Diff for /imach/src/imach.c between versions 1.125 and 1.216

version 1.125, 2006/04/04 15:20:31 version 1.216, 2015/12/18 17:32:11
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.216  2015/12/18 17:32:11  brouard
     Summary: 0.98r4 Warning and status=-2
   
     Version 0.98r4 is now:
      - displaying an error when status is -1, date of interview unknown and date of death known;
      - permitting a status -2 when the vital status is unknown at a known date of right truncation.
     Older changes concerning s=-2, dating from 2005 have been supersed.
   
     Revision 1.215  2015/12/16 08:52:24  brouard
     Summary: 0.98r4 working
   
     Revision 1.214  2015/12/16 06:57:54  brouard
     Summary: temporary not working
   
     Revision 1.213  2015/12/11 18:22:17  brouard
     Summary: 0.98r4
   
     Revision 1.212  2015/11/21 12:47:24  brouard
     Summary: minor typo
   
     Revision 1.211  2015/11/21 12:41:11  brouard
     Summary: 0.98r3 with some graph of projected cross-sectional
   
     Author: Nicolas Brouard
   
     Revision 1.210  2015/11/18 17:41:20  brouard
     Summary: Start working on projected prevalences
   
     Revision 1.209  2015/11/17 22:12:03  brouard
     Summary: Adding ftolpl parameter
     Author: N Brouard
   
     We had difficulties to get smoothed confidence intervals. It was due
     to the period prevalence which wasn't computed accurately. The inner
     parameter ftolpl is now an outer parameter of the .imach parameter
     file after estepm. If ftolpl is small 1.e-4 and estepm too,
     computation are long.
   
     Revision 1.208  2015/11/17 14:31:57  brouard
     Summary: temporary
   
     Revision 1.207  2015/10/27 17:36:57  brouard
     *** empty log message ***
   
     Revision 1.206  2015/10/24 07:14:11  brouard
     *** empty log message ***
   
     Revision 1.205  2015/10/23 15:50:53  brouard
     Summary: 0.98r3 some clarification for graphs on likelihood contributions
   
     Revision 1.204  2015/10/01 16:20:26  brouard
     Summary: Some new graphs of contribution to likelihood
   
     Revision 1.203  2015/09/30 17:45:14  brouard
     Summary: looking at better estimation of the hessian
   
     Also a better criteria for convergence to the period prevalence And
     therefore adding the number of years needed to converge. (The
     prevalence in any alive state shold sum to one
   
     Revision 1.202  2015/09/22 19:45:16  brouard
     Summary: Adding some overall graph on contribution to likelihood. Might change
   
     Revision 1.201  2015/09/15 17:34:58  brouard
     Summary: 0.98r0
   
     - Some new graphs like suvival functions
     - Some bugs fixed like model=1+age+V2.
   
     Revision 1.200  2015/09/09 16:53:55  brouard
     Summary: Big bug thanks to Flavia
   
     Even model=1+age+V2. did not work anymore
   
     Revision 1.199  2015/09/07 14:09:23  brouard
     Summary: 0.98q6 changing default small png format for graph to vectorized svg.
   
     Revision 1.198  2015/09/03 07:14:39  brouard
     Summary: 0.98q5 Flavia
   
     Revision 1.197  2015/09/01 18:24:39  brouard
     *** empty log message ***
   
     Revision 1.196  2015/08/18 23:17:52  brouard
     Summary: 0.98q5
   
     Revision 1.195  2015/08/18 16:28:39  brouard
     Summary: Adding a hack for testing purpose
   
     After reading the title, ftol and model lines, if the comment line has
     a q, starting with #q, the answer at the end of the run is quit. It
     permits to run test files in batch with ctest. The former workaround was
     $ echo q | imach foo.imach
   
     Revision 1.194  2015/08/18 13:32:00  brouard
     Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
   
     Revision 1.193  2015/08/04 07:17:42  brouard
     Summary: 0.98q4
   
     Revision 1.192  2015/07/16 16:49:02  brouard
     Summary: Fixing some outputs
   
     Revision 1.191  2015/07/14 10:00:33  brouard
     Summary: Some fixes
   
     Revision 1.190  2015/05/05 08:51:13  brouard
     Summary: Adding digits in output parameters (7 digits instead of 6)
   
     Fix 1+age+.
   
     Revision 1.189  2015/04/30 14:45:16  brouard
     Summary: 0.98q2
   
     Revision 1.188  2015/04/30 08:27:53  brouard
     *** empty log message ***
   
     Revision 1.187  2015/04/29 09:11:15  brouard
     *** empty log message ***
   
     Revision 1.186  2015/04/23 12:01:52  brouard
     Summary: V1*age is working now, version 0.98q1
   
     Some codes had been disabled in order to simplify and Vn*age was
     working in the optimization phase, ie, giving correct MLE parameters,
     but, as usual, outputs were not correct and program core dumped.
   
     Revision 1.185  2015/03/11 13:26:42  brouard
     Summary: Inclusion of compile and links command line for Intel Compiler
   
     Revision 1.184  2015/03/11 11:52:39  brouard
     Summary: Back from Windows 8. Intel Compiler
   
     Revision 1.183  2015/03/10 20:34:32  brouard
     Summary: 0.98q0, trying with directest, mnbrak fixed
   
     We use directest instead of original Powell test; probably no
     incidence on the results, but better justifications;
     We fixed Numerical Recipes mnbrak routine which was wrong and gave
     wrong results.
   
     Revision 1.182  2015/02/12 08:19:57  brouard
     Summary: Trying to keep directest which seems simpler and more general
     Author: Nicolas Brouard
   
     Revision 1.181  2015/02/11 23:22:24  brouard
     Summary: Comments on Powell added
   
     Author:
   
     Revision 1.180  2015/02/11 17:33:45  brouard
     Summary: Finishing move from main to function (hpijx and prevalence_limit)
   
     Revision 1.179  2015/01/04 09:57:06  brouard
     Summary: back to OS/X
   
     Revision 1.178  2015/01/04 09:35:48  brouard
     *** empty log message ***
   
     Revision 1.177  2015/01/03 18:40:56  brouard
     Summary: Still testing ilc32 on OSX
   
     Revision 1.176  2015/01/03 16:45:04  brouard
     *** empty log message ***
   
     Revision 1.175  2015/01/03 16:33:42  brouard
     *** empty log message ***
   
     Revision 1.174  2015/01/03 16:15:49  brouard
     Summary: Still in cross-compilation
   
     Revision 1.173  2015/01/03 12:06:26  brouard
     Summary: trying to detect cross-compilation
   
     Revision 1.172  2014/12/27 12:07:47  brouard
     Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   
     Revision 1.171  2014/12/23 13:26:59  brouard
     Summary: Back from Visual C
   
     Still problem with utsname.h on Windows
   
     Revision 1.170  2014/12/23 11:17:12  brouard
     Summary: Cleaning some \%% back to %%
   
     The escape was mandatory for a specific compiler (which one?), but too many warnings.
   
     Revision 1.169  2014/12/22 23:08:31  brouard
     Summary: 0.98p
   
     Outputs some informations on compiler used, OS etc. Testing on different platforms.
   
     Revision 1.168  2014/12/22 15:17:42  brouard
     Summary: update
   
     Revision 1.167  2014/12/22 13:50:56  brouard
     Summary: Testing uname and compiler version and if compiled 32 or 64
   
     Testing on Linux 64
   
     Revision 1.166  2014/12/22 11:40:47  brouard
     *** empty log message ***
   
     Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.164  2014/12/16 10:52:11  brouard
     Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.163  2014/12/16 10:30:11  brouard
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.162  2014/09/25 11:43:39  brouard
     Summary: temporary backup 0.99!
   
     Revision 1.1  2014/09/16 11:06:58  brouard
     Summary: With some code (wrong) for nlopt
   
     Author:
   
     Revision 1.161  2014/09/15 20:41:41  brouard
     Summary: Problem with macro SQR on Intel compiler
   
     Revision 1.160  2014/09/02 09:24:05  brouard
     *** empty log message ***
   
     Revision 1.159  2014/09/01 10:34:10  brouard
     Summary: WIN32
     Author: Brouard
   
     Revision 1.158  2014/08/27 17:11:51  brouard
     *** empty log message ***
   
     Revision 1.157  2014/08/27 16:26:55  brouard
     Summary: Preparing windows Visual studio version
     Author: Brouard
   
     In order to compile on Visual studio, time.h is now correct and time_t
     and tm struct should be used. difftime should be used but sometimes I
     just make the differences in raw time format (time(&now).
     Trying to suppress #ifdef LINUX
     Add xdg-open for __linux in order to open default browser.
   
     Revision 1.156  2014/08/25 20:10:10  brouard
     *** empty log message ***
   
     Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
     Author: Brouard
   
     Revision 1.154  2014/06/20 17:32:08  brouard
     Summary: Outputs now all graphs of convergence to period prevalence
   
     Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
     Author: Brouard
   
     Revision 1.152  2014/06/18 17:54:09  brouard
     Summary: open browser, use gnuplot on same dir than imach if not found in the path
   
     Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
   
     Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
     Author: brouard
   
     Revision 1.149  2014/06/18 15:51:14  brouard
     Summary: Some fixes in parameter files errors
     Author: Nicolas Brouard
   
     Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
     Author: Brouard
   
     Just a new packaging for OS/X version 0.98nS
   
     Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
   
     Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
     Author: Brouard
   
     Merge, before building revised version.
   
     Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
     Author: Nicolas Brouard
   
     Lot of changes in order to output the results with some covariates
     After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
     No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
     the source code.
   
     Revision 1.143  2014/01/26 09:45:38  brouard
     Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
     Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
   
     Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   
     Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
   
     Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
   
     Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
     of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
     Some cleaning of code and comments added.
   
     Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
   
     Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
   
     Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
   
     Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
     Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
     Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
   
     Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
     computation.
     In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   
     Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     Version 0.98h
   
   Revision 1.125  2006/04/04 15:20:31  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   Errors in calculation of health expectancies. Age was not initialized.    Errors in calculation of health expectancies. Age was not initialized.
   Forecasting file added.    Forecasting file added.
   
   Revision 1.124  2006/03/22 17:13:53  lievre    Revision 1.124  2006/03/22 17:13:53  lievre
   Parameters are printed with %lf instead of %f (more numbers after the comma).    Parameters are printed with %lf instead of %f (more numbers after the comma).
   The log-likelihood is printed in the log file    The log-likelihood is printed in the log file
   
   Revision 1.123  2006/03/20 10:52:43  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   * imach.c (Module): <title> changed, corresponds to .htm file    * imach.c (Module): <title> changed, corresponds to .htm file
   name. <head> headers where missing.    name. <head> headers where missing.
   
   * imach.c (Module): Weights can have a decimal point as for    * imach.c (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.122  2006/03/20 09:45:41  brouard    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Weights can have a decimal point as for    (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.121  2006/03/16 17:45:01  lievre    Revision 1.121  2006/03/16 17:45:01  lievre
   * imach.c (Module): Comments concerning covariates added    * imach.c (Module): Comments concerning covariates added
   
   * imach.c (Module): refinements in the computation of lli if    * imach.c (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.120  2006/03/16 15:10:38  lievre    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): refinements in the computation of lli if    (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.119  2006/03/15 17:42:26  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): Bug if status = -2, the loglikelihood was    (Module): Bug if status = -2, the loglikelihood was
   computed as likelihood omitting the logarithm. Version O.98e    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.118  2006/03/14 18:20:07  brouard    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.117  2006/03/14 17:16:22  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.116  2006/03/06 10:29:27  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   (Module): Variance-covariance wrong links and    (Module): Variance-covariance wrong links and
   varian-covariance of ej. is needed (Saito).    varian-covariance of ej. is needed (Saito).
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.115  2006/02/27 12:17:45  brouard
   (Module): One freematrix added in mlikeli! 0.98c    (Module): One freematrix added in mlikeli! 0.98c
   
   Revision 1.114  2006/02/26 12:57:58  brouard    Revision 1.114  2006/02/26 12:57:58  brouard
   (Module): Some improvements in processing parameter    (Module): Some improvements in processing parameter
   filename with strsep.    filename with strsep.
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   (Module): Memory leaks checks with valgrind and:    (Module): Memory leaks checks with valgrind and:
   datafile was not closed, some imatrix were not freed and on matrix    datafile was not closed, some imatrix were not freed and on matrix
   allocation too.    allocation too.
   
   Revision 1.112  2006/01/30 09:55:26  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.111  2006/01/25 20:38:18  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   (Module): Comments can be added in data file. Missing date values    (Module): Comments can be added in data file. Missing date values
   can be a simple dot '.'.    can be a simple dot '.'.
   
   Revision 1.110  2006/01/25 00:51:50  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.109  2006/01/24 19:37:15  brouard
   (Module): Comments (lines starting with a #) are allowed in data.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.108  2006/01/19 18:05:42  lievre    Revision 1.108  2006/01/19 18:05:42  lievre
   Gnuplot problem appeared...    Gnuplot problem appeared...
   To be fixed    To be fixed
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.107  2006/01/19 16:20:37  brouard
   Test existence of gnuplot in imach path    Test existence of gnuplot in imach path
   
   Revision 1.106  2006/01/19 13:24:36  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   Some cleaning and links added in html output    Some cleaning and links added in html output
   
   Revision 1.105  2006/01/05 20:23:19  lievre    Revision 1.105  2006/01/05 20:23:19  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.104  2005/09/30 16:11:43  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): If the status is missing at the last wave but we know    (Module): If the status is missing at the last wave but we know
   that the person is alive, then we can code his/her status as -2    that the person is alive, then we can code his/her status as -2
   (instead of missing=-1 in earlier versions) and his/her    (instead of missing=-1 in earlier versions) and his/her
   contributions to the likelihood is 1 - Prob of dying from last    contributions to the likelihood is 1 - Prob of dying from last
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   the healthy state at last known wave). Version is 0.98    the healthy state at last known wave). Version is 0.98
   
   Revision 1.103  2005/09/30 15:54:49  lievre    Revision 1.103  2005/09/30 15:54:49  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.102  2004/09/15 17:31:30  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   Add the possibility to read data file including tab characters.    Add the possibility to read data file including tab characters.
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.101  2004/09/15 10:38:38  brouard
   Fix on curr_time    Fix on curr_time
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.100  2004/07/12 18:29:06  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   *** empty log message ***    *** empty log message ***
   
   Revision 1.98  2004/05/16 15:05:56  brouard    Revision 1.98  2004/05/16 15:05:56  brouard
   New version 0.97 . First attempt to estimate force of mortality    New version 0.97 . First attempt to estimate force of mortality
   directly from the data i.e. without the need of knowing the health    directly from the data i.e. without the need of knowing the health
   state at each age, but using a Gompertz model: log u =a + b*age .    state at each age, but using a Gompertz model: log u =a + b*age .
   This is the basic analysis of mortality and should be done before any    This is the basic analysis of mortality and should be done before any
   other analysis, in order to test if the mortality estimated from the    other analysis, in order to test if the mortality estimated from the
   cross-longitudinal survey is different from the mortality estimated    cross-longitudinal survey is different from the mortality estimated
   from other sources like vital statistic data.    from other sources like vital statistic data.
   
   The same imach parameter file can be used but the option for mle should be -3.    The same imach parameter file can be used but the option for mle should be -3.
   
   Agnès, who wrote this part of the code, tried to keep most of the    Agnès, who wrote this part of the code, tried to keep most of the
   former routines in order to include the new code within the former code.    former routines in order to include the new code within the former code.
   
   The output is very simple: only an estimate of the intercept and of    The output is very simple: only an estimate of the intercept and of
   the slope with 95% confident intervals.    the slope with 95% confident intervals.
   
   Current limitations:    Current limitations:
   A) Even if you enter covariates, i.e. with the    A) Even if you enter covariates, i.e. with the
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   B) There is no computation of Life Expectancy nor Life Table.    B) There is no computation of Life Expectancy nor Life Table.
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.97  2004/02/20 13:25:42  lievre
   Version 0.96d. Population forecasting command line is (temporarily)    Version 0.96d. Population forecasting command line is (temporarily)
   suppressed.    suppressed.
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.96  2003/07/15 15:38:55  brouard
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   rewritten within the same printf. Workaround: many printfs.    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.95  2003/07/08 07:54:34  brouard
   * imach.c (Repository):    * imach.c (Repository):
   (Repository): Using imachwizard code to output a more meaningful covariance    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix (cov(a12,c31) instead of numbers.    matrix (cov(a12,c31) instead of numbers.
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.94  2003/06/27 13:00:02  brouard
   Just cleaning    Just cleaning
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.93  2003/06/25 16:33:55  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   (Module): Version 0.96b    (Module): Version 0.96b
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.92  2003/06/25 16:30:45  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.91  2003/06/25 15:30:29  brouard
   * imach.c (Repository): Duplicated warning errors corrected.    * imach.c (Repository): Duplicated warning errors corrected.
   (Repository): Elapsed time after each iteration is now output. It    (Repository): Elapsed time after each iteration is now output. It
   helps to forecast when convergence will be reached. Elapsed time    helps to forecast when convergence will be reached. Elapsed time
   is stamped in powell.  We created a new html file for the graphs    is stamped in powell.  We created a new html file for the graphs
   concerning matrix of covariance. It has extension -cov.htm.    concerning matrix of covariance. It has extension -cov.htm.
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.90  2003/06/24 12:34:15  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    Revision 1.89  2003/06/24 12:30:52  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.88  2003/06/23 17:54:56  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.87  2003/06/18 12:26:01  brouard
   Version 0.96    Version 0.96
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.86  2003/06/17 20:04:08  brouard
   (Module): Change position of html and gnuplot routines and added    (Module): Change position of html and gnuplot routines and added
   routine fileappend.    routine fileappend.
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.85  2003/06/17 13:12:43  brouard
   * imach.c (Repository): Check when date of death was earlier that    * imach.c (Repository): Check when date of death was earlier that
   current date of interview. It may happen when the death was just    current date of interview. It may happen when the death was just
   prior to the death. In this case, dh was negative and likelihood    prior to the death. In this case, dh was negative and likelihood
   was wrong (infinity). We still send an "Error" but patch by    was wrong (infinity). We still send an "Error" but patch by
   assuming that the date of death was just one stepm after the    assuming that the date of death was just one stepm after the
   interview.    interview.
   (Repository): Because some people have very long ID (first column)    (Repository): Because some people have very long ID (first column)
   we changed int to long in num[] and we added a new lvector for    we changed int to long in num[] and we added a new lvector for
   memory allocation. But we also truncated to 8 characters (left    memory allocation. But we also truncated to 8 characters (left
   truncation)    truncation)
   (Repository): No more line truncation errors.    (Repository): No more line truncation errors.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.84  2003/06/13 21:44:43  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    * imach.c (Repository): Replace "freqsummary" at a correct
   place. It differs from routine "prevalence" which may be called    place. It differs from routine "prevalence" which may be called
   many times. Probs is memory consuming and must be used with    many times. Probs is memory consuming and must be used with
   parcimony.    parcimony.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.83  2003/06/10 13:39:11  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.82  2003/06/05 15:57:20  brouard
   Add log in  imach.c and  fullversion number is now printed.    Add log in  imach.c and  fullversion number is now printed.
   
 */  */
 /*  /*
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month, quarter,    states. This elementary transition (by month, quarter,
   semester or year) is modelled as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the period (stable) prevalence.    of the life expectancies. It also computes the period (stable) prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   **********************************************************************/    **********************************************************************/
 /*  /*
   main    main
   read parameterfile    read parameterfile
   read datafile    read datafile
   concatwav    concatwav
   freqsummary    freqsummary
   if (mle >= 1)    if (mle >= 1)
     mlikeli      mlikeli
   print results files    print results files
   if mle==1    if mle==1 
      computes hessian       computes hessian
   read end of parameter file: agemin, agemax, bage, fage, estepm    read end of parameter file: agemin, agemax, bage, fage, estepm
       begin-prev-date,...        begin-prev-date,...
   open gnuplot file    open gnuplot file
   open html file    open html file
   period (stable) prevalence    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
    for age prevalim()     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   h Pij x                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   variance of p varprob      freexexit2 possible for memory heap.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    h Pij x                         | pij_nom  ficrestpij
   Variance-covariance of DFLE     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   prevalence()         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
    movingaverage()         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   varevsij()  
   if popbased==1 varevsij(,popbased)         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   total life expectancies         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   Variance of period (stable) prevalence    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  end     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 */     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   
     forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
      Variance-covariance of DFLE
 #include <math.h>    prevalence()
 #include <stdio.h>     movingaverage()
 #include <stdlib.h>    varevsij() 
 #include <string.h>    if popbased==1 varevsij(,popbased)
 #include <unistd.h>    total life expectancies
     Variance of period (stable) prevalence
 #include <limits.h>   end
 #include <sys/types.h>  */
 #include <sys/stat.h>  
 #include <errno.h>  /* #define DEBUG */
 extern int errno;  /* #define DEBUGBRENT */
   /* #define DEBUGLINMIN */
 /* #include <sys/time.h> */  /* #define DEBUGHESS */
 #include <time.h>  #define DEBUGHESSIJ
 #include "timeval.h"  /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan)*\/ */
   #define POWELL /* Instead of NLOPT */
 /* #include <libintl.h> */  #define POWELLF1F3 /* Skip test */
 /* #define _(String) gettext (String) */  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
   /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
 #define MAXLINE 256  
   #include <math.h>
 #define GNUPLOTPROGRAM "gnuplot"  #include <stdio.h>
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  #include <stdlib.h>
 #define FILENAMELENGTH 132  #include <string.h>
   
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #ifdef _WIN32
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  #include <io.h>
   #include <windows.h>
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  #include <tchar.h>
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  #else
   #include <unistd.h>
 #define NINTERVMAX 8  #endif
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  #include <limits.h>
 #define NCOVMAX 8 /* Maximum number of covariates */  #include <sys/types.h>
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */  #if defined(__GNUC__)
 #define AGESUP 130  #include <sys/utsname.h> /* Doesn't work on Windows */
 #define AGEBASE 40  #endif
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */  
 #ifdef UNIX  #include <sys/stat.h>
 #define DIRSEPARATOR '/'  #include <errno.h>
 #define CHARSEPARATOR "/"  /* extern int errno; */
 #define ODIRSEPARATOR '\\'  
 #else  /* #ifdef LINUX */
 #define DIRSEPARATOR '\\'  /* #include <time.h> */
 #define CHARSEPARATOR "\\"  /* #include "timeval.h" */
 #define ODIRSEPARATOR '/'  /* #else */
 #endif  /* #include <sys/time.h> */
   /* #endif */
 /* $Id$ */  
 /* $State$ */  #include <time.h>
   
 char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";  #ifdef GSL
 char fullversion[]="$Revision$ $Date$";  #include <gsl/gsl_errno.h>
 char strstart[80];  #include <gsl/gsl_multimin.h>
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  #endif
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  #ifdef NLOPT
 int npar=NPARMAX;  #include <nlopt.h>
 int nlstate=2; /* Number of live states */  typedef struct {
 int ndeath=1; /* Number of dead states */    double (* function)(double [] );
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  } myfunc_data ;
 int popbased=0;  #endif
   
 int *wav; /* Number of waves for this individuual 0 is possible */  /* #include <libintl.h> */
 int maxwav; /* Maxim number of waves */  /* #define _(String) gettext (String) */
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int ijmin, ijmax; /* Individuals having jmin and jmax */  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 int gipmx, gsw; /* Global variables on the number of contributions  
                    to the likelihood and the sum of weights (done by funcone)*/  #define GNUPLOTPROGRAM "gnuplot"
 int mle, weightopt;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #define FILENAMELENGTH 132
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog, *ficrespow;  #define NINTERVMAX 8
 int globpr; /* Global variable for printing or not */  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 double fretone; /* Only one call to likelihood */  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 long ipmx; /* Number of contributions */  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 double sw; /* Sum of weights */  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
 char filerespow[FILENAMELENGTH];  /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
 FILE *ficresilk;  #define MAXN 20000
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #define YEARM 12. /**< Number of months per year */
 FILE *ficresprobmorprev;  #define AGESUP 130
 FILE *fichtm, *fichtmcov; /* Html File */  #define AGEBASE 40
 FILE *ficreseij;  #define AGEOVERFLOW 1.e20
 char filerese[FILENAMELENGTH];  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
 FILE *ficresstdeij;  #ifdef _WIN32
 char fileresstde[FILENAMELENGTH];  #define DIRSEPARATOR '\\'
 FILE *ficrescveij;  #define CHARSEPARATOR "\\"
 char filerescve[FILENAMELENGTH];  #define ODIRSEPARATOR '/'
 FILE  *ficresvij;  #else
 char fileresv[FILENAMELENGTH];  #define DIRSEPARATOR '/'
 FILE  *ficresvpl;  #define CHARSEPARATOR "/"
 char fileresvpl[FILENAMELENGTH];  #define ODIRSEPARATOR '\\'
 char title[MAXLINE];  #endif
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  /* $Id$ */
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];  /* $State$ */
 char command[FILENAMELENGTH];  #include "version.h"
 int  outcmd=0;  char version[]=__IMACH_VERSION__;
   char copyright[]="October 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  char fullversion[]="$Revision$ $Date$"; 
   char strstart[80];
 char filelog[FILENAMELENGTH]; /* Log file */  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 char filerest[FILENAMELENGTH];  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 char fileregp[FILENAMELENGTH];  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
 char popfile[FILENAMELENGTH];  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
 struct timezone tzp;  int cptcovprodnoage=0; /**< Number of covariate products without age */   
 extern int gettimeofday();  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  int cptcov=0; /* Working variable */
 long time_value;  int npar=NPARMAX;
 extern long time();  int nlstate=2; /* Number of live states */
 char strcurr[80], strfor[80];  int ndeath=1; /* Number of dead states */
   int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 char *endptr;  int popbased=0;
 long lval;  
 double dval;  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav=0; /* Maxim number of waves */
 #define NR_END 1  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 #define FREE_ARG char*  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 #define FTOL 1.0e-10  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
 #define NRANSI  int mle=1, weightopt=0;
 #define ITMAX 200  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #define TOL 2.0e-4  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #define CGOLD 0.3819660  int countcallfunc=0;  /* Count the number of calls to func */
 #define ZEPS 1.0e-10  double jmean=1; /* Mean space between 2 waves */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  double **matprod2(); /* test */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 #define GOLD 1.618034  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 #define GLIMIT 100.0  /*FILE *fic ; */ /* Used in readdata only */
 #define TINY 1.0e-20  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 static double maxarg1,maxarg2;  int globpr=0; /* Global variable for printing or not */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  double fretone; /* Only one call to likelihood */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  long ipmx=0; /* Number of contributions */
    double sw; /* Sum of weights */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  char filerespow[FILENAMELENGTH];
 #define rint(a) floor(a+0.5)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 static double sqrarg;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  FILE *ficresprobmorprev;
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  FILE *fichtm, *fichtmcov; /* Html File */
 int agegomp= AGEGOMP;  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 int imx;  FILE *ficresstdeij;
 int stepm=1;  char fileresstde[FILENAMELENGTH];
 /* Stepm, step in month: minimum step interpolation*/  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
 int estepm;  FILE  *ficresvij;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 int m,nb;  char fileresvpl[FILENAMELENGTH];
 long *num;  char title[MAXLINE];
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 double **pmmij, ***probs;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 double *ageexmed,*agecens;  char command[FILENAMELENGTH];
 double dateintmean=0;  int  outcmd=0;
   
 double *weight;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 int **s; /* Status */  char fileresu[FILENAMELENGTH]; /* fileres without r in front */
 double *agedc, **covar, idx;  char filelog[FILENAMELENGTH]; /* Log file */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  char filerest[FILENAMELENGTH];
 double *lsurv, *lpop, *tpop;  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
 /**************** split *************************/  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  /* struct timezone tzp; */
 {  /* extern int gettimeofday(); */
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  struct tm tml, *gmtime(), *localtime();
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  
   */  extern time_t time();
   char  *ss;                            /* pointer */  
   int   l1, l2;                         /* length counters */  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
   l1 = strlen(path );                   /* length of path */  struct tm tm;
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  char strcurr[80], strfor[80];
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  
     strcpy( name, path );               /* we got the fullname name because no directory */  char *endptr;
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  long lval;
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  double dval;
     /* get current working directory */  
     /*    extern  char* getcwd ( char *buf , int len);*/  #define NR_END 1
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define FREE_ARG char*
       return( GLOCK_ERROR_GETCWD );  #define FTOL 1.0e-10
     }  
     /* got dirc from getcwd*/  #define NRANSI 
     printf(" DIRC = %s \n",dirc);  #define ITMAX 200 
   } else {                              /* strip direcotry from path */  
     ss++;                               /* after this, the filename */  #define TOL 2.0e-4 
     l2 = strlen( ss );                  /* length of filename */  
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define CGOLD 0.3819660 
     strcpy( name, ss );         /* save file name */  #define ZEPS 1.0e-10 
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     dirc[l1-l2] = 0;                    /* add zero */  
     printf(" DIRC2 = %s \n",dirc);  #define GOLD 1.618034 
   }  #define GLIMIT 100.0 
   /* We add a separator at the end of dirc if not exists */  #define TINY 1.0e-20 
   l1 = strlen( dirc );                  /* length of directory */  
   if( dirc[l1-1] != DIRSEPARATOR ){  static double maxarg1,maxarg2;
     dirc[l1] =  DIRSEPARATOR;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     dirc[l1+1] = 0;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     printf(" DIRC3 = %s \n",dirc);    
   }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   ss = strrchr( name, '.' );            /* find last / */  #define rint(a) floor(a+0.5)
   if (ss >0){  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
     ss++;  #define mytinydouble 1.0e-16
     strcpy(ext,ss);                     /* save extension */  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
     l1= strlen( name);  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
     l2= strlen(ss)+1;  /* static double dsqrarg; */
     strncpy( finame, name, l1-l2);  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
     finame[l1-l2]= 0;  static double sqrarg;
   }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   return( 0 );                          /* we're done */  int agegomp= AGEGOMP;
 }  
   int imx; 
   int stepm=1;
 /******************************************/  /* Stepm, step in month: minimum step interpolation*/
   
 void replace_back_to_slash(char *s, char*t)  int estepm;
 {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   int i;  
   int lg=0;  int m,nb;
   i=0;  long *num;
   lg=strlen(t);  int firstpass=0, lastpass=4,*cod, *cens;
   for(i=0; i<= lg; i++) {  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
     (s[i] = t[i]);                     covariate for which somebody answered excluding 
     if (t[i]== '\\') s[i]='/';                     undefined. Usually 2: 0 and 1. */
   }  int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
 }                               covariate for which somebody answered including 
                                undefined. Usually 3: -1, 0 and 1. */
 int nbocc(char *s, char occ)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 {  double **pmmij, ***probs;
   int i,j=0;  double *ageexmed,*agecens;
   int lg=20;  double dateintmean=0;
   i=0;  
   lg=strlen(s);  double *weight;
   for(i=0; i<= lg; i++) {  int **s; /* Status */
   if  (s[i] == occ ) j++;  double *agedc;
   }  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
   return j;                    * covar=matrix(0,NCOVMAX,1,n); 
 }                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
   double  idx; 
 void cutv(char *u,char *v, char*t, char occ)  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
 {  int *Tage;
   /* cuts string t into u and v where u ends before first occurence of char 'occ'  int *Ndum; /** Freq of modality (tricode */
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
      gives u="abcedf" and v="ghi2j" */  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   int i,lg,j,p=0;  double *lsurv, *lpop, *tpop;
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  double ftolhess; /**< Tolerance for computing hessian */
   }  
   /**************** split *************************/
   lg=strlen(t);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   for(j=0; j<p; j++) {  {
     (u[j] = t[j]);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
      u[p]='\0';    */ 
     char  *ss;                            /* pointer */
    for(j=0; j<= lg; j++) {    int   l1=0, l2=0;                             /* length counters */
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 /********************** nrerror ********************/    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
 void nrerror(char error_text[])      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   fprintf(stderr,"ERREUR ...\n");      /* get current working directory */
   fprintf(stderr,"%s\n",error_text);      /*    extern  char* getcwd ( char *buf , int len);*/
   exit(EXIT_FAILURE);  #ifdef WIN32
 }      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
 /*********************** vector *******************/  #else
 double *vector(int nl, int nh)          if (getcwd(dirc, FILENAME_MAX) == NULL) {
 {  #endif
   double *v;        return( GLOCK_ERROR_GETCWD );
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      }
   if (!v) nrerror("allocation failure in vector");      /* got dirc from getcwd*/
   return v-nl+NR_END;      printf(" DIRC = %s \n",dirc);
 }    } else {                              /* strip directory from path */
       ss++;                               /* after this, the filename */
 /************************ free vector ******************/      l2 = strlen( ss );                  /* length of filename */
 void free_vector(double*v, int nl, int nh)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 {      strcpy( name, ss );         /* save file name */
   free((FREE_ARG)(v+nl-NR_END));      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = '\0';                 /* add zero */
       printf(" DIRC2 = %s \n",dirc);
 /************************ivector *******************************/    }
 int *ivector(long nl,long nh)    /* We add a separator at the end of dirc if not exists */
 {    l1 = strlen( dirc );                  /* length of directory */
   int *v;    if( dirc[l1-1] != DIRSEPARATOR ){
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));      dirc[l1] =  DIRSEPARATOR;
   if (!v) nrerror("allocation failure in ivector");      dirc[l1+1] = 0; 
   return v-nl+NR_END;      printf(" DIRC3 = %s \n",dirc);
 }    }
     ss = strrchr( name, '.' );            /* find last / */
 /******************free ivector **************************/    if (ss >0){
 void free_ivector(int *v, long nl, long nh)      ss++;
 {      strcpy(ext,ss);                     /* save extension */
   free((FREE_ARG)(v+nl-NR_END));      l1= strlen( name);
 }      l2= strlen(ss)+1;
       strncpy( finame, name, l1-l2);
 /************************lvector *******************************/      finame[l1-l2]= 0;
 long *lvector(long nl,long nh)    }
 {  
   long *v;    return( 0 );                          /* we're done */
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  }
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  
 }  /******************************************/
   
 /******************free lvector **************************/  void replace_back_to_slash(char *s, char*t)
 void free_lvector(long *v, long nl, long nh)  {
 {    int i;
   free((FREE_ARG)(v+nl-NR_END));    int lg=0;
 }    i=0;
     lg=strlen(t);
 /******************* imatrix *******************************/    for(i=0; i<= lg; i++) {
 int **imatrix(long nrl, long nrh, long ncl, long nch)      (s[i] = t[i]);
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */      if (t[i]== '\\') s[i]='/';
 {    }
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  }
   int **m;  
    char *trimbb(char *out, char *in)
   /* allocate pointers to rows */  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    char *s;
   if (!m) nrerror("allocation failure 1 in matrix()");    s=out;
   m += NR_END;    while (*in != '\0'){
   m -= nrl;      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
          in++;
        }
   /* allocate rows and set pointers to them */      *out++ = *in++;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    *out='\0';
   m[nrl] += NR_END;    return s;
   m[nrl] -= ncl;  }
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  /* char *substrchaine(char *out, char *in, char *chain) */
    /* { */
   /* return pointer to array of pointers to rows */  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
   return m;  /*   char *s, *t; */
 }  /*   t=in;s=out; */
   /*   while ((*in != *chain) && (*in != '\0')){ */
 /****************** free_imatrix *************************/  /*     *out++ = *in++; */
 void free_imatrix(m,nrl,nrh,ncl,nch)  /*   } */
       int **m;  
       long nch,ncl,nrh,nrl;  /*   /\* *in matches *chain *\/ */
      /* free an int matrix allocated by imatrix() */  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
 {  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  /*   } */
   free((FREE_ARG) (m+nrl-NR_END));  /*   in--; chain--; */
 }  /*   while ( (*in != '\0')){ */
   /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
 /******************* matrix *******************************/  /*     *out++ = *in++; */
 double **matrix(long nrl, long nrh, long ncl, long nch)  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
 {  /*   } */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  /*   *out='\0'; */
   double **m;  /*   out=s; */
   /*   return out; */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /* } */
   if (!m) nrerror("allocation failure 1 in matrix()");  char *substrchaine(char *out, char *in, char *chain)
   m += NR_END;  {
   m -= nrl;    /* Substract chain 'chain' from 'in', return and output 'out' */
     /* in="V1+V1*age+age*age+V2", chain="age*age" */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    char *strloc;
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    strcpy (out, in); 
     strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
   return m;    if(strloc != NULL){ 
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
    */      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
 }      /* strcpy (strloc, strloc +strlen(chain));*/
     }
 /*************************free matrix ************************/    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    return out;
 {  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  
 }  char *cutl(char *blocc, char *alocc, char *in, char occ)
   {
 /******************* ma3x *******************************/    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 {       gives blocc="abcdef" and alocc="ghi2j".
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   double ***m;    */
     char *s, *t;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    t=in;s=in;
   if (!m) nrerror("allocation failure 1 in matrix()");    while ((*in != occ) && (*in != '\0')){
   m += NR_END;      *alocc++ = *in++;
   m -= nrl;    }
     if( *in == occ){
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      *(alocc)='\0';
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      s=++in;
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;   
     if (s == t) {/* occ not found */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      *(alocc-(in-s))='\0';
       in=s;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    while ( *in != '\0'){
   m[nrl][ncl] += NR_END;      *blocc++ = *in++;
   m[nrl][ncl] -= nll;    }
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    *blocc='\0';
      return t;
   for (i=nrl+1; i<=nrh; i++) {  }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  char *cutv(char *blocc, char *alocc, char *in, char occ)
     for (j=ncl+1; j<=nch; j++)  {
       m[i][j]=m[i][j-1]+nlay;    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
   }       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   return m;       gives blocc="abcdef2ghi" and alocc="j".
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])       If occ is not found blocc is null and alocc is equal to in. Returns alocc
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)    */
   */    char *s, *t;
 }    t=in;s=in;
     while (*in != '\0'){
 /*************************free ma3x ************************/      while( *in == occ){
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)        *blocc++ = *in++;
 {        s=in;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      *blocc++ = *in++;
   free((FREE_ARG)(m+nrl-NR_END));    }
 }    if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
 /*************** function subdirf ***********/    else
 char *subdirf(char fileres[])      *(blocc-(in-s)-1)='\0';
 {    in=s;
   /* Caution optionfilefiname is hidden */    while ( *in != '\0'){
   strcpy(tmpout,optionfilefiname);      *alocc++ = *in++;
   strcat(tmpout,"/"); /* Add to the right */    }
   strcat(tmpout,fileres);  
   return tmpout;    *alocc='\0';
 }    return s;
   }
 /*************** function subdirf2 ***********/  
 char *subdirf2(char fileres[], char *preop)  int nbocc(char *s, char occ)
 {  {
      int i,j=0;
   /* Caution optionfilefiname is hidden */    int lg=20;
   strcpy(tmpout,optionfilefiname);    i=0;
   strcat(tmpout,"/");    lg=strlen(s);
   strcat(tmpout,preop);    for(i=0; i<= lg; i++) {
   strcat(tmpout,fileres);    if  (s[i] == occ ) j++;
   return tmpout;    }
 }    return j;
   }
 /*************** function subdirf3 ***********/  
 char *subdirf3(char fileres[], char *preop, char *preop2)  /* void cutv(char *u,char *v, char*t, char occ) */
 {  /* { */
    /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   /* Caution optionfilefiname is hidden */  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   strcpy(tmpout,optionfilefiname);  /*      gives u="abcdef2ghi" and v="j" *\/ */
   strcat(tmpout,"/");  /*   int i,lg,j,p=0; */
   strcat(tmpout,preop);  /*   i=0; */
   strcat(tmpout,preop2);  /*   lg=strlen(t); */
   strcat(tmpout,fileres);  /*   for(j=0; j<=lg-1; j++) { */
   return tmpout;  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
 }  /*   } */
   
 /***************** f1dim *************************/  /*   for(j=0; j<p; j++) { */
 extern int ncom;  /*     (u[j] = t[j]); */
 extern double *pcom,*xicom;  /*   } */
 extern double (*nrfunc)(double []);  /*      u[p]='\0'; */
    
 double f1dim(double x)  /*    for(j=0; j<= lg; j++) { */
 {  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   int j;  /*   } */
   double f;  /* } */
   double *xt;  
    #ifdef _WIN32
   xt=vector(1,ncom);  char * strsep(char **pp, const char *delim)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  {
   f=(*nrfunc)(xt);    char *p, *q;
   free_vector(xt,1,ncom);           
   return f;    if ((p = *pp) == NULL)
 }      return 0;
     if ((q = strpbrk (p, delim)) != NULL)
 /*****************brent *************************/    {
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      *pp = q + 1;
 {      *q = '\0';
   int iter;    }
   double a,b,d,etemp;    else
   double fu,fv,fw,fx;      *pp = 0;
   double ftemp;    return p;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  }
   double e=0.0;  #endif
    
   a=(ax < cx ? ax : cx);  /********************** nrerror ********************/
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  void nrerror(char error_text[])
   fw=fv=fx=(*f)(x);  {
   for (iter=1;iter<=ITMAX;iter++) {    fprintf(stderr,"ERREUR ...\n");
     xm=0.5*(a+b);    fprintf(stderr,"%s\n",error_text);
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    exit(EXIT_FAILURE);
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  }
     printf(".");fflush(stdout);  /*********************** vector *******************/
     fprintf(ficlog,".");fflush(ficlog);  double *vector(int nl, int nh)
 #ifdef DEBUG  {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    double *v;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    if (!v) nrerror("allocation failure in vector");
 #endif    return v-nl+NR_END;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  }
       *xmin=x;  
       return fx;  /************************ free vector ******************/
     }  void free_vector(double*v, int nl, int nh)
     ftemp=fu;  {
     if (fabs(e) > tol1) {    free((FREE_ARG)(v+nl-NR_END));
       r=(x-w)*(fx-fv);  }
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  /************************ivector *******************************/
       q=2.0*(q-r);  int *ivector(long nl,long nh)
       if (q > 0.0) p = -p;  {
       q=fabs(q);    int *v;
       etemp=e;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       e=d;    if (!v) nrerror("allocation failure in ivector");
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    return v-nl+NR_END;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
       else {  
         d=p/q;  /******************free ivector **************************/
         u=x+d;  void free_ivector(int *v, long nl, long nh)
         if (u-a < tol2 || b-u < tol2)  {
           d=SIGN(tol1,xm-x);    free((FREE_ARG)(v+nl-NR_END));
       }  }
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /************************lvector *******************************/
     }  long *lvector(long nl,long nh)
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  {
     fu=(*f)(u);    long *v;
     if (fu <= fx) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       if (u >= x) a=x; else b=x;    if (!v) nrerror("allocation failure in ivector");
       SHFT(v,w,x,u)    return v-nl+NR_END;
         SHFT(fv,fw,fx,fu)  }
         } else {  
           if (u < x) a=u; else b=u;  /******************free lvector **************************/
           if (fu <= fw || w == x) {  void free_lvector(long *v, long nl, long nh)
             v=w;  {
             w=u;    free((FREE_ARG)(v+nl-NR_END));
             fv=fw;  }
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /******************* imatrix *******************************/
             v=u;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
             fv=fu;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
           }  { 
         }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   }    int **m; 
   nrerror("Too many iterations in brent");    
   *xmin=x;    /* allocate pointers to rows */ 
   return fx;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
 /****************** mnbrak ***********************/    m -= nrl; 
     
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    
             double (*func)(double))    /* allocate rows and set pointers to them */ 
 {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double ulim,u,r,q, dum;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double fu;    m[nrl] += NR_END; 
      m[nrl] -= ncl; 
   *fa=(*func)(*ax);    
   *fb=(*func)(*bx);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   if (*fb > *fa) {    
     SHFT(dum,*ax,*bx,dum)    /* return pointer to array of pointers to rows */ 
       SHFT(dum,*fb,*fa,dum)    return m; 
       }  } 
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  /****************** free_imatrix *************************/
   while (*fb > *fc) {  void free_imatrix(m,nrl,nrh,ncl,nch)
     r=(*bx-*ax)*(*fb-*fc);        int **m;
     q=(*bx-*cx)*(*fb-*fa);        long nch,ncl,nrh,nrl; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/       /* free an int matrix allocated by imatrix() */ 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  { 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     if ((*bx-u)*(u-*cx) > 0.0) {    free((FREE_ARG) (m+nrl-NR_END)); 
       fu=(*func)(u);  } 
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  /******************* matrix *******************************/
       if (fu < *fc) {  double **matrix(long nrl, long nrh, long ncl, long nch)
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  {
           SHFT(*fb,*fc,fu,(*func)(u))    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
           }    double **m;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       fu=(*func)(u);    if (!m) nrerror("allocation failure 1 in matrix()");
     } else {    m += NR_END;
       u=(*cx)+GOLD*(*cx-*bx);    m -= nrl;
       fu=(*func)(u);  
     }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     SHFT(*ax,*bx,*cx,u)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       SHFT(*fa,*fb,*fc,fu)    m[nrl] += NR_END;
       }    m[nrl] -= ncl;
 }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 /*************** linmin ************************/    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 int ncom;  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 double *pcom,*xicom;  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 double (*nrfunc)(double []);     */
    }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  /*************************free matrix ************************/
   double brent(double ax, double bx, double cx,  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
                double (*f)(double), double tol, double *xmin);  {
   double f1dim(double x);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    free((FREE_ARG)(m+nrl-NR_END));
               double *fc, double (*func)(double));  }
   int j;  
   double xx,xmin,bx,ax;  /******************* ma3x *******************************/
   double fx,fb,fa;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
    {
   ncom=n;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   pcom=vector(1,n);    double ***m;
   xicom=vector(1,n);  
   nrfunc=func;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for (j=1;j<=n;j++) {    if (!m) nrerror("allocation failure 1 in matrix()");
     pcom[j]=p[j];    m += NR_END;
     xicom[j]=xi[j];    m -= nrl;
   }  
   ax=0.0;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   xx=1.0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m[nrl] += NR_END;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    m[nrl] -= ncl;
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   for (j=1;j<=n;j++) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     xi[j] *= xmin;    m[nrl][ncl] += NR_END;
     p[j] += xi[j];    m[nrl][ncl] -= nll;
   }    for (j=ncl+1; j<=nch; j++) 
   free_vector(xicom,1,n);      m[nrl][j]=m[nrl][j-1]+nlay;
   free_vector(pcom,1,n);    
 }    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 char *asc_diff_time(long time_sec, char ascdiff[])      for (j=ncl+1; j<=nch; j++) 
 {        m[i][j]=m[i][j-1]+nlay;
   long sec_left, days, hours, minutes;    }
   days = (time_sec) / (60*60*24);    return m; 
   sec_left = (time_sec) % (60*60*24);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   hours = (sec_left) / (60*60) ;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   sec_left = (sec_left) %(60*60);    */
   minutes = (sec_left) /60;  }
   sec_left = (sec_left) % (60);  
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);    /*************************free ma3x ************************/
   return ascdiff;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 }  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 /*************** powell ************************/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    free((FREE_ARG)(m+nrl-NR_END));
             double (*func)(double []))  }
 {  
   void linmin(double p[], double xi[], int n, double *fret,  /*************** function subdirf ***********/
               double (*func)(double []));  char *subdirf(char fileres[])
   int i,ibig,j;  {
   double del,t,*pt,*ptt,*xit;    /* Caution optionfilefiname is hidden */
   double fp,fptt;    strcpy(tmpout,optionfilefiname);
   double *xits;    strcat(tmpout,"/"); /* Add to the right */
   int niterf, itmp;    strcat(tmpout,fileres);
     return tmpout;
   pt=vector(1,n);  }
   ptt=vector(1,n);  
   xit=vector(1,n);  /*************** function subdirf2 ***********/
   xits=vector(1,n);  char *subdirf2(char fileres[], char *preop)
   *fret=(*func)(p);  {
   for (j=1;j<=n;j++) pt[j]=p[j];    
   for (*iter=1;;++(*iter)) {    /* Caution optionfilefiname is hidden */
     fp=(*fret);    strcpy(tmpout,optionfilefiname);
     ibig=0;    strcat(tmpout,"/");
     del=0.0;    strcat(tmpout,preop);
     last_time=curr_time;    strcat(tmpout,fileres);
     (void) gettimeofday(&curr_time,&tzp);    return tmpout;
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);  }
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);  
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */  /*************** function subdirf3 ***********/
    for (i=1;i<=n;i++) {  char *subdirf3(char fileres[], char *preop, char *preop2)
       printf(" %d %.12f",i, p[i]);  {
       fprintf(ficlog," %d %.12lf",i, p[i]);    
       fprintf(ficrespow," %.12lf", p[i]);    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     printf("\n");    strcat(tmpout,"/");
     fprintf(ficlog,"\n");    strcat(tmpout,preop);
     fprintf(ficrespow,"\n");fflush(ficrespow);    strcat(tmpout,preop2);
     if(*iter <=3){    strcat(tmpout,fileres);
       tm = *localtime(&curr_time.tv_sec);    return tmpout;
       strcpy(strcurr,asctime(&tm));  }
 /*       asctime_r(&tm,strcurr); */   
       forecast_time=curr_time;  /*************** function subdirfext ***********/
       itmp = strlen(strcurr);  char *subdirfext(char fileres[], char *preop, char *postop)
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */  {
         strcurr[itmp-1]='\0';    
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    strcpy(tmpout,preop);
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    strcat(tmpout,fileres);
       for(niterf=10;niterf<=30;niterf+=10){    strcat(tmpout,postop);
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);    return tmpout;
         tmf = *localtime(&forecast_time.tv_sec);  }
 /*      asctime_r(&tmf,strfor); */  
         strcpy(strfor,asctime(&tmf));  /*************** function subdirfext3 ***********/
         itmp = strlen(strfor);  char *subdirfext3(char fileres[], char *preop, char *postop)
         if(strfor[itmp-1]=='\n')  {
         strfor[itmp-1]='\0';    
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    /* Caution optionfilefiname is hidden */
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
     for (i=1;i<=n;i++) {    strcat(tmpout,fileres);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    strcat(tmpout,postop);
       fptt=(*fret);    return tmpout;
 #ifdef DEBUG  }
       printf("fret=%lf \n",*fret);   
       fprintf(ficlog,"fret=%lf \n",*fret);  char *asc_diff_time(long time_sec, char ascdiff[])
 #endif  {
       printf("%d",i);fflush(stdout);    long sec_left, days, hours, minutes;
       fprintf(ficlog,"%d",i);fflush(ficlog);    days = (time_sec) / (60*60*24);
       linmin(p,xit,n,fret,func);    sec_left = (time_sec) % (60*60*24);
       if (fabs(fptt-(*fret)) > del) {    hours = (sec_left) / (60*60) ;
         del=fabs(fptt-(*fret));    sec_left = (sec_left) %(60*60);
         ibig=i;    minutes = (sec_left) /60;
       }    sec_left = (sec_left) % (60);
 #ifdef DEBUG    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
       printf("%d %.12e",i,(*fret));    return ascdiff;
       fprintf(ficlog,"%d %.12e",i,(*fret));  }
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /***************** f1dim *************************/
         printf(" x(%d)=%.12e",j,xit[j]);  extern int ncom; 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  extern double *pcom,*xicom;
       }  extern double (*nrfunc)(double []); 
       for(j=1;j<=n;j++) {   
         printf(" p=%.12e",p[j]);  double f1dim(double x) 
         fprintf(ficlog," p=%.12e",p[j]);  { 
       }    int j; 
       printf("\n");    double f;
       fprintf(ficlog,"\n");    double *xt; 
 #endif   
     }    xt=vector(1,ncom); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 #ifdef DEBUG    f=(*nrfunc)(xt); 
       int k[2],l;    free_vector(xt,1,ncom); 
       k[0]=1;    return f; 
       k[1]=-1;  } 
       printf("Max: %.12e",(*func)(p));  
       fprintf(ficlog,"Max: %.12e",(*func)(p));  /*****************brent *************************/
       for (j=1;j<=n;j++) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         printf(" %.12e",p[j]);  {
         fprintf(ficlog," %.12e",p[j]);    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
       }     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
       printf("\n");     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
       fprintf(ficlog,"\n");     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
       for(l=0;l<=1;l++) {     * returned function value. 
         for (j=1;j<=n;j++) {    */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    int iter; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    double a,b,d,etemp;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    double fu=0,fv,fw,fx;
         }    double ftemp=0.;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    double e=0.0; 
       }   
 #endif    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
       free_vector(xit,1,n);    fw=fv=fx=(*f)(x); 
       free_vector(xits,1,n);    for (iter=1;iter<=ITMAX;iter++) { 
       free_vector(ptt,1,n);      xm=0.5*(a+b); 
       free_vector(pt,1,n);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       return;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }      printf(".");fflush(stdout);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      fprintf(ficlog,".");fflush(ficlog);
     for (j=1;j<=n;j++) {  #ifdef DEBUGBRENT
       ptt[j]=2.0*p[j]-pt[j];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       xit[j]=p[j]-pt[j];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       pt[j]=p[j];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     }  #endif
     fptt=(*func)(ptt);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     if (fptt < fp) {        *xmin=x; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        return fx; 
       if (t < 0.0) {      } 
         linmin(p,xit,n,fret,func);      ftemp=fu;
         for (j=1;j<=n;j++) {      if (fabs(e) > tol1) { 
           xi[j][ibig]=xi[j][n];        r=(x-w)*(fx-fv); 
           xi[j][n]=xit[j];        q=(x-v)*(fx-fw); 
         }        p=(x-v)*q-(x-w)*r; 
 #ifdef DEBUG        q=2.0*(q-r); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        if (q > 0.0) p = -p; 
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        q=fabs(q); 
         for(j=1;j<=n;j++){        etemp=e; 
           printf(" %.12e",xit[j]);        e=d; 
           fprintf(ficlog," %.12e",xit[j]);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         printf("\n");        else { 
         fprintf(ficlog,"\n");          d=p/q; 
 #endif          u=x+d; 
       }          if (u-a < tol2 || b-u < tol2) 
     }            d=SIGN(tol1,xm-x); 
   }        } 
 }      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 /**** Prevalence limit (stable or period prevalence)  ****************/      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      fu=(*f)(u); 
 {      if (fu <= fx) { 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        if (u >= x) a=x; else b=x; 
      matrix by transitions matrix until convergence is reached */        SHFT(v,w,x,u) 
         SHFT(fv,fw,fx,fu) 
   int i, ii,j,k;      } else { 
   double min, max, maxmin, maxmax,sumnew=0.;        if (u < x) a=u; else b=u; 
   double **matprod2();        if (fu <= fw || w == x) { 
   double **out, cov[NCOVMAX], **pmij();          v=w; 
   double **newm;          w=u; 
   double agefin, delaymax=50 ; /* Max number of years to converge */          fv=fw; 
           fw=fu; 
   for (ii=1;ii<=nlstate+ndeath;ii++)        } else if (fu <= fv || v == x || v == w) { 
     for (j=1;j<=nlstate+ndeath;j++){          v=u; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);          fv=fu; 
     }        } 
       } 
    cov[1]=1.;    } 
      nrerror("Too many iterations in brent"); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    *xmin=x; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    return fx; 
     newm=savm;  } 
     /* Covariates have to be included here again */  
      cov[2]=agefin;  /****************** mnbrak ***********************/
    
       for (k=1; k<=cptcovn;k++) {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];              double (*func)(double)) 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
       }  the downhill direction (defined by the function as evaluated at the initial points) and returns
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
       for (k=1; k<=cptcovprod;k++)  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];     */
     double ulim,u,r,q, dum;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    double fu; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    double scale=10.;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    int iterscale=0;
   
     savm=oldm;    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
     oldm=newm;    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  
       min=1.;    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
       max=0.;    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
       for(i=1; i<=nlstate; i++) {    /*   *bx = *ax - (*ax - *bx)/scale; */
         sumnew=0;    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    /* } */
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);    if (*fb > *fa) { 
         min=FMIN(min,prlim[i][j]);      SHFT(dum,*ax,*bx,dum) 
       }      SHFT(dum,*fb,*fa,dum) 
       maxmin=max-min;    } 
       maxmax=FMAX(maxmax,maxmin);    *cx=(*bx)+GOLD*(*bx-*ax); 
     }    *fc=(*func)(*cx); 
     if(maxmax < ftolpl){  #ifdef DEBUG
       return prlim;    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
     }    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
   }  #endif
 }    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
       r=(*bx-*ax)*(*fb-*fc); 
 /*************** transition probabilities ***************/      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
 {      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
   double s1, s2;      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
   /*double t34;*/        fu=(*func)(u); 
   int i,j,j1, nc, ii, jj;  #ifdef DEBUG
         /* f(x)=A(x-u)**2+f(u) */
     for(i=1; i<= nlstate; i++){        double A, fparabu; 
       for(j=1; j<i;j++){        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){        fparabu= *fa - A*(*ax-u)*(*ax-u);
           /*s2 += param[i][j][nc]*cov[nc];*/        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */        /* And thus,it can be that fu > *fc even if fparabu < *fc */
         }        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
         ps[i][j]=s2;          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
       }  #endif 
       for(j=i+1; j<=nlstate+ndeath;j++){  #ifdef MNBRAKORIGINAL
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #else
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*       if (fu > *fc) { */
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */  /* #ifdef DEBUG */
         }  /*       printf("mnbrak4  fu > fc \n"); */
         ps[i][j]=s2;  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
       }  /* #endif */
     }  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
     /*ps[3][2]=1;*/  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
      /*      dum=u; /\* Shifting c and u *\/ */
     for(i=1; i<= nlstate; i++){  /*      u = *cx; */
       s1=0;  /*      *cx = dum; */
       for(j=1; j<i; j++)  /*      dum = fu; */
         s1+=exp(ps[i][j]);  /*      fu = *fc; */
       for(j=i+1; j<=nlstate+ndeath; j++)  /*      *fc =dum; */
         s1+=exp(ps[i][j]);  /*       } else { /\* end *\/ */
       ps[i][i]=1./(s1+1.);  /* #ifdef DEBUG */
       for(j=1; j<i; j++)  /*       printf("mnbrak3  fu < fc \n"); */
         ps[i][j]= exp(ps[i][j])*ps[i][i];  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
       for(j=i+1; j<=nlstate+ndeath; j++)  /* #endif */
         ps[i][j]= exp(ps[i][j])*ps[i][i];  /*      dum=u; /\* Shifting c and u *\/ */
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  /*      u = *cx; */
     } /* end i */  /*      *cx = dum; */
      /*      dum = fu; */
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  /*      fu = *fc; */
       for(jj=1; jj<= nlstate+ndeath; jj++){  /*      *fc =dum; */
         ps[ii][jj]=0;  /*       } */
         ps[ii][ii]=1;  #ifdef DEBUG
       }        printf("mnbrak34  fu < or >= fc \n");
     }        fprintf(ficlog, "mnbrak34 fu < fc\n");
      #endif
         dum=u; /* Shifting c and u */
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */        u = *cx;
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */        *cx = dum;
 /*         printf("ddd %lf ",ps[ii][jj]); */        dum = fu;
 /*       } */        fu = *fc;
 /*       printf("\n "); */        *fc =dum;
 /*        } */  #endif
 /*        printf("\n ");printf("%lf ",cov[2]); */      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
        /*  #ifdef DEBUG
       for(i=1; i<= npar; i++) printf("%f ",x[i]);        printf("mnbrak2  u after c but before ulim\n");
       goto end;*/        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
     return ps;  #endif
 }        fu=(*func)(u); 
         if (fu < *fc) { 
 /**************** Product of 2 matrices ******************/  #ifdef DEBUG
         printf("mnbrak2  u after c but before ulim AND fu < fc\n");
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
 {  #endif
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          SHFT(*fb,*fc,fu,(*func)(u)) 
   /* in, b, out are matrice of pointers which should have been initialized        } 
      before: only the contents of out is modified. The function returns      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
      a pointer to pointers identical to out */  #ifdef DEBUG
   long i, j, k;        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
   for(i=nrl; i<= nrh; i++)        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
     for(k=ncolol; k<=ncoloh; k++)  #endif
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        u=ulim; 
         out[i][k] +=in[i][j]*b[j][k];        fu=(*func)(u); 
       } else { /* u could be left to b (if r > q parabola has a maximum) */
   return out;  #ifdef DEBUG
 }        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
         fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
   #endif
 /************* Higher Matrix Product ***************/        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      } /* end tests */
 {      SHFT(*ax,*bx,*cx,u) 
   /* Computes the transition matrix starting at age 'age' over      SHFT(*fa,*fb,*fc,fu) 
      'nhstepm*hstepm*stepm' months (i.e. until  #ifdef DEBUG
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
      nhstepm*hstepm matrices.        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  #endif
      (typically every 2 years instead of every month which is too big    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
      for the memory).  } 
      Model is determined by parameters x and covariates have to be  
      included manually here.  /*************** linmin ************************/
   /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
      */  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
   and replaces xi by the actual vector displacement that p was moved. Also returns as fret
   int i, j, d, h, k;  the value of func at the returned location p . This is actually all accomplished by calling the
   double **out, cov[NCOVMAX];  routines mnbrak and brent .*/
   double **newm;  int ncom; 
   double *pcom,*xicom;
   /* Hstepm could be zero and should return the unit matrix */  double (*nrfunc)(double []); 
   for (i=1;i<=nlstate+ndeath;i++)   
     for (j=1;j<=nlstate+ndeath;j++){  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       oldm[i][j]=(i==j ? 1.0 : 0.0);  { 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double brent(double ax, double bx, double cx, 
     }                 double (*f)(double), double tol, double *xmin); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double f1dim(double x); 
   for(h=1; h <=nhstepm; h++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     for(d=1; d <=hstepm; d++){                double *fc, double (*func)(double)); 
       newm=savm;    int j; 
       /* Covariates have to be included here again */    double xx,xmin,bx,ax; 
       cov[1]=1.;    double fx,fb,fa;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #ifdef LINMINORIGINAL
       for (k=1; k<=cptcovage;k++)  #else
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double scale=10., axs, xxs; /* Scale added for infinity */
       for (k=1; k<=cptcovprod;k++)  #endif
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    
     ncom=n; 
     pcom=vector(1,n); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    xicom=vector(1,n); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    nrfunc=func; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    for (j=1;j<=n;j++) { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      pcom[j]=p[j]; 
       savm=oldm;      xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
       oldm=newm;    } 
     }  
     for(i=1; i<=nlstate+ndeath; i++)  #ifdef LINMINORIGINAL
       for(j=1;j<=nlstate+ndeath;j++) {    xx=1.;
         po[i][j][h]=newm[i][j];  #else
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    axs=0.0;
          */    xxs=1.;
       }    do{
   } /* end h */      xx= xxs;
   return po;  #endif
 }      ax=0.;
       mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
       /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
 /*************** log-likelihood *************/      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
 double func( double *x)      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
 {      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
   int i, ii, j, k, mi, d, kk;      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
   double **out;  #ifdef LINMINORIGINAL
   double sw; /* Sum of weights */  #else
   double lli; /* Individual log likelihood */      if (fx != fx){
   int s1, s2;          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
   double bbh, survp;          printf("|");
   long ipmx;          fprintf(ficlog,"|");
   /*extern weight */  #ifdef DEBUGLINMIN
   /* We are differentiating ll according to initial status */          printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  #endif
   /*for(i=1;i<imx;i++)      }
     printf(" %d\n",s[4][i]);    }while(fx != fx);
   */  #endif
   cov[1]=1.;    
   #ifdef DEBUGLINMIN
   for(k=1; k<=nlstate; k++) ll[k]=0.;    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
     fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
   if(mle==1){  #endif
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
       for(mi=1; mi<= wav[i]-1; mi++){    /* fmin = f(p[j] + xmin * xi[j]) */
         for (ii=1;ii<=nlstate+ndeath;ii++)    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
           for (j=1;j<=nlstate+ndeath;j++){    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #ifdef DEBUG
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for(d=0; d<dh[mi][i]; d++){  #endif
           newm=savm;  #ifdef DEBUGLINMIN
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    printf("linmin end ");
           for (kk=1; kk<=cptcovage;kk++) {    fprintf(ficlog,"linmin end ");
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  #endif
           }    for (j=1;j<=n;j++) { 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #ifdef LINMINORIGINAL
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      xi[j] *= xmin; 
           savm=oldm;  #else
           oldm=newm;  #ifdef DEBUGLINMIN
         } /* end mult */      if(xxs <1.0)
              printf(" before xi[%d]=%12.8f", j,xi[j]);
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  #endif
         /* But now since version 0.9 we anticipate for bias at large stepm.      xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
          * If stepm is larger than one month (smallest stepm) and if the exact delay  #ifdef DEBUGLINMIN
          * (in months) between two waves is not a multiple of stepm, we rounded to      if(xxs <1.0)
          * the nearest (and in case of equal distance, to the lowest) interval but now        printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  #endif
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the  #endif
          * probability in order to take into account the bias as a fraction of the way      p[j] += xi[j]; /* Parameters values are updated accordingly */
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies    } 
          * -stepm/2 to stepm/2 .  #ifdef DEBUGLINMIN
          * For stepm=1 the results are the same as for previous versions of Imach.    printf("\n");
          * For stepm > 1 the results are less biased than in previous versions.    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
          */    fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
         s1=s[mw[mi][i]][i];    for (j=1;j<=n;j++) { 
         s2=s[mw[mi+1][i]][i];      printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
         bbh=(double)bh[mi][i]/(double)stepm;      fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
         /* bias bh is positive if real duration      if(j % ncovmodel == 0){
          * is higher than the multiple of stepm and negative otherwise.        printf("\n");
          */        fprintf(ficlog,"\n");
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/      }
         if( s2 > nlstate){    }
           /* i.e. if s2 is a death state and if the date of death is known  #else
              then the contribution to the likelihood is the probability to  #endif
              die between last step unit time and current  step unit time,    free_vector(xicom,1,n); 
              which is also equal to probability to die before dh    free_vector(pcom,1,n); 
              minus probability to die before dh-stepm .  } 
              In version up to 0.92 likelihood was computed  
         as if date of death was unknown. Death was treated as any other  
         health state: the date of the interview describes the actual state  /*************** powell ************************/
         and not the date of a change in health state. The former idea was  /*
         to consider that at each interview the state was recorded  Minimization of a function func of n variables. Input consists of an initial starting point
         (healthy, disable or death) and IMaCh was corrected; but when we  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
         introduced the exact date of death then we should have modified  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
         the contribution of an exact death to the likelihood. This new  such that failure to decrease by more than this amount on one iteration signals doneness. On
         contribution is smaller and very dependent of the step unit  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
         stepm. It is no more the probability to die between last interview  function value at p , and iter is the number of iterations taken. The routine linmin is used.
         and month of death but the probability to survive from last   */
         interview up to one month before death multiplied by the  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         probability to die within a month. Thanks to Chris              double (*func)(double [])) 
         Jackson for correcting this bug.  Former versions increased  { 
         mortality artificially. The bad side is that we add another loop    void linmin(double p[], double xi[], int n, double *fret, 
         which slows down the processing. The difference can be up to 10%                double (*func)(double [])); 
         lower mortality.    int i,ibig,j; 
           */    double del,t,*pt,*ptt,*xit;
           lli=log(out[s1][s2] - savm[s1][s2]);    double directest;
     double fp,fptt;
     double *xits;
         } else if  (s2==-2) {    int niterf, itmp;
           for (j=1,survp=0. ; j<=nlstate; j++)  
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];    pt=vector(1,n); 
           /*survp += out[s1][j]; */    ptt=vector(1,n); 
           lli= log(survp);    xit=vector(1,n); 
         }    xits=vector(1,n); 
            *fret=(*func)(p); 
         else if  (s2==-4) {    for (j=1;j<=n;j++) pt[j]=p[j]; 
           for (j=3,survp=0. ; j<=nlstate; j++)      rcurr_time = time(NULL);  
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];    for (*iter=1;;++(*iter)) { 
           lli= log(survp);      fp=(*fret); /* From former iteration or initial value */
         }      ibig=0; 
       del=0.0; 
         else if  (s2==-5) {      rlast_time=rcurr_time;
           for (j=1,survp=0. ; j<=2; j++)        /* (void) gettimeofday(&curr_time,&tzp); */
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];      rcurr_time = time(NULL);  
           lli= log(survp);      curr_time = *localtime(&rcurr_time);
         }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
              fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
         else{  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */      for (i=1;i<=n;i++) {
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */        printf(" %d %.12f",i, p[i]);
         }        fprintf(ficlog," %d %.12lf",i, p[i]);
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        fprintf(ficrespow," %.12lf", p[i]);
         /*if(lli ==000.0)*/      }
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */      printf("\n");
         ipmx +=1;      fprintf(ficlog,"\n");
         sw += weight[i];      fprintf(ficrespow,"\n");fflush(ficrespow);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      if(*iter <=3){
       } /* end of wave */        tml = *localtime(&rcurr_time);
     } /* end of individual */        strcpy(strcurr,asctime(&tml));
   }  else if(mle==2){        rforecast_time=rcurr_time; 
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        itmp = strlen(strcurr);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       for(mi=1; mi<= wav[i]-1; mi++){          strcurr[itmp-1]='\0';
         for (ii=1;ii<=nlstate+ndeath;ii++)        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           for (j=1;j<=nlstate+ndeath;j++){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for(niterf=10;niterf<=30;niterf+=10){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
           }          forecast_time = *localtime(&rforecast_time);
         for(d=0; d<=dh[mi][i]; d++){          strcpy(strfor,asctime(&forecast_time));
           newm=savm;          itmp = strlen(strfor);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          if(strfor[itmp-1]=='\n')
           for (kk=1; kk<=cptcovage;kk++) {          strfor[itmp-1]='\0';
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      }
           savm=oldm;      for (i=1;i<=n;i++) { /* For each direction i */
           oldm=newm;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
         } /* end mult */        fptt=(*fret); 
        #ifdef DEBUG
         s1=s[mw[mi][i]][i];        printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
         s2=s[mw[mi+1][i]][i];        fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
         bbh=(double)bh[mi][i]/(double)stepm;  #endif
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */        printf("%d",i);fflush(stdout); /* print direction (parameter) i */
         ipmx +=1;        fprintf(ficlog,"%d",i);fflush(ficlog);
         sw += weight[i];        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
       } /* end of wave */        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
     } /* end of individual */          /* because that direction will be replaced unless the gain del is small */
   }  else if(mle==3){  /* exponential inter-extrapolation */          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          /* with the new direction. */
       for(mi=1; mi<= wav[i]-1; mi++){          del=fabs(fptt-(*fret)); 
         for (ii=1;ii<=nlstate+ndeath;ii++)          ibig=i; 
           for (j=1;j<=nlstate+ndeath;j++){        } 
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #ifdef DEBUG
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        printf("%d %.12e",i,(*fret));
           }        fprintf(ficlog,"%d %.12e",i,(*fret));
         for(d=0; d<dh[mi][i]; d++){        for (j=1;j<=n;j++) {
           newm=savm;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          printf(" x(%d)=%.12e",j,xit[j]);
           for (kk=1; kk<=cptcovage;kk++) {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        }
           }        for(j=1;j<=n;j++) {
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          printf(" p(%d)=%.12e",j,p[j]);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
           savm=oldm;        }
           oldm=newm;        printf("\n");
         } /* end mult */        fprintf(ficlog,"\n");
        #endif
         s1=s[mw[mi][i]][i];      } /* end loop on each direction i */
         s2=s[mw[mi+1][i]][i];      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
         bbh=(double)bh[mi][i]/(double)stepm;      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */      /* New value of last point Pn is not computed, P(n-1) */
         ipmx +=1;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
         sw += weight[i];        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
       } /* end of wave */        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
     } /* end of individual */        /* decreased of more than 3.84  */
   }else if (mle==4){  /* ml=4 no inter-extrapolation */        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        /* By adding 10 parameters more the gain should be 18.31 */
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)        /* Starting the program with initial values given by a former maximization will simply change */
           for (j=1;j<=nlstate+ndeath;j++){        /* the scales of the directions and the directions, because the are reset to canonical directions */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
           }  #ifdef DEBUG
         for(d=0; d<dh[mi][i]; d++){        int k[2],l;
           newm=savm;        k[0]=1;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        k[1]=-1;
           for (kk=1; kk<=cptcovage;kk++) {        printf("Max: %.12e",(*func)(p));
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        fprintf(ficlog,"Max: %.12e",(*func)(p));
           }        for (j=1;j<=n;j++) {
                  printf(" %.12e",p[j]);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          fprintf(ficlog," %.12e",p[j]);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        }
           savm=oldm;        printf("\n");
           oldm=newm;        fprintf(ficlog,"\n");
         } /* end mult */        for(l=0;l<=1;l++) {
                for (j=1;j<=n;j++) {
         s1=s[mw[mi][i]][i];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         s2=s[mw[mi+1][i]][i];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         if( s2 > nlstate){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           lli=log(out[s1][s2] - savm[s1][s2]);          }
         }else{          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }        }
         ipmx +=1;  #endif
         sw += weight[i];  
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */        free_vector(xit,1,n); 
       } /* end of wave */        free_vector(xits,1,n); 
     } /* end of individual */        free_vector(ptt,1,n); 
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */        free_vector(pt,1,n); 
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        return; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      } /* enough precision */ 
       for(mi=1; mi<= wav[i]-1; mi++){      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         for (ii=1;ii<=nlstate+ndeath;ii++)      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
           for (j=1;j<=nlstate+ndeath;j++){        ptt[j]=2.0*p[j]-pt[j]; 
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        xit[j]=p[j]-pt[j]; 
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        pt[j]=p[j]; 
           }      } 
         for(d=0; d<dh[mi][i]; d++){      fptt=(*func)(ptt); /* f_3 */
           newm=savm;  #ifdef POWELLF1F3
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #else
           for (kk=1; kk<=cptcovage;kk++) {      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  #endif
           }        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
                /* From x1 (P0) distance of x2 is at h and x3 is 2h */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
           savm=oldm;        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
           oldm=newm;        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
         } /* end mult */        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
        #ifdef NRCORIGINAL
         s1=s[mw[mi][i]][i];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
         s2=s[mw[mi+1][i]][i];  #else
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
         ipmx +=1;        t= t- del*SQR(fp-fptt);
         sw += weight[i];  #endif
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/  #ifdef DEBUG
       } /* end of wave */        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
     } /* end of individual */        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   } /* End of if */        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   return -l;        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 }        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   #endif
 /*************** log-likelihood *************/  #ifdef POWELLORIGINAL
 double funcone( double *x)        if (t < 0.0) { /* Then we use it for new direction */
 {  #else
   /* Same as likeli but slower because of a lot of printf and if */        if (directest*t < 0.0) { /* Contradiction between both tests */
   int i, ii, j, k, mi, d, kk;          printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
   double **out;          fprintf(ficlog,"directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
   double lli; /* Individual log likelihood */          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
   double llt;        } 
   int s1, s2;        if (directest < 0.0) { /* Then we use it for new direction */
   double bbh, survp;  #endif
   /*extern weight */  #ifdef DEBUGLINMIN
   /* We are differentiating ll according to initial status */          printf("Before linmin in direction P%d-P0\n",n);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          for (j=1;j<=n;j++) { 
   /*for(i=1;i<imx;i++)            printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
     printf(" %d\n",s[4][i]);            fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
   */            if(j % ncovmodel == 0){
   cov[1]=1.;              printf("\n");
               fprintf(ficlog,"\n");
   for(k=1; k<=nlstate; k++) ll[k]=0.;            }
           }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #endif
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
     for(mi=1; mi<= wav[i]-1; mi++){  #ifdef DEBUGLINMIN
       for (ii=1;ii<=nlstate+ndeath;ii++)          for (j=1;j<=n;j++) { 
         for (j=1;j<=nlstate+ndeath;j++){            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);            fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
           savm[ii][j]=(ii==j ? 1.0 : 0.0);            if(j % ncovmodel == 0){
         }              printf("\n");
       for(d=0; d<dh[mi][i]; d++){              fprintf(ficlog,"\n");
         newm=savm;            }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          }
         for (kk=1; kk<=cptcovage;kk++) {  #endif
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          for (j=1;j<=n;j++) { 
         }            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          }
         savm=oldm;          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         oldm=newm;          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       } /* end mult */  
        #ifdef DEBUG
       s1=s[mw[mi][i]][i];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       s2=s[mw[mi+1][i]][i];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       bbh=(double)bh[mi][i]/(double)stepm;          for(j=1;j<=n;j++){
       /* bias is positive if real duration            printf(" %.12e",xit[j]);
        * is higher than the multiple of stepm and negative otherwise.            fprintf(ficlog," %.12e",xit[j]);
        */          }
       if( s2 > nlstate && (mle <5) ){  /* Jackson */          printf("\n");
         lli=log(out[s1][s2] - savm[s1][s2]);          fprintf(ficlog,"\n");
       } else if  (s2==-2) {  #endif
         for (j=1,survp=0. ; j<=nlstate; j++)        } /* end of t or directest negative */
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];  #ifdef POWELLF1F3
         lli= log(survp);  #else
       }else if (mle==1){      } /* end if (fptt < fp)  */
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */  #endif
       } else if(mle==2){    } /* loop iteration */ 
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */  } 
       } else if(mle==3){  /* exponential inter-extrapolation */  
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */  /**** Prevalence limit (stable or period prevalence)  ****************/
       } else if (mle==4){  /* mle=4 no inter-extrapolation */  
         lli=log(out[s1][s2]); /* Original formula */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij)
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */  {
         lli=log(out[s1][s2]); /* Original formula */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       } /* End of if */       matrix by transitions matrix until convergence is reached with precision ftolpl */
       ipmx +=1;    /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
       sw += weight[i];    /* Wx is row vector: population in state 1, population in state 2, population dead */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    /* or prevalence in state 1, prevalence in state 2, 0 */
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */    /* newm is the matrix after multiplications, its rows are identical at a factor */
       if(globpr){    /* Initial matrix pimij */
         fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
  %11.6f %11.6f %11.6f ", \    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],    /*  0,                   0                  , 1} */
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);    /*
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){     * and after some iteration: */
           llt +=ll[k]*gipmx/gsw;    /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);    /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
         }    /*  0,                   0                  , 1} */
         fprintf(ficresilk," %10.6f\n", -llt);    /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
       }    /* {0.51571254859325999, 0.4842874514067399, */
     } /* end of wave */    /*  0.51326036147820708, 0.48673963852179264} */
   } /* end of individual */    /* If we start from prlim again, prlim tends to a constant matrix */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    int i, ii,j,k;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double *min, *max, *meandiff, maxmax,sumnew=0.;
   if(globpr==0){ /* First time we count the contributions and weights */    /* double **matprod2(); */ /* test */
     gipmx=ipmx;    double **out, cov[NCOVMAX+1], **pmij();
     gsw=sw;    double **newm;
   }    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
   return -l;    int ncvloop=0;
 }    
     min=vector(1,nlstate);
     max=vector(1,nlstate);
 /*************** function likelione ***********/    meandiff=vector(1,nlstate);
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))  
 {    for (ii=1;ii<=nlstate+ndeath;ii++)
   /* This routine should help understanding what is done with      for (j=1;j<=nlstate+ndeath;j++){
      the selection of individuals/waves and        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      to check the exact contribution to the likelihood.      }
      Plotting could be done.    
    */    cov[1]=1.;
   int k;    
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   if(*globpri !=0){ /* Just counts and sums, no printings */    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
     strcpy(fileresilk,"ilk");    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     strcat(fileresilk,fileres);      ncvloop++;
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {      newm=savm;
       printf("Problem with resultfile: %s\n", fileresilk);      /* Covariates have to be included here again */
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);      cov[2]=agefin;
     }      if(nagesqr==1)
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");        cov[3]= agefin*agefin;;
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");      for (k=1; k<=cptcovn;k++) {
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
     for(k=1; k<=nlstate; k++)        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");      }
   }      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
   *fretone=(*funcone)(p);      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
   if(*globpri !=0){      for (k=1; k<=cptcovprod;k++) /* Useless */
     fclose(ficresilk);        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
     fflush(fichtm);      
   }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   return;      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 }      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
 /*********** Maximum Likelihood Estimation ***************/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      savm=oldm;
 {      oldm=newm;
   int i,j, iter;  
   double **xi;      for(j=1; j<=nlstate; j++){
   double fret;        max[j]=0.;
   double fretone; /* Only one call to likelihood */        min[j]=1.;
   /*  char filerespow[FILENAMELENGTH];*/      }
   xi=matrix(1,npar,1,npar);      for(i=1;i<=nlstate;i++){
   for (i=1;i<=npar;i++)        sumnew=0;
     for (j=1;j<=npar;j++)        for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       xi[i][j]=(i==j ? 1.0 : 0.0);        for(j=1; j<=nlstate; j++){ 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          prlim[i][j]= newm[i][j]/(1-sumnew);
   strcpy(filerespow,"pow");          max[j]=FMAX(max[j],prlim[i][j]);
   strcat(filerespow,fileres);          min[j]=FMIN(min[j],prlim[i][j]);
   if((ficrespow=fopen(filerespow,"w"))==NULL) {        }
     printf("Problem with resultfile: %s\n", filerespow);      }
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);  
   }      maxmax=0.;
   fprintf(ficrespow,"# Powell\n# iter -2*LL");      for(j=1; j<=nlstate; j++){
   for (i=1;i<=nlstate;i++)        meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
     for(j=1;j<=nlstate+ndeath;j++)        maxmax=FMAX(maxmax,meandiff[j]);
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
   fprintf(ficrespow,"\n");      } /* j loop */
       *ncvyear= (int)age- (int)agefin;
   powell(p,xi,npar,ftol,&iter,&fret,func);      /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
       if(maxmax < ftolpl){
   free_matrix(xi,1,npar,1,npar);        /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
   fclose(ficrespow);        free_vector(min,1,nlstate);
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        free_vector(max,1,nlstate);
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        free_vector(meandiff,1,nlstate);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        return prlim;
       }
 }    } /* age loop */
       /* After some age loop it doesn't converge */
 /**** Computes Hessian and covariance matrix ***/    printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
 {    /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
   double  **a,**y,*x,pd;    free_vector(min,1,nlstate);
   double **hess;    free_vector(max,1,nlstate);
   int i, j,jk;    free_vector(meandiff,1,nlstate);
   int *indx;    
     return prlim; /* should not reach here */
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);  }
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*************** transition probabilities ***************/ 
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   double gompertz(double p[]);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   hess=matrix(1,npar,1,npar);  {
     /* According to parameters values stored in x and the covariate's values stored in cov,
   printf("\nCalculation of the hessian matrix. Wait...\n");       computes the probability to be observed in state j being in state i by appying the
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");       model to the ncovmodel covariates (including constant and age).
   for (i=1;i<=npar;i++){       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
     printf("%d",i);fflush(stdout);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
     fprintf(ficlog,"%d",i);fflush(ficlog);       ncth covariate in the global vector x is given by the formula:
           j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
           Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
     /*  printf(" %f ",p[i]);       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/       Outputs ps[i][j] the probability to be observed in j being in j according to
   }       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
      */
   for (i=1;i<=npar;i++) {    double s1, lnpijopii;
     for (j=1;j<=npar;j++)  {    /*double t34;*/
       if (j>i) {    int i,j, nc, ii, jj;
         printf(".%d%d",i,j);fflush(stdout);  
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);      for(i=1; i<= nlstate; i++){
         hess[i][j]=hessij(p,delti,i,j,func,npar);        for(j=1; j<i;j++){
                  for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         hess[j][i]=hess[i][j];                /*lnpijopii += param[i][j][nc]*cov[nc];*/
         /*printf(" %lf ",hess[i][j]);*/            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
       }  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     }          }
   }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   printf("\n");  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   fprintf(ficlog,"\n");        }
         for(j=i+1; j<=nlstate+ndeath;j++){
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
              lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   a=matrix(1,npar,1,npar);  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   y=matrix(1,npar,1,npar);          }
   x=vector(1,npar);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   indx=ivector(1,npar);        }
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      
   ludcmp(a,npar,indx,&pd);      for(i=1; i<= nlstate; i++){
         s1=0;
   for (j=1;j<=npar;j++) {        for(j=1; j<i; j++){
     for (i=1;i<=npar;i++) x[i]=0;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     x[j]=1;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     lubksb(a,npar,indx,x);        }
     for (i=1;i<=npar;i++){        for(j=i+1; j<=nlstate+ndeath; j++){
       matcov[i][j]=x[i];          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     }          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   }        }
         /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   printf("\n#Hessian matrix#\n");        ps[i][i]=1./(s1+1.);
   fprintf(ficlog,"\n#Hessian matrix#\n");        /* Computing other pijs */
   for (i=1;i<=npar;i++) {        for(j=1; j<i; j++)
     for (j=1;j<=npar;j++) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
       printf("%.3e ",hess[i][j]);        for(j=i+1; j<=nlstate+ndeath; j++)
       fprintf(ficlog,"%.3e ",hess[i][j]);          ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     printf("\n");      } /* end i */
     fprintf(ficlog,"\n");      
   }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jj=1; jj<= nlstate+ndeath; jj++){
   /* Recompute Inverse */          ps[ii][jj]=0;
   for (i=1;i<=npar;i++)          ps[ii][ii]=1;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        }
   ludcmp(a,npar,indx,&pd);      }
       
   /*  printf("\n#Hessian matrix recomputed#\n");      
       /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   for (j=1;j<=npar;j++) {      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
     for (i=1;i<=npar;i++) x[i]=0;      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     x[j]=1;      /*   } */
     lubksb(a,npar,indx,x);      /*   printf("\n "); */
     for (i=1;i<=npar;i++){      /* } */
       y[i][j]=x[i];      /* printf("\n ");printf("%lf ",cov[2]);*/
       printf("%.3e ",y[i][j]);      /*
       fprintf(ficlog,"%.3e ",y[i][j]);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     }        goto end;*/
     printf("\n");      return ps;
     fprintf(ficlog,"\n");  }
   }  
   */  /**************** Product of 2 matrices ******************/
   
   free_matrix(a,1,npar,1,npar);  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   free_matrix(y,1,npar,1,npar);  {
   free_vector(x,1,npar);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   free_ivector(indx,1,npar);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   free_matrix(hess,1,npar,1,npar);    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
 }    int i, j, k;
     for(i=nrl; i<= nrh; i++)
 /*************** hessian matrix ****************/      for(k=ncolol; k<=ncoloh; k++){
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)        out[i][k]=0.;
 {        for(j=ncl; j<=nch; j++)
   int i;          out[i][k] +=in[i][j]*b[j][k];
   int l=1, lmax=20;      }
   double k1,k2;    return out;
   double p2[NPARMAX+1];  }
   double res;  
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;  /************* Higher Matrix Product ***************/
   int k=0,kmax=10;  
   double l1;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
   fx=func(x);    /* Computes the transition matrix starting at age 'age' over 
   for (i=1;i<=npar;i++) p2[i]=x[i];       'nhstepm*hstepm*stepm' months (i.e. until
   for(l=0 ; l <=lmax; l++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     l1=pow(10,l);       nhstepm*hstepm matrices. 
     delts=delt;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for(k=1 ; k <kmax; k=k+1){       (typically every 2 years instead of every month which is too big 
       delt = delta*(l1*k);       for the memory).
       p2[theta]=x[theta] +delt;       Model is determined by parameters x and covariates have to be 
       k1=func(p2)-fx;       included manually here. 
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;       */
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    int i, j, d, h, k;
          double **out, cov[NCOVMAX+1];
 #ifdef DEBUG    double **newm;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double agexact;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double agebegin, ageend;
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    /* Hstepm could be zero and should return the unit matrix */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    for (i=1;i<=nlstate+ndeath;i++)
         k=kmax;      for (j=1;j<=nlstate+ndeath;j++){
       }        oldm[i][j]=(i==j ? 1.0 : 0.0);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        po[i][j][0]=(i==j ? 1.0 : 0.0);
         k=kmax; l=lmax*10.;      }
       }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    for(h=1; h <=nhstepm; h++){
         delts=delt;      for(d=1; d <=hstepm; d++){
       }        newm=savm;
     }        /* Covariates have to be included here again */
   }        cov[1]=1.;
   delti[theta]=delts;        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
   return res;        cov[2]=agexact;
          if(nagesqr==1)
 }          cov[3]= agexact*agexact;
         for (k=1; k<=cptcovn;k++) 
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
 {          /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
   int i;        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
   int l=1, l1, lmax=20;          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   double k1,k2,k3,k4,res,fx;          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
   double p2[NPARMAX+1];          /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
   int k;        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
   fx=func(x);          /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     k1=func(p2)-fx;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                       pmij(pmmij,cov,ncovmodel,x,nlstate));
     p2[thetai]=x[thetai]+delti[thetai]/k;        savm=oldm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        oldm=newm;
     k2=func(p2)-fx;      }
        for(i=1; i<=nlstate+ndeath; i++)
     p2[thetai]=x[thetai]-delti[thetai]/k;        for(j=1;j<=nlstate+ndeath;j++) {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          po[i][j][h]=newm[i][j];
     k3=func(p2)-fx;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
          }
     p2[thetai]=x[thetai]-delti[thetai]/k;      /*printf("h=%d ",h);*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    } /* end h */
     k4=func(p2)-fx;  /*     printf("\n H=%d \n",h); */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    return po;
 #ifdef DEBUG  }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  #ifdef NLOPT
 #endif    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
   }    double fret;
   return res;    double *xt;
 }    int j;
     myfunc_data *d2 = (myfunc_data *) pd;
 /************** Inverse of matrix **************/  /* xt = (p1-1); */
 void ludcmp(double **a, int n, int *indx, double *d)    xt=vector(1,n); 
 {    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   int i,imax,j,k;  
   double big,dum,sum,temp;    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
   double *vv;    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
      printf("Function = %.12lf ",fret);
   vv=vector(1,n);    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
   *d=1.0;    printf("\n");
   for (i=1;i<=n;i++) {   free_vector(xt,1,n);
     big=0.0;    return fret;
     for (j=1;j<=n;j++)  }
       if ((temp=fabs(a[i][j])) > big) big=temp;  #endif
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;  /*************** log-likelihood *************/
   }  double func( double *x)
   for (j=1;j<=n;j++) {  {
     for (i=1;i<j;i++) {    int i, ii, j, k, mi, d, kk;
       sum=a[i][j];    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    double **out;
       a[i][j]=sum;    double sw; /* Sum of weights */
     }    double lli; /* Individual log likelihood */
     big=0.0;    int s1, s2;
     for (i=j;i<=n;i++) {    double bbh, survp;
       sum=a[i][j];    long ipmx;
       for (k=1;k<j;k++)    double agexact;
         sum -= a[i][k]*a[k][j];    /*extern weight */
       a[i][j]=sum;    /* We are differentiating ll according to initial status */
       if ( (dum=vv[i]*fabs(sum)) >= big) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         big=dum;    /*for(i=1;i<imx;i++) 
         imax=i;      printf(" %d\n",s[4][i]);
       }    */
     }  
     if (j != imax) {    ++countcallfunc;
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];    cov[1]=1.;
         a[imax][k]=a[j][k];  
         a[j][k]=dum;    for(k=1; k<=nlstate; k++) ll[k]=0.;
       }  
       *d = -(*d);    if(mle==1){
       vv[imax]=vv[j];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        /* Computes the values of the ncovmodel covariates of the model
     indx[j]=imax;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
     if (a[j][j] == 0.0) a[j][j]=TINY;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
     if (j != n) {           to be observed in j being in i according to the model.
       dum=1.0/(a[j][j]);         */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
     }            cov[2+nagesqr+k]=covar[Tvar[k]][i];
   }        }
   free_vector(vv,1,n);  /* Doesn't work */        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
 ;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
 }           has been calculated etc */
         for(mi=1; mi<= wav[i]-1; mi++){
 void lubksb(double **a, int n, int *indx, double b[])          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   int i,ii=0,ip,j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double sum;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   for (i=1;i<=n;i++) {          for(d=0; d<dh[mi][i]; d++){
     ip=indx[i];            newm=savm;
     sum=b[ip];            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     b[ip]=b[i];            cov[2]=agexact;
     if (ii)            if(nagesqr==1)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];              cov[3]= agexact*agexact;
     else if (sum) ii=i;            for (kk=1; kk<=cptcovage;kk++) {
     b[i]=sum;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
   }            }
   for (i=n;i>=1;i--) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     sum=b[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            savm=oldm;
     b[i]=sum/a[i][i];            oldm=newm;
   }          } /* end mult */
 }        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 void pstamp(FILE *fichier)          /* But now since version 0.9 we anticipate for bias at large stepm.
 {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);           * (in months) between two waves is not a multiple of stepm, we rounded to 
 }           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
 /************ Frequencies ********************/           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])           * probability in order to take into account the bias as a fraction of the way
 {  /* Some frequencies */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
             * -stepm/2 to stepm/2 .
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;           * For stepm=1 the results are the same as for previous versions of Imach.
   int first;           * For stepm > 1 the results are less biased than in previous versions. 
   double ***freq; /* Frequencies */           */
   double *pp, **prop;          s1=s[mw[mi][i]][i];
   double pos,posprop, k2, dateintsum=0,k2cpt=0;          s2=s[mw[mi+1][i]][i];
   char fileresp[FILENAMELENGTH];          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias bh is positive if real duration
   pp=vector(1,nlstate);           * is higher than the multiple of stepm and negative otherwise.
   prop=matrix(1,nlstate,iagemin,iagemax+3);           */
   strcpy(fileresp,"p");          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   strcat(fileresp,fileres);          if( s2 > nlstate){ 
   if((ficresp=fopen(fileresp,"w"))==NULL) {            /* i.e. if s2 is a death state and if the date of death is known 
     printf("Problem with prevalence resultfile: %s\n", fileresp);               then the contribution to the likelihood is the probability to 
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);               die between last step unit time and current  step unit time, 
     exit(0);               which is also equal to probability to die before dh 
   }               minus probability to die before dh-stepm . 
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);               In version up to 0.92 likelihood was computed
   j1=0;          as if date of death was unknown. Death was treated as any other
            health state: the date of the interview describes the actual state
   j=cptcoveff;          and not the date of a change in health state. The former idea was
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
   first=1;          introduced the exact date of death then we should have modified
           the contribution of an exact death to the likelihood. This new
   for(k1=1; k1<=j;k1++){          contribution is smaller and very dependent of the step unit
     for(i1=1; i1<=ncodemax[k1];i1++){          stepm. It is no more the probability to die between last interview
       j1++;          and month of death but the probability to survive from last
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          interview up to one month before death multiplied by the
         scanf("%d", i);*/          probability to die within a month. Thanks to Chris
       for (i=-5; i<=nlstate+ndeath; i++)            Jackson for correcting this bug.  Former versions increased
         for (jk=-5; jk<=nlstate+ndeath; jk++)            mortality artificially. The bad side is that we add another loop
           for(m=iagemin; m <= iagemax+3; m++)          which slows down the processing. The difference can be up to 10%
             freq[i][jk][m]=0;          lower mortality.
             */
     for (i=1; i<=nlstate; i++)            /* If, at the beginning of the maximization mostly, the
       for(m=iagemin; m <= iagemax+3; m++)             cumulative probability or probability to be dead is
         prop[i][m]=0;             constant (ie = 1) over time d, the difference is equal to
                   0.  out[s1][3] = savm[s1][3]: probability, being at state
       dateintsum=0;             s1 at precedent wave, to be dead a month before current
       k2cpt=0;             wave is equal to probability, being at state s1 at
       for (i=1; i<=imx; i++) {             precedent wave, to be dead at mont of the current
         bool=1;             wave. Then the observed probability (that this person died)
         if  (cptcovn>0) {             is null according to current estimated parameter. In fact,
           for (z1=1; z1<=cptcoveff; z1++)             it should be very low but not zero otherwise the log go to
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])             infinity.
               bool=0;          */
         }  /* #ifdef INFINITYORIGINAL */
         if (bool==1){  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
           for(m=firstpass; m<=lastpass; m++){  /* #else */
             k2=anint[m][i]+(mint[m][i]/12.);  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/  /*          lli=log(mytinydouble); */
               if(agev[m][i]==0) agev[m][i]=iagemax+1;  /*        else */
               if(agev[m][i]==1) agev[m][i]=iagemax+2;  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];  /* #endif */
               if (m<lastpass) {            lli=log(out[s1][s2] - savm[s1][s2]);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];          } else if  ( s2==-1 ) { /* alive */
               }            for (j=1,survp=0. ; j<=nlstate; j++) 
                            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {            /*survp += out[s1][j]; */
                 dateintsum=dateintsum+k2;            lli= log(survp);
                 k2cpt++;          }
               }          else if  (s2==-4) { 
               /*}*/            for (j=3,survp=0. ; j<=nlstate; j++)  
           }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            lli= log(survp); 
       }          } 
                  else if  (s2==-5) { 
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/            for (j=1,survp=0. ; j<=2; j++)  
       pstamp(ficresp);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       if  (cptcovn>0) {            lli= log(survp); 
         fprintf(ficresp, "\n#********** Variable ");          } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          else{
         fprintf(ficresp, "**********\n#");            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       for(i=1; i<=nlstate;i++)          } 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       fprintf(ficresp, "\n");          /*if(lli ==000.0)*/
                /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for(i=iagemin; i <= iagemax+3; i++){          ipmx +=1;
         if(i==iagemax+3){          sw += weight[i];
           fprintf(ficlog,"Total");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }else{          /* if (lli < log(mytinydouble)){ */
           if(first==1){          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
             first=0;          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
             printf("See log file for details...\n");          /* } */
           }        } /* end of wave */
           fprintf(ficlog,"Age %d", i);      } /* end of individual */
         }    }  else if(mle==2){
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
             pp[jk] += freq[jk][m][i];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1, pos=0; m <=0 ; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pos += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           if(pp[jk]>=1.e-10){            }
             if(first==1){          for(d=0; d<=dh[mi][i]; d++){
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            newm=savm;
             }            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            cov[2]=agexact;
           }else{            if(nagesqr==1)
             if(first==1)              cov[3]= agexact*agexact;
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            for (kk=1; kk<=cptcovage;kk++) {
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
           }            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1; jk <=nlstate ; jk++){            savm=oldm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            oldm=newm;
             pp[jk] += freq[jk][m][i];          } /* end mult */
         }              
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){          s1=s[mw[mi][i]][i];
           pos += pp[jk];          s2=s[mw[mi+1][i]][i];
           posprop += prop[jk][i];          bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
           if(pos>=1.e-5){          sw += weight[i];
             if(first==1)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        } /* end of wave */
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      } /* end of individual */
           }else{    }  else if(mle==3){  /* exponential inter-extrapolation */
             if(first==1)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
           if( i <= iagemax){            for (j=1;j<=nlstate+ndeath;j++){
             if(pos>=1.e-5){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               /*probs[i][jk][j1]= pp[jk]/pos;*/            }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          for(d=0; d<dh[mi][i]; d++){
             }            newm=savm;
             else            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);            cov[2]=agexact;
           }            if(nagesqr==1)
         }              cov[3]= agexact*agexact;
                    for (kk=1; kk<=cptcovage;kk++) {
         for(jk=-1; jk <=nlstate+ndeath; jk++)              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
           for(m=-1; m <=nlstate+ndeath; m++)            }
             if(freq[jk][m][i] !=0 ) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             if(first==1)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            savm=oldm;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);            oldm=newm;
             }          } /* end mult */
         if(i <= iagemax)        
           fprintf(ficresp,"\n");          s1=s[mw[mi][i]][i];
         if(first==1)          s2=s[mw[mi+1][i]][i];
           printf("Others in log...\n");          bbh=(double)bh[mi][i]/(double)stepm; 
         fprintf(ficlog,"\n");          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       }          ipmx +=1;
     }          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   dateintmean=dateintsum/k2cpt;        } /* end of wave */
        } /* end of individual */
   fclose(ficresp);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_vector(pp,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);        for(mi=1; mi<= wav[i]-1; mi++){
   /* End of Freq */          for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Prevalence ********************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)            }
 {            for(d=0; d<dh[mi][i]; d++){
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people            newm=savm;
      in each health status at the date of interview (if between dateprev1 and dateprev2).            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
      We still use firstpass and lastpass as another selection.            cov[2]=agexact;
   */            if(nagesqr==1)
                cov[3]= agexact*agexact;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            for (kk=1; kk<=cptcovage;kk++) {
   double ***freq; /* Frequencies */              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   double *pp, **prop;            }
   double pos,posprop;          
   double  y2; /* in fractional years */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int iagemin, iagemax;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   iagemin= (int) agemin;            oldm=newm;
   iagemax= (int) agemax;          } /* end mult */
   /*pp=vector(1,nlstate);*/        
   prop=matrix(1,nlstate,iagemin,iagemax+3);          s1=s[mw[mi][i]][i];
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/          s2=s[mw[mi+1][i]][i];
   j1=0;          if( s2 > nlstate){ 
              lli=log(out[s1][s2] - savm[s1][s2]);
   j=cptcoveff;          } else if  ( s2==-1 ) { /* alive */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            for (j=1,survp=0. ; j<=nlstate; j++) 
                survp += out[s1][j];
   for(k1=1; k1<=j;k1++){            lli= log(survp);
     for(i1=1; i1<=ncodemax[k1];i1++){          }else{
       j1++;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                }
       for (i=1; i<=nlstate; i++)            ipmx +=1;
         for(m=iagemin; m <= iagemax+3; m++)          sw += weight[i];
           prop[i][m]=0.0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
        /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       for (i=1; i<=imx; i++) { /* Each individual */        } /* end of wave */
         bool=1;      } /* end of individual */
         if  (cptcovn>0) {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           for (z1=1; z1<=cptcoveff; z1++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
               bool=0;        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         if (bool==1) {            for (j=1;j<=nlstate+ndeath;j++){
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */            }
               if(agev[m][i]==0) agev[m][i]=iagemax+1;          for(d=0; d<dh[mi][i]; d++){
               if(agev[m][i]==1) agev[m][i]=iagemax+2;            newm=savm;
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
               if (s[m][i]>0 && s[m][i]<=nlstate) {            cov[2]=agexact;
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/            if(nagesqr==1)
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];              cov[3]= agexact*agexact;
                 prop[s[m][i]][iagemax+3] += weight[i];            for (kk=1; kk<=cptcovage;kk++) {
               }              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             }            }
           } /* end selection of waves */          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=iagemin; i <= iagemax+3; i++){              savm=oldm;
                    oldm=newm;
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {          } /* end mult */
           posprop += prop[jk][i];        
         }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
         for(jk=1; jk <=nlstate ; jk++){              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           if( i <=  iagemax){          ipmx +=1;
             if(posprop>=1.e-5){          sw += weight[i];
               probs[i][jk][j1]= prop[jk][i]/posprop;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           }        } /* end of wave */
         }/* end jk */      } /* end of individual */
       }/* end i */    } /* End of if */
     } /* end i1 */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   } /* end k1 */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    return -l;
   /*free_vector(pp,1,nlstate);*/  }
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);  
 }  /* End of prevalence */  /*************** log-likelihood *************/
   double funcone( double *x)
 /************* Waves Concatenation ***************/  {
     /* Same as likeli but slower because of a lot of printf and if */
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    int i, ii, j, k, mi, d, kk;
 {    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    double **out;
      Death is a valid wave (if date is known).    double lli; /* Individual log likelihood */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double llt;
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]    int s1, s2;
      and mw[mi+1][i]. dh depends on stepm.    double bbh, survp;
      */    double agexact;
     double agebegin, ageend;
   int i, mi, m;    /*extern weight */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /* We are differentiating ll according to initial status */
      double sum=0., jmean=0.;*/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   int first;    /*for(i=1;i<imx;i++) 
   int j, k=0,jk, ju, jl;      printf(" %d\n",s[4][i]);
   double sum=0.;    */
   first=0;    cov[1]=1.;
   jmin=1e+5;  
   jmax=-1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   jmean=0.;  
   for(i=1; i<=imx; i++){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     mi=0;      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
     m=firstpass;      for(mi=1; mi<= wav[i]-1; mi++){
     while(s[m][i] <= nlstate){        for (ii=1;ii<=nlstate+ndeath;ii++)
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)          for (j=1;j<=nlstate+ndeath;j++){
         mw[++mi][i]=m;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(m >=lastpass)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         break;          }
       else        
         m++;        agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
     }/* end while */        ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
     if (s[m][i] > nlstate){        for(d=0; d<dh[mi][i]; d++){  /* Delay between two effective waves */
       mi++;     /* Death is another wave */          /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       /* if(mi==0)  never been interviewed correctly before death */            and mw[mi+1][i]. dh depends on stepm.*/
          /* Only death is a correct wave */          newm=savm;
       mw[mi][i]=m;          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }          cov[2]=agexact;
           if(nagesqr==1)
     wav[i]=mi;            cov[3]= agexact*agexact;
     if(mi==0){          for (kk=1; kk<=cptcovage;kk++) {
       nbwarn++;            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
       if(first==0){          }
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);  
         first=1;          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if(first==1){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
       }          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
     } /* end mi==0 */          savm=oldm;
   } /* End individuals */          oldm=newm;
         } /* end mult */
   for(i=1; i<=imx; i++){        
     for(mi=1; mi<wav[i];mi++){        s1=s[mw[mi][i]][i];
       if (stepm <=0)        s2=s[mw[mi+1][i]][i];
         dh[mi][i]=1;        if(s2==-1){
       else{          printf(" s1=%d, s2=%d i=%d \n", s1, s2, i);
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */          /* exit(1); */
           if (agedc[i] < 2*AGESUP) {        }
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        bbh=(double)bh[mi][i]/(double)stepm; 
             if(j==0) j=1;  /* Survives at least one month after exam */        /* bias is positive if real duration
             else if(j<0){         * is higher than the multiple of stepm and negative otherwise.
               nberr++;         */
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
               j=1; /* Temporary Dangerous patch */          lli=log(out[s1][s2] - savm[s1][s2]);
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);        } else if  ( s2==-1 ) { /* alive */
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          for (j=1,survp=0. ; j<=nlstate; j++) 
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             }          lli= log(survp);
             k=k+1;        }else if (mle==1){
             if (j >= jmax){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
               jmax=j;        } else if(mle==2){
               ijmax=i;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             }        } else if(mle==3){  /* exponential inter-extrapolation */
             if (j <= jmin){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               jmin=j;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
               ijmin=i;          lli=log(out[s1][s2]); /* Original formula */
             }        } else{  /* mle=0 back to 1 */
             sum=sum+j;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/          /*lli=log(out[s1][s2]); */ /* Original formula */
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/        } /* End of if */
           }        ipmx +=1;
         }        sw += weight[i];
         else{        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */        if(globpr){
           fprintf(ficresilk,"%9ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %11.6f %8.4f %8.3f\
           k=k+1;   %11.6f %11.6f %11.6f ", \
           if (j >= jmax) {                  num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
             jmax=j;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
             ijmax=i;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           }            llt +=ll[k]*gipmx/gsw;
           else if (j <= jmin){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
             jmin=j;          }
             ijmin=i;          fprintf(ficresilk," %10.6f\n", -llt);
           }        }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      } /* end of wave */
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/    } /* end of individual */
           if(j<0){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             nberr++;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    if(globpr==0){ /* First time we count the contributions and weights */
           }      gipmx=ipmx;
           sum=sum+j;      gsw=sw;
         }    }
         jk= j/stepm;    return -l;
         jl= j -jk*stepm;  }
         ju= j -(jk+1)*stepm;  
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */  
           if(jl==0){  /*************** function likelione ***********/
             dh[mi][i]=jk;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
             bh[mi][i]=0;  {
           }else{ /* We want a negative bias in order to only have interpolation ie    /* This routine should help understanding what is done with 
                   * at the price of an extra matrix product in likelihood */       the selection of individuals/waves and
             dh[mi][i]=jk+1;       to check the exact contribution to the likelihood.
             bh[mi][i]=ju;       Plotting could be done.
           }     */
         }else{    int k;
           if(jl <= -ju){  
             dh[mi][i]=jk;    if(*globpri !=0){ /* Just counts and sums, no printings */
             bh[mi][i]=jl;       /* bias is positive if real duration      strcpy(fileresilk,"ILK_"); 
                                  * is higher than the multiple of stepm and negative otherwise.      strcat(fileresilk,fileresu);
                                  */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           }        printf("Problem with resultfile: %s\n", fileresilk);
           else{        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
             dh[mi][i]=jk+1;      }
             bh[mi][i]=ju;      fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
           }      fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
           if(dh[mi][i]==0){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
             dh[mi][i]=1; /* At least one step */      for(k=1; k<=nlstate; k++) 
             bh[mi][i]=ju; /* At least one step */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
           }    }
         } /* end if mle */  
       }    *fretone=(*funcone)(p);
     } /* end wave */    if(*globpri !=0){
   }      fclose(ficresilk);
   jmean=sum/k;      if (mle ==0)
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);      else if(mle >=1)
  }        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
       fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 /*********** Tricode ****************************/      
 void tricode(int *Tvar, int **nbcode, int imx)        
 {      for (k=1; k<= nlstate ; k++) {
          fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
   int Ndum[20],ij=1, k, j, i, maxncov=19;  <img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
   int cptcode=0;      }
   cptcoveff=0;      fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
    <img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
   for (k=0; k<maxncov; k++) Ndum[k]=0;      fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
   for (k=1; k<=7; k++) ncodemax[k]=0;  <img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
       fflush(fichtm);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    }
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum    return;
                                modality*/  }
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/  
       Ndum[ij]++; /*store the modality */  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  /*********** Maximum Likelihood Estimation ***************/
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable  
                                        Tvar[j]. If V=sex and male is 0 and  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
                                        female is 1, then  cptcode=1.*/  {
     }    int i,j, iter=0;
     double **xi;
     for (i=0; i<=cptcode; i++) {    double fret;
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */    double fretone; /* Only one call to likelihood */
     }    /*  char filerespow[FILENAMELENGTH];*/
   
     ij=1;  #ifdef NLOPT
     for (i=1; i<=ncodemax[j]; i++) {    int creturn;
       for (k=0; k<= maxncov; k++) {    nlopt_opt opt;
         if (Ndum[k] != 0) {    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
           nbcode[Tvar[j]][ij]=k;    double *lb;
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */    double minf; /* the minimum objective value, upon return */
              double * p1; /* Shifted parameters from 0 instead of 1 */
           ij++;    myfunc_data dinst, *d = &dinst;
         }  #endif
         if (ij > ncodemax[j]) break;  
       }    
     }    xi=matrix(1,npar,1,npar);
   }      for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
  for (k=0; k< maxncov; k++) Ndum[k]=0;        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
  for (i=1; i<=ncovmodel-2; i++) {    strcpy(filerespow,"POW_"); 
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/    strcat(filerespow,fileres);
    ij=Tvar[i];    if((ficrespow=fopen(filerespow,"w"))==NULL) {
    Ndum[ij]++;      printf("Problem with resultfile: %s\n", filerespow);
  }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
  ij=1;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
  for (i=1; i<= maxncov; i++) {    for (i=1;i<=nlstate;i++)
    if((Ndum[i]!=0) && (i<=ncovcol)){      for(j=1;j<=nlstate+ndeath;j++)
      Tvaraff[ij]=i; /*For printing */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
      ij++;    fprintf(ficrespow,"\n");
    }  #ifdef POWELL
  }    powell(p,xi,npar,ftol,&iter,&fret,func);
    #endif
  cptcoveff=ij-1; /*Number of simple covariates*/  
 }  #ifdef NLOPT
   #ifdef NEWUOA
 /*********** Health Expectancies ****************/    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   #else
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   #endif
 {    lb=vector(0,npar-1);
   /* Health expectancies, no variances */    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;    nlopt_set_lower_bounds(opt, lb);
   double age, agelim, hf;    nlopt_set_initial_step1(opt, 0.1);
   double ***p3mat;    
   double eip;    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
     d->function = func;
   pstamp(ficreseij);    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");    nlopt_set_min_objective(opt, myfunc, d);
   fprintf(ficreseij,"# Age");    nlopt_set_xtol_rel(opt, ftol);
   for(i=1; i<=nlstate;i++){    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
     for(j=1; j<=nlstate;j++){      printf("nlopt failed! %d\n",creturn); 
       fprintf(ficreseij," e%1d%1d ",i,j);    }
     }    else {
     fprintf(ficreseij," e%1d. ",i);      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
   }      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
   fprintf(ficreseij,"\n");      iter=1; /* not equal */
     }
      nlopt_destroy(opt);
   if(estepm < stepm){  #endif
     printf ("Problem %d lower than %d\n",estepm, stepm);    free_matrix(xi,1,npar,1,npar);
   }    fclose(ficrespow);
   else  hstepm=estepm;      printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   /* We compute the life expectancy from trapezoids spaced every estepm months    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
    * This is mainly to measure the difference between two models: for example    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
    * if stepm=24 months pijx are given only every 2 years and by summing them  
    * we are calculating an estimate of the Life Expectancy assuming a linear  }
    * progression in between and thus overestimating or underestimating according  
    * to the curvature of the survival function. If, for the same date, we  /**** Computes Hessian and covariance matrix ***/
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
    * to compare the new estimate of Life expectancy with the same linear  {
    * hypothesis. A more precise result, taking into account a more precise    double  **a,**y,*x,pd;
    * curvature will be obtained if estepm is as small as stepm. */    /* double **hess; */
     int i, j;
   /* For example we decided to compute the life expectancy with the smallest unit */    int *indx;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      nstepm is the number of stepm from age to agelin.    double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
      Look at hpijx to understand the reason of that which relies in memory size    void lubksb(double **a, int npar, int *indx, double b[]) ;
      and note for a fixed period like estepm months */    void ludcmp(double **a, int npar, int *indx, double *d) ;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double gompertz(double p[]);
      survival function given by stepm (the optimization length). Unfortunately it    /* hess=matrix(1,npar,1,npar); */
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    printf("\nCalculation of the hessian matrix. Wait...\n");
      results. So we changed our mind and took the option of the best precision.    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   */    for (i=1;i<=npar;i++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      printf("%d-",i);fflush(stdout);
       fprintf(ficlog,"%d-",i);fflush(ficlog);
   agelim=AGESUP;     
   /* If stepm=6 months */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      /*  printf(" %f ",p[i]);
              printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 /* nhstepm age range expressed in number of stepm */    }
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);    
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */    for (i=1;i<=npar;i++) {
   /* if (stepm >= YEARM) hstepm=1;*/      for (j=1;j<=npar;j++)  {
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        if (j>i) { 
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          printf(".%d-%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
   for (age=bage; age<=fage; age ++){          hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
           
           hess[j][i]=hess[i][j];    
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);            /*printf(" %lf ",hess[i][j]);*/
            }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      }
        }
     printf("%d|",(int)age);fflush(stdout);    printf("\n");
     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    fprintf(ficlog,"\n");
      
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     /* Computing expectancies */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     for(i=1; i<=nlstate;i++)    
       for(j=1; j<=nlstate;j++)    a=matrix(1,npar,1,npar);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    y=matrix(1,npar,1,npar);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    x=vector(1,npar);
              indx=ivector(1,npar);
           /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         }    ludcmp(a,npar,indx,&pd);
      
     fprintf(ficreseij,"%3.0f",age );    for (j=1;j<=npar;j++) {
     for(i=1; i<=nlstate;i++){      for (i=1;i<=npar;i++) x[i]=0;
       eip=0;      x[j]=1;
       for(j=1; j<=nlstate;j++){      lubksb(a,npar,indx,x);
         eip +=eij[i][j][(int)age];      for (i=1;i<=npar;i++){ 
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );        matcov[i][j]=x[i];
       }      }
       fprintf(ficreseij,"%9.4f", eip );    }
     }  
     fprintf(ficreseij,"\n");    printf("\n#Hessian matrix#\n");
        fprintf(ficlog,"\n#Hessian matrix#\n");
   }    for (i=1;i<=npar;i++) { 
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=1;j<=npar;j++) { 
   printf("\n");        printf("%.6e ",hess[i][j]);
   fprintf(ficlog,"\n");        fprintf(ficlog,"%.6e ",hess[i][j]);
        }
 }      printf("\n");
       fprintf(ficlog,"\n");
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )    }
   
 {    /* printf("\n#Covariance matrix#\n"); */
   /* Covariances of health expectancies eij and of total life expectancies according    /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
    to initial status i, ei. .    /* for (i=1;i<=npar;i++) {  */
   */    /*   for (j=1;j<=npar;j++) {  */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;    /*     printf("%.6e ",matcov[i][j]); */
   double age, agelim, hf;    /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
   double ***p3matp, ***p3matm, ***varhe;    /*   } */
   double **dnewm,**doldm;    /*   printf("\n"); */
   double *xp, *xm;    /*   fprintf(ficlog,"\n"); */
   double **gp, **gm;    /* } */
   double ***gradg, ***trgradg;  
   int theta;    /* Recompute Inverse */
     /* for (i=1;i<=npar;i++) */
   double eip, vip;    /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
     /* ludcmp(a,npar,indx,&pd); */
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);  
   xp=vector(1,npar);    /*  printf("\n#Hessian matrix recomputed#\n"); */
   xm=vector(1,npar);  
   dnewm=matrix(1,nlstate*nlstate,1,npar);    /* for (j=1;j<=npar;j++) { */
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);    /*   for (i=1;i<=npar;i++) x[i]=0; */
      /*   x[j]=1; */
   pstamp(ficresstdeij);    /*   lubksb(a,npar,indx,x); */
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");    /*   for (i=1;i<=npar;i++){  */
   fprintf(ficresstdeij,"# Age");    /*     y[i][j]=x[i]; */
   for(i=1; i<=nlstate;i++){    /*     printf("%.3e ",y[i][j]); */
     for(j=1; j<=nlstate;j++)    /*     fprintf(ficlog,"%.3e ",y[i][j]); */
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);    /*   } */
     fprintf(ficresstdeij," e%1d. ",i);    /*   printf("\n"); */
   }    /*   fprintf(ficlog,"\n"); */
   fprintf(ficresstdeij,"\n");    /* } */
   
   pstamp(ficrescveij);    /* Verifying the inverse matrix */
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");  #ifdef DEBUGHESS
   fprintf(ficrescveij,"# Age");    y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++){     printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
       cptj= (j-1)*nlstate+i;     fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
       for(i2=1; i2<=nlstate;i2++)  
         for(j2=1; j2<=nlstate;j2++){    for (j=1;j<=npar;j++) {
           cptj2= (j2-1)*nlstate+i2;      for (i=1;i<=npar;i++){ 
           if(cptj2 <= cptj)        printf("%.2f ",y[i][j]);
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);        fprintf(ficlog,"%.2f ",y[i][j]);
         }      }
     }      printf("\n");
   fprintf(ficrescveij,"\n");      fprintf(ficlog,"\n");
      }
   if(estepm < stepm){  #endif
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    free_matrix(a,1,npar,1,npar);
   else  hstepm=estepm;      free_matrix(y,1,npar,1,npar);
   /* We compute the life expectancy from trapezoids spaced every estepm months    free_vector(x,1,npar);
    * This is mainly to measure the difference between two models: for example    free_ivector(indx,1,npar);
    * if stepm=24 months pijx are given only every 2 years and by summing them    /* free_matrix(hess,1,npar,1,npar); */
    * we are calculating an estimate of the Life Expectancy assuming a linear  
    * progression in between and thus overestimating or underestimating according  
    * to the curvature of the survival function. If, for the same date, we  }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear  /*************** hessian matrix ****************/
    * hypothesis. A more precise result, taking into account a more precise  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
    * curvature will be obtained if estepm is as small as stepm. */  { /* Around values of x, computes the function func and returns the scales delti and hessian */
     int i;
   /* For example we decided to compute the life expectancy with the smallest unit */    int l=1, lmax=20;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double k1,k2, res, fx;
      nhstepm is the number of hstepm from age to agelim    double p2[MAXPARM+1]; /* identical to x */
      nstepm is the number of stepm from age to agelin.    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      Look at hpijx to understand the reason of that which relies in memory size    int k=0,kmax=10;
      and note for a fixed period like estepm months */    double l1;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    fx=func(x);
      means that if the survival funtion is printed only each two years of age and if    for (i=1;i<=npar;i++) p2[i]=x[i];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
      results. So we changed our mind and took the option of the best precision.      l1=pow(10,l);
   */      delts=delt;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
   /* If stepm=6 months */        p2[theta]=x[theta] +delt;
   /* nhstepm age range expressed in number of stepm */        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
   agelim=AGESUP;        p2[theta]=x[theta]-delt;
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);        k2=func(p2)-fx;
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */        /*res= (k1-2.0*fx+k2)/delt/delt; */
   /* if (stepm >= YEARM) hstepm=1;*/        res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        
    #ifdef DEBUGHESSII
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);  #endif
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   gp=matrix(0,nhstepm,1,nlstate*nlstate);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   gm=matrix(0,nhstepm,1,nlstate*nlstate);          k=kmax;
         }
   for (age=bage; age<=fage; age ++){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
            delts=delt;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        }
       } /* End loop k */
     /* Computing  Variances of health expectancies */    }
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to    delti[theta]=delts;
        decrease memory allocation */    return res; 
     for(theta=1; theta <=npar; theta++){    
       for(i=1; i<=npar; i++){  }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
         xm[i] = x[i] - (i==theta ?delti[theta]:0);  double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       }  {
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);      int i;
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);      int l=1, lmax=20;
      double k1,k2,k3,k4,res,fx;
       for(j=1; j<= nlstate; j++){    double p2[MAXPARM+1];
         for(i=1; i<=nlstate; i++){    int k, kmax=1;
           for(h=0; h<=nhstepm-1; h++){    double v1, v2, cv12, lc1, lc2;
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;  
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;    int firstime=0;
           }    
         }    fx=func(x);
       }    for (k=1; k<=kmax; k=k+10) {
            for (i=1;i<=npar;i++) p2[i]=x[i];
       for(ij=1; ij<= nlstate*nlstate; ij++)      p2[thetai]=x[thetai]+delti[thetai]*k;
         for(h=0; h<=nhstepm-1; h++){      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];      k1=func(p2)-fx;
         }    
     }/* End theta */      p2[thetai]=x[thetai]+delti[thetai]*k;
          p2[thetaj]=x[thetaj]-delti[thetaj]*k;
          k2=func(p2)-fx;
     for(h=0; h<=nhstepm-1; h++)    
       for(j=1; j<=nlstate*nlstate;j++)      p2[thetai]=x[thetai]-delti[thetai]*k;
         for(theta=1; theta <=npar; theta++)      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
           trgradg[h][j][theta]=gradg[h][theta][j];      k3=func(p2)-fx;
        
       p2[thetai]=x[thetai]-delti[thetai]*k;
      for(ij=1;ij<=nlstate*nlstate;ij++)      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
       for(ji=1;ji<=nlstate*nlstate;ji++)      k4=func(p2)-fx;
         varhe[ij][ji][(int)age] =0.;      res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
       if(k1*k2*k3*k4 <0.){
      printf("%d|",(int)age);fflush(stdout);        firstime=1;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        kmax=kmax+10;
      for(h=0;h<=nhstepm-1;h++){      }
       for(k=0;k<=nhstepm-1;k++){      if(kmax >=10 || firstime ==1){
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);        printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);        fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
         for(ij=1;ij<=nlstate*nlstate;ij++)        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           for(ji=1;ji<=nlstate*nlstate;ji++)        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;      }
       }  #ifdef DEBUGHESSIJ
     }      v1=hess[thetai][thetai];
       v2=hess[thetaj][thetaj];
     /* Computing expectancies */      cv12=res;
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);        /* Computing eigen value of Hessian matrix */
     for(i=1; i<=nlstate;i++)      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       for(j=1; j<=nlstate;j++)      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      if ((lc2 <0) || (lc1 <0) ){
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;        printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
                  fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         }      }
   #endif
     fprintf(ficresstdeij,"%3.0f",age );    }
     for(i=1; i<=nlstate;i++){    return res;
       eip=0.;  }
       vip=0.;  
       for(j=1; j<=nlstate;j++){      /* Not done yet: Was supposed to fix if not exactly at the maximum */
         eip += eij[i][j][(int)age];  /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */  /* { */
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];  /*   int i; */
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );  /*   int l=1, lmax=20; */
       }  /*   double k1,k2,k3,k4,res,fx; */
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));  /*   double p2[MAXPARM+1]; */
     }  /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
     fprintf(ficresstdeij,"\n");  /*   int k=0,kmax=10; */
   /*   double l1; */
     fprintf(ficrescveij,"%3.0f",age );    
     for(i=1; i<=nlstate;i++)  /*   fx=func(x); */
       for(j=1; j<=nlstate;j++){  /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
         cptj= (j-1)*nlstate+i;  /*     l1=pow(10,l); */
         for(i2=1; i2<=nlstate;i2++)  /*     delts=delt; */
           for(j2=1; j2<=nlstate;j2++){  /*     for(k=1 ; k <kmax; k=k+1){ */
             cptj2= (j2-1)*nlstate+i2;  /*       delt = delti*(l1*k); */
             if(cptj2 <= cptj)  /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
           }  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
       }  /*       k1=func(p2)-fx; */
     fprintf(ficrescveij,"\n");        
      /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
   }  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);  /*       k2=func(p2)-fx; */
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);        
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*       k3=func(p2)-fx; */
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
   printf("\n");  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
   fprintf(ficlog,"\n");  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
   /*       k4=func(p2)-fx; */
   free_vector(xm,1,npar);  /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
   free_vector(xp,1,npar);  /* #ifdef DEBUGHESSIJ */
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);  /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);  /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);  /* #endif */
 }  /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
   /*      k=kmax; */
 /************ Variance ******************/  /*       } */
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])  /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
 {  /*      k=kmax; l=lmax*10; */
   /* Variance of health expectancies */  /*       } */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
   /* double **newm;*/  /*      delts=delt; */
   double **dnewm,**doldm;  /*       } */
   double **dnewmp,**doldmp;  /*     } /\* End loop k *\/ */
   int i, j, nhstepm, hstepm, h, nstepm ;  /*   } */
   int k, cptcode;  /*   delti[theta]=delts; */
   double *xp;  /*   return res;  */
   double **gp, **gm;  /* for var eij */  /* } */
   double ***gradg, ***trgradg; /*for var eij */  
   double **gradgp, **trgradgp; /* for var p point j */  
   double *gpp, *gmp; /* for var p point j */  /************** Inverse of matrix **************/
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */  void ludcmp(double **a, int n, int *indx, double *d) 
   double ***p3mat;  { 
   double age,agelim, hf;    int i,imax,j,k; 
   double ***mobaverage;    double big,dum,sum,temp; 
   int theta;    double *vv; 
   char digit[4];   
   char digitp[25];    vv=vector(1,n); 
     *d=1.0; 
   char fileresprobmorprev[FILENAMELENGTH];    for (i=1;i<=n;i++) { 
       big=0.0; 
   if(popbased==1){      for (j=1;j<=n;j++) 
     if(mobilav!=0)        if ((temp=fabs(a[i][j])) > big) big=temp; 
       strcpy(digitp,"-populbased-mobilav-");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     else strcpy(digitp,"-populbased-nomobil-");      vv[i]=1.0/big; 
   }    } 
   else    for (j=1;j<=n;j++) { 
     strcpy(digitp,"-stablbased-");      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
   if (mobilav!=0) {        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        a[i][j]=sum; 
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      } 
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      big=0.0; 
       printf(" Error in movingaverage mobilav=%d\n",mobilav);      for (i=j;i<=n;i++) { 
     }        sum=a[i][j]; 
   }        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
   strcpy(fileresprobmorprev,"prmorprev");        a[i][j]=sum; 
   sprintf(digit,"%-d",ij);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/          big=dum; 
   strcat(fileresprobmorprev,digit); /* Tvar to be done */          imax=i; 
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */        } 
   strcat(fileresprobmorprev,fileres);      } 
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      if (j != imax) { 
     printf("Problem with resultfile: %s\n", fileresprobmorprev);        for (k=1;k<=n;k++) { 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);          dum=a[imax][k]; 
   }          a[imax][k]=a[j][k]; 
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          a[j][k]=dum; 
          } 
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        *d = -(*d); 
   pstamp(ficresprobmorprev);        vv[imax]=vv[j]; 
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);      } 
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);      indx[j]=imax; 
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
     fprintf(ficresprobmorprev," p.%-d SE",j);      if (j != n) { 
     for(i=1; i<=nlstate;i++)        dum=1.0/(a[j][j]); 
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   }        } 
   fprintf(ficresprobmorprev,"\n");    } 
   fprintf(ficgp,"\n# Routine varevsij");    free_vector(vv,1,n);  /* Doesn't work */
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/  ;
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");  } 
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);  
 /*   } */  void lubksb(double **a, int n, int *indx, double b[]) 
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  { 
   pstamp(ficresvij);    int i,ii=0,ip,j; 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");    double sum; 
   if(popbased==1)   
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");    for (i=1;i<=n;i++) { 
   else      ip=indx[i]; 
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");      sum=b[ip]; 
   fprintf(ficresvij,"# Age");      b[ip]=b[i]; 
   for(i=1; i<=nlstate;i++)      if (ii) 
     for(j=1; j<=nlstate;j++)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);      else if (sum) ii=i; 
   fprintf(ficresvij,"\n");      b[i]=sum; 
     } 
   xp=vector(1,npar);    for (i=n;i>=1;i--) { 
   dnewm=matrix(1,nlstate,1,npar);      sum=b[i]; 
   doldm=matrix(1,nlstate,1,nlstate);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);      b[i]=sum/a[i][i]; 
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    } 
   } 
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);  
   gpp=vector(nlstate+1,nlstate+ndeath);  void pstamp(FILE *fichier)
   gmp=vector(nlstate+1,nlstate+ndeath);  {
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
    }
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);  /************ Frequencies ********************/
   }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \
   else  hstepm=estepm;                      int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[],\
   /* For example we decided to compute the life expectancy with the smallest unit */                    int firstpass,  int lastpass, int stepm, int weightopt, char model[])
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  {  /* Some frequencies */
      nhstepm is the number of hstepm from age to agelim    
      nstepm is the number of stepm from age to agelin.    int i, m, jk, j1, bool, z1,j;
      Look at hpijx to understand the reason of that which relies in memory size    int mi; /* Effective wave */
      and note for a fixed period like k years */    int first;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double ***freq; /* Frequencies */
      survival function given by stepm (the optimization length). Unfortunately it    double *pp, **prop;
      means that if the survival funtion is printed every two years of age and if    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH];
      results. So we changed our mind and took the option of the best precision.    double agebegin, ageend;
   */      
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    pp=vector(1,nlstate);
   agelim = AGESUP;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    strcpy(fileresp,"P_");
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    strcat(fileresp,fileresu);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    /*strcat(fileresphtm,fileresu);*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     gp=matrix(0,nhstepm,1,nlstate);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     gm=matrix(0,nhstepm,1,nlstate);      exit(0);
     }
   
     for(theta=1; theta <=npar; theta++){    strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
       }      fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        fflush(ficlog);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      exit(70); 
     }
       if (popbased==1) {    else{
         if(mobilav ==0){      fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
           for(i=1; i<=nlstate;i++)  <hr size=\"2\" color=\"#EC5E5E\"> \n\
             prlim[i][i]=probs[(int)age][i][ij];  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
         }else{ /* mobilav */            fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
           for(i=1; i<=nlstate;i++)    }
             prlim[i][i]=mobaverage[(int)age][i][ij];      fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition</h4>\n",fileresphtm, fileresphtm);
         }      
       }    strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
      if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
       for(j=1; j<= nlstate; j++){      printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
         for(h=0; h<=nhstepm; h++){      fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      fflush(ficlog);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      exit(70); 
         }    }
       }    else{
       /* This for computing probability of death (h=1 means      fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
          computed over hstepm matrices product = hstepm*stepm months)  <hr size=\"2\" color=\"#EC5E5E\"> \n\
          as a weighted average of prlim.  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
       */            fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    }
         for(i=1,gpp[j]=0.; i<= nlstate; i++)    fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions by age at begin of transition </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr);
           gpp[j] += prlim[i][i]*p3mat[i][j][1];  
       }        freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       /* end probability of death */    j1=0;
     
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */    j=cptcoveff;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    first=1;
    
       if (popbased==1) {    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){ /* Loop on covariates combination */
         if(mobilav ==0){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           for(i=1; i<=nlstate;i++)          scanf("%d", i);*/
             prlim[i][i]=probs[(int)age][i][ij];        for (i=-5; i<=nlstate+ndeath; i++)  
         }else{ /* mobilav */          for (jk=-5; jk<=nlstate+ndeath; jk++)  
           for(i=1; i<=nlstate;i++)            for(m=iagemin; m <= iagemax+3; m++)
             prlim[i][i]=mobaverage[(int)age][i][ij];              freq[i][jk][m]=0;
         }        
       }        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
       for(j=1; j<= nlstate; j++){            prop[i][m]=0;
         for(h=0; h<=nhstepm; h++){        
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        dateintsum=0;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        k2cpt=0;
         }        for (i=1; i<=imx; i++) { /* For each individual i */
       }          bool=1;
       /* This for computing probability of death (h=1 means          if (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
          computed over hstepm matrices product = hstepm*stepm months)            for (z1=1; z1<=cptcoveff; z1++)       
          as a weighted average of prlim.              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
       */                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){                bool=0;
         for(i=1,gmp[j]=0.; i<= nlstate; i++)                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
          gmp[j] += prlim[i][i]*p3mat[i][j][1];                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
       }                      j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
       /* end probability of death */                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
               } 
       for(j=1; j<= nlstate; j++) /* vareij */          } /* cptcovn > 0 */
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          if (bool==1){
         }            /* for(m=firstpass; m<=lastpass; m++){ */
             for(mi=1; mi<wav[i];mi++){
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */              m=mw[mi][i];
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];              /* dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective (mi) waves m=mw[mi][i]
       }                 and mw[mi+1][i]. dh depends on stepm. */
               agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
     } /* End theta */              ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /* Age at end of wave and transition */
               if(m >=firstpass && m <=lastpass){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */                k2=anint[m][i]+(mint[m][i]/12.);
                 /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     for(h=0; h<=nhstepm; h++) /* veij */                if(agev[m][i]==0) agev[m][i]=iagemax+1;  /* All ages equal to 0 are in iagemax+1 */
       for(j=1; j<=nlstate;j++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;  /* All ages equal to 1 are in iagemax+2 */
         for(theta=1; theta <=npar; theta++)                if (s[m][i]>0 && s[m][i]<=nlstate)  /* If status at wave m is known and a live state */
           trgradg[h][j][theta]=gradg[h][theta][j];                  prop[s[m][i]][(int)agev[m][i]] += weight[i];  /* At age of beginning of transition, where status is known */
                 if (m<lastpass) {
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */                  /* if(s[m][i]==4 && s[m+1][i]==4) */
       for(theta=1; theta <=npar; theta++)                  /*   printf(" num=%ld m=%d, i=%d s1=%d s2=%d agev at m=%d\n", num[i], m, i,s[m][i],s[m+1][i], (int)agev[m][i]); */
         trgradgp[j][theta]=gradgp[theta][j];                  if(s[m][i]==-1)
                      printf(" num=%ld m=%d, i=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[i], m, i,s[m][i],s[m+1][i], (int)agev[m][i],agebegin, ageend, (int)((agebegin+ageend)/2.));
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; /* At age of beginning of transition, where status is known */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */                  /* freq[s[m][i]][s[m+1][i]][(int)((agebegin+ageend)/2.)] += weight[i]; */
     for(i=1;i<=nlstate;i++)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */
       for(j=1;j<=nlstate;j++)                }
         vareij[i][j][(int)age] =0.;              }  
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3)) && (anint[m][i]!=9999) && (mint[m][i]!=99)) {
     for(h=0;h<=nhstepm;h++){                dateintsum=dateintsum+k2;
       for(k=0;k<=nhstepm;k++){                k2cpt++;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);                /* printf("i=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",i, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);              }
         for(i=1;i<=nlstate;i++)              /*}*/
           for(j=1;j<=nlstate;j++)            } /* end m */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          } /* end bool */
       }        } /* end i = 1 to imx */
     }         
          /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     /* pptj */        pstamp(ficresp);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);        if  (cptcovn>0) {
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);          fprintf(ficresp, "\n#********** Variable "); 
     for(j=nlstate+1;j<=nlstate+ndeath;j++)          fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); 
       for(i=nlstate+1;i<=nlstate+ndeath;i++)          fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); 
         varppt[j][i]=doldmp[j][i];          for (z1=1; z1<=cptcoveff; z1++){
     /* end ppptj */            fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
     /*  x centered again */            fprintf(ficresphtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);              fprintf(ficresphtmfr, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);          }
              fprintf(ficresp, "**********\n#");
     if (popbased==1) {          fprintf(ficresphtm, "**********</h3>\n");
       if(mobilav ==0){          fprintf(ficresphtmfr, "**********</h3>\n");
         for(i=1; i<=nlstate;i++)          fprintf(ficlog, "\n#********** Variable "); 
           prlim[i][i]=probs[(int)age][i][ij];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
       }else{ /* mobilav */          fprintf(ficlog, "**********\n");
         for(i=1; i<=nlstate;i++)        }
           prlim[i][i]=mobaverage[(int)age][i][ij];        fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");
       }        for(i=1; i<=nlstate;i++) {
     }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                        fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);
     /* This for computing probability of death (h=1 means        }
        computed over hstepm (estepm) matrices product = hstepm*stepm months)        fprintf(ficresp, "\n");
        as a weighted average of prlim.        fprintf(ficresphtm, "\n");
     */        
     for(j=nlstate+1;j<=nlstate+ndeath;j++){        /* Header of frequency table by age */
       for(i=1,gmp[j]=0.;i<= nlstate; i++)        fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">");
         gmp[j] += prlim[i][i]*p3mat[i][j][1];        fprintf(ficresphtmfr,"<th>Age</th> ");
     }            for(jk=-1; jk <=nlstate+ndeath; jk++){
     /* end probability of death */          for(m=-1; m <=nlstate+ndeath; m++){
             if(jk!=0 && m!=0)
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);              fprintf(ficresphtmfr,"<th>%d%d</th> ",jk,m);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){          }
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        }
       for(i=1; i<=nlstate;i++){        fprintf(ficresphtmfr, "\n");
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);        
       }        /* For each age */
     }        for(i=iagemin; i <= iagemax+3; i++){
     fprintf(ficresprobmorprev,"\n");          fprintf(ficresphtm,"<tr>");
           if(i==iagemax+1){
     fprintf(ficresvij,"%.0f ",age );            fprintf(ficlog,"1");
     for(i=1; i<=nlstate;i++)            fprintf(ficresphtmfr,"<tr><th>0</th> ");
       for(j=1; j<=nlstate;j++){          }else if(i==iagemax+2){
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);            fprintf(ficlog,"0");
       }            fprintf(ficresphtmfr,"<tr><th>Unknown</th> ");
     fprintf(ficresvij,"\n");          }else if(i==iagemax+3){
     free_matrix(gp,0,nhstepm,1,nlstate);            fprintf(ficlog,"Total");
     free_matrix(gm,0,nhstepm,1,nlstate);            fprintf(ficresphtmfr,"<tr><th>Total</th> ");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          }else{
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            if(first==1){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              first=0;
   } /* End age */              printf("See log file for details...\n");
   free_vector(gpp,nlstate+1,nlstate+ndeath);            }
   free_vector(gmp,nlstate+1,nlstate+ndeath);            fprintf(ficresphtmfr,"<tr><th>%d</th> ",i);
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);            fprintf(ficlog,"Age %d", i);
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          }
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");          for(jk=1; jk <=nlstate ; jk++){
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");              pp[jk] += freq[jk][m][i]; 
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */          }
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */          for(jk=1; jk <=nlstate ; jk++){
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */            for(m=-1, pos=0; m <=0 ; m++)
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));              pos += freq[jk][m][i];
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));            if(pp[jk]>=1.e-10){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));              if(first==1){
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);              }
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 */            }else{
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */              if(first==1)
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   free_vector(xp,1,npar);            }
   free_matrix(doldm,1,nlstate,1,nlstate);          }
   free_matrix(dnewm,1,nlstate,1,npar);  
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          for(jk=1; jk <=nlstate ; jk++){
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              pp[jk] += freq[jk][m][i];
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }       
   fclose(ficresprobmorprev);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   fflush(ficgp);            pos += pp[jk];
   fflush(fichtm);            posprop += prop[jk][i];
 }  /* end varevsij */          }
           for(jk=1; jk <=nlstate ; jk++){
 /************ Variance of prevlim ******************/            if(pos>=1.e-5){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])              if(first==1)
 {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   /* Variance of prevalence limit */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/            }else{
   double **newm;              if(first==1)
   double **dnewm,**doldm;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   int i, j, nhstepm, hstepm;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   int k, cptcode;            }
   double *xp;            if( i <= iagemax){
   double *gp, *gm;              if(pos>=1.e-5){
   double **gradg, **trgradg;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   double age,agelim;                fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   int theta;                /*probs[i][jk][j1]= pp[jk]/pos;*/
                  /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   pstamp(ficresvpl);              }
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");              else{
   fprintf(ficresvpl,"# Age");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   for(i=1; i<=nlstate;i++)                fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",i, prop[jk][i],posprop);
       fprintf(ficresvpl," %1d-%1d",i,i);              }
   fprintf(ficresvpl,"\n");            }
           }
   xp=vector(1,npar);          
   dnewm=matrix(1,nlstate,1,npar);          for(jk=-1; jk <=nlstate+ndeath; jk++){
   doldm=matrix(1,nlstate,1,nlstate);            for(m=-1; m <=nlstate+ndeath; m++){
                if(freq[jk][m][i] !=0 ) { /* minimizing output */
   hstepm=1*YEARM; /* Every year of age */                if(first==1){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   agelim = AGESUP;                }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              }
     if (stepm >= YEARM) hstepm=1;              if(jk!=0 && m!=0)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[jk][m][i]);
     gradg=matrix(1,npar,1,nlstate);            }
     gp=vector(1,nlstate);          }
     gm=vector(1,nlstate);          fprintf(ficresphtmfr,"</tr>\n ");
           if(i <= iagemax){
     for(theta=1; theta <=npar; theta++){            fprintf(ficresp,"\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */            fprintf(ficresphtm,"</tr>\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          }
       }          if(first==1)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            printf("Others in log...\n");
       for(i=1;i<=nlstate;i++)          fprintf(ficlog,"\n");
         gp[i] = prlim[i][i];        } /* end loop i */
            fprintf(ficresphtm,"</table>\n");
       for(i=1; i<=npar; i++) /* Computes gradient */        fprintf(ficresphtmfr,"</table>\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        /*}*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    } /* end j1 */
       for(i=1;i<=nlstate;i++)    dateintmean=dateintsum/k2cpt; 
         gm[i] = prlim[i][i];   
     fclose(ficresp);
       for(i=1;i<=nlstate;i++)    fclose(ficresphtm);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    fclose(ficresphtmfr);
     } /* End theta */    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
     trgradg =matrix(1,nlstate,1,npar);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
     for(j=1; j<=nlstate;j++)  }
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     for(i=1;i<=nlstate;i++)  {  
       varpl[i][(int)age] =0.;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);       We still use firstpass and lastpass as another selection.
     for(i=1;i<=nlstate;i++)    */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */   
     int i, m, jk, j1, bool, z1,j;
     fprintf(ficresvpl,"%.0f ",age );    int mi; /* Effective wave */
     for(i=1; i<=nlstate;i++)    int iage;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double agebegin, ageend;
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);    double **prop;
     free_vector(gm,1,nlstate);    double posprop; 
     free_matrix(gradg,1,npar,1,nlstate);    double  y2; /* in fractional years */
     free_matrix(trgradg,1,nlstate,1,npar);    int iagemin, iagemax;
   } /* End age */    int first; /** to stop verbosity which is redirected to log file */
   
   free_vector(xp,1,npar);    iagemin= (int) agemin;
   free_matrix(doldm,1,nlstate,1,npar);    iagemax= (int) agemax;
   free_matrix(dnewm,1,nlstate,1,nlstate);    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
 }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
 /************ Variance of one-step probabilities  ******************/    
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])    /*j=cptcoveff;*/
 {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   int i, j=0,  i1, k1, l1, t, tj;    
   int k2, l2, j1,  z1;    first=1;
   int k=0,l, cptcode;    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   int first=1, first1;      for (i=1; i<=nlstate; i++)  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;        for(iage=iagemin; iage <= iagemax+3; iage++)
   double **dnewm,**doldm;          prop[i][iage]=0.0;
   double *xp;      
   double *gp, *gm;      for (i=1; i<=imx; i++) { /* Each individual */
   double **gradg, **trgradg;        bool=1;
   double **mu;        if  (cptcovn>0) {  /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
   double age,agelim, cov[NCOVMAX];          for (z1=1; z1<=cptcoveff; z1++) 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */            if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) 
   int theta;              bool=0;
   char fileresprob[FILENAMELENGTH];        } 
   char fileresprobcov[FILENAMELENGTH];        if (bool==1) { 
   char fileresprobcor[FILENAMELENGTH];          /* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */
           for(mi=1; mi<wav[i];mi++){
   double ***varpij;            m=mw[mi][i];
             agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
   strcpy(fileresprob,"prob");            /* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */
   strcat(fileresprob,fileres);            if(m >=firstpass && m <=lastpass){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     printf("Problem with resultfile: %s\n", fileresprob);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   strcpy(fileresprobcov,"probcov");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   strcat(fileresprobcov,fileres);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     printf("Problem with resultfile: %s\n", fileresprobcov);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);                  prop[s[m][i]][iagemax+3] += weight[i]; 
   }                } /* end valid statuses */ 
   strcpy(fileresprobcor,"probcor");              } /* end selection of dates */
   strcat(fileresprobcor,fileres);            } /* end selection of waves */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          } /* end effective waves */
     printf("Problem with resultfile: %s\n", fileresprobcor);        } /* end bool */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      }
   }      for(i=iagemin; i <= iagemax+3; i++){  
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          posprop += prop[jk][i]; 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        } 
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        for(jk=1; jk <=nlstate ; jk++){       
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          if( i <=  iagemax){ 
   pstamp(ficresprob);            if(posprop>=1.e-5){ 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");              probs[i][jk][j1]= prop[jk][i]/posprop;
   fprintf(ficresprob,"# Age");            } else{
   pstamp(ficresprobcov);              if(first==1){
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");                first=0;
   fprintf(ficresprobcov,"# Age");                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
   pstamp(ficresprobcor);              }
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");            }
   fprintf(ficresprobcor,"# Age");          } 
         }/* end jk */ 
       }/* end i */ 
   for(i=1; i<=nlstate;i++)      /*} *//* end i1 */
     for(j=1; j<=(nlstate+ndeath);j++){    } /* end j1 */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    /*free_vector(pp,1,nlstate);*/
     }      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
  /* fprintf(ficresprob,"\n");  }  /* End of prevalence */
   fprintf(ficresprobcov,"\n");  
   fprintf(ficresprobcor,"\n");  /************* Waves Concatenation ***************/
  */  
  xp=vector(1,npar);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  {
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);       Death is a valid wave (if date is known).
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   first=1;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   fprintf(ficgp,"\n# Routine varprob");       and mw[mi+1][i]. dh depends on stepm.
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");       */
   fprintf(fichtm,"\n");  
     int i, mi, m;
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\       double sum=0., jmean=0.;*/
   file %s<br>\n",optionfilehtmcov);    int first, firstwo;
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\    int j, k=0,jk, ju, jl;
 and drawn. It helps understanding how is the covariance between two incidences.\    double sum=0.;
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    first=0;
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \    firstwo=0;
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \    jmin=100000;
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \    jmax=-1;
 standard deviations wide on each axis. <br>\    jmean=0.;
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\    for(i=1; i<=imx; i++){  /* For simple cases and if state is death */
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\      mi=0;
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");      m=firstpass;
       while(s[m][i] <= nlstate){  /* a live state */
   cov[1]=1;        if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */
   tj=cptcoveff;          mw[++mi][i]=m;
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        }
   j1=0;        if(m >=lastpass){
   for(t=1; t<=tj;t++){          if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){
     for(i1=1; i1<=ncodemax[t];i1++){            printf("Information! Unknown health status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
       j1++;            fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
       if  (cptcovn>0) {            mw[++mi][i]=m;
         fprintf(ficresprob, "\n#********** Variable ");          }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          if(s[m][i]==-2){ /* Vital status is really unknown */
         fprintf(ficresprob, "**********\n#\n");            nbwarn++;
         fprintf(ficresprobcov, "\n#********** Variable ");            if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified? */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
         fprintf(ficresprobcov, "**********\n#\n");              fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
                    }
         fprintf(ficgp, "\n#********** Variable ");            break;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }
         fprintf(ficgp, "**********\n#\n");          break;
                }
                else
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");          m++;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      }/* end while */
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      
              /* After last pass */
         fprintf(ficresprobcor, "\n#********** Variable ");          if (s[m][i] > nlstate){  /* In a death state */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        mi++;     /* Death is another wave */
         fprintf(ficresprobcor, "**********\n#");            /* if(mi==0)  never been interviewed correctly before death */
       }           /* Only death is a correct wave */
              mw[mi][i]=m;
       for (age=bage; age<=fage; age ++){      }else if ((int) andc[i] != 9999) { /* Status is either death or negative. A death occured after lastpass, we can't take it into account because of potential bias */
         cov[2]=age;        /* m++; */
         for (k=1; k<=cptcovn;k++) {        /* mi++; */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        /* s[m][i]=nlstate+1;  /\* We are setting the status to the last of non live state *\/ */
         }        /* mw[mi][i]=m; */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        nberr++;
         for (k=1; k<=cptcovprod;k++)        if(firstwo==0){
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          printf("Error! Death for individual %ld line=%d  occurred %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
                  fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          firstwo=1;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        }else if(firstwo==1){
         gp=vector(1,(nlstate)*(nlstate+ndeath));          fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
         gm=vector(1,(nlstate)*(nlstate+ndeath));        }
          }
         for(theta=1; theta <=npar; theta++){      wav[i]=mi;
           for(i=1; i<=npar; i++)      if(mi==0){
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);        nbwarn++;
                  if(first==0){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
                    first=1;
           k=0;        }
           for(i=1; i<= (nlstate); i++){        if(first==1){
             for(j=1; j<=(nlstate+ndeath);j++){          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
               k=k+1;        }
               gp[k]=pmmij[i][j];      } /* end mi==0 */
             }    } /* End individuals */
           }    /* wav and mw are no more changed */
            
           for(i=1; i<=npar; i++)    
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    for(i=1; i<=imx; i++){
          for(mi=1; mi<wav[i];mi++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        if (stepm <=0)
           k=0;          dh[mi][i]=1;
           for(i=1; i<=(nlstate); i++){        else{
             for(j=1; j<=(nlstate+ndeath);j++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
               k=k+1;            if (agedc[i] < 2*AGESUP) {
               gm[k]=pmmij[i][j];              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             }              if(j==0) j=1;  /* Survives at least one month after exam */
           }              else if(j<0){
                      nberr++;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];                  j=1; /* Temporary Dangerous patch */
         }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           for(theta=1; theta <=npar; theta++)              }
             trgradg[j][theta]=gradg[theta][j];              k=k+1;
                      if (j >= jmax){
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);                jmax=j;
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);                ijmax=i;
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              }
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              if (j <= jmin){
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                jmin=j;
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                ijmin=i;
               }
         pmij(pmmij,cov,ncovmodel,x,nlstate);              sum=sum+j;
                      /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         k=0;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         for(i=1; i<=(nlstate); i++){            }
           for(j=1; j<=(nlstate+ndeath);j++){          }
             k=k+1;          else{
             mu[k][(int) age]=pmmij[i][j];            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
         }  
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)            k=k+1;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)            if (j >= jmax) {
             varpij[i][j][(int)age] = doldm[i][j];              jmax=j;
               ijmax=i;
         /*printf("\n%d ",(int)age);            }
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            else if (j <= jmin){
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              jmin=j;
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              ijmin=i;
           }*/            }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         fprintf(ficresprob,"\n%d ",(int)age);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         fprintf(ficresprobcov,"\n%d ",(int)age);            if(j<0){
         fprintf(ficresprobcor,"\n%d ",(int)age);              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            sum=sum+j;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          }
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          jk= j/stepm;
         }          jl= j -jk*stepm;
         i=0;          ju= j -(jk+1)*stepm;
         for (k=1; k<=(nlstate);k++){          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           for (l=1; l<=(nlstate+ndeath);l++){            if(jl==0){
             i=i++;              dh[mi][i]=jk;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);              bh[mi][i]=0;
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);            }else{ /* We want a negative bias in order to only have interpolation ie
             for (j=1; j<=i;j++){                    * to avoid the price of an extra matrix product in likelihood */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);              dh[mi][i]=jk+1;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));              bh[mi][i]=ju;
             }            }
           }          }else{
         }/* end of loop for state */            if(jl <= -ju){
       } /* end of loop for age */              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
       /* Confidence intervalle of pij  */                                   * is higher than the multiple of stepm and negative otherwise.
       /*                                   */
         fprintf(ficgp,"\nset noparametric;unset label");            }
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");            else{
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              dh[mi][i]=jk+1;
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);              bh[mi][i]=ju;
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);            }
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);            if(dh[mi][i]==0){
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);              dh[mi][i]=1; /* At least one step */
       */              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            }
       first1=1;          } /* end if mle */
       for (k2=1; k2<=(nlstate);k2++){        }
         for (l2=1; l2<=(nlstate+ndeath);l2++){      } /* end wave */
           if(l2==k2) continue;    }
           j=(k2-1)*(nlstate+ndeath)+l2;    jmean=sum/k;
           for (k1=1; k1<=(nlstate);k1++){    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
             for (l1=1; l1<=(nlstate+ndeath);l1++){    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
               if(l1==k1) continue;   }
               i=(k1-1)*(nlstate+ndeath)+l1;  
               if(i<=j) continue;  /*********** Tricode ****************************/
               for (age=bage; age<=fage; age ++){  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
                 if ((int)age %5==0){  {
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;     * Boring subroutine which should only output nbcode[Tvar[j]][k]
                   mu1=mu[i][(int) age]/stepm*YEARM ;     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
                   mu2=mu[j][(int) age]/stepm*YEARM;     * nbcode[Tvar[j]][1]= 
                   c12=cv12/sqrt(v1*v2);    */
                   /* Computing eigen value of matrix of covariance */  
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    int modmaxcovj=0; /* Modality max of covariates j */
                   /* Eigen vectors */    int cptcode=0; /* Modality max of covariates j */
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    int modmincovj=0; /* Modality min of covariates j */
                   /*v21=sqrt(1.-v11*v11); *//* error */  
                   v21=(lc1-v1)/cv12*v11;  
                   v12=-v21;    cptcoveff=0; 
                   v22=v11;   
                   tnalp=v21/v11;    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
                   if(first1==1){  
                     first1=0;    /* Loop on covariates without age and products */
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
                   }      for (k=-1; k < maxncov; k++) Ndum[k]=0;
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
                   /*printf(fignu*/                                 modality of this covariate Vj*/ 
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */                                      * If product of Vn*Vm, still boolean *:
                   if(first==1){                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                     first=0;                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
                     fprintf(ficgp,"\nset parametric;unset label");        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);                                        modality of the nth covariate of individual i. */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        if (ij > modmaxcovj)
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\          modmaxcovj=ij; 
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\        else if (ij < modmincovj) 
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\          modmincovj=ij; 
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\        if ((ij < -1) && (ij > NCOVMAX)){
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);          exit(1);
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);        }else
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        /* getting the maximum value of the modality of the covariate
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));           female is 1, then modmaxcovj=1.*/
                   }else{      } /* end for loop on individuals i */
                     first=0;      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);      fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      cptcode=modmaxcovj;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\     /*for (i=0; i<=cptcode; i++) {*/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
                   }/* if first */        fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
                 } /* age mod 5 */        if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
               } /* end loop age */          if( k != -1){
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);            ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
               first=1;                               covariate for which somebody answered excluding 
             } /*l12 */                               undefined. Usually 2: 0 and 1. */
           } /* k12 */          }
         } /*l1 */          ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
       }/* k1 */                               covariate for which somebody answered including 
     } /* loop covariates */                               undefined. Usually 3: -1, 0 and 1. */
   }        }
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      } /* Ndum[-1] number of undefined modalities */
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);  
   free_vector(xp,1,npar);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
   fclose(ficresprob);      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
   fclose(ficresprobcov);         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
   fclose(ficresprobcor);         modmincovj=3; modmaxcovj = 7;
   fflush(ficgp);         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
   fflush(fichtmcov);         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
 }         defining two dummy variables: variables V1_1 and V1_2.
          nbcode[Tvar[j]][ij]=k;
          nbcode[Tvar[j]][1]=0;
 /******************* Printing html file ***********/         nbcode[Tvar[j]][2]=1;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \         nbcode[Tvar[j]][3]=2;
                   int lastpass, int stepm, int weightopt, char model[],\         To be continued (not working yet).
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      */
                   int popforecast, int estepm ,\      ij=0; /* ij is similar to i but can jump over null modalities */
                   double jprev1, double mprev1,double anprev1, \      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
                   double jprev2, double mprev2,double anprev2){          if (Ndum[i] == 0) { /* If nobody responded to this modality k */
   int jj1, k1, i1, cpt;            break;
           }
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \          ij++;
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \          nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
 </ul>");          cptcode = ij; /* New max modality for covar j */
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \      } /* end of loop on modality i=-1 to 1 or more */
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",        
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));      /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
    fprintf(fichtm,"\      /*  /\*recode from 0 *\/ */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",      /*                               k is a modality. If we have model=V1+V1*sex  */
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));      /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
    fprintf(fichtm,"\      /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",      /*  } */
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));      /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
    fprintf(fichtm,"\      /*  if (ij > ncodemax[j]) { */
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \      /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
    <a href=\"%s\">%s</a> <br>\n",      /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));      /*    break; */
    fprintf(fichtm,"\      /*  } */
  - Population projections by age and states: \      /*   }  /\* end of loop on modality k *\/ */
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     
  m=cptcoveff;    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
  jj1=0;     Ndum[ij]++; /* Might be supersed V1 + V1*age */
  for(k1=1; k1<=m;k1++){   } 
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;   ij=0;
      if (cptcovn > 0) {   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
        for (cpt=1; cpt<=cptcoveff;cpt++)     if((Ndum[i]!=0) && (i<=ncovcol)){
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);       ij++;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
      }       Tvaraff[ij]=i; /*For printing (unclear) */
      /* Pij */     }else{
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \         /* Tvaraff[ij]=0; */
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);         }
      /* Quasi-incidences */   }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\   /* ij--; */
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \   cptcoveff=ij; /*Number of total covariates*/
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);  
        /* Period (stable) prevalence in each health state */  }
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \  
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);  /*********** Health Expectancies ****************/
        }  
      for(cpt=1; cpt<=nlstate;cpt++) {  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \  
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);  {
      }    /* Health expectancies, no variances */
    } /* end i1 */    int i, j, nhstepm, hstepm, h, nstepm;
  }/* End k1 */    int nhstepma, nstepma; /* Decreasing with age */
  fprintf(fichtm,"</ul>");    double age, agelim, hf;
     double ***p3mat;
     double eip;
  fprintf(fichtm,"\  
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\    pstamp(ficreseij);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    for(i=1; i<=nlstate;i++){
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));      for(j=1; j<=nlstate;j++){
  fprintf(fichtm,"\        fprintf(ficreseij," e%1d%1d ",i,j);
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",      }
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));      fprintf(ficreseij," e%1d. ",i);
     }
  fprintf(fichtm,"\    fprintf(ficreseij,"\n");
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",  
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));    
  fprintf(fichtm,"\    if(estepm < stepm){
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \      printf ("Problem %d lower than %d\n",estepm, stepm);
    <a href=\"%s\">%s</a> <br>\n</li>",    }
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));    else  hstepm=estepm;   
  fprintf(fichtm,"\    /* We compute the life expectancy from trapezoids spaced every estepm months
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \     * This is mainly to measure the difference between two models: for example
    <a href=\"%s\">%s</a> <br>\n</li>",     * if stepm=24 months pijx are given only every 2 years and by summing them
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));     * we are calculating an estimate of the Life Expectancy assuming a linear 
  fprintf(fichtm,"\     * progression in between and thus overestimating or underestimating according
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",     * to the curvature of the survival function. If, for the same date, we 
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));     * estimate the model with stepm=1 month, we can keep estepm to 24 months
  fprintf(fichtm,"\     * to compare the new estimate of Life expectancy with the same linear 
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",     * hypothesis. A more precise result, taking into account a more precise
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));     * curvature will be obtained if estepm is as small as stepm. */
  fprintf(fichtm,"\  
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\    /* For example we decided to compute the life expectancy with the smallest unit */
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
 /*  if(popforecast==1) fprintf(fichtm,"\n */       nstepm is the number of stepm from age to agelin. 
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */       Look at hpijx to understand the reason of that which relies in memory size
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */       and note for a fixed period like estepm months */
 /*      <br>",fileres,fileres,fileres,fileres); */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 /*  else  */       survival function given by stepm (the optimization length). Unfortunately it
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */       means that if the survival funtion is printed only each two years of age and if
  fflush(fichtm);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");       results. So we changed our mind and took the option of the best precision.
     */
  m=cptcoveff;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
     agelim=AGESUP;
  jj1=0;    /* If stepm=6 months */
  for(k1=1; k1<=m;k1++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
    for(i1=1; i1<=ncodemax[k1];i1++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      jj1++;      
      if (cptcovn > 0) {  /* nhstepm age range expressed in number of stepm */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
        for (cpt=1; cpt<=cptcoveff;cpt++)    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    /* if (stepm >= YEARM) hstepm=1;*/
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \    for (age=bage; age<=fage; age ++){ 
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      }      /* if (stepm >= YEARM) hstepm=1;*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 health expectancies in states (1) and (2): %s%d.png<br>\  
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);      /* If stepm=6 months */
    } /* end i1 */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
  }/* End k1 */         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
  fprintf(fichtm,"</ul>");      
  fflush(fichtm);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 }      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 /******************* Gnuplot file **************/      
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   char dirfileres[132],optfileres[132];      
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      /* Computing expectancies */
   int ng;      for(i=1; i<=nlstate;i++)
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */        for(j=1; j<=nlstate;j++)
 /*     printf("Problem with file %s",optionfilegnuplot); */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 /*   } */            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   /*#ifdef windows */  
   fprintf(ficgp,"cd \"%s\" \n",pathc);          }
     /*#endif */  
   m=pow(2,cptcoveff);      fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   strcpy(dirfileres,optionfilefiname);        eip=0;
   strcpy(optfileres,"vpl");        for(j=1; j<=nlstate;j++){
  /* 1eme*/          eip +=eij[i][j][(int)age];
   for (cpt=1; cpt<= nlstate ; cpt ++) {          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
    for (k1=1; k1<= m ; k1 ++) {        }
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);        fprintf(ficreseij,"%9.4f", eip );
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);      }
      fprintf(ficgp,"set xlabel \"Age\" \n\      fprintf(ficreseij,"\n");
 set ylabel \"Probability\" \n\      
 set ter png small\n\    }
 set size 0.65,0.65\n\    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);    printf("\n");
     fprintf(ficlog,"\n");
      for (i=1; i<= nlstate ; i ++) {    
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  }
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {  {
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* Covariances of health expectancies eij and of total life expectancies according
        else fprintf(ficgp," \%%*lf (\%%*lf)");     to initial status i, ei. .
      }    */
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
      for (i=1; i<= nlstate ; i ++) {    int nhstepma, nstepma; /* Decreasing with age */
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double age, agelim, hf;
        else fprintf(ficgp," \%%*lf (\%%*lf)");    double ***p3matp, ***p3matm, ***varhe;
      }      double **dnewm,**doldm;
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));    double *xp, *xm;
    }    double **gp, **gm;
   }    double ***gradg, ***trgradg;
   /*2 eme*/    int theta;
    
   for (k1=1; k1<= m ; k1 ++) {    double eip, vip;
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
        xp=vector(1,npar);
     for (i=1; i<= nlstate+1 ; i ++) {    xm=vector(1,npar);
       k=2*i;    dnewm=matrix(1,nlstate*nlstate,1,npar);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       for (j=1; j<= nlstate+1 ; j ++) {    
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    pstamp(ficresstdeij);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       }      fprintf(ficresstdeij,"# Age");
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    for(i=1; i<=nlstate;i++){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      for(j=1; j<=nlstate;j++)
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       for (j=1; j<= nlstate+1 ; j ++) {      fprintf(ficresstdeij," e%1d. ",i);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    }
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresstdeij,"\n");
       }    
       fprintf(ficgp,"\" t\"\" w l 0,");    pstamp(ficrescveij);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficrescveij,"# Age");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for(i=1; i<=nlstate;i++)
         else fprintf(ficgp," \%%*lf (\%%*lf)");      for(j=1; j<=nlstate;j++){
       }          cptj= (j-1)*nlstate+i;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        for(i2=1; i2<=nlstate;i2++)
       else fprintf(ficgp,"\" t\"\" w l 0,");          for(j2=1; j2<=nlstate;j2++){
     }            cptj2= (j2-1)*nlstate+i2;
   }            if(cptj2 <= cptj)
                fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   /*3eme*/          }
        }
   for (k1=1; k1<= m ; k1 ++) {    fprintf(ficrescveij,"\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {    
       /*       k=2+nlstate*(2*cpt-2); */    if(estepm < stepm){
       k=2+(nlstate+1)*(cpt-1);      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);    }
       fprintf(ficgp,"set ter png small\n\    else  hstepm=estepm;   
 set size 0.65,0.65\n\    /* We compute the life expectancy from trapezoids spaced every estepm months
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);     * This is mainly to measure the difference between two models: for example
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);     * if stepm=24 months pijx are given only every 2 years and by summing them
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");     * we are calculating an estimate of the Life Expectancy assuming a linear 
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);     * progression in between and thus overestimating or underestimating according
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);     * to the curvature of the survival function. If, for the same date, we 
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);     * to compare the new estimate of Life expectancy with the same linear 
             * hypothesis. A more precise result, taking into account a more precise
       */     * curvature will be obtained if estepm is as small as stepm. */
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);    /* For example we decided to compute the life expectancy with the smallest unit */
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               nhstepm is the number of hstepm from age to agelim 
       }       nstepm is the number of stepm from age to agelin. 
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);       Look at hpijx to understand the reason of that which relies in memory size
     }       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   /* CV preval stable (period) */       means that if the survival funtion is printed only each two years of age and if
   for (k1=1; k1<= m ; k1 ++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for (cpt=1; cpt<=nlstate ; cpt ++) {       results. So we changed our mind and took the option of the best precision.
       k=3;    */
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\  
 set ter png small\nset size 0.65,0.65\n\    /* If stepm=6 months */
 unset log y\n\    /* nhstepm age range expressed in number of stepm */
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);    agelim=AGESUP;
          nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
       for (i=1; i< nlstate ; i ++)    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         fprintf(ficgp,"+$%d",k+i+1);    /* if (stepm >= YEARM) hstepm=1;*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          
       l=3+(nlstate+ndeath)*cpt;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for (i=1; i< nlstate ; i ++) {    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         l=3+(nlstate+ndeath)*cpt;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         fprintf(ficgp,"+$%d",l+i+1);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
     }    for (age=bage; age<=fage; age ++){ 
   }        nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   /* proba elementaires */      /* if (stepm >= YEARM) hstepm=1;*/
   for(i=1,jk=1; i <=nlstate; i++){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {      /* If stepm=6 months */
         for(j=1; j <=ncovmodel; j++){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           jk++;      
           fprintf(ficgp,"\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         }  
       }      /* Computing  Variances of health expectancies */
     }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
    }         decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        for(i=1; i<=npar; i++){ 
      for(jk=1; jk <=m; jk++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
        if (ng==2)        }
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
        else        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
          fprintf(ficgp,"\nset title \"Probability\"\n");    
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        for(j=1; j<= nlstate; j++){
        i=1;          for(i=1; i<=nlstate; i++){
        for(k2=1; k2<=nlstate; k2++) {            for(h=0; h<=nhstepm-1; h++){
          k3=i;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
          for(k=1; k<=(nlstate+ndeath); k++) {              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
            if (k != k2){            }
              if(ng==2)          }
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        }
              else       
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        for(ij=1; ij<= nlstate*nlstate; ij++)
              ij=1;          for(h=0; h<=nhstepm-1; h++){
              for(j=3; j <=ncovmodel; j++) {            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      }/* End theta */
                  ij++;      
                }      
                else      for(h=0; h<=nhstepm-1; h++)
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for(j=1; j<=nlstate*nlstate;j++)
              }          for(theta=1; theta <=npar; theta++)
              fprintf(ficgp,")/(1");            trgradg[h][j][theta]=gradg[h][theta][j];
                    
              for(k1=1; k1 <=nlstate; k1++){    
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);       for(ij=1;ij<=nlstate*nlstate;ij++)
                ij=1;        for(ji=1;ji<=nlstate*nlstate;ji++)
                for(j=3; j <=ncovmodel; j++){          varhe[ij][ji][(int)age] =0.;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       printf("%d|",(int)age);fflush(stdout);
                    ij++;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                  }       for(h=0;h<=nhstepm-1;h++){
                  else        for(k=0;k<=nhstepm-1;k++){
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                fprintf(ficgp,")");          for(ij=1;ij<=nlstate*nlstate;ij++)
              }            for(ji=1;ji<=nlstate*nlstate;ji++)
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        }
              i=i+ncovmodel;      }
            }  
          } /* end k */      /* Computing expectancies */
        } /* end k2 */      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
      } /* end jk */      for(i=1; i<=nlstate;i++)
    } /* end ng */        for(j=1; j<=nlstate;j++)
    fflush(ficgp);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 }  /* end gnuplot */            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 /*************** Moving average **************/  
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){          }
   
   int i, cpt, cptcod;      fprintf(ficresstdeij,"%3.0f",age );
   int modcovmax =1;      for(i=1; i<=nlstate;i++){
   int mobilavrange, mob;        eip=0.;
   double age;        vip=0.;
         for(j=1; j<=nlstate;j++){
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose          eip += eij[i][j][(int)age];
                            a covariate has 2 modalities */          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){        }
     if(mobilav==1) mobilavrange=5; /* default */        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     else mobilavrange=mobilav;      }
     for (age=bage; age<=fage; age++)      fprintf(ficresstdeij,"\n");
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=modcovmax;cptcod++)      fprintf(ficrescveij,"%3.0f",age );
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];      for(i=1; i<=nlstate;i++)
     /* We keep the original values on the extreme ages bage, fage and for        for(j=1; j<=nlstate;j++){
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2          cptj= (j-1)*nlstate+i;
        we use a 5 terms etc. until the borders are no more concerned.          for(i2=1; i2<=nlstate;i2++)
     */            for(j2=1; j2<=nlstate;j2++){
     for (mob=3;mob <=mobilavrange;mob=mob+2){              cptj2= (j2-1)*nlstate+i2;
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){              if(cptj2 <= cptj)
         for (i=1; i<=nlstate;i++){                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
           for (cptcod=1;cptcod<=modcovmax;cptcod++){            }
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];        }
               for (cpt=1;cpt<=(mob-1)/2;cpt++){      fprintf(ficrescveij,"\n");
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];     
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];    }
               }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           }    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         }    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       }/* end age */    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }/* end mob */    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }else return -1;    printf("\n");
   return 0;    fprintf(ficlog,"\n");
 }/* End movingaverage */  
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
 /************** Forecasting ******************/    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   /* proj1, year, month, day of starting projection    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
      agemin, agemax range of age  }
      dateprev1 dateprev2 range of dates during which prevalence is computed  
      anproj2 year of en of projection (same day and month as proj1).  /************ Variance ******************/
   */   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;  {
   int *popage;    /* Variance of health expectancies */
   double agec; /* generic age */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    /* double **newm;*/
   double *popeffectif,*popcount;    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
   double ***p3mat;    
   double ***mobaverage;    int movingaverage();
   char fileresf[FILENAMELENGTH];    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
   agelim=AGESUP;    int i, j, nhstepm, hstepm, h, nstepm ;
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    int k;
      double *xp;
   strcpy(fileresf,"f");    double **gp, **gm;  /* for var eij */
   strcat(fileresf,fileres);    double ***gradg, ***trgradg; /*for var eij */
   if((ficresf=fopen(fileresf,"w"))==NULL) {    double **gradgp, **trgradgp; /* for var p point j */
     printf("Problem with forecast resultfile: %s\n", fileresf);    double *gpp, *gmp; /* for var p point j */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   }    double ***p3mat;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    double age,agelim, hf;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    double ***mobaverage;
     int theta;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    char digit[4];
     char digitp[25];
   if (mobilav!=0) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    char fileresprobmorprev[FILENAMELENGTH];
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){  
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    if(popbased==1){
       printf(" Error in movingaverage mobilav=%d\n",mobilav);      if(mobilav!=0)
     }        strcpy(digitp,"-POPULBASED-MOBILAV_");
   }      else strcpy(digitp,"-POPULBASED-NOMOBIL_");
     }
   stepsize=(int) (stepm+YEARM-1)/YEARM;    else 
   if (stepm<=12) stepsize=1;      strcpy(digitp,"-STABLBASED_");
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);    if (mobilav!=0) {
   }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   else  hstepm=estepm;        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   hstepm=hstepm/stepm;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and      }
                                fractional in yp1 */    }
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);    strcpy(fileresprobmorprev,"PRMORPREV-"); 
   mprojmean=yp;    sprintf(digit,"%-d",ij);
   yp1=modf((yp2*30.5),&yp);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   jprojmean=yp;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   if(jprojmean==0) jprojmean=1;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   if(mprojmean==0) jprojmean=1;    strcat(fileresprobmorprev,fileresu);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   i1=cptcoveff;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   if (cptcovn < 1){i1=1;}      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fprintf(ficresf,"#****** Routine prevforecast **\n");    pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 /*            if (h==(int)(YEARM*yearp)){ */    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      fprintf(ficresprobmorprev," p.%-d SE",j);
       k=k+1;      for(i=1; i<=nlstate;i++)
       fprintf(ficresf,"\n#******");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       for(j=1;j<=cptcoveff;j++) {    }  
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprobmorprev,"\n");
       }    
       fprintf(ficresf,"******\n");    fprintf(ficgp,"\n# Routine varevsij");
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");    fprintf(ficgp,"\nunset title \n");
       for(j=1; j<=nlstate+ndeath;j++){  /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         for(i=1; i<=nlstate;i++)                  fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           fprintf(ficresf," p%d%d",i,j);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         fprintf(ficresf," p.%d",j);  /*   } */
       }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {    pstamp(ficresvij);
         fprintf(ficresf,"\n");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);      if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
         for (agec=fage; agec>=(ageminpar-1); agec--){    else
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
           nhstepm = nhstepm/hstepm;    fprintf(ficresvij,"# Age");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(i=1; i<=nlstate;i++)
           oldm=oldms;savm=savms;      for(j=1; j<=nlstate;j++)
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
            fprintf(ficresvij,"\n");
           for (h=0; h<=nhstepm; h++){  
             if (h*hstepm/YEARM*stepm ==yearp) {    xp=vector(1,npar);
               fprintf(ficresf,"\n");    dnewm=matrix(1,nlstate,1,npar);
               for(j=1;j<=cptcoveff;j++)    doldm=matrix(1,nlstate,1,nlstate);
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
               ppij=0.;    gpp=vector(nlstate+1,nlstate+ndeath);
               for(i=1; i<=nlstate;i++) {    gmp=vector(nlstate+1,nlstate+ndeath);
                 if (mobilav==1)    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];    
                 else {    if(estepm < stepm){
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];      printf ("Problem %d lower than %d\n",estepm, stepm);
                 }    }
                 if (h*hstepm/YEARM*stepm== yearp) {    else  hstepm=estepm;   
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);    /* For example we decided to compute the life expectancy with the smallest unit */
                 }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               } /* end i */       nhstepm is the number of hstepm from age to agelim 
               if (h*hstepm/YEARM*stepm==yearp) {       nstepm is the number of stepm from age to agelim. 
                 fprintf(ficresf," %.3f", ppij);       Look at function hpijx to understand why because of memory size limitations, 
               }       we decided (b) to get a life expectancy respecting the most precise curvature of the
             }/* end j */       survival function given by stepm (the optimization length). Unfortunately it
           } /* end h */       means that if the survival funtion is printed every two years of age and if
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         } /* end agec */       results. So we changed our mind and took the option of the best precision.
       } /* end yearp */    */
     } /* end cptcod */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   } /* end  cptcov */    agelim = AGESUP;
            for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fclose(ficresf);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
 /************** Forecasting *****not tested NB*************/      gm=matrix(0,nhstepm,1,nlstate);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      for(theta=1; theta <=npar; theta++){
   int *popage;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   double calagedatem, agelim, kk1, kk2;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double *popeffectif,*popcount;        }
   double ***p3mat,***tabpop,***tabpopprev;  
   double ***mobaverage;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
   char filerespop[FILENAMELENGTH];  
         if (popbased==1) {
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if(mobilav ==0){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(i=1; i<=nlstate;i++)
   agelim=AGESUP;              prlim[i][i]=probs[(int)age][i][ij];
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
          }
   strcpy(filerespop,"pop");    
   strcat(filerespop,fileres);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  /* Returns p3mat[i][j][h] for h=1 to nhstepm */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        for(j=1; j<= nlstate; j++){
     printf("Problem with forecast resultfile: %s\n", filerespop);          for(h=0; h<=nhstepm; h++){
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   printf("Computing forecasting: result on file '%s' \n", filerespop);          }
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);        }
         /* Next for computing probability of death (h=1 means
   if (cptcoveff==0) ncodemax[cptcoveff]=1;           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   if (mobilav!=0) {        */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       printf(" Error in movingaverage mobilav=%d\n",mobilav);        }    
     }        /* end probability of death */
   }  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   stepsize=(int) (stepm+YEARM-1)/YEARM;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if (stepm<=12) stepsize=1;  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij);
   agelim=AGESUP;   
          if (popbased==1) {
   hstepm=1;          if(mobilav ==0){
   hstepm=hstepm/stepm;            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   if (popforecast==1) {          }else{ /* mobilav */ 
     if((ficpop=fopen(popfile,"r"))==NULL) {            for(i=1; i<=nlstate;i++)
       printf("Problem with population file : %s\n",popfile);exit(0);              prlim[i][i]=mobaverage[(int)age][i][ij];
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);          }
     }        }
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     popcount=vector(0,AGESUP);  
            for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
     i=1;            for(h=0; h<=nhstepm; h++){
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                  gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     imx=i;          }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        }
   }        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){           as a weighted average of prlim.
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        */
       k=k+1;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficrespop,"\n#******");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       for(j=1;j<=cptcoveff;j++) {           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }    
       }        /* end probability of death */
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");        for(j=1; j<= nlstate; j++) /* vareij */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          for(h=0; h<=nhstepm; h++){
       if (popforecast==1)  fprintf(ficrespop," [Population]");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                }
       for (cpt=0; cpt<=0;cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                  gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;      } /* End theta */
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(h=0; h<=nhstepm; h++) /* veij */
                for(j=1; j<=nlstate;j++)
           for (h=0; h<=nhstepm; h++){          for(theta=1; theta <=npar; theta++)
             if (h==(int) (calagedatem+YEARM*cpt)) {            trgradg[h][j][theta]=gradg[h][theta][j];
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
             for(j=1; j<=nlstate+ndeath;j++) {        for(theta=1; theta <=npar; theta++)
               kk1=0.;kk2=0;          trgradgp[j][theta]=gradgp[theta][j];
               for(i=1; i<=nlstate;i++) {                  
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                 else {      for(i=1;i<=nlstate;i++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for(j=1;j<=nlstate;j++)
                 }          vareij[i][j][(int)age] =0.;
               }  
               if (h==(int)(calagedatem+12*cpt)){      for(h=0;h<=nhstepm;h++){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        for(k=0;k<=nhstepm;k++){
                   /*fprintf(ficrespop," %.3f", kk1);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
               }          for(i=1;i<=nlstate;i++)
             }            for(j=1;j<=nlstate;j++)
             for(i=1; i<=nlstate;i++){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
               kk1=0.;        }
                 for(j=1; j<=nlstate;j++){      }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    
                 }      /* pptj */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
             }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)        for(i=nlstate+1;i<=nlstate+ndeath;i++)
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          varppt[j][i]=doldmp[j][i];
           }      /* end ppptj */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*  x centered again */
         }  
       }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij);
     
   /******/      if (popbased==1) {
         if(mobilav ==0){
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          for(i=1; i<=nlstate;i++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              prlim[i][i]=probs[(int)age][i][ij];
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){        }else{ /* mobilav */ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(i=1; i<=nlstate;i++)
           nhstepm = nhstepm/hstepm;            prlim[i][i]=mobaverage[(int)age][i][ij];
                  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
           oldm=oldms;savm=savms;               
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        /* This for computing probability of death (h=1 means
           for (h=0; h<=nhstepm; h++){         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
             if (h==(int) (calagedatem+YEARM*cpt)) {         as a weighted average of prlim.
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      */
             }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
             for(j=1; j<=nlstate+ndeath;j++) {      for(j=nlstate+1;j<=nlstate+ndeath;j++){
               kk1=0.;kk2=0;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
               for(i=1; i<=nlstate;i++) {                        gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          }    
               }      /* end probability of death */
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);          
             }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         }        for(i=1; i<=nlstate;i++){
       }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
    }        }
   }      } 
        fprintf(ficresprobmorprev,"\n");
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
       fprintf(ficresvij,"%.0f ",age );
   if (popforecast==1) {      for(i=1; i<=nlstate;i++)
     free_ivector(popage,0,AGESUP);        for(j=1; j<=nlstate;j++){
     free_vector(popeffectif,0,AGESUP);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     free_vector(popcount,0,AGESUP);        }
   }      fprintf(ficresvij,"\n");
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_matrix(gp,0,nhstepm,1,nlstate);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_matrix(gm,0,nhstepm,1,nlstate);
   fclose(ficrespop);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 } /* End of popforecast */      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 int fileappend(FILE *fichier, char *optionfich)    } /* End age */
 {    free_vector(gpp,nlstate+1,nlstate+ndeath);
   if((fichier=fopen(optionfich,"a"))==NULL) {    free_vector(gmp,nlstate+1,nlstate+ndeath);
     printf("Problem with file: %s\n", optionfich);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     fprintf(ficlog,"Problem with file: %s\n", optionfich);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     return (0);    /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
   }    fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
   fflush(fichier);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   return (1);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 }    fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 /**************** function prwizard **********************/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
 {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
   /* Wizard to print covariance matrix template */    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   char ca[32], cb[32], cc[32];    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;  */
   int numlinepar;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    free_vector(xp,1,npar);
   for(i=1; i <=nlstate; i++){    free_matrix(doldm,1,nlstate,1,nlstate);
     jj=0;    free_matrix(dnewm,1,nlstate,1,npar);
     for(j=1; j <=nlstate+ndeath; j++){    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       if(j==i) continue;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       jj++;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       /*ca[0]= k+'a'-1;ca[1]='\0';*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("%1d%1d",i,j);    fclose(ficresprobmorprev);
       fprintf(ficparo,"%1d%1d",i,j);    fflush(ficgp);
       for(k=1; k<=ncovmodel;k++){    fflush(fichtm); 
         /*        printf(" %lf",param[i][j][k]); */  }  /* end varevsij */
         /*        fprintf(ficparo," %lf",param[i][j][k]); */  
         printf(" 0.");  /************ Variance of prevlim ******************/
         fprintf(ficparo," 0.");   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[])
       }  {
       printf("\n");    /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
       fprintf(ficparo,"\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     }  
   }    double **dnewm,**doldm;
   printf("# Scales (for hessian or gradient estimation)\n");    int i, j, nhstepm, hstepm;
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");    double *xp;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/    double *gp, *gm;
   for(i=1; i <=nlstate; i++){    double **gradg, **trgradg;
     jj=0;    double **mgm, **mgp;
     for(j=1; j <=nlstate+ndeath; j++){    double age,agelim;
       if(j==i) continue;    int theta;
       jj++;    
       fprintf(ficparo,"%1d%1d",i,j);    pstamp(ficresvpl);
       printf("%1d%1d",i,j);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
       fflush(stdout);    fprintf(ficresvpl,"# Age");
       for(k=1; k<=ncovmodel;k++){    for(i=1; i<=nlstate;i++)
         /*      printf(" %le",delti3[i][j][k]); */        fprintf(ficresvpl," %1d-%1d",i,i);
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */    fprintf(ficresvpl,"\n");
         printf(" 0.");  
         fprintf(ficparo," 0.");    xp=vector(1,npar);
       }    dnewm=matrix(1,nlstate,1,npar);
       numlinepar++;    doldm=matrix(1,nlstate,1,nlstate);
       printf("\n");    
       fprintf(ficparo,"\n");    hstepm=1*YEARM; /* Every year of age */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   }    agelim = AGESUP;
   printf("# Covariance matrix\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 /* # 121 Var(a12)\n\ */      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 /* # 122 Cov(b12,a12) Var(b12)\n\ */      if (stepm >= YEARM) hstepm=1;
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */      gradg=matrix(1,npar,1,nlstate);
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */      mgp=matrix(1,npar,1,nlstate);
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */      mgm=matrix(1,npar,1,nlstate);
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */      gp=vector(1,nlstate);
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */      gm=vector(1,nlstate);
   fflush(stdout);  
   fprintf(ficparo,"# Covariance matrix\n");      for(theta=1; theta <=npar; theta++){
   /* # 121 Var(a12)\n\ */        for(i=1; i<=npar; i++){ /* Computes gradient */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /* #   ...\n\ */        }
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */        if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
   for(itimes=1;itimes<=2;itimes++){        else
     jj=0;          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
     for(i=1; i <=nlstate; i++){        for(i=1;i<=nlstate;i++){
       for(j=1; j <=nlstate+ndeath; j++){          gp[i] = prlim[i][i];
         if(j==i) continue;          mgp[theta][i] = prlim[i][i];
         for(k=1; k<=ncovmodel;k++){        }
           jj++;        for(i=1; i<=npar; i++) /* Computes gradient */
           ca[0]= k+'a'-1;ca[1]='\0';          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           if(itimes==1){        if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
             printf("#%1d%1d%d",i,j,k);          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
             fprintf(ficparo,"#%1d%1d%d",i,j,k);        else
           }else{          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
             printf("%1d%1d%d",i,j,k);        for(i=1;i<=nlstate;i++){
             fprintf(ficparo,"%1d%1d%d",i,j,k);          gm[i] = prlim[i][i];
             /*  printf(" %.5le",matcov[i][j]); */          mgm[theta][i] = prlim[i][i];
           }        }
           ll=0;        for(i=1;i<=nlstate;i++)
           for(li=1;li <=nlstate; li++){          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
             for(lj=1;lj <=nlstate+ndeath; lj++){        /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
               if(lj==li) continue;      } /* End theta */
               for(lk=1;lk<=ncovmodel;lk++){  
                 ll++;      trgradg =matrix(1,nlstate,1,npar);
                 if(ll<=jj){  
                   cb[0]= lk +'a'-1;cb[1]='\0';      for(j=1; j<=nlstate;j++)
                   if(ll<jj){        for(theta=1; theta <=npar; theta++)
                     if(itimes==1){          trgradg[j][theta]=gradg[theta][j];
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      /*   printf("\nmgm mgp %d ",(int)age); */
                     }else{      /*   for(j=1; j<=nlstate;j++){ */
                       printf(" 0.");      /*  printf(" %d ",j); */
                       fprintf(ficparo," 0.");      /*  for(theta=1; theta <=npar; theta++) */
                     }      /*    printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
                   }else{      /*  printf("\n "); */
                     if(itimes==1){      /*   } */
                       printf(" Var(%s%1d%1d)",ca,i,j);      /* } */
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);      /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
                     }else{      /*   printf("\n gradg %d ",(int)age); */
                       printf(" 0.");      /*   for(j=1; j<=nlstate;j++){ */
                       fprintf(ficparo," 0.");      /*  printf("%d ",j); */
                     }      /*  for(theta=1; theta <=npar; theta++) */
                   }      /*    printf("%d %lf ",theta,gradg[theta][j]); */
                 }      /*  printf("\n "); */
               } /* end lk */      /*   } */
             } /* end lj */      /* } */
           } /* end li */  
           printf("\n");      for(i=1;i<=nlstate;i++)
           fprintf(ficparo,"\n");        varpl[i][(int)age] =0.;
           numlinepar++;      if((int)age==79 ||(int)age== 80  ||(int)age== 81){
         } /* end k*/      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       } /*end j */      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     } /* end i */      }else{
   } /* end itimes */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 } /* end of prwizard */      }
 /******************* Gompertz Likelihood ******************************/      for(i=1;i<=nlstate;i++)
 double gompertz(double x[])        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 {  
   double A,B,L=0.0,sump=0.,num=0.;      fprintf(ficresvpl,"%.0f ",age );
   int i,n=0; /* n is the size of the sample */      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   for (i=0;i<=imx-1 ; i++) {      fprintf(ficresvpl,"\n");
     sump=sump+weight[i];      free_vector(gp,1,nlstate);
     /*    sump=sump+1;*/      free_vector(gm,1,nlstate);
     num=num+1;      free_matrix(mgm,1,npar,1,nlstate);
   }      free_matrix(mgp,1,npar,1,nlstate);
        free_matrix(gradg,1,npar,1,nlstate);
        free_matrix(trgradg,1,nlstate,1,npar);
   /* for (i=0; i<=imx; i++)    } /* End age */
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/  
     free_vector(xp,1,npar);
   for (i=1;i<=imx ; i++)    free_matrix(doldm,1,nlstate,1,npar);
     {    free_matrix(dnewm,1,nlstate,1,nlstate);
       if (cens[i] == 1 && wav[i]>1)  
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));  }
        
       if (cens[i] == 0 && wav[i]>1)  /************ Variance of one-step probabilities  ******************/
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);    {
          int i, j=0,  k1, l1, tj;
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */    int k2, l2, j1,  z1;
       if (wav[i] > 1 ) { /* ??? */    int k=0, l;
         L=L+A*weight[i];    int first=1, first1, first2;
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       }    double **dnewm,**doldm;
     }    double *xp;
     double *gp, *gm;
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/    double **gradg, **trgradg;
      double **mu;
   return -2*L*num/sump;    double age, cov[NCOVMAX+1];
 }    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
 /******************* Printing html file ***********/    char fileresprob[FILENAMELENGTH];
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \    char fileresprobcov[FILENAMELENGTH];
                   int lastpass, int stepm, int weightopt, char model[],\    char fileresprobcor[FILENAMELENGTH];
                   int imx,  double p[],double **matcov,double agemortsup){    double ***varpij;
   int i,k;  
     strcpy(fileresprob,"PROB_"); 
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");    strcat(fileresprob,fileres);
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   for (i=1;i<=2;i++)      printf("Problem with resultfile: %s\n", fileresprob);
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");    }
   fprintf(fichtm,"</ul>");    strcpy(fileresprobcov,"PROBCOV_"); 
     strcat(fileresprobcov,fileresu);
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
  for (k=agegomp;k<(agemortsup-2);k++)    strcpy(fileresprobcor,"PROBCOR_"); 
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);    strcat(fileresprobcor,fileresu);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcor);
   fflush(fichtm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 }    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 /******************* Gnuplot file **************/    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   char dirfileres[132],optfileres[132];    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   int ng;    pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
   /*#ifdef windows */    pstamp(ficresprobcov);
   fprintf(ficgp,"cd \"%s\" \n",pathc);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     /*#endif */    fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   strcpy(dirfileres,optionfilefiname);    fprintf(ficresprobcor,"# Age");
   strcpy(optfileres,"vpl");  
   fprintf(ficgp,"set out \"graphmort.png\"\n ");  
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");    for(i=1; i<=nlstate;i++)
   fprintf(ficgp, "set ter png small\n set log y\n");      for(j=1; j<=(nlstate+ndeath);j++){
   fprintf(ficgp, "set size 0.65,0.65\n");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
 }      }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
 /***********************************************/    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 /**************** Main Program *****************/    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 /***********************************************/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 int main(int argc, char *argv[])    first=1;
 {    fprintf(ficgp,"\n# Routine varprob");
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;    fprintf(fichtm,"\n");
   int linei, month, year,iout;  
   int jj, ll, li, lj, lk, imk;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
   int numlinepar=0; /* Current linenumber of parameter file */    fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
   int itimes;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   int NDIM=2;  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   char ca[32], cb[32], cc[32];    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   char dummy[]="                         ";  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   /*  FILE *fichtm; *//* Html File */  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   /* FILE *ficgp;*/ /*Gnuplot File */  standard deviations wide on each axis. <br>\
   struct stat info;   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   double agedeb, agefin,hf;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
   double fret;    cov[1]=1;
   double **xi,tmp,delta;    /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
   double dum; /* Dummy variable */    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   double ***p3mat;    j1=0;
   double ***mobaverage;    for(j1=1; j1<=tj;j1++){
   int *indx;      /*for(i1=1; i1<=ncodemax[t];i1++){ */
   char line[MAXLINE], linepar[MAXLINE];      /*j1++;*/
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];        if  (cptcovn>0) {
   char pathr[MAXLINE], pathimach[MAXLINE];          fprintf(ficresprob, "\n#********** Variable "); 
   char **bp, *tok, *val; /* pathtot */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   int firstobs=1, lastobs=10;          fprintf(ficresprob, "**********\n#\n");
   int sdeb, sfin; /* Status at beginning and end */          fprintf(ficresprobcov, "\n#********** Variable "); 
   int c,  h , cpt,l;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   int ju,jl, mi;          fprintf(ficresprobcov, "**********\n#\n");
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;          fprintf(ficgp, "\n#********** Variable "); 
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   int mobilav=0,popforecast=0;          fprintf(ficgp, "**********\n#\n");
   int hstepm, nhstepm;          
   int agemortsup;          
   float  sumlpop=0.;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
   double bage, fage, age, agelim, agebase;          fprintf(ficresprobcor, "\n#********** Variable ");    
   double ftolpl=FTOL;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   double **prlim;          fprintf(ficresprobcor, "**********\n#");    
   double *severity;        }
   double ***param; /* Matrix of parameters */        
   double  *p;        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   double **matcov; /* Matrix of covariance */        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   double ***delti3; /* Scale */        gp=vector(1,(nlstate)*(nlstate+ndeath));
   double *delti; /* Scale */        gm=vector(1,(nlstate)*(nlstate+ndeath));
   double ***eij, ***vareij;        for (age=bage; age<=fage; age ++){ 
   double **varpl; /* Variances of prevalence limits by age */          cov[2]=age;
   double *epj, vepp;          if(nagesqr==1)
   double kk1, kk2;            cov[3]= age*age;
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;          for (k=1; k<=cptcovn;k++) {
   double **ximort;            cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
   char *alph[]={"a","a","b","c","d","e"}, str[4];            /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
   int *dcwave;                                                           * 1  1 1 1 1
                                                            * 2  2 1 1 1
   char z[1]="c", occ;                                                           * 3  1 2 1 1
                                                            */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
   char  *strt, strtend[80];          }
   char *stratrunc;          /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   int lstra;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
           for (k=1; k<=cptcovprod;k++)
   long total_usecs;            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
            
 /*   setlocale (LC_ALL, ""); */      
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */          for(theta=1; theta <=npar; theta++){
 /*   textdomain (PACKAGE); */            for(i=1; i<=npar; i++)
 /*   setlocale (LC_CTYPE, ""); */              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 /*   setlocale (LC_MESSAGES, ""); */            
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            
   (void) gettimeofday(&start_time,&tzp);            k=0;
   curr_time=start_time;            for(i=1; i<= (nlstate); i++){
   tm = *localtime(&start_time.tv_sec);              for(j=1; j<=(nlstate+ndeath);j++){
   tmg = *gmtime(&start_time.tv_sec);                k=k+1;
   strcpy(strstart,asctime(&tm));                gp[k]=pmmij[i][j];
               }
 /*  printf("Localtime (at start)=%s",strstart); */            }
 /*  tp.tv_sec = tp.tv_sec +86400; */            
 /*  tm = *localtime(&start_time.tv_sec); */            for(i=1; i<=npar; i++)
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */      
 /*   tmg.tm_hour=tmg.tm_hour + 1; */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
 /*   tp.tv_sec = mktime(&tmg); */            k=0;
 /*   strt=asctime(&tmg); */            for(i=1; i<=(nlstate); i++){
 /*   printf("Time(after) =%s",strstart);  */              for(j=1; j<=(nlstate+ndeath);j++){
 /*  (void) time (&time_value);                k=k+1;
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);                gm[k]=pmmij[i][j];
 *  tm = *localtime(&time_value);              }
 *  strstart=asctime(&tm);            }
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);       
 */            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   nberr=0; /* Number of errors and warnings */          }
   nbwarn=0;  
   getcwd(pathcd, size);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
   printf("\n%s\n%s",version,fullversion);              trgradg[j][theta]=gradg[theta][j];
   if(argc <=1){          
     printf("\nEnter the parameter file name: ");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     fgets(pathr,FILENAMELENGTH,stdin);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     i=strlen(pathr);  
     if(pathr[i-1]=='\n')          pmij(pmmij,cov,ncovmodel,x,nlstate);
       pathr[i-1]='\0';          
    for (tok = pathr; tok != NULL; ){          k=0;
       printf("Pathr |%s|\n",pathr);          for(i=1; i<=(nlstate); i++){
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');            for(j=1; j<=(nlstate+ndeath);j++){
       printf("val= |%s| pathr=%s\n",val,pathr);              k=k+1;
       strcpy (pathtot, val);              mu[k][(int) age]=pmmij[i][j];
       if(pathr[0] == '\0') break; /* Dirty */            }
     }          }
   }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   else{            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     strcpy(pathtot,argv[1]);              varpij[i][j][(int)age] = doldm[i][j];
   }  
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/          /*printf("\n%d ",(int)age);
   /*cygwin_split_path(pathtot,path,optionfile);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   /* cutv(path,optionfile,pathtot,'\\');*/            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   /* Split argv[0], imach program to get pathimach */  
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);          fprintf(ficresprob,"\n%d ",(int)age);
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);          fprintf(ficresprobcov,"\n%d ",(int)age);
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);          fprintf(ficresprobcor,"\n%d ",(int)age);
  /*   strcpy(pathimach,argv[0]); */  
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   chdir(path); /* Can be a relative path */            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     printf("Current directory %s!\n",pathcd);          }
   strcpy(command,"mkdir ");          i=0;
   strcat(command,optionfilefiname);          for (k=1; k<=(nlstate);k++){
   if((outcmd=system(command)) != 0){            for (l=1; l<=(nlstate+ndeath);l++){ 
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);              i++;
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     /* fclose(ficlog); */              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 /*     exit(1); */              for (j=1; j<=i;j++){
   }                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
 /*   if((imk=mkdir(optionfilefiname))<0){ */                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 /*     perror("mkdir"); */                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 /*   } */              }
             }
   /*-------- arguments in the command line --------*/          }/* end of loop for state */
         } /* end of loop for age */
   /* Log file */        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   strcat(filelog, optionfilefiname);        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   strcat(filelog,".log");    /* */        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   if((ficlog=fopen(filelog,"w"))==NULL)    {        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     printf("Problem with logfile %s\n",filelog);        
     goto end;        /* Confidence intervalle of pij  */
   }        /*
   fprintf(ficlog,"Log filename:%s\n",filelog);          fprintf(ficgp,"\nunset parametric;unset label");
   fprintf(ficlog,"\n%s\n%s",version,fullversion);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   fprintf(ficlog,"\nEnter the parameter file name: \n");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
  path=%s \n\          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
  optionfile=%s\n\          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
  optionfilext=%s\n\          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);        */
   
   printf("Local time (at start):%s",strstart);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   fprintf(ficlog,"Local time (at start): %s",strstart);        first1=1;first2=2;
   fflush(ficlog);        for (k2=1; k2<=(nlstate);k2++){
 /*   (void) gettimeofday(&curr_time,&tzp); */          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */            if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
   /* */            for (k1=1; k1<=(nlstate);k1++){
   strcpy(fileres,"r");              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   strcat(fileres, optionfilefiname);                if(l1==k1) continue;
   strcat(fileres,".txt");    /* Other files have txt extension */                i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
   /*---------arguments file --------*/                for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     printf("Problem with optionfile %s\n",optionfile);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     fflush(ficlog);                    mu1=mu[i][(int) age]/stepm*YEARM ;
     goto end;                    mu2=mu[j][(int) age]/stepm*YEARM;
   }                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   strcpy(filereso,"o");                    if ((lc2 <0) || (lc1 <0) ){
   strcat(filereso,fileres);                      if(first2==1){
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */                        first1=0;
     printf("Problem with Output resultfile: %s\n", filereso);                      printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);                      }
     fflush(ficlog);                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
     goto end;                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
   }                      /* lc2=fabs(lc2); */
                     }
   /* Reads comments: lines beginning with '#' */  
   numlinepar=0;                    /* Eigen vectors */
   while((c=getc(ficpar))=='#' && c!= EOF){                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     ungetc(c,ficpar);                    /*v21=sqrt(1.-v11*v11); *//* error */
     fgets(line, MAXLINE, ficpar);                    v21=(lc1-v1)/cv12*v11;
     numlinepar++;                    v12=-v21;
     puts(line);                    v22=v11;
     fputs(line,ficparo);                    tnalp=v21/v11;
     fputs(line,ficlog);                    if(first1==1){
   }                      first1=0;
   ungetc(c,ficpar);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   numlinepar++;                    /*printf(fignu*/
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                    if(first==1){
   fflush(ficlog);                      first=0;
   while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
     ungetc(c,ficpar);                      fprintf(ficgp,"\nset parametric;unset label");
     fgets(line, MAXLINE, ficpar);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     numlinepar++;                      fprintf(ficgp,"\nset ter svg size 640, 480");
     puts(line);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     fputs(line,ficparo);   :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">\
     fputs(line,ficlog);  %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
   }                              subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,\
   ungetc(c,ficpar);                              subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                          fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   covar=matrix(0,NCOVMAX,1,n);                      fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/                    }else{
                       first=0;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   delti=delti3[1][1];                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);                    }/* if first */
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                  } /* age mod 5 */
     fclose (ficparo);                } /* end loop age */
     fclose (ficlog);                fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
     goto end;                first=1;
     exit(0);              } /*l12 */
   }            } /* k12 */
   else if(mle==-3) {          } /*l1 */
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);        }/* k1 */
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);        /* } */ /* loop covariates */
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    }
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     matcov=matrix(1,npar,1,npar);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   else{    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     /* Read guess parameters */    free_vector(xp,1,npar);
     /* Reads comments: lines beginning with '#' */    fclose(ficresprob);
     while((c=getc(ficpar))=='#' && c!= EOF){    fclose(ficresprobcov);
       ungetc(c,ficpar);    fclose(ficresprobcor);
       fgets(line, MAXLINE, ficpar);    fflush(ficgp);
       numlinepar++;    fflush(fichtmcov);
       puts(line);  }
       fputs(line,ficparo);  
       fputs(line,ficlog);  
     }  /******************* Printing html file ***********/
     ungetc(c,ficpar);  void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                        int lastpass, int stepm, int weightopt, char model[],\
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     for(i=1; i <=nlstate; i++){                    int popforecast, int prevfcast, int estepm ,          \
       j=0;                    double jprev1, double mprev1,double anprev1, double dateprev1, \
       for(jj=1; jj <=nlstate+ndeath; jj++){                    double jprev2, double mprev2,double anprev2, double dateprev2){
         if(jj==i) continue;    int jj1, k1, i1, cpt;
         j++;  
         fscanf(ficpar,"%1d%1d",&i1,&j1);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
         if ((i1 != i) && (j1 != j)){     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \  </ul>");
 It might be a problem of design; if ncovcol and the model are correct\n \     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);     fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",
           exit(1);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
         }     fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",
         fprintf(ficparo,"%1d%1d",i1,j1);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
         if(mle==1)     fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
           printf("%1d%1d",i,j);     fprintf(fichtm,"\
         fprintf(ficlog,"%1d%1d",i,j);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
         for(k=1; k<=ncovmodel;k++){             stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
           fscanf(ficpar," %lf",&param[i][j][k]);     fprintf(fichtm,"\
           if(mle==1){   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
             printf(" %lf",param[i][j][k]);             subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
             fprintf(ficlog," %lf",param[i][j][k]);     fprintf(fichtm,"\
           }   - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
           else     <a href=\"%s\">%s</a> <br>\n",
             fprintf(ficlog," %lf",param[i][j][k]);             estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
           fprintf(ficparo," %lf",param[i][j][k]);     if(prevfcast==1){
         }       fprintf(fichtm,"\
         fscanf(ficpar,"\n");   - Prevalence projections by age and states:                            \
         numlinepar++;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
         if(mle==1)     }
           printf("\n");  
         fprintf(ficlog,"\n");  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
         fprintf(ficparo,"\n");  
       }   m=pow(2,cptcoveff);
     }     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     fflush(ficlog);  
    jj1=0;
     p=param[1][1];   for(k1=1; k1<=m;k1++){
         /* for(i1=1; i1<=ncodemax[k1];i1++){ */
     /* Reads comments: lines beginning with '#' */       jj1++;
     while((c=getc(ficpar))=='#' && c!= EOF){       if (cptcovn > 0) {
       ungetc(c,ficpar);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       fgets(line, MAXLINE, ficpar);         for (cpt=1; cpt<=cptcoveff;cpt++){ 
       numlinepar++;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
       puts(line);           printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
       fputs(line,ficparo);         }
       fputs(line,ficlog);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     }       }
     ungetc(c,ficpar);       /* aij, bij */
        fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
     for(i=1; i <=nlstate; i++){  <img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
       for(j=1; j <=nlstate+ndeath-1; j++){       /* Pij */
         fscanf(ficpar,"%1d%1d",&i1,&j1);       fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
         if ((i1-i)*(j1-j)!=0){  <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);       /* Quasi-incidences */
           exit(1);       fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\
         printf("%1d%1d",i,j);   incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
         fprintf(ficparo,"%1d%1d",i1,j1);  divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
         fprintf(ficlog,"%1d%1d",i1,j1);  <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
         for(k=1; k<=ncovmodel;k++){       /* Survival functions (period) in state j */
           fscanf(ficpar,"%le",&delti3[i][j][k]);       for(cpt=1; cpt<=nlstate;cpt++){
           printf(" %le",delti3[i][j][k]);         fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
           fprintf(ficparo," %le",delti3[i][j][k]);  <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
           fprintf(ficlog," %le",delti3[i][j][k]);       }
         }       /* State specific survival functions (period) */
         fscanf(ficpar,"\n");       for(cpt=1; cpt<=nlstate;cpt++){
         numlinepar++;         fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\
         printf("\n");   Or probability to survive in various states (1 to %d) being in state %d at different ages.\
         fprintf(ficparo,"\n");   <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
         fprintf(ficlog,"\n");       }
       }       /* Period (stable) prevalence in each health state */
     }       for(cpt=1; cpt<=nlstate;cpt++){
     fflush(ficlog);         fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
     delti=delti3[1][1];       }
       if(prevfcast==1){
         /* Projection of prevalence up to period (stable) prevalence in each health state */
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */        for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
     /* Reads comments: lines beginning with '#' */  <img src=\"%s_%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1);
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);      }
       fgets(line, MAXLINE, ficpar);  
       numlinepar++;       for(cpt=1; cpt<=nlstate;cpt++) {
       puts(line);         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \
       fputs(line,ficparo);  <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
       fputs(line,ficlog);       }
     }     /* } /\* end i1 *\/ */
     ungetc(c,ficpar);   }/* End k1 */
     fprintf(fichtm,"</ul>");
     matcov=matrix(1,npar,1,npar);  
     for(i=1; i <=npar; i++){   fprintf(fichtm,"\
       fscanf(ficpar,"%s",&str);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
       if(mle==1)   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
         printf("%s",str);   - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
       fprintf(ficlog,"%s",str);  But because parameters are usually highly correlated (a higher incidence of disability \
       fprintf(ficparo,"%s",str);  and a higher incidence of recovery can give very close observed transition) it might \
       for(j=1; j <=i; j++){  be very useful to look not only at linear confidence intervals estimated from the \
         fscanf(ficpar," %le",&matcov[i][j]);  variances but at the covariance matrix. And instead of looking at the estimated coefficients \
         if(mle==1){  (parameters) of the logistic regression, it might be more meaningful to visualize the \
           printf(" %.5le",matcov[i][j]);  covariance matrix of the one-step probabilities. \
         }  See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
         fprintf(ficlog," %.5le",matcov[i][j]);  
         fprintf(ficparo," %.5le",matcov[i][j]);   fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       }           subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
       fscanf(ficpar,"\n");   fprintf(fichtm,"\
       numlinepar++;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       if(mle==1)           subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
         printf("\n");  
       fprintf(ficlog,"\n");   fprintf(fichtm,"\
       fprintf(ficparo,"\n");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     }           subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
     for(i=1; i <=npar; i++)   fprintf(fichtm,"\
       for(j=i+1;j<=npar;j++)   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
         matcov[i][j]=matcov[j][i];     <a href=\"%s\">%s</a> <br>\n</li>",
                 estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
     if(mle==1)   fprintf(fichtm,"\
       printf("\n");   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
     fprintf(ficlog,"\n");     <a href=\"%s\">%s</a> <br>\n</li>",
                 estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
     fflush(ficlog);   fprintf(fichtm,"\
       - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     /*-------- Rewriting parameter file ----------*/           estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
     strcpy(rfileres,"r");    /* "Rparameterfile */   fprintf(fichtm,"\
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
     strcat(rfileres,".");    /* */           estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
     strcat(rfileres,optionfilext);    /* Other files have txt extension */   fprintf(fichtm,"\
     if((ficres =fopen(rfileres,"w"))==NULL) {   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       printf("Problem writing new parameter file: %s\n", fileres);goto end;           subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;  
     }  /*  if(popforecast==1) fprintf(fichtm,"\n */
     fprintf(ficres,"#%s\n",version);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   }    /* End of mle != -3 */  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*-------- data file ----------*/  /*  else  */
   if((fic=fopen(datafile,"r"))==NULL)    {  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     printf("Problem while opening datafile: %s\n", datafile);goto end;   fflush(fichtm);
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   }  
    m=pow(2,cptcoveff);
   n= lastobs;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   severity = vector(1,maxwav);  
   outcome=imatrix(1,maxwav+1,1,n);   jj1=0;
   num=lvector(1,n);   for(k1=1; k1<=m;k1++){
   moisnais=vector(1,n);     /* for(i1=1; i1<=ncodemax[k1];i1++){ */
   annais=vector(1,n);       jj1++;
   moisdc=vector(1,n);       if (cptcovn > 0) {
   andc=vector(1,n);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   agedc=vector(1,n);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   cod=ivector(1,n);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
   weight=vector(1,n);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */       }
   mint=matrix(1,maxwav,1,n);       for(cpt=1; cpt<=nlstate;cpt++) {
   anint=matrix(1,maxwav,1,n);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   s=imatrix(1,maxwav+1,1,n);  prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d%d.svg\"> %s_%d-%d.svg <br>\
   tab=ivector(1,NCOVMAX);  <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
   ncodemax=ivector(1,8);       }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   i=1;  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   linei=0;  true period expectancies (those weighted with period prevalences are also\
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {   drawn in addition to the population based expectancies computed using\
     linei=linei+1;   observed and cahotic prevalences:  <a href=\"%s_%d.svg\">%s_%d.svg<br>\
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */  <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
       if(line[j] == '\t')     /* } /\* end i1 *\/ */
         line[j] = ' ';   }/* End k1 */
     }   fprintf(fichtm,"</ul>");
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){   fflush(fichtm);
       ;  }
     };  
     line[j+1]=0;  /* Trims blanks at end of line */  /******************* Gnuplot file **************/
     if(line[0]=='#'){      void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, char pathc[], double p[]){
       fprintf(ficlog,"Comment line\n%s\n",line);  
       printf("Comment line\n%s\n",line);    char dirfileres[132],optfileres[132];
       continue;    int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     }    int lv=0, vlv=0, kl=0;
     int ng=0;
     for (j=maxwav;j>=1;j--){    int vpopbased;
       cutv(stra, strb,line,' ');  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       errno=0;  /*     printf("Problem with file %s",optionfilegnuplot); */
       lval=strtol(strb,&endptr,10);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/  /*   } */
       if( strb[0]=='\0' || (*endptr != '\0')){  
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);    /*#ifdef windows */
         exit(1);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       }      /*#endif */
       s[j][i]=lval;    m=pow(2,cptcoveff);
        
       strcpy(line,stra);    /* Contribution to likelihood */
       cutv(stra, strb,line,' ');    /* Plot the probability implied in the likelihood */
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
       }      fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
       else  if(iout=sscanf(strb,"%s.") != 0){      /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
         month=99;      fprintf(ficgp,"\nset ter pngcairo size 640, 480");
         year=9999;  /* nice for mle=4 plot by number of matrix products.
       }else{     replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);  /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
         exit(1);      /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
       }      fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
       anint[j][i]= (double) year;      fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
       mint[j][i]= (double)month;      fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
       strcpy(line,stra);      fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
     } /* ENd Waves */      for (i=1; i<= nlstate ; i ++) {
            fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
     cutv(stra, strb,line,' ');        fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){        fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
     }        for (j=2; j<= nlstate+ndeath ; j ++) {
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){          fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
       month=99;        }
       year=9999;        fprintf(ficgp,";\nset out; unset ylabel;\n"); 
     }else{      }
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);      /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */              
       exit(1);      /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
     }      /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
     andc[i]=(double) year;      fprintf(ficgp,"\nset out;unset log\n");
     moisdc[i]=(double) month;      /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
     strcpy(line,stra);  
        strcpy(dirfileres,optionfilefiname);
     cutv(stra, strb,line,' ');    strcpy(optfileres,"vpl");
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){   /* 1eme*/
     }    for (cpt=1; cpt<= nlstate ; cpt ++) { /* For each live state */
     else  if(iout=sscanf(strb,"%s.") != 0){      for (k1=1; k1<= m ; k1 ++) { /* For each combination of covariate */
       month=99;        /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
       year=9999;        fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files ");
     }else{        for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);          lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
       exit(1);          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
     }          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
     annais[i]=(double)(year);          /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
     moisnais[i]=(double)(month);          vlv= nbcode[Tvaraff[lv]][lv];
     strcpy(line,stra);          fprintf(ficgp," V%d=%d ",k,vlv);
            }
     cutv(stra, strb,line,' ');        fprintf(ficgp,"\n#\n");
     errno=0;  
     dval=strtod(strb,&endptr);       fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
     if( strb[0]=='\0' || (*endptr != '\0')){       fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
       printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);       fprintf(ficgp,"set xlabel \"Age\" \n\
       exit(1);  set ylabel \"Probability\" \n\
     }  set ter svg size 640, 480\n\
     weight[i]=dval;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
     strcpy(line,stra);  
           for (i=1; i<= nlstate ; i ++) {
     for (j=ncovcol;j>=1;j--){         if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
       cutv(stra, strb,line,' ');         else        fprintf(ficgp," %%*lf (%%*lf)");
       errno=0;       }
       lval=strtol(strb,&endptr,10);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
       if( strb[0]=='\0' || (*endptr != '\0')){       for (i=1; i<= nlstate ; i ++) {
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);         if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
         exit(1);         else fprintf(ficgp," %%*lf (%%*lf)");
       }       } 
       if(lval <-1 || lval >1){       fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
         printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \       for (i=1; i<= nlstate ; i ++) {
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \         if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \         else fprintf(ficgp," %%*lf (%%*lf)");
  For example, for multinomial values like 1, 2 and 3,\n \       }  
  build V1=0 V2=0 for the reference value (1),\n \       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
         V1=1 V2=0 for (2) \n \       fprintf(ficgp,"\nset out \n");
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \      } /* k1 */
  output of IMaCh is often meaningless.\n \    } /* cpt */
  Exiting.\n",lval,linei, i,line,j);    /*2 eme*/
         exit(1);    for (k1=1; k1<= m ; k1 ++) { 
       }        fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
       covar[j][i]=(double)(lval);        for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
       strcpy(line,stra);          lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
     }          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
     lstra=strlen(stra);          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
              /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */          vlv= nbcode[Tvaraff[lv]][lv];
       stratrunc = &(stra[lstra-9]);          fprintf(ficgp," V%d=%d ",k,vlv);
       num[i]=atol(stratrunc);        }
     }        fprintf(ficgp,"\n#\n");
     else  
       num[i]=atol(stra);      fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        if(vpopbased==0)
              fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
     i=i+1;        else
   } /* End loop reading  data */          fprintf(ficgp,"\nreplot ");
   fclose(fic);        for (i=1; i<= nlstate+1 ; i ++) {
   /* printf("ii=%d", ij);          k=2*i;
      scanf("%d",i);*/          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
   imx=i-1; /* Number of individuals */          for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
   /* for (i=1; i<=imx; i++){            else fprintf(ficgp," %%*lf (%%*lf)");
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          }   
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
     }*/          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
    /*  for (i=1; i<=imx; i++){          for (j=1; j<= nlstate+1 ; j ++) {
      if (s[4][i]==9)  s[4][i]=-1;            if (j==i) fprintf(ficgp," %%lf (%%lf)");
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/            else fprintf(ficgp," %%*lf (%%*lf)");
            }   
   /* for (i=1; i<=imx; i++) */          fprintf(ficgp,"\" t\"\" w l lt 0,");
            fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;          for (j=1; j<= nlstate+1 ; j ++) {
      else weight[i]=1;*/            if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
   /* Calculation of the number of parameters from char model */          }   
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */          if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
   Tprod=ivector(1,15);          else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
   Tvaraff=ivector(1,15);        } /* state */
   Tvard=imatrix(1,15,1,2);      } /* vpopbased */
   Tage=ivector(1,15);            fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
        } /* k1 */
   if (strlen(model) >1){ /* If there is at least 1 covariate */  
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+'); /* j=Number of '+' */    /*3eme*/
     j1=nbocc(model,'*'); /* j1=Number of '*' */    for (k1=1; k1<= m ; k1 ++) { 
     cptcovn=j+1;      for (cpt=1; cpt<= nlstate ; cpt ++) {
     cptcovprod=j1; /*Number of products */        fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files:  cov=%d state=%d",k1, cpt);
            for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
     strcpy(modelsav,model);          lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
       printf("Error. Non available option model=%s ",model);          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
       fprintf(ficlog,"Error. Non available option model=%s ",model);          /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
       goto end;          vlv= nbcode[Tvaraff[lv]][lv];
     }          fprintf(ficgp," V%d=%d ",k,vlv);
            }
     /* This loop fills the array Tvar from the string 'model'.*/        fprintf(ficgp,"\n#\n");
   
     for(i=(j+1); i>=1;i--){        /*       k=2+nlstate*(2*cpt-2); */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */        k=2+(nlstate+1)*(cpt-1);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */        fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        fprintf(ficgp,"set ter svg size 640, 480\n\
       /*scanf("%d",i);*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
       if (strchr(strb,'*')) {  /* Model includes a product */        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         if (strcmp(strc,"age")==0) { /* Vn*age */          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           cptcovprod--;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           cutv(strb,stre,strd,'V');          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           cptcovage++;          
             Tage[cptcovage]=i;        */
             /*printf("stre=%s ", stre);*/        for (i=1; i< nlstate ; i ++) {
         }          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           cptcovprod--;          
           cutv(strb,stre,strc,'V');        } 
           Tvar[i]=atoi(stre);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
           cptcovage++;      }
           Tage[cptcovage]=i;    }
         }    
         else {  /* Age is not in the model */    /* Survival functions (period) from state i in state j by initial state i */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
           Tvar[i]=ncovcol+k1;      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */        fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt);
           Tprod[k1]=i;        for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           Tvard[k1][1]=atoi(strc); /* m*/          lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           Tvard[k1][2]=atoi(stre); /* n */          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           Tvar[cptcovn+k2]=Tvard[k1][1];          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           for (k=1; k<=lastobs;k++)          vlv= nbcode[Tvaraff[lv]][lv];
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          fprintf(ficgp," V%d=%d ",k,vlv);
           k1++;        }
           k2=k2+2;        fprintf(ficgp,"\n#\n");
         }  
       }        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
       else { /* no more sum */        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  set ter svg size 640, 480\n\
        /*  scanf("%d",i);*/  unset log y\n\
       cutv(strd,strc,strb,'V');  plot [%.f:%.f]  ", ageminpar, agemaxpar);
       Tvar[i]=atoi(strc);        k=3;
       }        for (i=1; i<= nlstate ; i ++){
       strcpy(modelsav,stra);            if(i==1)
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
         scanf("%d",i);*/          else
     } /* end of loop + */            fprintf(ficgp,", '' ");
   } /* end model */          l=(nlstate+ndeath)*(i-1)+1;
            fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.          for (j=2; j<= nlstate+ndeath ; j ++)
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/            fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        } /* nlstate */
   printf("cptcovprod=%d ", cptcovprod);        fprintf(ficgp,"\nset out\n");
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);      } /* end cpt state*/ 
     } /* end covariate */  
   scanf("%d ",i);*/  
     /* Survival functions (period) from state i in state j by final state j */
     /*  if(mle==1){*/    for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
   if (weightopt != 1) { /* Maximisation without weights*/      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
     for(i=1;i<=n;i++) weight[i]=1.0;        fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
   }        for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
     /*-calculation of age at interview from date of interview and age at death -*/          lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
   agev=matrix(1,maxwav,1,imx);          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
   for (i=1; i<=imx; i++) {          /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
     for(m=2; (m<= maxwav); m++) {          vlv= nbcode[Tvaraff[lv]][lv];
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){          fprintf(ficgp," V%d=%d ",k,vlv);
         anint[m][i]=9999;        }
         s[m][i]=-1;        fprintf(ficgp,"\n#\n");
       }  
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
         nberr++;        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  set ter svg size 640, 480\n\
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  unset log y\n\
         s[m][i]=-1;  plot [%.f:%.f]  ", ageminpar, agemaxpar);
       }        k=3;
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){        for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
         nberr++;          if(j==1)
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);          else
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */            fprintf(ficgp,", '' ");
       }          l=(nlstate+ndeath)*(cpt-1) +j;
     }          fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
   }          /* for (i=2; i<= nlstate+ndeath ; i ++) */
           /*   fprintf(ficgp,"+$%d",k+l+i-1); */
   for (i=1; i<=imx; i++)  {          fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        } /* nlstate */
     for(m=firstpass; (m<= lastpass); m++){        fprintf(ficgp,", '' ");
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){        fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
         if (s[m][i] >= nlstate+1) {        for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           if(agedc[i]>0)          l=(nlstate+ndeath)*(cpt-1) +j;
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)          if(j < nlstate)
               agev[m][i]=agedc[i];            fprintf(ficgp,"$%d +",k+l);
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          else
             else {            fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
               if ((int)andc[i]!=9999){        }
                 nbwarn++;        fprintf(ficgp,"\nset out\n");
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);      } /* end cpt state*/ 
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);    } /* end covariate */  
                 agev[m][i]=-1;  
               }    /* CV preval stable (period) for each covariate */
             }    for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
         }      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         else if(s[m][i] !=9){ /* Standard case, age in fractional        fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
                                  years but with the precision of a month */        for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             agev[m][i]=1;          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           else if(agev[m][i] <agemin){          /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             agemin=agev[m][i];          vlv= nbcode[Tvaraff[lv]][lv];
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          fprintf(ficgp," V%d=%d ",k,vlv);
           }        }
           else if(agev[m][i] >agemax){        fprintf(ficgp,"\n#\n");
             agemax=agev[m][i];  
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
           }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
           /*agev[m][i]=anint[m][i]-annais[i];*/  set ter svg size 640, 480\n\
           /*     agev[m][i] = age[i]+2*m;*/  unset log y\n\
         }  plot [%.f:%.f]  ", ageminpar, agemaxpar);
         else { /* =9 */        k=3; /* Offset */
           agev[m][i]=1;        for (i=1; i<= nlstate ; i ++){
           s[m][i]=-1;          if(i==1)
         }            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
       }          else
       else /*= 0 Unknown */            fprintf(ficgp,", '' ");
         agev[m][i]=1;          l=(nlstate+ndeath)*(i-1)+1;
     }          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
              for (j=2; j<= nlstate ; j ++)
   }            fprintf(ficgp,"+$%d",k+l+j-1);
   for (i=1; i<=imx; i++)  {          fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
     for(m=firstpass; (m<=lastpass); m++){        } /* nlstate */
       if (s[m][i] > (nlstate+ndeath)) {        fprintf(ficgp,"\nset out\n");
         nberr++;      } /* end cpt state*/ 
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        } /* end covariate */  
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      
         goto end;    if(prevfcast==1){
       }    /* Projection from cross-sectional to stable (period) for each covariate */
     }  
   }      for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
   /*for (i=1; i<=imx; i++){          fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
   for (m=firstpass; (m<lastpass); m++){          for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);            lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
 }            /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
 }*/            /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[lv]][lv];
             fprintf(ficgp," V%d=%d ",k,vlv);
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          }
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          fprintf(ficgp,"\n#\n");
           
   agegomp=(int)agemin;          fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
   free_vector(severity,1,maxwav);          fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1);
   free_imatrix(outcome,1,maxwav+1,1,n);          fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
   free_vector(moisnais,1,n);  set ter svg size 640, 480\n\
   free_vector(annais,1,n);  unset log y\n\
   /* free_matrix(mint,1,maxwav,1,n);  plot [%.f:%.f]  ", ageminpar, agemaxpar);
      free_matrix(anint,1,maxwav,1,n);*/          for (i=1; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
   free_vector(moisdc,1,n);            /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
   free_vector(andc,1,n);            /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
   wav=ivector(1,imx);            if(i==1){
   dh=imatrix(1,lastpass-firstpass+1,1,imx);              fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
   bh=imatrix(1,lastpass-firstpass+1,1,imx);            }else{
   mw=imatrix(1,lastpass-firstpass+1,1,imx);              fprintf(ficgp,",\\\n '' ");
                }
   /* Concatenates waves */            if(cptcoveff ==0){ /* No covariate */
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);              fprintf(ficgp," u 2:("); /* Age is in 2 */
               /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */              /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               if(i==nlstate+1)
   Tcode=ivector(1,100);                fprintf(ficgp," $%d/(1.-$%d)) t 'p.%d' with line ", \
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                          2+(cpt-1)*(nlstate+1)+1+(i-1),  2+1+(i-1)+(nlstate+1)*nlstate,cpt );
   ncodemax[1]=1;              else
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);                fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \
                              2+(cpt-1)*(nlstate+1)+1+(i-1),  2+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of            }else{
                                  the estimations*/              fprintf(ficgp,"u 6:(("); /* Age is in 6 */
   h=0;              /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
   m=pow(2,cptcoveff);              /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
                kl=0;
   for(k=1;k<=cptcoveff; k++){              for (k=1; k<=cptcoveff; k++){    /* For each covariate  */
     for(i=1; i <=(m/pow(2,k));i++){                lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
       for(j=1; j <= ncodemax[k]; j++){                /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           h++;                /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                vlv= nbcode[Tvaraff[lv]][lv];
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                kl++;
         }                /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
       }                /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
     }                /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
   }                /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                if(k==cptcoveff)
      codtab[1][2]=1;codtab[2][2]=2; */                  if(i==nlstate+1)
   /* for(i=1; i <=m ;i++){                    fprintf(ficgp,"$%d==%d && $%d==%d)? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv], \
      for(k=1; k <=cptcovn; k++){                            6+(cpt-1)*(nlstate+1)+1+(i-1),  6+1+(i-1)+(nlstate+1)*nlstate,cpt );
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                  else
      }                    fprintf(ficgp,"$%d==%d && $%d==%d)? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv], \
      printf("\n");                            6+(cpt-1)*(nlstate+1)+1+(i-1),  6+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
      }                else{
      scanf("%d",i);*/                  fprintf(ficgp,"$%d==%d && $%d==%d && ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv]);
                      kl++;
   /*------------ gnuplot -------------*/                }
   strcpy(optionfilegnuplot,optionfilefiname);              } /* end covariate */
   if(mle==-3)            } /* end if covariate */
     strcat(optionfilegnuplot,"-mort");          } /* nlstate */
   strcat(optionfilegnuplot,".gp");          fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      } /* end covariate */
     printf("Problem with file %s",optionfilegnuplot);    } /* End if prevfcast */
   }  
   else{  
     fprintf(ficgp,"\n# %s\n", version);    /* proba elementaires */
     fprintf(ficgp,"# %s\n", optionfilegnuplot);    fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     fprintf(ficgp,"set missing 'NaNq'\n");    for(i=1,jk=1; i <=nlstate; i++){
   }      fprintf(ficgp,"# initial state %d\n",i);
   /*  fclose(ficgp);*/      for(k=1; k <=(nlstate+ndeath); k++){
   /*--------- index.htm --------*/        if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */          for(j=1; j <=ncovmodel; j++){
   if(mle==-3)            fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
     strcat(optionfilehtm,"-mort");            jk++; 
   strcat(optionfilehtm,".htm");          }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          fprintf(ficgp,"\n");
     printf("Problem with %s \n",optionfilehtm), exit(0);        }
   }      }
      }
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */    fprintf(ficgp,"##############\n#\n");
   strcat(optionfilehtmcov,"-cov.htm");  
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {    /*goto avoid;*/
     printf("Problem with %s \n",optionfilehtmcov), exit(0);    fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
   }    fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
   else{    fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \    fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\    fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);    fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
   }    fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \    fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\    fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
 \n\    fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
 <hr  size=\"2\" color=\"#EC5E5E\">\    fprintf(ficgp,"#\n");
  <ul><li><h4>Parameter files</h4>\n\     for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\       fprintf(ficgp,"# ng=%d\n",ng);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\       fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\       for(jk=1; jk <=m; jk++) {
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\         fprintf(ficgp,"#    jk=%d\n",jk);
  - Date and time at start: %s</ul>\n",\         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\         fprintf(ficgp,"\nset ter svg size 640, 480 ");
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\         if (ng==1){
           fileres,fileres,\           fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);           fprintf(ficgp,"\nunset log y");
   fflush(fichtm);         }else if (ng==2){
            fprintf(ficgp,"\nset ylabel \"Probability\"\n");
   strcpy(pathr,path);           fprintf(ficgp,"\nset log y");
   strcat(pathr,optionfilefiname);         }else if (ng==3){
   chdir(optionfilefiname); /* Move to directory named optionfile */           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
             fprintf(ficgp,"\nset log y");
   /* Calculates basic frequencies. Computes observed prevalence at single age         }else
      and prints on file fileres'p'. */           fprintf(ficgp,"\nunset title ");
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);         fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
   fprintf(fichtm,"\n");         for(k2=1; k2<=nlstate; k2++) {
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\           k3=i;
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\           for(k=1; k<=(nlstate+ndeath); k++) {
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\             if (k != k2){
           imx,agemin,agemax,jmin,jmax,jmean);               switch( ng) {
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               case 1:
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                 if(nagesqr==0)
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                   fprintf(ficgp," p%d+p%d*x",i,i+1);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                 else /* nagesqr =1 */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                   fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                     break;
                   case 2: /* ng=2 */
   /* For Powell, parameters are in a vector p[] starting at p[1]                 if(nagesqr==0)
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                   fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */                 else /* nagesqr =1 */
                      fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/                 break;
                case 3:
   if (mle==-3){                 if(nagesqr==0)
     ximort=matrix(1,NDIM,1,NDIM);                   fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     cens=ivector(1,n);                 else /* nagesqr =1 */
     ageexmed=vector(1,n);                   fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
     agecens=vector(1,n);                 break;
     dcwave=ivector(1,n);               }
                 ij=1;/* To be checked else nbcode[0][0] wrong */
     for (i=1; i<=imx; i++){               for(j=3; j <=ncovmodel-nagesqr; j++) {
       dcwave[i]=-1;                 /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
       for (m=firstpass; m<=lastpass; m++)                 if(ij <=cptcovage) { /* Bug valgrind */
         if (s[m][i]>nlstate) {                   if((j-2)==Tage[ij]) { /* Bug valgrind */
           dcwave[i]=m;                     fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/                     /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
           break;                     ij++;
         }                   }
     }                 }
                  else
     for (i=1; i<=imx; i++) {                   fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
       if (wav[i]>0){               }
         ageexmed[i]=agev[mw[1][i]][i];               if(ng != 1){
         j=wav[i];                 fprintf(ficgp,")/(1");
         agecens[i]=1.;               
                  for(k1=1; k1 <=nlstate; k1++){ 
         if (ageexmed[i]> 1 && wav[i] > 0){                   if(nagesqr==0)
           agecens[i]=agev[mw[j][i]][i];                     fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
           cens[i]= 1;                   else /* nagesqr =1 */
         }else if (ageexmed[i]< 1)                     fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
           cens[i]= -1;                   
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)                   ij=1;
           cens[i]=0 ;                   for(j=3; j <=ncovmodel-nagesqr; j++){
       }                     if(ij <=cptcovage) { /* Bug valgrind */
       else cens[i]=-1;                       if((j-2)==Tage[ij]) { /* Bug valgrind */
     }                         fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                             /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
     for (i=1;i<=NDIM;i++) {                         ij++;
       for (j=1;j<=NDIM;j++)                       }
         ximort[i][j]=(i == j ? 1.0 : 0.0);                     }
     }                     else
                           fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
     p[1]=0.0268; p[NDIM]=0.083;                   }
     /*printf("%lf %lf", p[1], p[2]);*/                   fprintf(ficgp,")");
                     }
                     fprintf(ficgp,")");
     printf("Powell\n");  fprintf(ficlog,"Powell\n");                 if(ng ==2)
     strcpy(filerespow,"pow-mort");                   fprintf(ficgp," t \"p%d%d\" ", k2,k);
     strcat(filerespow,fileres);                 else /* ng= 3 */
     if((ficrespow=fopen(filerespow,"w"))==NULL) {                   fprintf(ficgp," t \"i%d%d\" ", k2,k);
       printf("Problem with resultfile: %s\n", filerespow);               }else{ /* end ng <> 1 */
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);                 fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
     }               }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     /*  for (i=1;i<=nlstate;i++)               i=i+ncovmodel;
         for(j=1;j<=nlstate+ndeath;j++)             }
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);           } /* end k */
     */         } /* end k2 */
     fprintf(ficrespow,"\n");         fprintf(ficgp,"\n set out\n");
           } /* end jk */
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);     } /* end ng */
     fclose(ficrespow);   /* avoid: */
         fflush(ficgp); 
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);  }  /* end gnuplot */
   
     for(i=1; i <=NDIM; i++)  
       for(j=i+1;j<=NDIM;j++)  /*************** Moving average **************/
         matcov[i][j]=matcov[j][i];  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
      
     printf("\nCovariance matrix\n ");    int i, cpt, cptcod;
     for(i=1; i <=NDIM; i++) {    int modcovmax =1;
       for(j=1;j<=NDIM;j++){    int mobilavrange, mob;
         printf("%f ",matcov[i][j]);    double age;
       }  
       printf("\n ");    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
     }                             a covariate has 2 modalities */
        if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);  
     for (i=1;i<=NDIM;i++)    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));      if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
     lsurv=vector(1,AGESUP);      for (age=bage; age<=fage; age++)
     lpop=vector(1,AGESUP);        for (i=1; i<=nlstate;i++)
     tpop=vector(1,AGESUP);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
     lsurv[agegomp]=100000;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
          /* We keep the original values on the extreme ages bage, fage and for 
     for (k=agegomp;k<=AGESUP;k++) {         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
       agemortsup=k;         we use a 5 terms etc. until the borders are no more concerned. 
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;      */ 
     }      for (mob=3;mob <=mobilavrange;mob=mob+2){
            for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     for (k=agegomp;k<agemortsup;k++)          for (i=1; i<=nlstate;i++){
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));            for (cptcod=1;cptcod<=modcovmax;cptcod++){
                  mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
     for (k=agegomp;k<agemortsup;k++){                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
       sumlpop=sumlpop+lpop[k];                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     }                }
                  mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
     tpop[agegomp]=sumlpop;            }
     for (k=agegomp;k<(agemortsup-3);k++){          }
       /*  tpop[k+1]=2;*/        }/* end age */
       tpop[k+1]=tpop[k]-lpop[k];      }/* end mob */
     }    }else return -1;
        return 0;
      }/* End movingaverage */
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");  
     for (k=agegomp;k<(agemortsup-2);k++)  
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);  /************** Forecasting ******************/
      void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
        /* proj1, year, month, day of starting projection 
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */       agemin, agemax range of age
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);       dateprev1 dateprev2 range of dates during which prevalence is computed
           anproj2 year of en of projection (same day and month as proj1).
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \    */
                      stepm, weightopt,\    int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
                      model,imx,p,matcov,agemortsup);    double agec; /* generic age */
        double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     free_vector(lsurv,1,AGESUP);    double *popeffectif,*popcount;
     free_vector(lpop,1,AGESUP);    double ***p3mat;
     free_vector(tpop,1,AGESUP);    double ***mobaverage;
   } /* Endof if mle==-3 */    char fileresf[FILENAMELENGTH];
    
   else{ /* For mle >=1 */    agelim=AGESUP;
      /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */       in each health status at the date of interview (if between dateprev1 and dateprev2).
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);       We still use firstpass and lastpass as another selection.
     for (k=1; k<=npar;k++)    */
       printf(" %d %8.5f",k,p[k]);    /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
     printf("\n");    /*          firstpass, lastpass,  stepm,  weightopt, model); */
     globpr=1; /* to print the contributions */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */   
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    strcpy(fileresf,"F_"); 
     for (k=1; k<=npar;k++)    strcat(fileresf,fileresu);
       printf(" %d %8.5f",k,p[k]);    if((ficresf=fopen(fileresf,"w"))==NULL) {
     printf("\n");      printf("Problem with forecast resultfile: %s\n", fileresf);
     if(mle>=1){ /* Could be 1 or 2 */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    }
     }    printf("Computing forecasting: result on file '%s', please wait... \n", fileresf);
        fprintf(ficlog,"Computing forecasting: result on file '%s', please wait... \n", fileresf);
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
      
        if (mobilav!=0) {
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     for(i=1,jk=1; i <=nlstate; i++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       for(k=1; k <=(nlstate+ndeath); k++){      }
         if (k != i) {    }
           printf("%d%d ",i,k);  
           fprintf(ficlog,"%d%d ",i,k);    stepsize=(int) (stepm+YEARM-1)/YEARM;
           fprintf(ficres,"%1d%1d ",i,k);    if (stepm<=12) stepsize=1;
           for(j=1; j <=ncovmodel; j++){    if(estepm < stepm){
             printf("%lf ",p[jk]);      printf ("Problem %d lower than %d\n",estepm, stepm);
             fprintf(ficlog,"%lf ",p[jk]);    }
             fprintf(ficres,"%lf ",p[jk]);    else  hstepm=estepm;   
             jk++;  
           }    hstepm=hstepm/stepm; 
           printf("\n");    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
           fprintf(ficlog,"\n");                                 fractional in yp1 */
           fprintf(ficres,"\n");    anprojmean=yp;
         }    yp2=modf((yp1*12),&yp);
       }    mprojmean=yp;
     }    yp1=modf((yp2*30.5),&yp);
     if(mle!=0){    jprojmean=yp;
       /* Computing hessian and covariance matrix */    if(jprojmean==0) jprojmean=1;
       ftolhess=ftol; /* Usually correct */    if(mprojmean==0) jprojmean=1;
       hesscov(matcov, p, npar, delti, ftolhess, func);  
     }    i1=cptcoveff;
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    if (cptcovn < 1){i1=1;}
     printf("# Scales (for hessian or gradient estimation)\n");    
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     for(i=1,jk=1; i <=nlstate; i++){    
       for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficresf,"#****** Routine prevforecast **\n");
         if (j!=i) {  
           fprintf(ficres,"%1d%1d",i,j);  /*            if (h==(int)(YEARM*yearp)){ */
           printf("%1d%1d",i,j);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
           fprintf(ficlog,"%1d%1d",i,j);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           for(k=1; k<=ncovmodel;k++){        k=k+1;
             printf(" %.5e",delti[jk]);        fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
             fprintf(ficlog," %.5e",delti[jk]);        for(j=1;j<=cptcoveff;j++) {
             fprintf(ficres," %.5e",delti[jk]);          fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             jk++;        }
           }        fprintf(ficresf," yearproj age");
           printf("\n");        for(j=1; j<=nlstate+ndeath;j++){ 
           fprintf(ficlog,"\n");          for(i=1; i<=nlstate;i++)              
           fprintf(ficres,"\n");            fprintf(ficresf," p%d%d",i,j);
         }          fprintf(ficresf," p.%d",j);
       }        }
     }        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
              fprintf(ficresf,"\n");
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
     if(mle>=1)  
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          for (agec=fage; agec>=(ageminpar-1); agec--){ 
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
     /* # 121 Var(a12)\n\ */            nhstepm = nhstepm/hstepm; 
     /* # 122 Cov(b12,a12) Var(b12)\n\ */            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */            oldm=oldms;savm=savms;
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */          
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */            for (h=0; h<=nhstepm; h++){
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */              if (h*hstepm/YEARM*stepm ==yearp) {
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */                fprintf(ficresf,"\n");
                    for(j=1;j<=cptcoveff;j++) 
                      fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
     /* Just to have a covariance matrix which will be more understandable                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
        even is we still don't want to manage dictionary of variables              } 
     */              for(j=1; j<=nlstate+ndeath;j++) {
     for(itimes=1;itimes<=2;itimes++){                ppij=0.;
       jj=0;                for(i=1; i<=nlstate;i++) {
       for(i=1; i <=nlstate; i++){                  if (mobilav==1) 
         for(j=1; j <=nlstate+ndeath; j++){                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
           if(j==i) continue;                  else {
           for(k=1; k<=ncovmodel;k++){                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
             jj++;                  }
             ca[0]= k+'a'-1;ca[1]='\0';                  if (h*hstepm/YEARM*stepm== yearp) {
             if(itimes==1){                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
               if(mle>=1)                  }
                 printf("#%1d%1d%d",i,j,k);                } /* end i */
               fprintf(ficlog,"#%1d%1d%d",i,j,k);                if (h*hstepm/YEARM*stepm==yearp) {
               fprintf(ficres,"#%1d%1d%d",i,j,k);                  fprintf(ficresf," %.3f", ppij);
             }else{                }
               if(mle>=1)              }/* end j */
                 printf("%1d%1d%d",i,j,k);            } /* end h */
               fprintf(ficlog,"%1d%1d%d",i,j,k);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               fprintf(ficres,"%1d%1d%d",i,j,k);          } /* end agec */
             }        } /* end yearp */
             ll=0;      } /* end cptcod */
             for(li=1;li <=nlstate; li++){    } /* end  cptcov */
               for(lj=1;lj <=nlstate+ndeath; lj++){         
                 if(lj==li) continue;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                 for(lk=1;lk<=ncovmodel;lk++){  
                   ll++;    fclose(ficresf);
                   if(ll<=jj){    printf("End of Computing forecasting \n");
                     cb[0]= lk +'a'-1;cb[1]='\0';    fprintf(ficlog,"End of Computing forecasting\n");
                     if(ll<jj){  
                       if(itimes==1){  }
                         if(mle>=1)  
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  /************** Forecasting *****not tested NB*************/
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    
                       }else{    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
                         if(mle>=1)    int *popage;
                           printf(" %.5e",matcov[jj][ll]);    double calagedatem, agelim, kk1, kk2;
                         fprintf(ficlog," %.5e",matcov[jj][ll]);    double *popeffectif,*popcount;
                         fprintf(ficres," %.5e",matcov[jj][ll]);    double ***p3mat,***tabpop,***tabpopprev;
                       }    double ***mobaverage;
                     }else{    char filerespop[FILENAMELENGTH];
                       if(itimes==1){  
                         if(mle>=1)    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                           printf(" Var(%s%1d%1d)",ca,i,j);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);    agelim=AGESUP;
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
                       }else{    
                         if(mle>=1)    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                           printf(" %.5e",matcov[jj][ll]);    
                         fprintf(ficlog," %.5e",matcov[jj][ll]);    
                         fprintf(ficres," %.5e",matcov[jj][ll]);    strcpy(filerespop,"POP_"); 
                       }    strcat(filerespop,fileresu);
                     }    if((ficrespop=fopen(filerespop,"w"))==NULL) {
                   }      printf("Problem with forecast resultfile: %s\n", filerespop);
                 } /* end lk */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
               } /* end lj */    }
             } /* end li */    printf("Computing forecasting: result on file '%s' \n", filerespop);
             if(mle>=1)    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
               printf("\n");  
             fprintf(ficlog,"\n");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
             fprintf(ficres,"\n");  
             numlinepar++;    if (mobilav!=0) {
           } /* end k*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         } /*end j */      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       } /* end i */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     } /* end itimes */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
          }
     fflush(ficlog);    }
     fflush(ficres);  
        stepsize=(int) (stepm+YEARM-1)/YEARM;
     while((c=getc(ficpar))=='#' && c!= EOF){    if (stepm<=12) stepsize=1;
       ungetc(c,ficpar);    
       fgets(line, MAXLINE, ficpar);    agelim=AGESUP;
       puts(line);    
       fputs(line,ficparo);    hstepm=1;
     }    hstepm=hstepm/stepm; 
     ungetc(c,ficpar);    
        if (popforecast==1) {
     estepm=0;      if((ficpop=fopen(popfile,"r"))==NULL) {
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        printf("Problem with population file : %s\n",popfile);exit(0);
     if (estepm==0 || estepm < stepm) estepm=stepm;        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
     if (fage <= 2) {      } 
       bage = ageminpar;      popage=ivector(0,AGESUP);
       fage = agemaxpar;      popeffectif=vector(0,AGESUP);
     }      popcount=vector(0,AGESUP);
          
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      i=1;   
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);     
          imx=i;
     while((c=getc(ficpar))=='#' && c!= EOF){      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
       ungetc(c,ficpar);    }
       fgets(line, MAXLINE, ficpar);  
       puts(line);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       fputs(line,ficparo);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     }        k=k+1;
     ungetc(c,ficpar);        fprintf(ficrespop,"\n#******");
            for(j=1;j<=cptcoveff;j++) {
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        }
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        fprintf(ficrespop,"******\n");
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        fprintf(ficrespop,"# Age");
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
            if (popforecast==1)  fprintf(ficrespop," [Population]");
     while((c=getc(ficpar))=='#' && c!= EOF){        
       ungetc(c,ficpar);        for (cpt=0; cpt<=0;cpt++) { 
       fgets(line, MAXLINE, ficpar);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
       puts(line);          
       fputs(line,ficparo);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
     }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
     ungetc(c,ficpar);            nhstepm = nhstepm/hstepm; 
                
                p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;            oldm=oldms;savm=savms;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
              
     fscanf(ficpar,"pop_based=%d\n",&popbased);            for (h=0; h<=nhstepm; h++){
     fprintf(ficparo,"pop_based=%d\n",popbased);                if (h==(int) (calagedatem+YEARM*cpt)) {
     fprintf(ficres,"pop_based=%d\n",popbased);                  fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                  } 
     while((c=getc(ficpar))=='#' && c!= EOF){              for(j=1; j<=nlstate+ndeath;j++) {
       ungetc(c,ficpar);                kk1=0.;kk2=0;
       fgets(line, MAXLINE, ficpar);                for(i=1; i<=nlstate;i++) {              
       puts(line);                  if (mobilav==1) 
       fputs(line,ficparo);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     }                  else {
     ungetc(c,ficpar);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                      }
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);                }
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);                if (h==(int)(calagedatem+12*cpt)){
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);                    /*fprintf(ficrespop," %.3f", kk1);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
     /* day and month of proj2 are not used but only year anproj2.*/                }
                  }
                  for(i=1; i<=nlstate;i++){
                    kk1=0.;
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/                  for(j=1; j<=nlstate;j++){
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                      }
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);              }
      
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);            }
                  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    /*------------ free_vector  -------------*/          }
    /*  chdir(path); */        }
     
     free_ivector(wav,1,imx);    /******/
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
     free_lvector(num,1,n);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
     free_vector(agedc,1,n);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
     /*free_matrix(covar,0,NCOVMAX,1,n);*/            nhstepm = nhstepm/hstepm; 
     /*free_matrix(covar,1,NCOVMAX,1,n);*/            
     fclose(ficparo);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fclose(ficres);            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/              if (h==(int) (calagedatem+YEARM*cpt)) {
                  fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     strcpy(filerespl,"pl");              } 
     strcat(filerespl,fileres);              for(j=1; j<=nlstate+ndeath;j++) {
     if((ficrespl=fopen(filerespl,"w"))==NULL) {                kk1=0.;kk2=0;
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;                for(i=1; i<=nlstate;i++) {              
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     }                }
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);              }
     pstamp(ficrespl);            }
     fprintf(ficrespl,"# Period (stable) prevalence \n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficrespl,"#Age ");          }
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        }
     fprintf(ficrespl,"\n");     } 
      }
     prlim=matrix(1,nlstate,1,nlstate);   
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agebase=ageminpar;  
     agelim=agemaxpar;    if (popforecast==1) {
     ftolpl=1.e-10;      free_ivector(popage,0,AGESUP);
     i1=cptcoveff;      free_vector(popeffectif,0,AGESUP);
     if (cptcovn < 1){i1=1;}      free_vector(popcount,0,AGESUP);
     }
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         k=k+1;    fclose(ficrespop);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  } /* End of popforecast */
         fprintf(ficrespl,"\n#******");  
         printf("\n#******");  int fileappend(FILE *fichier, char *optionfich)
         fprintf(ficlog,"\n#******");  {
         for(j=1;j<=cptcoveff;j++) {    if((fichier=fopen(optionfich,"a"))==NULL) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Problem with file: %s\n", optionfich);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"Problem with file: %s\n", optionfich);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      return (0);
         }    }
         fprintf(ficrespl,"******\n");    fflush(fichier);
         printf("******\n");    return (1);
         fprintf(ficlog,"******\n");  }
          
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  /**************** function prwizard **********************/
           fprintf(ficrespl,"%.0f ",age );  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
           for(j=1;j<=cptcoveff;j++)  {
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           for(i=1; i<=nlstate;i++)    /* Wizard to print covariance matrix template */
             fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");    char ca[32], cb[32];
         }    int i,j, k, li, lj, lk, ll, jj, npar, itimes;
       }    int numlinepar;
     }  
     fclose(ficrespl);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     /*------------- h Pij x at various ages ------------*/    for(i=1; i <=nlstate; i++){
        jj=0;
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);      for(j=1; j <=nlstate+ndeath; j++){
     if((ficrespij=fopen(filerespij,"w"))==NULL) {        if(j==i) continue;
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        jj++;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;        /*ca[0]= k+'a'-1;ca[1]='\0';*/
     }        printf("%1d%1d",i,j);
     printf("Computing pij: result on file '%s' \n", filerespij);        fprintf(ficparo,"%1d%1d",i,j);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);        for(k=1; k<=ncovmodel;k++){
            /*        printf(" %lf",param[i][j][k]); */
     stepsize=(int) (stepm+YEARM-1)/YEARM;          /*        fprintf(ficparo," %lf",param[i][j][k]); */
     /*if (stepm<=24) stepsize=2;*/          printf(" 0.");
           fprintf(ficparo," 0.");
     agelim=AGESUP;        }
     hstepm=stepsize*YEARM; /* Every year of age */        printf("\n");
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        fprintf(ficparo,"\n");
       }
     /* hstepm=1;   aff par mois*/    }
     pstamp(ficrespij);    printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for(i=1; i <=nlstate; i++){
         k=k+1;      jj=0;
         fprintf(ficrespij,"\n#****** ");      for(j=1; j <=nlstate+ndeath; j++){
         for(j=1;j<=cptcoveff;j++)        if(j==i) continue;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        jj++;
         fprintf(ficrespij,"******\n");        fprintf(ficparo,"%1d%1d",i,j);
                printf("%1d%1d",i,j);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        fflush(stdout);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(k=1; k<=ncovmodel;k++){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           /*      nhstepm=nhstepm*YEARM; aff par mois*/          printf(" 0.");
           fprintf(ficparo," 0.");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;        numlinepar++;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          printf("\n");
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");        fprintf(ficparo,"\n");
           for(i=1; i<=nlstate;i++)      }
             for(j=1; j<=nlstate+ndeath;j++)    }
               fprintf(ficrespij," %1d-%1d",i,j);    printf("# Covariance matrix\n");
           fprintf(ficrespij,"\n");  /* # 121 Var(a12)\n\ */
           for (h=0; h<=nhstepm; h++){  /* # 122 Cov(b12,a12) Var(b12)\n\ */
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
             for(i=1; i<=nlstate;i++)  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
               for(j=1; j<=nlstate+ndeath;j++)  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
             fprintf(ficrespij,"\n");  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
           }  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fflush(stdout);
           fprintf(ficrespij,"\n");    fprintf(ficparo,"# Covariance matrix\n");
         }    /* # 121 Var(a12)\n\ */
       }    /* # 122 Cov(b12,a12) Var(b12)\n\ */
     }    /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);    
     for(itimes=1;itimes<=2;itimes++){
     fclose(ficrespij);      jj=0;
       for(i=1; i <=nlstate; i++){
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j <=nlstate+ndeath; j++){
     for(i=1;i<=AGESUP;i++)          if(j==i) continue;
       for(j=1;j<=NCOVMAX;j++)          for(k=1; k<=ncovmodel;k++){
         for(k=1;k<=NCOVMAX;k++)            jj++;
           probs[i][j][k]=0.;            ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
     /*---------- Forecasting ------------------*/              printf("#%1d%1d%d",i,j,k);
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/              fprintf(ficparo,"#%1d%1d%d",i,j,k);
     if(prevfcast==1){            }else{
       /*    if(stepm ==1){*/              printf("%1d%1d%d",i,j,k);
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);              fprintf(ficparo,"%1d%1d%d",i,j,k);
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/              /*  printf(" %.5le",matcov[i][j]); */
       /*      }  */            }
       /*      else{ */            ll=0;
       /*        erreur=108; */            for(li=1;li <=nlstate; li++){
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */              for(lj=1;lj <=nlstate+ndeath; lj++){
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */                if(lj==li) continue;
       /*      } */                for(lk=1;lk<=ncovmodel;lk++){
     }                  ll++;
                    if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
     /*---------- Health expectancies and variances ------------*/                    if(ll<jj){
                       if(itimes==1){
     strcpy(filerest,"t");                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     strcat(filerest,fileres);                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     if((ficrest=fopen(filerest,"w"))==NULL) {                      }else{
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;                        printf(" 0.");
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;                        fprintf(ficparo," 0.");
     }                      }
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);                    }else{
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);                      if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
     strcpy(filerese,"e");                      }else{
     strcat(filerese,fileres);                        printf(" 0.");
     if((ficreseij=fopen(filerese,"w"))==NULL) {                        fprintf(ficparo," 0.");
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                      }
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                    }
     }                  }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);                } /* end lk */
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);              } /* end lj */
             } /* end li */
     strcpy(fileresstde,"stde");            printf("\n");
     strcat(fileresstde,fileres);            fprintf(ficparo,"\n");
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {            numlinepar++;
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);          } /* end k*/
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);        } /*end j */
     }      } /* end i */
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);    } /* end itimes */
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);  
   } /* end of prwizard */
     strcpy(filerescve,"cve");  /******************* Gompertz Likelihood ******************************/
     strcat(filerescve,fileres);  double gompertz(double x[])
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {  { 
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);    double A,B,L=0.0,sump=0.,num=0.;
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);    int i,n=0; /* n is the size of the sample */
     }  
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);    for (i=0;i<=imx-1 ; i++) {
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);      sump=sump+weight[i];
       /*    sump=sump+1;*/
     strcpy(fileresv,"v");      num=num+1;
     strcat(fileresv,fileres);    }
     if((ficresvij=fopen(fileresv,"w"))==NULL) {   
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);   
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    /* for (i=0; i<=imx; i++) 
     }       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    for (i=1;i<=imx ; i++)
       {
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */        if (cens[i] == 1 && wav[i]>1)
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\        
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);        if (cens[i] == 0 && wav[i]>1)
     */          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
     if (mobilav!=0) {        
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){        if (wav[i] > 1 ) { /* ??? */
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          L=L+A*weight[i];
         printf(" Error in movingaverage mobilav=%d\n",mobilav);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
       }        }
     }      }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   
         k=k+1;    return -2*L*num/sump;
         fprintf(ficrest,"\n#****** ");  }
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  #ifdef GSL
         fprintf(ficrest,"******\n");  /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
         fprintf(ficreseij,"\n#****** ");  { 
         fprintf(ficresstdeij,"\n#****** ");    double A,B,LL=0.0,sump=0.,num=0.;
         fprintf(ficrescveij,"\n#****** ");    double *x= (double *) v->data;
         for(j=1;j<=cptcoveff;j++) {    int i,n=0; /* n is the size of the sample */
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (i=0;i<=imx-1 ; i++) {
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      sump=sump+weight[i];
         }      /*    sump=sump+1;*/
         fprintf(ficreseij,"******\n");      num=num+1;
         fprintf(ficresstdeij,"******\n");    }
         fprintf(ficrescveij,"******\n");   
    
         fprintf(ficresvij,"\n#****** ");    /* for (i=0; i<=imx; i++) 
         for(j=1;j<=cptcoveff;j++)       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
         fprintf(ficresvij,"******\n");    for (i=1;i<=imx ; i++)
       {
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        if (cens[i] == 1 && wav[i]>1)
         oldm=oldms;savm=savms;          A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);          
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);          if (cens[i] == 0 && wav[i]>1)
            A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);               +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         oldm=oldms;savm=savms;        
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if(popbased==1){        if (wav[i] > 1 ) { /* ??? */
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);          LL=LL+A*weight[i];
         }          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
         pstamp(ficrest);      }
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");  
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
         fprintf(ficrest,"\n");    printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
         epj=vector(1,nlstate+1);    return -2*LL*num/sump;
         for(age=bage; age <=fage ;age++){  }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  #endif
           if (popbased==1) {  
             if(mobilav ==0){  /******************* Printing html file ***********/
               for(i=1; i<=nlstate;i++)  void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
                 prlim[i][i]=probs[(int)age][i][k];                    int lastpass, int stepm, int weightopt, char model[],\
             }else{ /* mobilav */                    int imx,  double p[],double **matcov,double agemortsup){
               for(i=1; i<=nlstate;i++)    int i,k;
                 prlim[i][i]=mobaverage[(int)age][i][k];  
             }    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
           }    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
            for (i=1;i<=2;i++) 
           fprintf(ficrest," %4.0f",age);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
             for(i=1, epj[j]=0.;i <=nlstate;i++) {    fprintf(fichtm,"</ul>");
               epj[j] += prlim[i][i]*eij[i][j][(int)age];  
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
             }  
             epj[nlstate+1] +=epj[j];   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
           }  
    for (k=agegomp;k<(agemortsup-2);k++) 
           for(i=1, vepp=0.;i <=nlstate;i++)     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
             for(j=1;j <=nlstate;j++)  
               vepp += vareij[i][j][(int)age];   
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    fflush(fichtm);
           for(j=1;j <=nlstate;j++){  }
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  
           }  /******************* Gnuplot file **************/
           fprintf(ficrest,"\n");  void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
         }  
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    char dirfileres[132],optfileres[132];
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
         free_vector(epj,1,nlstate+1);    int ng;
       }  
     }  
     free_vector(weight,1,n);    /*#ifdef windows */
     free_imatrix(Tvard,1,15,1,2);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     free_imatrix(s,1,maxwav+1,1,n);      /*#endif */
     free_matrix(anint,1,maxwav,1,n);  
     free_matrix(mint,1,maxwav,1,n);  
     free_ivector(cod,1,n);    strcpy(dirfileres,optionfilefiname);
     free_ivector(tab,1,NCOVMAX);    strcpy(optfileres,"vpl");
     fclose(ficreseij);    fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     fclose(ficresstdeij);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fclose(ficrescveij);    fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     fclose(ficresvij);    /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fclose(ficrest);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
     fclose(ficpar);  
    } 
     /*------- Variance of period (stable) prevalence------*/    
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
     strcpy(fileresvpl,"vpl");  {
     strcat(fileresvpl,fileres);  
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    /*-------- data file ----------*/
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);    FILE *fic;
       exit(0);    char dummy[]="                         ";
     }    int i=0, j=0, n=0;
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);    int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){    char stra[MAXLINE], strb[MAXLINE];
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    char *stratrunc;
         k=k+1;    int lstra;
         fprintf(ficresvpl,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if((fic=fopen(datafile,"r"))==NULL)    {
         fprintf(ficresvpl,"******\n");      printf("Problem while opening datafile: %s\n", datafile);fflush(stdout);
            fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1;
         varpl=matrix(1,nlstate,(int) bage, (int) fage);    }
         oldm=oldms;savm=savms;  
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);    i=1;
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    linei=0;
       }    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
     }      linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
     fclose(ficresvpl);        if(line[j] == '\t')
           line[j] = ' ';
     /*---------- End : free ----------------*/      }
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        ;
       };
   }  /* mle==-3 arrives here for freeing */      line[j+1]=0;  /* Trims blanks at end of line */
   free_matrix(prlim,1,nlstate,1,nlstate);      if(line[0]=='#'){
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficlog,"Comment line\n%s\n",line);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        printf("Comment line\n%s\n",line);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        continue;
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      }
     free_matrix(covar,0,NCOVMAX,1,n);      trimbb(linetmp,line); /* Trims multiple blanks in line */
     free_matrix(matcov,1,npar,1,npar);      strcpy(line, linetmp);
     /*free_vector(delti,1,npar);*/    
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
     free_matrix(agev,1,maxwav,1,imx);      for (j=maxwav;j>=1;j--){
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
     free_ivector(ncodemax,1,8);          lval=-1;
     free_ivector(Tvar,1,15);        }else{
     free_ivector(Tprod,1,15);          errno=0;
     free_ivector(Tvaraff,1,15);          lval=strtol(strb,&endptr,10); 
     free_ivector(Tage,1,15);        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
     free_ivector(Tcode,1,100);          if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
     free_imatrix(codtab,1,100,1,10);            return 1;
   fflush(fichtm);          }
   fflush(ficgp);        }
          s[j][i]=lval;
         
   if((nberr >0) || (nbwarn>0)){        strcpy(line,stra);
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);        cutv(stra, strb,line,' ');
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);        if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
   }else{        }
     printf("End of Imach\n");        else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
     fprintf(ficlog,"End of Imach\n");          month=99;
   }          year=9999;
   printf("See log file on %s\n",filelog);        }else{
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
   (void) gettimeofday(&end_time,&tzp);          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
   tm = *localtime(&end_time.tv_sec);          return 1;
   tmg = *gmtime(&end_time.tv_sec);        }
   strcpy(strtend,asctime(&tm));        anint[j][i]= (double) year; 
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);        mint[j][i]= (double)month; 
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);        strcpy(line,stra);
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      } /* ENd Waves */
       
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      cutv(stra, strb,line,' '); 
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      }
   /*  printf("Total time was %d uSec.\n", total_usecs);*/      else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
 /*   if(fileappend(fichtm,optionfilehtm)){ */        month=99;
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);        year=9999;
   fclose(fichtm);      }else{
   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
   fclose(fichtmcov);          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
   fclose(ficgp);          return 1;
   fclose(ficlog);      }
   /*------ End -----------*/      andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
    printf("Before Current directory %s!\n",pathcd);      
    if(chdir(pathcd) != 0)      cutv(stra, strb,line,' '); 
     printf("Can't move to directory %s!\n",path);      if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
   if(getcwd(pathcd,MAXLINE) > 0)      }
     printf("Current directory %s!\n",pathcd);      else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
   /*strcat(plotcmd,CHARSEPARATOR);*/        month=99;
   sprintf(plotcmd,"gnuplot");        year=9999;
 #ifndef UNIX      }else{
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 #endif        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
   if(!stat(plotcmd,&info)){          return 1;
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);      }
     if(!stat(getenv("GNUPLOTBIN"),&info)){      if (year==9999) {
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
     }else        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
       strcpy(pplotcmd,plotcmd);          return 1;
 #ifdef UNIX  
     strcpy(plotcmd,GNUPLOTPROGRAM);      }
     if(!stat(plotcmd,&info)){      annais[i]=(double)(year);
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);      moisnais[i]=(double)(month); 
     }else      strcpy(line,stra);
       strcpy(pplotcmd,plotcmd);      
 #endif      cutv(stra, strb,line,' '); 
   }else      errno=0;
     strcpy(pplotcmd,plotcmd);      dval=strtod(strb,&endptr); 
        if( strb[0]=='\0' || (*endptr != '\0')){
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);        printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);        fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
   if((outcmd=system(plotcmd)) != 0){        return 1;
     printf("\n Problem with gnuplot\n");      }
   }      weight[i]=dval; 
   printf(" Wait...");      strcpy(line,stra);
   while (z[0] != 'q') {      
     /* chdir(path); */      for (j=ncovcol;j>=1;j--){
     printf("\nType e to edit output files, g to graph again and q for exiting: ");        cutv(stra, strb,line,' '); 
     scanf("%s",z);        if(strb[0]=='.') { /* Missing status */
 /*     if (z[0] == 'c') system("./imach"); */          lval=-1;
     if (z[0] == 'e') {        }else{
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);          errno=0;
       system(optionfilehtm);          lval=strtol(strb,&endptr,10); 
     }          if( strb[0]=='\0' || (*endptr != '\0')){
     else if (z[0] == 'g') system(plotcmd);            printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
     else if (z[0] == 'q') exit(0);            fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
   }            return 1;
   end:          }
   while (z[0] != 'q') {        }
     printf("\nType  q for exiting: ");        if(lval <-1 || lval >1){
     scanf("%s",z);          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
   }   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 }   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           if (s[m][i] != -2) /* Keeping initial status of unknown vital status */
             s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0  || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
                 /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           } /* end if */
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           } /* en if 9*/
           else { /* =9 */
             /* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else if(s[m][i]==0) /*= 0 Unknown */
           agev[m][i]=1;
         else{
           printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           agev[m][i]=0;
         }
       } /* End for lastpass */
     }
       
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
    int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
   
     strcpy(filerespl,"PL_");
     strcat(filerespl,fileresu);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     }
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     pstamp(ficrespl);
     fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
           fprintf(ficrespl,"#******");
           printf("#******");
           fprintf(ficlog,"#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
           fprintf(ficrespl,"Total Years_to_converge\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             tot=0.;
             for(i=1; i<=nlstate;i++){
               tot +=  prlim[i][i];
               fprintf(ficrespl," %.5f", prlim[i][i]);
             }
             fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
     int ncvyear=0; /* Number of years needed for the period prevalence to converge */
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char model[MAXLINE], modeltemp[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double **hess; /* Hessian matrix */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       if(!fgets(pathr,FILENAMELENGTH,stdin)){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
       }
       i=strlen(pathr);
       if( i==0 ){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 8) {
         printf("Not 8 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
         printf("but line=%s\n",line);
       }
       printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled == 0)
               model[0]='\0';
       else if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
       printf("model=1+age+%s\n",model);fflush(stdout);
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else
         if(mle==1)
           printf("%1d%1d%1d",i1,j1,jk);
         fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", rfileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     /* free_vector(moisdc,1,n); */
     /* free_vector(andc,1,n); */
     /* */
     
     wav=ivector(1,imx);
     /* dh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* bh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* mw=imatrix(1,lastpass-firstpass+1,1,imx); */
     dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/
     bh=imatrix(1,lastpass-firstpass+2,1,imx);
     mw=imatrix(1,lastpass-firstpass+2,1,imx);
      
     /* Concatenates waves */
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
        mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     */
   
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] which is the maximum value of this jth covariate */
   
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     /* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, 
      * codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded 
      * (currently 0 or 1) in the data.
      * In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of 
      * corresponding modality (h,j).
      */
   
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to m=2**k
              * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
              * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
        /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
        * and the value of each covariate?
        * V1=1, V2=1, V3=2, V4=1 ?
        * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
        * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
        * In order to get the real value in the data, we use nbcode
        * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
        * We are keeping this crazy system in order to be able (in the future?) 
        * to have more than 2 values (0 or 1) for a covariate.
        * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
        * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
        *              bbbbbbbb
        *              76543210     
        *   h-1        00000101 (6-1=5)
        *(h-1)>>(k-1)= 00000001 >> (2-1) = 1 right shift
        *           &
        *     1        00000001 (1)
        *              00000001        = 1 & ((h-1) >> (k-1))
        *          +1= 00000010 =2 
        *
        * h=14, k=3 => h'=h-1=13, k'=k-1=2
        *          h'      1101 =2^3+2^2+0x2^1+2^0
        *    >>k'            11
        *          &   00000001
        *            = 00000001
        *      +1    = 00000010=2    =  codtabm(14,3)   
        * Reverse h=6 and m=16?
        * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
        * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
        * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 
        * decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1)
        * V3=decodtabm(14,3,2**4)=2
        *          h'=13   1101 =2^3+2^2+0x2^1+2^0
        *(h-1) >> (j-1)    0011 =13 >> 2
        *          &1 000000001
        *           = 000000001
        *         +1= 000000010 =2
        *                  2211
        *                  V1=1+1, V2=0+1, V3=1+1, V4=1+1
        *                  V3=2
        */
   
     /* /\* for(h=1; h <=100 ;h++){  *\/ */
     /*   /\* printf("h=%2d ", h); *\/ */
     /*    /\* for(k=1; k <=10; k++){ *\/ */
     /*      /\* printf("k=%d %d ",k,codtabm(h,k)); *\/ */
     /*    /\*   codtab[h][k]=codtabm(h,k); *\/ */
     /*    /\* } *\/ */
     /*    /\* printf("\n"); *\/ */
     /* } */
     /* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */
     /*   for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/  */
     /*     for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */
     /*    for(cpt=1; cpt <=pow(2,k-1); cpt++){  /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/  */
     /*      h++; */
     /*      if (h>m)  */
     /*        h=1; */
     /*      codtab[h][k]=j; */
     /*      /\* codtab[12][3]=1; *\/ */
     /*      /\*codtab[h][Tvar[k]]=j;*\/ */
     /*      /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */
     /*    }  */
     /*     } */
     /*   } */
     /* }  */
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){  */
     /*    for(k=1; k <=cptcovn; k++){ */
     /*      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */
     /*    } */
     /*    printf("\n"); */
     /* } */
     /*   scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# IMaCh-%s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br>  \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   <font size=\"2\">IMaCh-%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\
                 firstpass, lastpass,  stepm,  weightopt, model);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       fprintf(ficlog,"\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
           fprintf(ficlog,"%f ",matcov[i][j]);
         }
         printf("\n ");  fprintf(ficlog,"\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard  */
     else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
       globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
       /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximization */
         /* mlikeli uses func not funcone */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
         globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
         /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
         likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       }
       globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle != 0){
         /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, hess, p, npar, delti, ftolhess, func);
         printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         for(i=1,jk=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(j=1; j <=ncovmodel; j++){
                 printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 jk++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         }
       } /* end of hesscov and Wald tests */
   
       /*  */
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle >= 1) /* To big for the screen */
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.7e",matcov[jj][ll]); 
                           fprintf(ficlog," %.7e",matcov[jj][ll]); 
                           fprintf(ficres," %.7e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
         while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
   
       /* while((c=getc(ficpar))=='#' && c!= EOF){ */
       /*   ungetc(c,ficpar); */
       /*   fgets(line, MAXLINE, ficpar); */
       /*   fputs(line,stdout); */
       /*   fputs(line,ficparo); */
       /* } */
       /* ungetc(c,ficpar); */
       
       estepm=0;
       if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
   
       if (num_filled != 6) {
         printf("Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n");
         printf("but line=%s\n",line);
         goto end;
       }
       printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
   
       /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, pathc,p);
       
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,estepm, \
                    jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       /* free_ivector(wav,1,imx); */  /* Moved after last prevalence call */
       /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+2,1,imx);   
   
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
       printf("done evsij\n");fflush(stdout);
       fprintf(ficlog,"done evsij\n");fflush(ficlog);
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
   
   
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("  Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"  Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("    Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"    Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("      Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(stdout);
       fprintf(ficlog,"      Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrest,"******\n");
         
         fprintf(ficresstdeij,"\n#****** ");
         fprintf(ficrescveij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresstdeij,"******\n");
         fprintf(ficrescveij,"******\n");
         
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficresvij,"******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         printf(" cvevsij %d, ",k);
         fprintf(ficlog, " cvevsij %d, ",k);
         cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);
         printf(" end cvevsij \n ");
         fprintf(ficlog, " end cvevsij \n ");
         
         /*
          */
         /* goto endfree; */
         
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         pstamp(ficrest);
         
         
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
           oldm=oldms;savm=savms; /* ZZ Segmentation fault */
           cptcod= 0; /* To be deleted */
           printf("varevsij %d \n",vpopbased);
           fprintf(ficlog, "varevsij %d \n",vpopbased);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
           if(vpopbased==1)
             fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
           else
             fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
           fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
           /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
           epj=vector(1,nlstate+1);
           printf("Computing age specific period (stable) prevalences in each health state \n");
           fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n");
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k); /*ZZ Is it the correct prevalim */
             if (vpopbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
             
             fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
             /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
             /* printf(" age %4.0f ",age); */
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
               }
               epj[nlstate+1] +=epj[j];
             }
             /* printf(" age %4.0f \n",age); */
             
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
         } /* End vpopbased */
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
         printf("done \n");fflush(stdout);
         fprintf(ficlog,"done\n");fflush(ficlog);
         
         /*}*/
       } /* End k */
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       printf("done Health expectancies\n");fflush(stdout);
       fprintf(ficlog,"done Health expectancies\n");fflush(ficlog);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
       fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
       printf("done variance-covariance of period prevalence\n");fflush(stdout);
       fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       free_matrix(hess,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.125  
changed lines
  Added in v.1.216


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>