = prlim[i][i];
           mgm[theta][i] = prlim[i][i];
         }
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\nmgm mgp %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf(" %d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\n gradg %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf("%d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf("%d %lf ",theta,gradg[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       if((int)age==79 ||(int)age== 80  ||(int)age== 81){
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }else{
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(mgm,1,npar,1,nlstate);
       free_matrix(mgp,1,npar,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"PROB_"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"PROBCOV_"); 
     strcat(fileresprobcov,fileresu);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"PROBCOR_"); 
     strcat(fileresprobcor,fileresu);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
             /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter svg size 640, 480");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">\
   %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int prevfcast, int estepm ,          \
                     double jprev1, double mprev1,double anprev1, double dateprev1, \
                     double jprev2, double mprev2,double anprev2, double dateprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");
      fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
      fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
      fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
      if(prevfcast==1){
        fprintf(fichtm,"\
    - Prevalence projections by age and states:                            \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
      }
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
            printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
          }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* aij, bij */
        fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
   <img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
        /* Pij */
        fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
   <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\
    incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
   divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
   <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
        /* Survival functions (period) in state j */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
        }
        /* State specific survival functions (period) */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\
    Or probability to survive in various states (1 to %d) being in state %d at different ages.\
    <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
        }
        /* Period (stable) prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
        }
       if(prevfcast==1){
         /* Projection of prevalence up to period (stable) prevalence in each health state */
         for(cpt=1; cpt<=nlstate;cpt++){
           fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1);
         }
       }
   
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \
   <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
        }
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
   But because parameters are usually highly correlated (a higher incidence of disability \
   and a higher incidence of recovery can give very close observed transition) it might \
   be very useful to look not only at linear confidence intervals estimated from the \
   variances but at the covariance matrix. And instead of looking at the estimated coefficients \
   (parameters) of the logistic regression, it might be more meaningful to visualize the \
   covariance matrix of the one-step probabilities. \
   See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
   
    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d%d.svg\"> %s_%d-%d.svg <br>\
   <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences:  <a href=\"%s_%d.svg\">%s_%d.svg<br>\
   <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
       void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int lv=0, vlv=0, kl=0;
     int ng=0;
     int vpopbased;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     /* Contribution to likelihood */
     /* Plot the probability implied in the likelihood */
       fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
       fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
       /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
       fprintf(ficgp,"\nset ter pngcairo size 640, 480");
   /* nice for mle=4 plot by number of matrix products.
      replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
   /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
       /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
       fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
       fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
       fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
       fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
         fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
         fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
         for (j=2; j<= nlstate+ndeath ; j ++) {
           fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
         }
         fprintf(ficgp,";\nset out; unset ylabel;\n"); 
       }
       /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */              
       /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
       /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
       fprintf(ficgp,"\nset out;unset log\n");
       /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) { /* For each live state */
       for (k1=1; k1<= m ; k1 ++) { /* For each combination of covariate */
         /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
         fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files ");
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
        fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
        fprintf(ficgp,"\nset out \n");
       } /* k1 */
     } /* cpt */
     /*2 eme*/
     for (k1=1; k1<= m ; k1 ++) { 
         fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
       fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
         if(vpopbased==0)
           fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
         else
           fprintf(ficgp,"\nreplot ");
         for (i=1; i<= nlstate+1 ; i ++) {
           k=2*i;
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
           else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           fprintf(ficgp,"\" t\"\" w l lt 0,");
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
           else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
         } /* state */
       } /* vpopbased */
       fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
     } /* k1 */
   
   
     /*3eme*/
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files:  cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
         fprintf(ficgp,"set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* Survival functions (period) from state i in state j by initial state i */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3;
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate+ndeath ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3;
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           if(j==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(cpt-1) +j;
           fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
           /* for (i=2; i<= nlstate+ndeath ; i ++) */
           /*   fprintf(ficgp,"+$%d",k+l+i-1); */
           fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
         } /* nlstate */
         fprintf(ficgp,", '' ");
         fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           l=(nlstate+ndeath)*(cpt-1) +j;
           if(j < nlstate)
             fprintf(ficgp,"$%d +",k+l);
           else
             fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
         }
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* CV preval stable (period) for each covariate */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3; /* Offset */
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     if(prevfcast==1){
     /* Projection from cross-sectional to stable (period) for each covariate */
   
       for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[lv]][lv];
             fprintf(ficgp," V%d=%d ",k,vlv);
           }
           fprintf(ficgp,"\n#\n");
           
           fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
           for (i=1; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
             /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             if(i==1){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
             }else{
               fprintf(ficgp,",\\\n '' ");
             }
             if(cptcoveff ==0){ /* No covariate */
               fprintf(ficgp," u 2:("); /* Age is in 2 */
               /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               if(i==nlstate+1)
                 fprintf(ficgp," $%d/(1.-$%d)) t 'p.%d' with line ", \
                           2+(cpt-1)*(nlstate+1)+1+(i-1),  2+1+(i-1)+(nlstate+1)*nlstate,cpt );
               else
                 fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \
                         2+(cpt-1)*(nlstate+1)+1+(i-1),  2+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
             }else{
               fprintf(ficgp,"u 6:(("); /* Age is in 6 */
               /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
               /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
               kl=0;
               for (k=1; k<=cptcoveff; k++){    /* For each covariate  */
                 lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
                 /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                 /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                 /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                 vlv= nbcode[Tvaraff[lv]][lv];
                 kl++;
                 /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                 /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                 /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                 /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                 if(k==cptcoveff)
                   if(i==nlstate+1)
                     fprintf(ficgp,"$%d==%d && $%d==%d)? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv], \
                             6+(cpt-1)*(nlstate+1)+1+(i-1),  6+1+(i-1)+(nlstate+1)*nlstate,cpt );
                   else
                     fprintf(ficgp,"$%d==%d && $%d==%d)? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv], \
                             6+(cpt-1)*(nlstate+1)+1+(i-1),  6+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
                 else{
                   fprintf(ficgp,"$%d==%d && $%d==%d && ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv]);
                   kl++;
                 }
               } /* end covariate */
             } /* end if covariate */
           } /* nlstate */
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/
       } /* end covariate */
     } /* End if prevfcast */
   
   
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
          fprintf(ficgp,"\nset ter svg size 640, 480 ");
          if (ng==1){
            fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
            fprintf(ficgp,"\nunset log y");
          }else if (ng==2){
            fprintf(ficgp,"\nset ylabel \"Probability\"\n");
            fprintf(ficgp,"\nset log y");
          }else if (ng==3){
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
            fprintf(ficgp,"\nset log y");
          }else
            fprintf(ficgp,"\nunset title ");
          fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                switch( ng) {
                case 1:
                  if(nagesqr==0)
                    fprintf(ficgp," p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 2: /* ng=2 */
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                      fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 3:
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                  break;
                }
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                  if(ij <=cptcovage) { /* Bug valgrind */
                    if((j-2)==Tage[ij]) { /* Bug valgrind */
                      fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                      /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                      ij++;
                    }
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                }
                if(ng != 1){
                  fprintf(ficgp,")/(1");
                
                  for(k1=1; k1 <=nlstate; k1++){ 
                    if(nagesqr==0)
                      fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                    else /* nagesqr =1 */
                      fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
                    
                    ij=1;
                    for(j=3; j <=ncovmodel-nagesqr; j++){
                      if(ij <=cptcovage) { /* Bug valgrind */
                        if((j-2)==Tage[ij]) { /* Bug valgrind */
                          fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                          /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                          ij++;
                        }
                      }
                      else
                        fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                    }
                    fprintf(ficgp,")");
                  }
                  fprintf(ficgp,")");
                  if(ng ==2)
                    fprintf(ficgp," t \"p%d%d\" ", k2,k);
                  else /* ng= 3 */
                    fprintf(ficgp," t \"i%d%d\" ", k2,k);
                }else{ /* end ng <> 1 */
                  fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
                }
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
          fprintf(ficgp,"\n set out\n");
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
     /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
     /*          firstpass, lastpass,  stepm,  weightopt, model); */
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"F_"); 
     strcat(fileresf,fileresu);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s', please wait... \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s', please wait... \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresf," yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
     printf("End of Computing forecasting \n");
     fprintf(ficlog,"End of Computing forecasting\n");
   
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"POP_"); 
     strcat(filerespop,fileresu);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0  || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
                 /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           } /* end if */
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           } /* en if 9*/
           else { /* =9 */
             /* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else if(s[m][i]==0) /*= 0 Unknown */
           agev[m][i]=1;
         else{
           printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           agev[m][i]=0;
         }
       } /* End for lastpass */
     }
       
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
    int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
   
     strcpy(filerespl,"PL_");
     strcat(filerespl,fileresu);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     }
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     pstamp(ficrespl);
     fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
           fprintf(ficrespl,"#******");
           printf("#******");
           fprintf(ficlog,"#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
           fprintf(ficrespl,"Total Years_to_converge\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             tot=0.;
             for(i=1; i<=nlstate;i++){
               tot +=  prlim[i][i];
               fprintf(ficrespl," %.5f", prlim[i][i]);
             }
             fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
     int ncvyear=0; /* Number of years needed for the period prevalence to converge */
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char model[MAXLINE], modeltemp[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double **hess; /* Hessian matrix */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       if(!fgets(pathr,FILENAMELENGTH,stdin)){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
       }
       i=strlen(pathr);
       if( i==0 ){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 8) {
         printf("Not 8 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
         printf("but line=%s\n",line);
       }
       printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled == 0)
               model[0]='\0';
       else if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
       printf("model=1+age+%s\n",model);fflush(stdout);
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else
         if(mle==1)
           printf("%1d%1d%1d",i1,j1,jk);
         fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", rfileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     /* free_vector(moisdc,1,n); */
     /* free_vector(andc,1,n); */
     /* */
     
     wav=ivector(1,imx);
     /* dh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* bh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* mw=imatrix(1,lastpass-firstpass+1,1,imx); */
     dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/
     bh=imatrix(1,lastpass-firstpass+2,1,imx);
     mw=imatrix(1,lastpass-firstpass+2,1,imx);
      
     /* Concatenates waves */
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
        mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     */
   
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] which is the maximum value of this jth covariate */
   
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     /* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, 
      * codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded 
      * (currently 0 or 1) in the data.
      * In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of 
      * corresponding modality (h,j).
      */
   
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to m=2**k
              * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
              * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
        /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
        * and the value of each covariate?
        * V1=1, V2=1, V3=2, V4=1 ?
        * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
        * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
        * In order to get the real value in the data, we use nbcode
        * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
        * We are keeping this crazy system in order to be able (in the future?) 
        * to have more than 2 values (0 or 1) for a covariate.
        * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
        * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
        *              bbbbbbbb
        *              76543210     
        *   h-1        00000101 (6-1=5)
        *(h-1)>>(k-1)= 00000001 >> (2-1) = 1 right shift
        *           &
        *     1        00000001 (1)
        *              00000001        = 1 & ((h-1) >> (k-1))
        *          +1= 00000010 =2 
        *
        * h=14, k=3 => h'=h-1=13, k'=k-1=2
        *          h'      1101 =2^3+2^2+0x2^1+2^0
        *    >>k'            11
        *          &   00000001
        *            = 00000001
        *      +1    = 00000010=2    =  codtabm(14,3)   
        * Reverse h=6 and m=16?
        * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
        * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
        * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 
        * decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1)
        * V3=decodtabm(14,3,2**4)=2
        *          h'=13   1101 =2^3+2^2+0x2^1+2^0
        *(h-1) >> (j-1)    0011 =13 >> 2
        *          &1 000000001
        *           = 000000001
        *         +1= 000000010 =2
        *                  2211
        *                  V1=1+1, V2=0+1, V3=1+1, V4=1+1
        *                  V3=2
        */
   
     /* /\* for(h=1; h <=100 ;h++){  *\/ */
     /*   /\* printf("h=%2d ", h); *\/ */
     /*    /\* for(k=1; k <=10; k++){ *\/ */
     /*      /\* printf("k=%d %d ",k,codtabm(h,k)); *\/ */
     /*    /\*   codtab[h][k]=codtabm(h,k); *\/ */
     /*    /\* } *\/ */
     /*    /\* printf("\n"); *\/ */
     /* } */
     /* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */
     /*   for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/  */
     /*     for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */
     /*    for(cpt=1; cpt <=pow(2,k-1); cpt++){  /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/  */
     /*      h++; */
     /*      if (h>m)  */
     /*        h=1; */
     /*      codtab[h][k]=j; */
     /*      /\* codtab[12][3]=1; *\/ */
     /*      /\*codtab[h][Tvar[k]]=j;*\/ */
     /*      /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */
     /*    }  */
     /*     } */
     /*   } */
     /* }  */
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){  */
     /*    for(k=1; k <=cptcovn; k++){ */
     /*      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */
     /*    } */
     /*    printf("\n"); */
     /* } */
     /*   scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# IMaCh-%s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br>  \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   <font size=\"2\">IMaCh-%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\
                 firstpass, lastpass,  stepm,  weightopt, model);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       fprintf(ficlog,"\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
           fprintf(ficlog,"%f ",matcov[i][j]);
         }
         printf("\n ");  fprintf(ficlog,"\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard  */
     else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
       globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
       /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximization */
         /* mlikeli uses func not funcone */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
         globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
         /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
         likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       }
       globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle != 0){
         /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, hess, p, npar, delti, ftolhess, func);
         printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         for(i=1,jk=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(j=1; j <=ncovmodel; j++){
                 printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 jk++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         }
       } /* end of hesscov and Wald tests */
   
       /*  */
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle >= 1) /* To big for the screen */
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.7e",matcov[jj][ll]); 
                           fprintf(ficlog," %.7e",matcov[jj][ll]); 
                           fprintf(ficres," %.7e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
         while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
   
       /* while((c=getc(ficpar))=='#' && c!= EOF){ */
       /*   ungetc(c,ficpar); */
       /*   fgets(line, MAXLINE, ficpar); */
       /*   fputs(line,stdout); */
       /*   fputs(line,ficparo); */
       /* } */
       /* ungetc(c,ficpar); */
       
       estepm=0;
       if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
   
       if (num_filled != 6) {
         printf("Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n");
         printf("but line=%s\n",line);
         goto end;
       }
       printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
   
       /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, pathc,p);
       
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,estepm, \
                    jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       /* free_ivector(wav,1,imx); */  /* Moved after last prevalence call */
       /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+2,1,imx);   
   
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
       printf("done evsij\n");fflush(stdout);
       fprintf(ficlog,"done evsij\n");fflush(ficlog);
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
   
   
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("  Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"  Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("    Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"    Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("      Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(stdout);
       fprintf(ficlog,"      Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrest,"******\n");
         
         fprintf(ficresstdeij,"\n#****** ");
         fprintf(ficrescveij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresstdeij,"******\n");
         fprintf(ficrescveij,"******\n");
         
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficresvij,"******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         printf(" cvevsij %d, ",k);
         fprintf(ficlog, " cvevsij %d, ",k);
         cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);
         printf(" end cvevsij \n ");
         fprintf(ficlog, " end cvevsij \n ");
         
         /*
          */
         /* goto endfree; */
         
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         pstamp(ficrest);
         
         
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
           oldm=oldms;savm=savms; /* ZZ Segmentation fault */
           cptcod= 0; /* To be deleted */
           printf("varevsij %d \n",vpopbased);
           fprintf(ficlog, "varevsij %d \n",vpopbased);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
           if(vpopbased==1)
             fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
           else
             fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
           fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
           /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
           epj=vector(1,nlstate+1);
           printf("Computing age specific period (stable) prevalences in each health state \n");
           fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n");
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k); /*ZZ Is it the correct prevalim */
             if (vpopbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
             
             fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
             /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
             /* printf(" age %4.0f ",age); */
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
               }
               epj[nlstate+1] +=epj[j];
             }
             /* printf(" age %4.0f \n",age); */
             
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
         } /* End vpopbased */
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
         printf("done \n");fflush(stdout);
         fprintf(ficlog,"done\n");fflush(ficlog);
         
         /*}*/
       } /* End k */
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       printf("done Health expectancies\n");fflush(stdout);
       fprintf(ficlog,"done Health expectancies\n");fflush(ficlog);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
       fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
       printf("done variance-covariance of period prevalence\n");fflush(stdout);
       fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       free_matrix(hess,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.41.2.1  
changed lines
  Added in v.1.215


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>