Diff for /imach/src/imach.c between versions 1.50 and 1.216

version 1.50, 2002/06/26 23:25:02 version 1.216, 2015/12/18 17:32:11
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.216  2015/12/18 17:32:11  brouard
      Summary: 0.98r4 Warning and status=-2
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Version 0.98r4 is now:
   first survey ("cross") where individuals from different ages are     - displaying an error when status is -1, date of interview unknown and date of death known;
   interviewed on their health status or degree of disability (in the     - permitting a status -2 when the vital status is unknown at a known date of right truncation.
   case of a health survey which is our main interest) -2- at least a    Older changes concerning s=-2, dating from 2005 have been supersed.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.215  2015/12/16 08:52:24  brouard
   computed from the time spent in each health state according to a    Summary: 0.98r4 working
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.214  2015/12/16 06:57:54  brouard
   simplest model is the multinomial logistic model where pij is the    Summary: temporary not working
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.213  2015/12/11 18:22:17  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Summary: 0.98r4
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.212  2015/11/21 12:47:24  brouard
   where the markup *Covariates have to be included here again* invites    Summary: minor typo
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.211  2015/11/21 12:41:11  brouard
     Summary: 0.98r3 with some graph of projected cross-sectional
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Author: Nicolas Brouard
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.210  2015/11/18 17:41:20  brouard
   account using an interpolation or extrapolation.      Summary: Start working on projected prevalences
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.209  2015/11/17 22:12:03  brouard
   conditional to the observed state i at age x. The delay 'h' can be    Summary: Adding ftolpl parameter
   split into an exact number (nh*stepm) of unobserved intermediate    Author: N Brouard
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    We had difficulties to get smoothed confidence intervals. It was due
   matrix is simply the matrix product of nh*stepm elementary matrices    to the period prevalence which wasn't computed accurately. The inner
   and the contribution of each individual to the likelihood is simply    parameter ftolpl is now an outer parameter of the .imach parameter
   hPijx.    file after estepm. If ftolpl is small 1.e-4 and estepm too,
     computation are long.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.208  2015/11/17 14:31:57  brouard
      Summary: temporary
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.207  2015/10/27 17:36:57  brouard
   This software have been partly granted by Euro-REVES, a concerted action    *** empty log message ***
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.206  2015/10/24 07:14:11  brouard
   software can be distributed freely for non commercial use. Latest version    *** empty log message ***
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.205  2015/10/23 15:50:53  brouard
      Summary: 0.98r3 some clarification for graphs on likelihood contributions
 #include <math.h>  
 #include <stdio.h>    Revision 1.204  2015/10/01 16:20:26  brouard
 #include <stdlib.h>    Summary: Some new graphs of contribution to likelihood
 #include <unistd.h>  
     Revision 1.203  2015/09/30 17:45:14  brouard
 #define MAXLINE 256    Summary: looking at better estimation of the hessian
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Also a better criteria for convergence to the period prevalence And
 #define FILENAMELENGTH 80    therefore adding the number of years needed to converge. (The
 /*#define DEBUG*/    prevalence in any alive state shold sum to one
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.202  2015/09/22 19:45:16  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: Adding some overall graph on contribution to likelihood. Might change
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.201  2015/09/15 17:34:58  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Summary: 0.98r0
   
 #define NINTERVMAX 8    - Some new graphs like suvival functions
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    - Some bugs fixed like model=1+age+V2.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.200  2015/09/09 16:53:55  brouard
 #define MAXN 20000    Summary: Big bug thanks to Flavia
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Even model=1+age+V2. did not work anymore
 #define AGEBASE 40  
 #ifdef windows    Revision 1.199  2015/09/07 14:09:23  brouard
 #define DIRSEPARATOR '\\'    Summary: 0.98q6 changing default small png format for graph to vectorized svg.
 #define ODIRSEPARATOR '/'  
 #else    Revision 1.198  2015/09/03 07:14:39  brouard
 #define DIRSEPARATOR '/'    Summary: 0.98q5 Flavia
 #define ODIRSEPARATOR '\\'  
 #endif    Revision 1.197  2015/09/01 18:24:39  brouard
     *** empty log message ***
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.196  2015/08/18 23:17:52  brouard
 int nvar;    Summary: 0.98q5
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.195  2015/08/18 16:28:39  brouard
 int nlstate=2; /* Number of live states */    Summary: Adding a hack for testing purpose
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    After reading the title, ftol and model lines, if the comment line has
 int popbased=0;    a q, starting with #q, the answer at the end of the run is quit. It
     permits to run test files in batch with ctest. The former workaround was
 int *wav; /* Number of waves for this individuual 0 is possible */    $ echo q | imach foo.imach
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.194  2015/08/18 13:32:00  brouard
 int mle, weightopt;    Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.193  2015/08/04 07:17:42  brouard
 double jmean; /* Mean space between 2 waves */    Summary: 0.98q4
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.192  2015/07/16 16:49:02  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Summary: Fixing some outputs
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.191  2015/07/14 10:00:33  brouard
 FILE *ficresprobmorprev;    Summary: Some fixes
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.190  2015/05/05 08:51:13  brouard
 char filerese[FILENAMELENGTH];    Summary: Adding digits in output parameters (7 digits instead of 6)
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Fix 1+age+.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.189  2015/04/30 14:45:16  brouard
 char title[MAXLINE];    Summary: 0.98q2
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.188  2015/04/30 08:27:53  brouard
     *** empty log message ***
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
 char filelog[FILENAMELENGTH]; /* Log file */    Revision 1.187  2015/04/29 09:11:15  brouard
 char filerest[FILENAMELENGTH];    *** empty log message ***
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.186  2015/04/23 12:01:52  brouard
     Summary: V1*age is working now, version 0.98q1
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Some codes had been disabled in order to simplify and Vn*age was
 #define NR_END 1    working in the optimization phase, ie, giving correct MLE parameters,
 #define FREE_ARG char*    but, as usual, outputs were not correct and program core dumped.
 #define FTOL 1.0e-10  
     Revision 1.185  2015/03/11 13:26:42  brouard
 #define NRANSI    Summary: Inclusion of compile and links command line for Intel Compiler
 #define ITMAX 200  
     Revision 1.184  2015/03/11 11:52:39  brouard
 #define TOL 2.0e-4    Summary: Back from Windows 8. Intel Compiler
   
 #define CGOLD 0.3819660    Revision 1.183  2015/03/10 20:34:32  brouard
 #define ZEPS 1.0e-10    Summary: 0.98q0, trying with directest, mnbrak fixed
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     We use directest instead of original Powell test; probably no
 #define GOLD 1.618034    incidence on the results, but better justifications;
 #define GLIMIT 100.0    We fixed Numerical Recipes mnbrak routine which was wrong and gave
 #define TINY 1.0e-20    wrong results.
   
 static double maxarg1,maxarg2;    Revision 1.182  2015/02/12 08:19:57  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Summary: Trying to keep directest which seems simpler and more general
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Author: Nicolas Brouard
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.181  2015/02/11 23:22:24  brouard
 #define rint(a) floor(a+0.5)    Summary: Comments on Powell added
   
 static double sqrarg;    Author:
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.180  2015/02/11 17:33:45  brouard
     Summary: Finishing move from main to function (hpijx and prevalence_limit)
 int imx;  
 int stepm;    Revision 1.179  2015/01/04 09:57:06  brouard
 /* Stepm, step in month: minimum step interpolation*/    Summary: back to OS/X
   
 int estepm;    Revision 1.178  2015/01/04 09:35:48  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    *** empty log message ***
   
 int m,nb;    Revision 1.177  2015/01/03 18:40:56  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Summary: Still testing ilc32 on OSX
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.176  2015/01/03 16:45:04  brouard
 double dateintmean=0;    *** empty log message ***
   
 double *weight;    Revision 1.175  2015/01/03 16:33:42  brouard
 int **s; /* Status */    *** empty log message ***
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.174  2015/01/03 16:15:49  brouard
     Summary: Still in cross-compilation
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.173  2015/01/03 12:06:26  brouard
     Summary: trying to detect cross-compilation
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.172  2014/12/27 12:07:47  brouard
 {    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.171  2014/12/23 13:26:59  brouard
     Summary: Back from Visual C
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Still problem with utsname.h on Windows
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.170  2014/12/23 11:17:12  brouard
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Summary: Cleaning some \%% back to %%
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  
 #if     defined(__bsd__)                /* get current working directory */    The escape was mandatory for a specific compiler (which one?), but too many warnings.
       extern char       *getwd( );  
     Revision 1.169  2014/12/22 23:08:31  brouard
       if ( getwd( dirc ) == NULL ) {    Summary: 0.98p
 #else  
       extern char       *getcwd( );    Outputs some informations on compiler used, OS etc. Testing on different platforms.
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.168  2014/12/22 15:17:42  brouard
 #endif    Summary: update
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.167  2014/12/22 13:50:56  brouard
       strcpy( name, path );             /* we've got it */    Summary: Testing uname and compiler version and if compiled 32 or 64
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Testing on Linux 64
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.166  2014/12/22 11:40:47  brouard
       strcpy( name, s );                /* save file name */    *** empty log message ***
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.165  2014/12/16 11:20:36  brouard
    }    Summary: After compiling on Visual C
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    * imach.c (Module): Merging 1.61 to 1.162
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.164  2014/12/16 10:52:11  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 #endif  
    s = strrchr( name, '.' );            /* find last / */    * imach.c (Module): Merging 1.61 to 1.162
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.163  2014/12/16 10:30:11  brouard
    l1= strlen( name);    * imach.c (Module): Merging 1.61 to 1.162
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.162  2014/09/25 11:43:39  brouard
    finame[l1-l2]= 0;    Summary: temporary backup 0.99!
    return( 0 );                         /* we're done */  
 }    Revision 1.1  2014/09/16 11:06:58  brouard
     Summary: With some code (wrong) for nlopt
   
 /******************************************/    Author:
   
 void replace(char *s, char*t)    Revision 1.161  2014/09/15 20:41:41  brouard
 {    Summary: Problem with macro SQR on Intel compiler
   int i;  
   int lg=20;    Revision 1.160  2014/09/02 09:24:05  brouard
   i=0;    *** empty log message ***
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.159  2014/09/01 10:34:10  brouard
     (s[i] = t[i]);    Summary: WIN32
     if (t[i]== '\\') s[i]='/';    Author: Brouard
   }  
 }    Revision 1.158  2014/08/27 17:11:51  brouard
     *** empty log message ***
 int nbocc(char *s, char occ)  
 {    Revision 1.157  2014/08/27 16:26:55  brouard
   int i,j=0;    Summary: Preparing windows Visual studio version
   int lg=20;    Author: Brouard
   i=0;  
   lg=strlen(s);    In order to compile on Visual studio, time.h is now correct and time_t
   for(i=0; i<= lg; i++) {    and tm struct should be used. difftime should be used but sometimes I
   if  (s[i] == occ ) j++;    just make the differences in raw time format (time(&now).
   }    Trying to suppress #ifdef LINUX
   return j;    Add xdg-open for __linux in order to open default browser.
 }  
     Revision 1.156  2014/08/25 20:10:10  brouard
 void cutv(char *u,char *v, char*t, char occ)    *** empty log message ***
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it    Revision 1.155  2014/08/25 18:32:34  brouard
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    Summary: New compile, minor changes
      gives u="abcedf" and v="ghi2j" */    Author: Brouard
   int i,lg,j,p=0;  
   i=0;    Revision 1.154  2014/06/20 17:32:08  brouard
   for(j=0; j<=strlen(t)-1; j++) {    Summary: Outputs now all graphs of convergence to period prevalence
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
   lg=strlen(t);    Author: Brouard
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.152  2014/06/18 17:54:09  brouard
   }    Summary: open browser, use gnuplot on same dir than imach if not found in the path
      u[p]='\0';  
     Revision 1.151  2014/06/18 16:43:30  brouard
    for(j=0; j<= lg; j++) {    *** empty log message ***
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.150  2014/06/18 16:42:35  brouard
 }    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
     Author: brouard
 /********************** nrerror ********************/  
     Revision 1.149  2014/06/18 15:51:14  brouard
 void nrerror(char error_text[])    Summary: Some fixes in parameter files errors
 {    Author: Nicolas Brouard
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.148  2014/06/17 17:38:48  brouard
   exit(1);    Summary: Nothing new
 }    Author: Brouard
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Just a new packaging for OS/X version 0.98nS
 {  
   double *v;    Revision 1.147  2014/06/16 10:33:11  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    *** empty log message ***
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.146  2014/06/16 10:20:28  brouard
 }    Summary: Merge
     Author: Brouard
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Merge, before building revised version.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.145  2014/06/10 21:23:15  brouard
 }    Summary: Debugging with valgrind
     Author: Nicolas Brouard
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Lot of changes in order to output the results with some covariates
 {    After the Edimburgh REVES conference 2014, it seems mandatory to
   int *v;    improve the code.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    No more memory valgrind error but a lot has to be done in order to
   if (!v) nrerror("allocation failure in ivector");    continue the work of splitting the code into subroutines.
   return v-nl+NR_END;    Also, decodemodel has been improved. Tricode is still not
 }    optimal. nbcode should be improved. Documentation has been added in
     the source code.
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.143  2014/01/26 09:45:38  brouard
 {    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   free((FREE_ARG)(v+nl-NR_END));  
 }    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.142  2014/01/26 03:57:36  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   int **m;  
      Revision 1.141  2014/01/26 02:42:01  brouard
   /* allocate pointers to rows */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.140  2011/09/02 10:37:54  brouard
   m += NR_END;    Summary: times.h is ok with mingw32 now.
   m -= nrl;  
      Revision 1.139  2010/06/14 07:50:17  brouard
      After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   /* allocate rows and set pointers to them */    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.138  2010/04/30 18:19:40  brouard
   m[nrl] += NR_END;    *** empty log message ***
   m[nrl] -= ncl;  
      Revision 1.137  2010/04/29 18:11:38  brouard
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    (Module): Checking covariates for more complex models
      than V1+V2. A lot of change to be done. Unstable.
   /* return pointer to array of pointers to rows */  
   return m;    Revision 1.136  2010/04/26 20:30:53  brouard
 }    (Module): merging some libgsl code. Fixing computation
     of likelione (using inter/intrapolation if mle = 0) in order to
 /****************** free_imatrix *************************/    get same likelihood as if mle=1.
 void free_imatrix(m,nrl,nrh,ncl,nch)    Some cleaning of code and comments added.
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.135  2009/10/29 15:33:14  brouard
      /* free an int matrix allocated by imatrix() */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Revision 1.134  2009/10/29 13:18:53  brouard
   free((FREE_ARG) (m+nrl-NR_END));    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 }  
     Revision 1.133  2009/07/06 10:21:25  brouard
 /******************* matrix *******************************/    just nforces
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.132  2009/07/06 08:22:05  brouard
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Many tings
   double **m;  
     Revision 1.131  2009/06/20 16:22:47  brouard
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Some dimensions resccaled
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.130  2009/05/26 06:44:34  brouard
   m -= nrl;    (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.129  2007/08/31 13:49:27  lievre
   m[nrl] -= ncl;    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.128  2006/06/30 13:02:05  brouard
   return m;    (Module): Clarifications on computing e.j
 }  
     Revision 1.127  2006/04/28 18:11:50  brouard
 /*************************free matrix ************************/    (Module): Yes the sum of survivors was wrong since
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    imach-114 because nhstepm was no more computed in the age
 {    loop. Now we define nhstepma in the age loop.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Module): In order to speed up (in case of numerous covariates) we
   free((FREE_ARG)(m+nrl-NR_END));    compute health expectancies (without variances) in a first step
 }    and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
 /******************* ma3x *******************************/    computation.
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    In the future we should be able to stop the program is only health
 {    expectancies and graph are needed without standard deviations.
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    imach-114 because nhstepm was no more computed in the age
   if (!m) nrerror("allocation failure 1 in matrix()");    loop. Now we define nhstepma in the age loop.
   m += NR_END;    Version 0.98h
   m -= nrl;  
     Revision 1.125  2006/04/04 15:20:31  lievre
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Errors in calculation of health expectancies. Age was not initialized.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Forecasting file added.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    The log-likelihood is printed in the log file
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Revision 1.123  2006/03/20 10:52:43  brouard
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    * imach.c (Module): <title> changed, corresponds to .htm file
   m[nrl][ncl] += NR_END;    name. <head> headers where missing.
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)    * imach.c (Module): Weights can have a decimal point as for
     m[nrl][j]=m[nrl][j-1]+nlay;    English (a comma might work with a correct LC_NUMERIC environment,
      otherwise the weight is truncated).
   for (i=nrl+1; i<=nrh; i++) {    Modification of warning when the covariates values are not 0 or
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    1.
     for (j=ncl+1; j<=nch; j++)    Version 0.98g
       m[i][j]=m[i][j-1]+nlay;  
   }    Revision 1.122  2006/03/20 09:45:41  brouard
   return m;    (Module): Weights can have a decimal point as for
 }    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 /*************************free ma3x ************************/    Modification of warning when the covariates values are not 0 or
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    1.
 {    Version 0.98g
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.121  2006/03/16 17:45:01  lievre
   free((FREE_ARG)(m+nrl-NR_END));    * imach.c (Module): Comments concerning covariates added
 }  
     * imach.c (Module): refinements in the computation of lli if
 /***************** f1dim *************************/    status=-2 in order to have more reliable computation if stepm is
 extern int ncom;    not 1 month. Version 0.98f
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);    Revision 1.120  2006/03/16 15:10:38  lievre
      (Module): refinements in the computation of lli if
 double f1dim(double x)    status=-2 in order to have more reliable computation if stepm is
 {    not 1 month. Version 0.98f
   int j;  
   double f;    Revision 1.119  2006/03/15 17:42:26  brouard
   double *xt;    (Module): Bug if status = -2, the loglikelihood was
      computed as likelihood omitting the logarithm. Version O.98e
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    Revision 1.118  2006/03/14 18:20:07  brouard
   f=(*nrfunc)(xt);    (Module): varevsij Comments added explaining the second
   free_vector(xt,1,ncom);    table of variances if popbased=1 .
   return f;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 }    (Module): Function pstamp added
     (Module): Version 0.98d
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    Revision 1.117  2006/03/14 17:16:22  brouard
 {    (Module): varevsij Comments added explaining the second
   int iter;    table of variances if popbased=1 .
   double a,b,d,etemp;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   double fu,fv,fw,fx;    (Module): Function pstamp added
   double ftemp;    (Module): Version 0.98d
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;    Revision 1.116  2006/03/06 10:29:27  brouard
      (Module): Variance-covariance wrong links and
   a=(ax < cx ? ax : cx);    varian-covariance of ej. is needed (Saito).
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;    Revision 1.115  2006/02/27 12:17:45  brouard
   fw=fv=fx=(*f)(x);    (Module): One freematrix added in mlikeli! 0.98c
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    Revision 1.114  2006/02/26 12:57:58  brouard
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    (Module): Some improvements in processing parameter
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    filename with strsep.
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);    Revision 1.113  2006/02/24 14:20:24  brouard
 #ifdef DEBUG    (Module): Memory leaks checks with valgrind and:
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    datafile was not closed, some imatrix were not freed and on matrix
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    allocation too.
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    Revision 1.112  2006/01/30 09:55:26  brouard
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    (Module): Back to gnuplot.exe instead of wgnuplot.exe
       *xmin=x;  
       return fx;    Revision 1.111  2006/01/25 20:38:18  brouard
     }    (Module): Lots of cleaning and bugs added (Gompertz)
     ftemp=fu;    (Module): Comments can be added in data file. Missing date values
     if (fabs(e) > tol1) {    can be a simple dot '.'.
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);    Revision 1.110  2006/01/25 00:51:50  brouard
       p=(x-v)*q-(x-w)*r;    (Module): Lots of cleaning and bugs added (Gompertz)
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;    Revision 1.109  2006/01/24 19:37:15  brouard
       q=fabs(q);    (Module): Comments (lines starting with a #) are allowed in data.
       etemp=e;  
       e=d;    Revision 1.108  2006/01/19 18:05:42  lievre
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    Gnuplot problem appeared...
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    To be fixed
       else {  
         d=p/q;    Revision 1.107  2006/01/19 16:20:37  brouard
         u=x+d;    Test existence of gnuplot in imach path
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);    Revision 1.106  2006/01/19 13:24:36  brouard
       }    Some cleaning and links added in html output
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    Revision 1.105  2006/01/05 20:23:19  lievre
     }    *** empty log message ***
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);    Revision 1.104  2005/09/30 16:11:43  lievre
     if (fu <= fx) {    (Module): sump fixed, loop imx fixed, and simplifications.
       if (u >= x) a=x; else b=x;    (Module): If the status is missing at the last wave but we know
       SHFT(v,w,x,u)    that the person is alive, then we can code his/her status as -2
         SHFT(fv,fw,fx,fu)    (instead of missing=-1 in earlier versions) and his/her
         } else {    contributions to the likelihood is 1 - Prob of dying from last
           if (u < x) a=u; else b=u;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
           if (fu <= fw || w == x) {    the healthy state at last known wave). Version is 0.98
             v=w;  
             w=u;    Revision 1.103  2005/09/30 15:54:49  lievre
             fv=fw;    (Module): sump fixed, loop imx fixed, and simplifications.
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    Revision 1.102  2004/09/15 17:31:30  brouard
             v=u;    Add the possibility to read data file including tab characters.
             fv=fu;  
           }    Revision 1.101  2004/09/15 10:38:38  brouard
         }    Fix on curr_time
   }  
   nrerror("Too many iterations in brent");    Revision 1.100  2004/07/12 18:29:06  brouard
   *xmin=x;    Add version for Mac OS X. Just define UNIX in Makefile
   return fx;  
 }    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
 /****************** mnbrak ***********************/  
     Revision 1.98  2004/05/16 15:05:56  brouard
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    New version 0.97 . First attempt to estimate force of mortality
             double (*func)(double))    directly from the data i.e. without the need of knowing the health
 {    state at each age, but using a Gompertz model: log u =a + b*age .
   double ulim,u,r,q, dum;    This is the basic analysis of mortality and should be done before any
   double fu;    other analysis, in order to test if the mortality estimated from the
      cross-longitudinal survey is different from the mortality estimated
   *fa=(*func)(*ax);    from other sources like vital statistic data.
   *fb=(*func)(*bx);  
   if (*fb > *fa) {    The same imach parameter file can be used but the option for mle should be -3.
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)    Agnès, who wrote this part of the code, tried to keep most of the
       }    former routines in order to include the new code within the former code.
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);    The output is very simple: only an estimate of the intercept and of
   while (*fb > *fc) {    the slope with 95% confident intervals.
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    Current limitations:
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    A) Even if you enter covariates, i.e. with the
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     ulim=(*bx)+GLIMIT*(*cx-*bx);    B) There is no computation of Life Expectancy nor Life Table.
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);    Revision 1.97  2004/02/20 13:25:42  lievre
     } else if ((*cx-u)*(u-ulim) > 0.0) {    Version 0.96d. Population forecasting command line is (temporarily)
       fu=(*func)(u);    suppressed.
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    Revision 1.96  2003/07/15 15:38:55  brouard
           SHFT(*fb,*fc,fu,(*func)(u))    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
           }    rewritten within the same printf. Workaround: many printfs.
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;    Revision 1.95  2003/07/08 07:54:34  brouard
       fu=(*func)(u);    * imach.c (Repository):
     } else {    (Repository): Using imachwizard code to output a more meaningful covariance
       u=(*cx)+GOLD*(*cx-*bx);    matrix (cov(a12,c31) instead of numbers.
       fu=(*func)(u);  
     }    Revision 1.94  2003/06/27 13:00:02  brouard
     SHFT(*ax,*bx,*cx,u)    Just cleaning
       SHFT(*fa,*fb,*fc,fu)  
       }    Revision 1.93  2003/06/25 16:33:55  brouard
 }    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 /*************** linmin ************************/    (Module): Version 0.96b
   
 int ncom;    Revision 1.92  2003/06/25 16:30:45  brouard
 double *pcom,*xicom;    (Module): On windows (cygwin) function asctime_r doesn't
 double (*nrfunc)(double []);    exist so I changed back to asctime which exists.
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    Revision 1.91  2003/06/25 15:30:29  brouard
 {    * imach.c (Repository): Duplicated warning errors corrected.
   double brent(double ax, double bx, double cx,    (Repository): Elapsed time after each iteration is now output. It
                double (*f)(double), double tol, double *xmin);    helps to forecast when convergence will be reached. Elapsed time
   double f1dim(double x);    is stamped in powell.  We created a new html file for the graphs
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    concerning matrix of covariance. It has extension -cov.htm.
               double *fc, double (*func)(double));  
   int j;    Revision 1.90  2003/06/24 12:34:15  brouard
   double xx,xmin,bx,ax;    (Module): Some bugs corrected for windows. Also, when
   double fx,fb,fa;    mle=-1 a template is output in file "or"mypar.txt with the design
      of the covariance matrix to be input.
   ncom=n;  
   pcom=vector(1,n);    Revision 1.89  2003/06/24 12:30:52  brouard
   xicom=vector(1,n);    (Module): Some bugs corrected for windows. Also, when
   nrfunc=func;    mle=-1 a template is output in file "or"mypar.txt with the design
   for (j=1;j<=n;j++) {    of the covariance matrix to be input.
     pcom[j]=p[j];  
     xicom[j]=xi[j];    Revision 1.88  2003/06/23 17:54:56  brouard
   }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   ax=0.0;  
   xx=1.0;    Revision 1.87  2003/06/18 12:26:01  brouard
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    Version 0.96
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG    Revision 1.86  2003/06/17 20:04:08  brouard
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    (Module): Change position of html and gnuplot routines and added
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    routine fileappend.
 #endif  
   for (j=1;j<=n;j++) {    Revision 1.85  2003/06/17 13:12:43  brouard
     xi[j] *= xmin;    * imach.c (Repository): Check when date of death was earlier that
     p[j] += xi[j];    current date of interview. It may happen when the death was just
   }    prior to the death. In this case, dh was negative and likelihood
   free_vector(xicom,1,n);    was wrong (infinity). We still send an "Error" but patch by
   free_vector(pcom,1,n);    assuming that the date of death was just one stepm after the
 }    interview.
     (Repository): Because some people have very long ID (first column)
 /*************** powell ************************/    we changed int to long in num[] and we added a new lvector for
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    memory allocation. But we also truncated to 8 characters (left
             double (*func)(double []))    truncation)
 {    (Repository): No more line truncation errors.
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));    Revision 1.84  2003/06/13 21:44:43  brouard
   int i,ibig,j;    * imach.c (Repository): Replace "freqsummary" at a correct
   double del,t,*pt,*ptt,*xit;    place. It differs from routine "prevalence" which may be called
   double fp,fptt;    many times. Probs is memory consuming and must be used with
   double *xits;    parcimony.
   pt=vector(1,n);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   ptt=vector(1,n);  
   xit=vector(1,n);    Revision 1.83  2003/06/10 13:39:11  lievre
   xits=vector(1,n);    *** empty log message ***
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];    Revision 1.82  2003/06/05 15:57:20  brouard
   for (*iter=1;;++(*iter)) {    Add log in  imach.c and  fullversion number is now printed.
     fp=(*fret);  
     ibig=0;  */
     del=0.0;  /*
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);     Interpolated Markov Chain
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)    Short summary of the programme:
       printf(" %d %.12f",i, p[i]);    
     fprintf(ficlog," %d %.12f",i, p[i]);    This program computes Healthy Life Expectancies from
     printf("\n");    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     fprintf(ficlog,"\n");    first survey ("cross") where individuals from different ages are
     for (i=1;i<=n;i++) {    interviewed on their health status or degree of disability (in the
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    case of a health survey which is our main interest) -2- at least a
       fptt=(*fret);    second wave of interviews ("longitudinal") which measure each change
 #ifdef DEBUG    (if any) in individual health status.  Health expectancies are
       printf("fret=%lf \n",*fret);    computed from the time spent in each health state according to a
       fprintf(ficlog,"fret=%lf \n",*fret);    model. More health states you consider, more time is necessary to reach the
 #endif    Maximum Likelihood of the parameters involved in the model.  The
       printf("%d",i);fflush(stdout);    simplest model is the multinomial logistic model where pij is the
       fprintf(ficlog,"%d",i);fflush(ficlog);    probability to be observed in state j at the second wave
       linmin(p,xit,n,fret,func);    conditional to be observed in state i at the first wave. Therefore
       if (fabs(fptt-(*fret)) > del) {    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
         del=fabs(fptt-(*fret));    'age' is age and 'sex' is a covariate. If you want to have a more
         ibig=i;    complex model than "constant and age", you should modify the program
       }    where the markup *Covariates have to be included here again* invites
 #ifdef DEBUG    you to do it.  More covariates you add, slower the
       printf("%d %.12e",i,(*fret));    convergence.
       fprintf(ficlog,"%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {    The advantage of this computer programme, compared to a simple
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    multinomial logistic model, is clear when the delay between waves is not
         printf(" x(%d)=%.12e",j,xit[j]);    identical for each individual. Also, if a individual missed an
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    intermediate interview, the information is lost, but taken into
       }    account using an interpolation or extrapolation.  
       for(j=1;j<=n;j++) {  
         printf(" p=%.12e",p[j]);    hPijx is the probability to be observed in state i at age x+h
         fprintf(ficlog," p=%.12e",p[j]);    conditional to the observed state i at age x. The delay 'h' can be
       }    split into an exact number (nh*stepm) of unobserved intermediate
       printf("\n");    states. This elementary transition (by month, quarter,
       fprintf(ficlog,"\n");    semester or year) is modelled as a multinomial logistic.  The hPx
 #endif    matrix is simply the matrix product of nh*stepm elementary matrices
     }    and the contribution of each individual to the likelihood is simply
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    hPijx.
 #ifdef DEBUG  
       int k[2],l;    Also this programme outputs the covariance matrix of the parameters but also
       k[0]=1;    of the life expectancies. It also computes the period (stable) prevalence. 
       k[1]=-1;    
       printf("Max: %.12e",(*func)(p));    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       fprintf(ficlog,"Max: %.12e",(*func)(p));             Institut national d'études démographiques, Paris.
       for (j=1;j<=n;j++) {    This software have been partly granted by Euro-REVES, a concerted action
         printf(" %.12e",p[j]);    from the European Union.
         fprintf(ficlog," %.12e",p[j]);    It is copyrighted identically to a GNU software product, ie programme and
       }    software can be distributed freely for non commercial use. Latest version
       printf("\n");    can be accessed at http://euroreves.ined.fr/imach .
       fprintf(ficlog,"\n");  
       for(l=0;l<=1;l++) {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
         for (j=1;j<=n;j++) {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    **********************************************************************/
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /*
         }    main
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    read parameterfile
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    read datafile
       }    concatwav
 #endif    freqsummary
     if (mle >= 1)
       mlikeli
       free_vector(xit,1,n);    print results files
       free_vector(xits,1,n);    if mle==1 
       free_vector(ptt,1,n);       computes hessian
       free_vector(pt,1,n);    read end of parameter file: agemin, agemax, bage, fage, estepm
       return;        begin-prev-date,...
     }    open gnuplot file
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    open html file
     for (j=1;j<=n;j++) {    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
       ptt[j]=2.0*p[j]-pt[j];     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
       xit[j]=p[j]-pt[j];                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       pt[j]=p[j];      freexexit2 possible for memory heap.
     }  
     fptt=(*func)(ptt);    h Pij x                         | pij_nom  ficrestpij
     if (fptt < fp) {     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
       if (t < 0.0) {         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
           xi[j][ibig]=xi[j][n];         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
           xi[j][n]=xit[j];    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
         }     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 #ifdef DEBUG     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    forecasting if prevfcast==1 prevforecast call prevalence()
         for(j=1;j<=n;j++){    health expectancies
           printf(" %.12e",xit[j]);    Variance-covariance of DFLE
           fprintf(ficlog," %.12e",xit[j]);    prevalence()
         }     movingaverage()
         printf("\n");    varevsij() 
         fprintf(ficlog,"\n");    if popbased==1 varevsij(,popbased)
 #endif    total life expectancies
       }    Variance of period (stable) prevalence
     }   end
   }  */
 }  
   /* #define DEBUG */
 /**** Prevalence limit ****************/  /* #define DEBUGBRENT */
   /* #define DEBUGLINMIN */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  /* #define DEBUGHESS */
 {  #define DEBUGHESSIJ
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan)*\/ */
      matrix by transitions matrix until convergence is reached */  #define POWELL /* Instead of NLOPT */
   #define POWELLF1F3 /* Skip test */
   int i, ii,j,k;  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
   double min, max, maxmin, maxmax,sumnew=0.;  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  #include <math.h>
   double **newm;  #include <stdio.h>
   double agefin, delaymax=50 ; /* Max number of years to converge */  #include <stdlib.h>
   #include <string.h>
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  #ifdef _WIN32
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #include <io.h>
     }  #include <windows.h>
   #include <tchar.h>
    cov[1]=1.;  #else
    #include <unistd.h>
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #endif
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;  #include <limits.h>
     /* Covariates have to be included here again */  #include <sys/types.h>
      cov[2]=agefin;  
    #if defined(__GNUC__)
       for (k=1; k<=cptcovn;k++) {  #include <sys/utsname.h> /* Doesn't work on Windows */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #endif
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  #include <sys/stat.h>
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #include <errno.h>
       for (k=1; k<=cptcovprod;k++)  /* extern int errno; */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /* #ifdef LINUX */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /* #include <time.h> */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /* #include "timeval.h" */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /* #else */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /* #include <sys/time.h> */
   /* #endif */
     savm=oldm;  
     oldm=newm;  #include <time.h>
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  #ifdef GSL
       min=1.;  #include <gsl/gsl_errno.h>
       max=0.;  #include <gsl/gsl_multimin.h>
       for(i=1; i<=nlstate; i++) {  #endif
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  #ifdef NLOPT
         max=FMAX(max,prlim[i][j]);  #include <nlopt.h>
         min=FMIN(min,prlim[i][j]);  typedef struct {
       }    double (* function)(double [] );
       maxmin=max-min;  } myfunc_data ;
       maxmax=FMAX(maxmax,maxmin);  #endif
     }  
     if(maxmax < ftolpl){  /* #include <libintl.h> */
       return prlim;  /* #define _(String) gettext (String) */
     }  
   }  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 }  
   #define GNUPLOTPROGRAM "gnuplot"
 /*************** transition probabilities ***************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   double s1, s2;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  #define NINTERVMAX 8
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
         /*s2 += param[i][j][nc]*cov[nc];*/  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
       }  /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
       ps[i][j]=s2;  #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  #define MAXN 20000
     }  #define YEARM 12. /**< Number of months per year */
     for(j=i+1; j<=nlstate+ndeath;j++){  #define AGESUP 130
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #define AGEBASE 40
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #define AGEOVERFLOW 1.e20
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
       }  #ifdef _WIN32
       ps[i][j]=s2;  #define DIRSEPARATOR '\\'
     }  #define CHARSEPARATOR "\\"
   }  #define ODIRSEPARATOR '/'
     /*ps[3][2]=1;*/  #else
   #define DIRSEPARATOR '/'
   for(i=1; i<= nlstate; i++){  #define CHARSEPARATOR "/"
      s1=0;  #define ODIRSEPARATOR '\\'
     for(j=1; j<i; j++)  #endif
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  /* $Id$ */
       s1+=exp(ps[i][j]);  /* $State$ */
     ps[i][i]=1./(s1+1.);  #include "version.h"
     for(j=1; j<i; j++)  char version[]=__IMACH_VERSION__;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  char copyright[]="October 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
     for(j=i+1; j<=nlstate+ndeath; j++)  char fullversion[]="$Revision$ $Date$"; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  char strstart[80];
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   } /* end i */  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
     for(jj=1; jj<= nlstate+ndeath; jj++){  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       ps[ii][jj]=0;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       ps[ii][ii]=1;  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
     }  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   }  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   int cptcoveff=0; /* Total number of covariates to vary for printing results */
   int cptcov=0; /* Working variable */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  int npar=NPARMAX;
     for(jj=1; jj<= nlstate+ndeath; jj++){  int nlstate=2; /* Number of live states */
      printf("%lf ",ps[ii][jj]);  int ndeath=1; /* Number of dead states */
    }  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     printf("\n ");  int popbased=0;
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  int *wav; /* Number of waves for this individuual 0 is possible */
 /*  int maxwav=0; /* Maxim number of waves */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   goto end;*/  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
     return ps;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 }                     to the likelihood and the sum of weights (done by funcone)*/
   int mle=1, weightopt=0;
 /**************** Product of 2 matrices ******************/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  int countcallfunc=0;  /* Count the number of calls to func */
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  double jmean=1; /* Mean space between 2 waves */
   /* in, b, out are matrice of pointers which should have been initialized  double **matprod2(); /* test */
      before: only the contents of out is modified. The function returns  double **oldm, **newm, **savm; /* Working pointers to matrices */
      a pointer to pointers identical to out */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   long i, j, k;  /*FILE *fic ; */ /* Used in readdata only */
   for(i=nrl; i<= nrh; i++)  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     for(k=ncolol; k<=ncoloh; k++)  FILE *ficlog, *ficrespow;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  int globpr=0; /* Global variable for printing or not */
         out[i][k] +=in[i][j]*b[j][k];  double fretone; /* Only one call to likelihood */
   long ipmx=0; /* Number of contributions */
   return out;  double sw; /* Sum of weights */
 }  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 /************* Higher Matrix Product ***************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  FILE *fichtm, *fichtmcov; /* Html File */
 {  FILE *ficreseij;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  char filerese[FILENAMELENGTH];
      duration (i.e. until  FILE *ficresstdeij;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  char fileresstde[FILENAMELENGTH];
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  FILE *ficrescveij;
      (typically every 2 years instead of every month which is too big).  char filerescve[FILENAMELENGTH];
      Model is determined by parameters x and covariates have to be  FILE  *ficresvij;
      included manually here.  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
      */  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
   int i, j, d, h, k;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   double **out, cov[NCOVMAX];  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   double **newm;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
   /* Hstepm could be zero and should return the unit matrix */  int  outcmd=0;
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       oldm[i][j]=(i==j ? 1.0 : 0.0);  char fileresu[FILENAMELENGTH]; /* fileres without r in front */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  char filelog[FILENAMELENGTH]; /* Log file */
     }  char filerest[FILENAMELENGTH];
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  char fileregp[FILENAMELENGTH];
   for(h=1; h <=nhstepm; h++){  char popfile[FILENAMELENGTH];
     for(d=1; d <=hstepm; d++){  
       newm=savm;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       /* Covariates have to be included here again */  
       cov[1]=1.;  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  /* struct timezone tzp; */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /* extern int gettimeofday(); */
       for (k=1; k<=cptcovage;k++)  struct tm tml, *gmtime(), *localtime();
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  extern time_t time();
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   struct tm start_time, end_time, curr_time, last_time, forecast_time;
   time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  struct tm tm;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  char strcurr[80], strfor[80];
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  char *endptr;
       oldm=newm;  long lval;
     }  double dval;
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  #define NR_END 1
         po[i][j][h]=newm[i][j];  #define FREE_ARG char*
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  #define FTOL 1.0e-10
          */  
       }  #define NRANSI 
   } /* end h */  #define ITMAX 200 
   return po;  
 }  #define TOL 2.0e-4 
   
   #define CGOLD 0.3819660 
 /*************** log-likelihood *************/  #define ZEPS 1.0e-10 
 double func( double *x)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   int i, ii, j, k, mi, d, kk;  #define GOLD 1.618034 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  #define GLIMIT 100.0 
   double **out;  #define TINY 1.0e-20 
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  static double maxarg1,maxarg2;
   long ipmx;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   /*extern weight */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   /* We are differentiating ll according to initial status */    
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   /*for(i=1;i<imx;i++)  #define rint(a) floor(a+0.5)
     printf(" %d\n",s[4][i]);  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   */  #define mytinydouble 1.0e-16
   cov[1]=1.;  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   for(k=1; k<=nlstate; k++) ll[k]=0.;  /* static double dsqrarg; */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  static double sqrarg;
     for(mi=1; mi<= wav[i]-1; mi++){  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       for (ii=1;ii<=nlstate+ndeath;ii++)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  int agegomp= AGEGOMP;
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;  int imx; 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  int stepm=1;
         for (kk=1; kk<=cptcovage;kk++) {  /* Stepm, step in month: minimum step interpolation*/
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }  int estepm;
          /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  int m,nb;
         savm=oldm;  long *num;
         oldm=newm;  int firstpass=0, lastpass=4,*cod, *cens;
          int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
                             covariate for which somebody answered excluding 
       } /* end mult */                     undefined. Usually 2: 0 and 1. */
        int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);                               covariate for which somebody answered including 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/                               undefined. Usually 3: -1, 0 and 1. */
       ipmx +=1;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       sw += weight[i];  double **pmmij, ***probs;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  double *ageexmed,*agecens;
     } /* end of wave */  double dateintmean=0;
   } /* end of individual */  
   double *weight;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  int **s; /* Status */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  double *agedc;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
   return -l;                    * covar=matrix(0,NCOVMAX,1,n); 
 }                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
   double  idx; 
   int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
 /*********** Maximum Likelihood Estimation ***************/  int *Tage;
   int *Ndum; /** Freq of modality (tricode */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
 {  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   int i,j, iter;  double *lsurv, *lpop, *tpop;
   double **xi,*delti;  
   double fret;  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   xi=matrix(1,npar,1,npar);  double ftolhess; /**< Tolerance for computing hessian */
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  /**************** split *************************/
       xi[i][j]=(i==j ? 1.0 : 0.0);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  {
   powell(p,xi,npar,ftol,&iter,&fret,func);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    */ 
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    char  *ss;                            /* pointer */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    int   l1=0, l2=0;                             /* length counters */
   
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 /**** Computes Hessian and covariance matrix ***/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 {      strcpy( name, path );               /* we got the fullname name because no directory */
   double  **a,**y,*x,pd;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double **hess;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   int i, j,jk;      /* get current working directory */
   int *indx;      /*    extern  char* getcwd ( char *buf , int len);*/
   #ifdef WIN32
   double hessii(double p[], double delta, int theta, double delti[]);      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double hessij(double p[], double delti[], int i, int j);  #else
   void lubksb(double **a, int npar, int *indx, double b[]) ;          if (getcwd(dirc, FILENAME_MAX) == NULL) {
   void ludcmp(double **a, int npar, int *indx, double *d) ;  #endif
         return( GLOCK_ERROR_GETCWD );
   hess=matrix(1,npar,1,npar);      }
       /* got dirc from getcwd*/
   printf("\nCalculation of the hessian matrix. Wait...\n");      printf(" DIRC = %s \n",dirc);
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    } else {                              /* strip directory from path */
   for (i=1;i<=npar;i++){      ss++;                               /* after this, the filename */
     printf("%d",i);fflush(stdout);      l2 = strlen( ss );                  /* length of filename */
     fprintf(ficlog,"%d",i);fflush(ficlog);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     hess[i][i]=hessii(p,ftolhess,i,delti);      strcpy( name, ss );         /* save file name */
     /*printf(" %f ",p[i]);*/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     /*printf(" %lf ",hess[i][i]);*/      dirc[l1-l2] = '\0';                 /* add zero */
   }      printf(" DIRC2 = %s \n",dirc);
      }
   for (i=1;i<=npar;i++) {    /* We add a separator at the end of dirc if not exists */
     for (j=1;j<=npar;j++)  {    l1 = strlen( dirc );                  /* length of directory */
       if (j>i) {    if( dirc[l1-1] != DIRSEPARATOR ){
         printf(".%d%d",i,j);fflush(stdout);      dirc[l1] =  DIRSEPARATOR;
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);      dirc[l1+1] = 0; 
         hess[i][j]=hessij(p,delti,i,j);      printf(" DIRC3 = %s \n",dirc);
         hess[j][i]=hess[i][j];        }
         /*printf(" %lf ",hess[i][j]);*/    ss = strrchr( name, '.' );            /* find last / */
       }    if (ss >0){
     }      ss++;
   }      strcpy(ext,ss);                     /* save extension */
   printf("\n");      l1= strlen( name);
   fprintf(ficlog,"\n");      l2= strlen(ss)+1;
       strncpy( finame, name, l1-l2);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      finame[l1-l2]= 0;
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    }
    
   a=matrix(1,npar,1,npar);    return( 0 );                          /* we're done */
   y=matrix(1,npar,1,npar);  }
   x=vector(1,npar);  
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  /******************************************/
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  void replace_back_to_slash(char *s, char*t)
   {
   for (j=1;j<=npar;j++) {    int i;
     for (i=1;i<=npar;i++) x[i]=0;    int lg=0;
     x[j]=1;    i=0;
     lubksb(a,npar,indx,x);    lg=strlen(t);
     for (i=1;i<=npar;i++){    for(i=0; i<= lg; i++) {
       matcov[i][j]=x[i];      (s[i] = t[i]);
     }      if (t[i]== '\\') s[i]='/';
   }    }
   }
   printf("\n#Hessian matrix#\n");  
   fprintf(ficlog,"\n#Hessian matrix#\n");  char *trimbb(char *out, char *in)
   for (i=1;i<=npar;i++) {  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     for (j=1;j<=npar;j++) {    char *s;
       printf("%.3e ",hess[i][j]);    s=out;
       fprintf(ficlog,"%.3e ",hess[i][j]);    while (*in != '\0'){
     }      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     printf("\n");        in++;
     fprintf(ficlog,"\n");      }
   }      *out++ = *in++;
     }
   /* Recompute Inverse */    *out='\0';
   for (i=1;i<=npar;i++)    return s;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  }
   ludcmp(a,npar,indx,&pd);  
   /* char *substrchaine(char *out, char *in, char *chain) */
   /*  printf("\n#Hessian matrix recomputed#\n");  /* { */
   /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
   for (j=1;j<=npar;j++) {  /*   char *s, *t; */
     for (i=1;i<=npar;i++) x[i]=0;  /*   t=in;s=out; */
     x[j]=1;  /*   while ((*in != *chain) && (*in != '\0')){ */
     lubksb(a,npar,indx,x);  /*     *out++ = *in++; */
     for (i=1;i<=npar;i++){  /*   } */
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  /*   /\* *in matches *chain *\/ */
       fprintf(ficlog,"%.3e ",y[i][j]);  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
     }  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
     printf("\n");  /*   } */
     fprintf(ficlog,"\n");  /*   in--; chain--; */
   }  /*   while ( (*in != '\0')){ */
   */  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   /*     *out++ = *in++; */
   free_matrix(a,1,npar,1,npar);  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   free_matrix(y,1,npar,1,npar);  /*   } */
   free_vector(x,1,npar);  /*   *out='\0'; */
   free_ivector(indx,1,npar);  /*   out=s; */
   free_matrix(hess,1,npar,1,npar);  /*   return out; */
   /* } */
   char *substrchaine(char *out, char *in, char *chain)
 }  {
     /* Substract chain 'chain' from 'in', return and output 'out' */
 /*************** hessian matrix ****************/    /* in="V1+V1*age+age*age+V2", chain="age*age" */
 double hessii( double x[], double delta, int theta, double delti[])  
 {    char *strloc;
   int i;  
   int l=1, lmax=20;    strcpy (out, in); 
   double k1,k2;    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
   double p2[NPARMAX+1];    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
   double res;    if(strloc != NULL){ 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
   double fx;      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
   int k=0,kmax=10;      /* strcpy (strloc, strloc +strlen(chain));*/
   double l1;    }
     printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
   fx=func(x);    return out;
   for (i=1;i<=npar;i++) p2[i]=x[i];  }
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  
     delts=delt;  char *cutl(char *blocc, char *alocc, char *in, char occ)
     for(k=1 ; k <kmax; k=k+1){  {
       delt = delta*(l1*k);    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
       p2[theta]=x[theta] +delt;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       k1=func(p2)-fx;       gives blocc="abcdef" and alocc="ghi2j".
       p2[theta]=x[theta]-delt;       If occ is not found blocc is null and alocc is equal to in. Returns blocc
       k2=func(p2)-fx;    */
       /*res= (k1-2.0*fx+k2)/delt/delt; */    char *s, *t;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    t=in;s=in;
          while ((*in != occ) && (*in != '\0')){
 #ifdef DEBUG      *alocc++ = *in++;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    }
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    if( *in == occ){
 #endif      *(alocc)='\0';
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      s=++in;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    }
         k=kmax;   
       }    if (s == t) {/* occ not found */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      *(alocc-(in-s))='\0';
         k=kmax; l=lmax*10.;      in=s;
       }    }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    while ( *in != '\0'){
         delts=delt;      *blocc++ = *in++;
       }    }
     }  
   }    *blocc='\0';
   delti[theta]=delts;    return t;
   return res;  }
    char *cutv(char *blocc, char *alocc, char *in, char occ)
 }  {
     /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
 double hessij( double x[], double delti[], int thetai,int thetaj)       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 {       gives blocc="abcdef2ghi" and alocc="j".
   int i;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   int l=1, l1, lmax=20;    */
   double k1,k2,k3,k4,res,fx;    char *s, *t;
   double p2[NPARMAX+1];    t=in;s=in;
   int k;    while (*in != '\0'){
       while( *in == occ){
   fx=func(x);        *blocc++ = *in++;
   for (k=1; k<=2; k++) {        s=in;
     for (i=1;i<=npar;i++) p2[i]=x[i];      }
     p2[thetai]=x[thetai]+delti[thetai]/k;      *blocc++ = *in++;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    }
     k1=func(p2)-fx;    if (s == t) /* occ not found */
        *(blocc-(in-s))='\0';
     p2[thetai]=x[thetai]+delti[thetai]/k;    else
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      *(blocc-(in-s)-1)='\0';
     k2=func(p2)-fx;    in=s;
      while ( *in != '\0'){
     p2[thetai]=x[thetai]-delti[thetai]/k;      *alocc++ = *in++;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    }
     k3=func(p2)-fx;  
      *alocc='\0';
     p2[thetai]=x[thetai]-delti[thetai]/k;    return s;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  }
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  int nbocc(char *s, char occ)
 #ifdef DEBUG  {
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    int i,j=0;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    int lg=20;
 #endif    i=0;
   }    lg=strlen(s);
   return res;    for(i=0; i<= lg; i++) {
 }    if  (s[i] == occ ) j++;
     }
 /************** Inverse of matrix **************/    return j;
 void ludcmp(double **a, int n, int *indx, double *d)  }
 {  
   int i,imax,j,k;  /* void cutv(char *u,char *v, char*t, char occ) */
   double big,dum,sum,temp;  /* { */
   double *vv;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
    /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   vv=vector(1,n);  /*      gives u="abcdef2ghi" and v="j" *\/ */
   *d=1.0;  /*   int i,lg,j,p=0; */
   for (i=1;i<=n;i++) {  /*   i=0; */
     big=0.0;  /*   lg=strlen(t); */
     for (j=1;j<=n;j++)  /*   for(j=0; j<=lg-1; j++) { */
       if ((temp=fabs(a[i][j])) > big) big=temp;  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /*   } */
     vv[i]=1.0/big;  
   }  /*   for(j=0; j<p; j++) { */
   for (j=1;j<=n;j++) {  /*     (u[j] = t[j]); */
     for (i=1;i<j;i++) {  /*   } */
       sum=a[i][j];  /*      u[p]='\0'; */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  /*    for(j=0; j<= lg; j++) { */
     }  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
     big=0.0;  /*   } */
     for (i=j;i<=n;i++) {  /* } */
       sum=a[i][j];  
       for (k=1;k<j;k++)  #ifdef _WIN32
         sum -= a[i][k]*a[k][j];  char * strsep(char **pp, const char *delim)
       a[i][j]=sum;  {
       if ( (dum=vv[i]*fabs(sum)) >= big) {    char *p, *q;
         big=dum;           
         imax=i;    if ((p = *pp) == NULL)
       }      return 0;
     }    if ((q = strpbrk (p, delim)) != NULL)
     if (j != imax) {    {
       for (k=1;k<=n;k++) {      *pp = q + 1;
         dum=a[imax][k];      *q = '\0';
         a[imax][k]=a[j][k];    }
         a[j][k]=dum;    else
       }      *pp = 0;
       *d = -(*d);    return p;
       vv[imax]=vv[j];  }
     }  #endif
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;  /********************** nrerror ********************/
     if (j != n) {  
       dum=1.0/(a[j][j]);  void nrerror(char error_text[])
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  {
     }    fprintf(stderr,"ERREUR ...\n");
   }    fprintf(stderr,"%s\n",error_text);
   free_vector(vv,1,n);  /* Doesn't work */    exit(EXIT_FAILURE);
 ;  }
 }  /*********************** vector *******************/
   double *vector(int nl, int nh)
 void lubksb(double **a, int n, int *indx, double b[])  {
 {    double *v;
   int i,ii=0,ip,j;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double sum;    if (!v) nrerror("allocation failure in vector");
      return v-nl+NR_END;
   for (i=1;i<=n;i++) {  }
     ip=indx[i];  
     sum=b[ip];  /************************ free vector ******************/
     b[ip]=b[i];  void free_vector(double*v, int nl, int nh)
     if (ii)  {
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    free((FREE_ARG)(v+nl-NR_END));
     else if (sum) ii=i;  }
     b[i]=sum;  
   }  /************************ivector *******************************/
   for (i=n;i>=1;i--) {  int *ivector(long nl,long nh)
     sum=b[i];  {
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    int *v;
     b[i]=sum/a[i][i];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   }    if (!v) nrerror("allocation failure in ivector");
 }    return v-nl+NR_END;
   }
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  /******************free ivector **************************/
 {  /* Some frequencies */  void free_ivector(int *v, long nl, long nh)
    {
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    free((FREE_ARG)(v+nl-NR_END));
   int first;  }
   double ***freq; /* Frequencies */  
   double *pp;  /************************lvector *******************************/
   double pos, k2, dateintsum=0,k2cpt=0;  long *lvector(long nl,long nh)
   FILE *ficresp;  {
   char fileresp[FILENAMELENGTH];    long *v;
      v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   pp=vector(1,nlstate);    if (!v) nrerror("allocation failure in ivector");
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    return v-nl+NR_END;
   strcpy(fileresp,"p");  }
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {  /******************free lvector **************************/
     printf("Problem with prevalence resultfile: %s\n", fileresp);  void free_lvector(long *v, long nl, long nh)
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);  {
     exit(0);    free((FREE_ARG)(v+nl-NR_END));
   }  }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  /******************* imatrix *******************************/
    int **imatrix(long nrl, long nrh, long ncl, long nch) 
   j=cptcoveff;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   first=1;    int **m; 
     
   for(k1=1; k1<=j;k1++){    /* allocate pointers to rows */ 
     for(i1=1; i1<=ncodemax[k1];i1++){    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       j1++;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    m += NR_END; 
         scanf("%d", i);*/    m -= nrl; 
       for (i=-1; i<=nlstate+ndeath; i++)      
         for (jk=-1; jk<=nlstate+ndeath; jk++)      
           for(m=agemin; m <= agemax+3; m++)    /* allocate rows and set pointers to them */ 
             freq[i][jk][m]=0;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
          if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       dateintsum=0;    m[nrl] += NR_END; 
       k2cpt=0;    m[nrl] -= ncl; 
       for (i=1; i<=imx; i++) {    
         bool=1;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         if  (cptcovn>0) {    
           for (z1=1; z1<=cptcoveff; z1++)    /* return pointer to array of pointers to rows */ 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    return m; 
               bool=0;  } 
         }  
         if (bool==1) {  /****************** free_imatrix *************************/
           for(m=firstpass; m<=lastpass; m++){  void free_imatrix(m,nrl,nrh,ncl,nch)
             k2=anint[m][i]+(mint[m][i]/12.);        int **m;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        long nch,ncl,nrh,nrl; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;       /* free an int matrix allocated by imatrix() */ 
               if(agev[m][i]==1) agev[m][i]=agemax+2;  { 
               if (m<lastpass) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    free((FREE_ARG) (m+nrl-NR_END)); 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  } 
               }  
                /******************* matrix *******************************/
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  double **matrix(long nrl, long nrh, long ncl, long nch)
                 dateintsum=dateintsum+k2;  {
                 k2cpt++;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
               }    double **m;
             }  
           }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         }    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
            m -= nrl;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       if  (cptcovn>0) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         fprintf(ficresp, "\n#********** Variable ");    m[nrl] += NR_END;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    m[nrl] -= ncl;
         fprintf(ficresp, "**********\n#");  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for(i=1; i<=nlstate;i++)    return m;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
       fprintf(ficresp, "\n");  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
        that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
       for(i=(int)agemin; i <= (int)agemax+3; i++){     */
         if(i==(int)agemax+3){  }
           fprintf(ficlog,"Total");  
         }else{  /*************************free matrix ************************/
           if(first==1){  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
             first=0;  {
             printf("See log file for details...\n");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           }    free((FREE_ARG)(m+nrl-NR_END));
           fprintf(ficlog,"Age %d", i);  }
         }  
         for(jk=1; jk <=nlstate ; jk++){  /******************* ma3x *******************************/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
             pp[jk] += freq[jk][m][i];  {
         }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         for(jk=1; jk <=nlstate ; jk++){    double ***m;
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
           if(pp[jk]>=1.e-10){    if (!m) nrerror("allocation failure 1 in matrix()");
             if(first==1){    m += NR_END;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    m -= nrl;
             }  
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           }else{    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
             if(first==1)    m[nrl] += NR_END;
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    m[nrl] -= ncl;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
           }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         }  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         for(jk=1; jk <=nlstate ; jk++){    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    m[nrl][ncl] += NR_END;
             pp[jk] += freq[jk][m][i];    m[nrl][ncl] -= nll;
         }    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
         for(jk=1,pos=0; jk <=nlstate ; jk++)    
           pos += pp[jk];    for (i=nrl+1; i<=nrh; i++) {
         for(jk=1; jk <=nlstate ; jk++){      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
           if(pos>=1.e-5){      for (j=ncl+1; j<=nch; j++) 
             if(first==1)        m[i][j]=m[i][j-1]+nlay;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    }
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    return m; 
           }else{    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
             if(first==1)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    */
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  }
           }  
           if( i <= (int) agemax){  /*************************free ma3x ************************/
             if(pos>=1.e-5){  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  {
               probs[i][jk][j1]= pp[jk]/pos;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
             }    free((FREE_ARG)(m+nrl-NR_END));
             else  }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
           }  /*************** function subdirf ***********/
         }  char *subdirf(char fileres[])
          {
         for(jk=-1; jk <=nlstate+ndeath; jk++)    /* Caution optionfilefiname is hidden */
           for(m=-1; m <=nlstate+ndeath; m++)    strcpy(tmpout,optionfilefiname);
             if(freq[jk][m][i] !=0 ) {    strcat(tmpout,"/"); /* Add to the right */
             if(first==1)    strcat(tmpout,fileres);
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    return tmpout;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);  }
             }  
         if(i <= (int) agemax)  /*************** function subdirf2 ***********/
           fprintf(ficresp,"\n");  char *subdirf2(char fileres[], char *preop)
         if(first==1)  {
           printf("Others in log...\n");    
         fprintf(ficlog,"\n");    /* Caution optionfilefiname is hidden */
       }    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
   }    strcat(tmpout,preop);
   dateintmean=dateintsum/k2cpt;    strcat(tmpout,fileres);
      return tmpout;
   fclose(ficresp);  }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);  /*************** function subdirf3 ***********/
    char *subdirf3(char fileres[], char *preop, char *preop2)
   /* End of Freq */  {
 }    
     /* Caution optionfilefiname is hidden */
 /************ Prevalence ********************/    strcpy(tmpout,optionfilefiname);
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    strcat(tmpout,"/");
 {  /* Some frequencies */    strcat(tmpout,preop);
      strcat(tmpout,preop2);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    strcat(tmpout,fileres);
   double ***freq; /* Frequencies */    return tmpout;
   double *pp;  }
   double pos, k2;   
   /*************** function subdirfext ***********/
   pp=vector(1,nlstate);  char *subdirfext(char fileres[], char *preop, char *postop)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
      
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    strcpy(tmpout,preop);
   j1=0;    strcat(tmpout,fileres);
      strcat(tmpout,postop);
   j=cptcoveff;    return tmpout;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  }
    
   for(k1=1; k1<=j;k1++){  /*************** function subdirfext3 ***********/
     for(i1=1; i1<=ncodemax[k1];i1++){  char *subdirfext3(char fileres[], char *preop, char *postop)
       j1++;  {
          
       for (i=-1; i<=nlstate+ndeath; i++)      /* Caution optionfilefiname is hidden */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      strcpy(tmpout,optionfilefiname);
           for(m=agemin; m <= agemax+3; m++)    strcat(tmpout,"/");
             freq[i][jk][m]=0;    strcat(tmpout,preop);
          strcat(tmpout,fileres);
       for (i=1; i<=imx; i++) {    strcat(tmpout,postop);
         bool=1;    return tmpout;
         if  (cptcovn>0) {  }
           for (z1=1; z1<=cptcoveff; z1++)   
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  char *asc_diff_time(long time_sec, char ascdiff[])
               bool=0;  {
         }    long sec_left, days, hours, minutes;
         if (bool==1) {    days = (time_sec) / (60*60*24);
           for(m=firstpass; m<=lastpass; m++){    sec_left = (time_sec) % (60*60*24);
             k2=anint[m][i]+(mint[m][i]/12.);    hours = (sec_left) / (60*60) ;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    sec_left = (sec_left) %(60*60);
               if(agev[m][i]==0) agev[m][i]=agemax+1;    minutes = (sec_left) /60;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    sec_left = (sec_left) % (60);
               if (m<lastpass) {    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
                 if (calagedate>0)    return ascdiff;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  }
                 else  
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /***************** f1dim *************************/
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  extern int ncom; 
               }  extern double *pcom,*xicom;
             }  extern double (*nrfunc)(double []); 
           }   
         }  double f1dim(double x) 
       }  { 
       for(i=(int)agemin; i <= (int)agemax+3; i++){    int j; 
         for(jk=1; jk <=nlstate ; jk++){    double f;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double *xt; 
             pp[jk] += freq[jk][m][i];   
         }    xt=vector(1,ncom); 
         for(jk=1; jk <=nlstate ; jk++){    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
           for(m=-1, pos=0; m <=0 ; m++)    f=(*nrfunc)(xt); 
             pos += freq[jk][m][i];    free_vector(xt,1,ncom); 
         }    return f; 
          } 
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*****************brent *************************/
             pp[jk] += freq[jk][m][i];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         }  {
            /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
             * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
         for(jk=1; jk <=nlstate ; jk++){         * the minimum is returned as xmin, and the minimum function value is returned as brent , the
           if( i <= (int) agemax){     * returned function value. 
             if(pos>=1.e-5){    */
               probs[i][jk][j1]= pp[jk]/pos;    int iter; 
             }    double a,b,d,etemp;
           }    double fu=0,fv,fw,fx;
         }/* end jk */    double ftemp=0.;
       }/* end i */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     } /* end i1 */    double e=0.0; 
   } /* end k1 */   
     a=(ax < cx ? ax : cx); 
      b=(ax > cx ? ax : cx); 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    x=w=v=bx; 
   free_vector(pp,1,nlstate);    fw=fv=fx=(*f)(x); 
      for (iter=1;iter<=ITMAX;iter++) { 
 }  /* End of Freq */      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 /************* Waves Concatenation ***************/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      fprintf(ficlog,".");fflush(ficlog);
 {  #ifdef DEBUGBRENT
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      Death is a valid wave (if date is known).      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  #endif
      and mw[mi+1][i]. dh depends on stepm.      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
      */        *xmin=x; 
         return fx; 
   int i, mi, m;      } 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      ftemp=fu;
      double sum=0., jmean=0.;*/      if (fabs(e) > tol1) { 
   int first;        r=(x-w)*(fx-fv); 
   int j, k=0,jk, ju, jl;        q=(x-v)*(fx-fw); 
   double sum=0.;        p=(x-v)*q-(x-w)*r; 
   first=0;        q=2.0*(q-r); 
   jmin=1e+5;        if (q > 0.0) p = -p; 
   jmax=-1;        q=fabs(q); 
   jmean=0.;        etemp=e; 
   for(i=1; i<=imx; i++){        e=d; 
     mi=0;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     m=firstpass;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     while(s[m][i] <= nlstate){        else { 
       if(s[m][i]>=1)          d=p/q; 
         mw[++mi][i]=m;          u=x+d; 
       if(m >=lastpass)          if (u-a < tol2 || b-u < tol2) 
         break;            d=SIGN(tol1,xm-x); 
       else        } 
         m++;      } else { 
     }/* end while */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     if (s[m][i] > nlstate){      } 
       mi++;     /* Death is another wave */      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       /* if(mi==0)  never been interviewed correctly before death */      fu=(*f)(u); 
          /* Only death is a correct wave */      if (fu <= fx) { 
       mw[mi][i]=m;        if (u >= x) a=x; else b=x; 
     }        SHFT(v,w,x,u) 
         SHFT(fv,fw,fx,fu) 
     wav[i]=mi;      } else { 
     if(mi==0){        if (u < x) a=u; else b=u; 
       if(first==0){        if (fu <= fw || w == x) { 
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);          v=w; 
         first=1;          w=u; 
       }          fv=fw; 
       if(first==1){          fw=fu; 
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);        } else if (fu <= fv || v == x || v == w) { 
       }          v=u; 
     } /* end mi==0 */          fv=fu; 
   }        } 
       } 
   for(i=1; i<=imx; i++){    } 
     for(mi=1; mi<wav[i];mi++){    nrerror("Too many iterations in brent"); 
       if (stepm <=0)    *xmin=x; 
         dh[mi][i]=1;    return fx; 
       else{  } 
         if (s[mw[mi+1][i]][i] > nlstate) {  
           if (agedc[i] < 2*AGESUP) {  /****************** mnbrak ***********************/
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j==0) j=1;  /* Survives at least one month after exam */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
           k=k+1;              double (*func)(double)) 
           if (j >= jmax) jmax=j;  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
           if (j <= jmin) jmin=j;  the downhill direction (defined by the function as evaluated at the initial points) and returns
           sum=sum+j;  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
           }     */
         }    double ulim,u,r,q, dum;
         else{    double fu; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;    double scale=10.;
           if (j >= jmax) jmax=j;    int iterscale=0;
           else if (j <= jmin)jmin=j;  
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
           sum=sum+j;    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
         }  
         jk= j/stepm;  
         jl= j -jk*stepm;    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
         ju= j -(jk+1)*stepm;    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
         if(jl <= -ju)    /*   *bx = *ax - (*ax - *bx)/scale; */
           dh[mi][i]=jk;    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
         else    /* } */
           dh[mi][i]=jk+1;  
         if(dh[mi][i]==0)    if (*fb > *fa) { 
           dh[mi][i]=1; /* At least one step */      SHFT(dum,*ax,*bx,dum) 
       }      SHFT(dum,*fb,*fa,dum) 
     }    } 
   }    *cx=(*bx)+GOLD*(*bx-*ax); 
   jmean=sum/k;    *fc=(*func)(*cx); 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  #ifdef DEBUG
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
  }    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
   #endif
 /*********** Tricode ****************************/    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
 void tricode(int *Tvar, int **nbcode, int imx)      r=(*bx-*ax)*(*fb-*fc); 
 {      q=(*bx-*cx)*(*fb-*fa); 
   int Ndum[20],ij=1, k, j, i;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   int cptcode=0;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
   cptcoveff=0;      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
        if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
   for (k=0; k<19; k++) Ndum[k]=0;        fu=(*func)(u); 
   for (k=1; k<=7; k++) ncodemax[k]=0;  #ifdef DEBUG
         /* f(x)=A(x-u)**2+f(u) */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        double A, fparabu; 
     for (i=1; i<=imx; i++) {        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
       ij=(int)(covar[Tvar[j]][i]);        fparabu= *fa - A*(*ax-u)*(*ax-u);
       Ndum[ij]++;        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
       if (ij > cptcode) cptcode=ij;        /* And thus,it can be that fu > *fc even if fparabu < *fc */
     }        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
           (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
     for (i=0; i<=cptcode; i++) {        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
       if(Ndum[i]!=0) ncodemax[j]++;  #endif 
     }  #ifdef MNBRAKORIGINAL
     ij=1;  #else
   /*       if (fu > *fc) { */
   /* #ifdef DEBUG */
     for (i=1; i<=ncodemax[j]; i++) {  /*       printf("mnbrak4  fu > fc \n"); */
       for (k=0; k<=19; k++) {  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
         if (Ndum[k] != 0) {  /* #endif */
           nbcode[Tvar[j]][ij]=k;  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
            /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
           ij++;  /*      dum=u; /\* Shifting c and u *\/ */
         }  /*      u = *cx; */
         if (ij > ncodemax[j]) break;  /*      *cx = dum; */
       }    /*      dum = fu; */
     }  /*      fu = *fc; */
   }    /*      *fc =dum; */
   /*       } else { /\* end *\/ */
  for (k=0; k<19; k++) Ndum[k]=0;  /* #ifdef DEBUG */
   /*       printf("mnbrak3  fu < fc \n"); */
  for (i=1; i<=ncovmodel-2; i++) {  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
    ij=Tvar[i];  /* #endif */
    Ndum[ij]++;  /*      dum=u; /\* Shifting c and u *\/ */
  }  /*      u = *cx; */
   /*      *cx = dum; */
  ij=1;  /*      dum = fu; */
  for (i=1; i<=10; i++) {  /*      fu = *fc; */
    if((Ndum[i]!=0) && (i<=ncovcol)){  /*      *fc =dum; */
      Tvaraff[ij]=i;  /*       } */
      ij++;  #ifdef DEBUG
    }        printf("mnbrak34  fu < or >= fc \n");
  }        fprintf(ficlog, "mnbrak34 fu < fc\n");
    #endif
  cptcoveff=ij-1;        dum=u; /* Shifting c and u */
 }        u = *cx;
         *cx = dum;
 /*********** Health Expectancies ****************/        dum = fu;
         fu = *fc;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        *fc =dum;
   #endif
 {      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
   /* Health expectancies */  #ifdef DEBUG
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        printf("mnbrak2  u after c but before ulim\n");
   double age, agelim, hf;        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
   double ***p3mat,***varhe;  #endif
   double **dnewm,**doldm;        fu=(*func)(u); 
   double *xp;        if (fu < *fc) { 
   double **gp, **gm;  #ifdef DEBUG
   double ***gradg, ***trgradg;        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
   int theta;        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
   #endif
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   xp=vector(1,npar);          SHFT(*fb,*fc,fu,(*func)(u)) 
   dnewm=matrix(1,nlstate*2,1,npar);        } 
   doldm=matrix(1,nlstate*2,1,nlstate*2);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
    #ifdef DEBUG
   fprintf(ficreseij,"# Health expectancies\n");        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
   fprintf(ficreseij,"# Age");        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
   for(i=1; i<=nlstate;i++)  #endif
     for(j=1; j<=nlstate;j++)        u=ulim; 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        fu=(*func)(u); 
   fprintf(ficreseij,"\n");      } else { /* u could be left to b (if r > q parabola has a maximum) */
   #ifdef DEBUG
   if(estepm < stepm){        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
     printf ("Problem %d lower than %d\n",estepm, stepm);        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
   }  #endif
   else  hstepm=estepm;          u=(*cx)+GOLD*(*cx-*bx); 
   /* We compute the life expectancy from trapezoids spaced every estepm months        fu=(*func)(u); 
    * This is mainly to measure the difference between two models: for example      } /* end tests */
    * if stepm=24 months pijx are given only every 2 years and by summing them      SHFT(*ax,*bx,*cx,u) 
    * we are calculating an estimate of the Life Expectancy assuming a linear      SHFT(*fa,*fb,*fc,fu) 
    * progression inbetween and thus overestimating or underestimating according  #ifdef DEBUG
    * to the curvature of the survival function. If, for the same date, we        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
    * to compare the new estimate of Life expectancy with the same linear  #endif
    * hypothesis. A more precise result, taking into account a more precise    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
    * curvature will be obtained if estepm is as small as stepm. */  } 
   
   /* For example we decided to compute the life expectancy with the smallest unit */  /*************** linmin ************************/
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
      nhstepm is the number of hstepm from age to agelim  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
      nstepm is the number of stepm from age to agelin.  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
      Look at hpijx to understand the reason of that which relies in memory size  the value of func at the returned location p . This is actually all accomplished by calling the
      and note for a fixed period like estepm months */  routines mnbrak and brent .*/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  int ncom; 
      survival function given by stepm (the optimization length). Unfortunately it  double *pcom,*xicom;
      means that if the survival funtion is printed only each two years of age and if  double (*nrfunc)(double []); 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same   
      results. So we changed our mind and took the option of the best precision.  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   */  { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
   agelim=AGESUP;    double f1dim(double x); 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     /* nhstepm age range expressed in number of stepm */                double *fc, double (*func)(double)); 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    int j; 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    double xx,xmin,bx,ax; 
     /* if (stepm >= YEARM) hstepm=1;*/    double fx,fb,fa;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #ifdef LINMINORIGINAL
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  #else
     gp=matrix(0,nhstepm,1,nlstate*2);    double scale=10., axs, xxs; /* Scale added for infinity */
     gm=matrix(0,nhstepm,1,nlstate*2);  #endif
     
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    ncom=n; 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    pcom=vector(1,n); 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      xicom=vector(1,n); 
      nrfunc=func; 
     for (j=1;j<=n;j++) { 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      pcom[j]=p[j]; 
       xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
     /* Computing Variances of health expectancies */    } 
   
      for(theta=1; theta <=npar; theta++){  #ifdef LINMINORIGINAL
       for(i=1; i<=npar; i++){    xx=1.;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  #else
       }    axs=0.0;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      xxs=1.;
      do{
       cptj=0;      xx= xxs;
       for(j=1; j<= nlstate; j++){  #endif
         for(i=1; i<=nlstate; i++){      ax=0.;
           cptj=cptj+1;      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
           }      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
         }      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
       }      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
            /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
        #ifdef LINMINORIGINAL
       for(i=1; i<=npar; i++)  #else
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      if (fx != fx){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
                printf("|");
       cptj=0;          fprintf(ficlog,"|");
       for(j=1; j<= nlstate; j++){  #ifdef DEBUGLINMIN
         for(i=1;i<=nlstate;i++){          printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
           cptj=cptj+1;  #endif
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    }while(fx != fx);
           }  #endif
         }    
       }  #ifdef DEBUGLINMIN
       for(j=1; j<= nlstate*2; j++)    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
         for(h=0; h<=nhstepm-1; h++){    fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  #endif
         }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
      }    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
        /* fmin = f(p[j] + xmin * xi[j]) */
 /* End theta */    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
     /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      for(h=0; h<=nhstepm-1; h++)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for(j=1; j<=nlstate*2;j++)  #endif
         for(theta=1; theta <=npar; theta++)  #ifdef DEBUGLINMIN
           trgradg[h][j][theta]=gradg[h][theta][j];    printf("linmin end ");
          fprintf(ficlog,"linmin end ");
   #endif
      for(i=1;i<=nlstate*2;i++)    for (j=1;j<=n;j++) { 
       for(j=1;j<=nlstate*2;j++)  #ifdef LINMINORIGINAL
         varhe[i][j][(int)age] =0.;      xi[j] *= xmin; 
   #else
      printf("%d|",(int)age);fflush(stdout);  #ifdef DEBUGLINMIN
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      if(xxs <1.0)
      for(h=0;h<=nhstepm-1;h++){        printf(" before xi[%d]=%12.8f", j,xi[j]);
       for(k=0;k<=nhstepm-1;k++){  #endif
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  #ifdef DEBUGLINMIN
         for(i=1;i<=nlstate*2;i++)      if(xxs <1.0)
           for(j=1;j<=nlstate*2;j++)        printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  #endif
       }  #endif
     }      p[j] += xi[j]; /* Parameters values are updated accordingly */
     /* Computing expectancies */    } 
     for(i=1; i<=nlstate;i++)  #ifdef DEBUGLINMIN
       for(j=1; j<=nlstate;j++)    printf("\n");
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
              for (j=1;j<=n;j++) { 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
       fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
         }      if(j % ncovmodel == 0){
         printf("\n");
     fprintf(ficreseij,"%3.0f",age );        fprintf(ficlog,"\n");
     cptj=0;      }
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++){  #else
         cptj++;  #endif
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    free_vector(xicom,1,n); 
       }    free_vector(pcom,1,n); 
     fprintf(ficreseij,"\n");  } 
      
     free_matrix(gm,0,nhstepm,1,nlstate*2);  
     free_matrix(gp,0,nhstepm,1,nlstate*2);  /*************** powell ************************/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  /*
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  Minimization of a function func of n variables. Input consists of an initial starting point
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
   }  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
   printf("\n");  such that failure to decrease by more than this amount on one iteration signals doneness. On
   fprintf(ficlog,"\n");  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   function value at p , and iter is the number of iterations taken. The routine linmin is used.
   free_vector(xp,1,npar);   */
   free_matrix(dnewm,1,nlstate*2,1,npar);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);              double (*func)(double [])) 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  { 
 }    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
 /************ Variance ******************/    int i,ibig,j; 
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)    double del,t,*pt,*ptt,*xit;
 {    double directest;
   /* Variance of health expectancies */    double fp,fptt;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double *xits;
   /* double **newm;*/    int niterf, itmp;
   double **dnewm,**doldm;  
   double **dnewmp,**doldmp;    pt=vector(1,n); 
   int i, j, nhstepm, hstepm, h, nstepm ;    ptt=vector(1,n); 
   int k, cptcode;    xit=vector(1,n); 
   double *xp;    xits=vector(1,n); 
   double **gp, **gm;  /* for var eij */    *fret=(*func)(p); 
   double ***gradg, ***trgradg; /*for var eij */    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double **gradgp, **trgradgp; /* for var p point j */    rcurr_time = time(NULL);  
   double *gpp, *gmp; /* for var p point j */    for (*iter=1;;++(*iter)) { 
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */      fp=(*fret); /* From former iteration or initial value */
   double ***p3mat;      ibig=0; 
   double age,agelim, hf;      del=0.0; 
   int theta;      rlast_time=rcurr_time;
   char digit[4];      /* (void) gettimeofday(&curr_time,&tzp); */
   char digitp[16];      rcurr_time = time(NULL);  
       curr_time = *localtime(&rcurr_time);
   char fileresprobmorprev[FILENAMELENGTH];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   if(popbased==1)  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
     strcpy(digitp,"-populbased-");      for (i=1;i<=n;i++) {
   else        printf(" %d %.12f",i, p[i]);
     strcpy(digitp,"-stablbased-");        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   strcpy(fileresprobmorprev,"prmorprev");      }
   sprintf(digit,"%-d",ij);      printf("\n");
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/      fprintf(ficlog,"\n");
   strcat(fileresprobmorprev,digit); /* Tvar to be done */      fprintf(ficrespow,"\n");fflush(ficrespow);
   strcat(fileresprobmorprev,digitp); /* Popbased or not */      if(*iter <=3){
   strcat(fileresprobmorprev,fileres);        tml = *localtime(&rcurr_time);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {        strcpy(strcurr,asctime(&tml));
     printf("Problem with resultfile: %s\n", fileresprobmorprev);        rforecast_time=rcurr_time; 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);        itmp = strlen(strcurr);
   }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          strcurr[itmp-1]='\0';
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);        for(niterf=10;niterf<=30;niterf+=10){
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
     fprintf(ficresprobmorprev," p.%-d SE",j);          forecast_time = *localtime(&rforecast_time);
     for(i=1; i<=nlstate;i++)          strcpy(strfor,asctime(&forecast_time));
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);          itmp = strlen(strfor);
   }            if(strfor[itmp-1]=='\n')
   fprintf(ficresprobmorprev,"\n");          strfor[itmp-1]='\0';
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);        }
     exit(0);      }
   }      for (i=1;i<=n;i++) { /* For each direction i */
   else{        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
     fprintf(ficgp,"\n# Routine varevsij");        fptt=(*fret); 
   }  #ifdef DEBUG
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
     printf("Problem with html file: %s\n", optionfilehtm);        fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  #endif
     exit(0);        printf("%d",i);fflush(stdout); /* print direction (parameter) i */
   }        fprintf(ficlog,"%d",i);fflush(ficlog);
   else{        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
   }        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          /* because that direction will be replaced unless the gain del is small */
           /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
   fprintf(ficresvij,"# Age");          /* with the new direction. */
   for(i=1; i<=nlstate;i++)          del=fabs(fptt-(*fret)); 
     for(j=1; j<=nlstate;j++)          ibig=i; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        } 
   fprintf(ficresvij,"\n");  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
   xp=vector(1,npar);        fprintf(ficlog,"%d %.12e",i,(*fret));
   dnewm=matrix(1,nlstate,1,npar);        for (j=1;j<=n;j++) {
   doldm=matrix(1,nlstate,1,nlstate);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          printf(" x(%d)=%.12e",j,xit[j]);
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        for(j=1;j<=n;j++) {
   gpp=vector(nlstate+1,nlstate+ndeath);          printf(" p(%d)=%.12e",j,p[j]);
   gmp=vector(nlstate+1,nlstate+ndeath);          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        }
          printf("\n");
   if(estepm < stepm){        fprintf(ficlog,"\n");
     printf ("Problem %d lower than %d\n",estepm, stepm);  #endif
   }      } /* end loop on each direction i */
   else  hstepm=estepm;        /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
   /* For example we decided to compute the life expectancy with the smallest unit */      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      /* New value of last point Pn is not computed, P(n-1) */
      nhstepm is the number of hstepm from age to agelim      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
      nstepm is the number of stepm from age to agelin.        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
      Look at hpijx to understand the reason of that which relies in memory size        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
      and note for a fixed period like k years */        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        /* decreased of more than 3.84  */
      survival function given by stepm (the optimization length). Unfortunately it        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
      means that if the survival funtion is printed only each two years of age and if        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        /* By adding 10 parameters more the gain should be 18.31 */
      results. So we changed our mind and took the option of the best precision.  
   */        /* Starting the program with initial values given by a former maximization will simply change */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        /* the scales of the directions and the directions, because the are reset to canonical directions */
   agelim = AGESUP;        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  #ifdef DEBUG
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        int k[2],l;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        k[0]=1;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        k[1]=-1;
     gp=matrix(0,nhstepm,1,nlstate);        printf("Max: %.12e",(*func)(p));
     gm=matrix(0,nhstepm,1,nlstate);        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
     for(theta=1; theta <=npar; theta++){          fprintf(ficlog," %.12e",p[j]);
       for(i=1; i<=npar; i++){ /* Computes gradient */        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        printf("\n");
       }        fprintf(ficlog,"\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(l=0;l<=1;l++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       if (popbased==1) {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         for(i=1; i<=nlstate;i++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           prlim[i][i]=probs[(int)age][i][ij];          }
       }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
            fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       for(j=1; j<= nlstate; j++){        }
         for(h=0; h<=nhstepm; h++){  #endif
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }        free_vector(xit,1,n); 
       }        free_vector(xits,1,n); 
       /* This for computing forces of mortality (h=1)as a weighted average */        free_vector(ptt,1,n); 
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){        free_vector(pt,1,n); 
         for(i=1; i<= nlstate; i++)        return; 
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      } /* enough precision */ 
       }          if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       /* end force of mortality */      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
         ptt[j]=2.0*p[j]-pt[j]; 
       for(i=1; i<=npar; i++) /* Computes gradient */        xit[j]=p[j]-pt[j]; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        pt[j]=p[j]; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fptt=(*func)(ptt); /* f_3 */
    #ifdef POWELLF1F3
       if (popbased==1) {  #else
         for(i=1; i<=nlstate;i++)      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
           prlim[i][i]=probs[(int)age][i][ij];  #endif
       }        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
         /* From x1 (P0) distance of x2 is at h and x3 is 2h */
       for(j=1; j<= nlstate; j++){        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         for(h=0; h<=nhstepm; h++){        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
         }        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
       }  #ifdef NRCORIGINAL
       /* This for computing force of mortality (h=1)as a weighted average */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  #else
         for(i=1; i<= nlstate; i++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
           gmp[j] += prlim[i][i]*p3mat[i][j][1];        t= t- del*SQR(fp-fptt);
       }      #endif
       /* end force of mortality */        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
   #ifdef DEBUG
       for(j=1; j<= nlstate; j++) /* vareij */        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
         for(h=0; h<=nhstepm; h++){        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
         }               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
       }        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
     } /* End theta */  #endif
   #ifdef POWELLORIGINAL
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */        if (t < 0.0) { /* Then we use it for new direction */
   #else
     for(h=0; h<=nhstepm; h++) /* veij */        if (directest*t < 0.0) { /* Contradiction between both tests */
       for(j=1; j<=nlstate;j++)          printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
         for(theta=1; theta <=npar; theta++)          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
           trgradg[h][j][theta]=gradg[h][theta][j];          fprintf(ficlog,"directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
           fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        } 
       for(theta=1; theta <=npar; theta++)        if (directest < 0.0) { /* Then we use it for new direction */
         trgradgp[j][theta]=gradgp[theta][j];  #endif
   #ifdef DEBUGLINMIN
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          printf("Before linmin in direction P%d-P0\n",n);
     for(i=1;i<=nlstate;i++)          for (j=1;j<=n;j++) { 
       for(j=1;j<=nlstate;j++)            printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
         vareij[i][j][(int)age] =0.;            fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
             if(j % ncovmodel == 0){
     for(h=0;h<=nhstepm;h++){              printf("\n");
       for(k=0;k<=nhstepm;k++){              fprintf(ficlog,"\n");
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          }
         for(i=1;i<=nlstate;i++)  #endif
           for(j=1;j<=nlstate;j++)          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  #ifdef DEBUGLINMIN
       }          for (j=1;j<=n;j++) { 
     }            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
             fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
     /* pptj */            if(j % ncovmodel == 0){
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);              printf("\n");
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);              fprintf(ficlog,"\n");
     for(j=nlstate+1;j<=nlstate+ndeath;j++)            }
       for(i=nlstate+1;i<=nlstate+ndeath;i++)          }
         varppt[j][i]=doldmp[j][i];  #endif
     /* end ppptj */          for (j=1;j<=n;j++) { 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);              xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
            }
     if (popbased==1) {          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       for(i=1; i<=nlstate;i++)          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         prlim[i][i]=probs[(int)age][i][ij];  
     }  #ifdef DEBUG
              printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     /* This for computing force of mortality (h=1)as a weighted average */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          for(j=1;j<=n;j++){
       for(i=1; i<= nlstate; i++)            printf(" %.12e",xit[j]);
         gmp[j] += prlim[i][i]*p3mat[i][j][1];            fprintf(ficlog," %.12e",xit[j]);
     }              }
     /* end force of mortality */          printf("\n");
           fprintf(ficlog,"\n");
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);  #endif
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        } /* end of t or directest negative */
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));  #ifdef POWELLF1F3
       for(i=1; i<=nlstate;i++){  #else
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);      } /* end if (fptt < fp)  */
       }  #endif
     }    } /* loop iteration */ 
     fprintf(ficresprobmorprev,"\n");  } 
   
     fprintf(ficresvij,"%.0f ",age );  /**** Prevalence limit (stable or period prevalence)  ****************/
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij)
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  {
       }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     fprintf(ficresvij,"\n");       matrix by transitions matrix until convergence is reached with precision ftolpl */
     free_matrix(gp,0,nhstepm,1,nlstate);    /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
     free_matrix(gm,0,nhstepm,1,nlstate);    /* Wx is row vector: population in state 1, population in state 2, population dead */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    /* or prevalence in state 1, prevalence in state 2, 0 */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    /* newm is the matrix after multiplications, its rows are identical at a factor */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Initial matrix pimij */
   } /* End age */    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
   free_vector(gpp,nlstate+1,nlstate+ndeath);    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
   free_vector(gmp,nlstate+1,nlstate+ndeath);    /*  0,                   0                  , 1} */
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    /*
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/     * and after some iteration: */
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    /*  0,                   0                  , 1} */
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);    /* {0.51571254859325999, 0.4842874514067399, */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);    /*  0.51326036147820708, 0.48673963852179264} */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    /* If we start from prlim again, prlim tends to a constant matrix */
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    int i, ii,j,k;
     double *min, *max, *meandiff, maxmax,sumnew=0.;
   free_vector(xp,1,npar);    /* double **matprod2(); */ /* test */
   free_matrix(doldm,1,nlstate,1,nlstate);    double **out, cov[NCOVMAX+1], **pmij();
   free_matrix(dnewm,1,nlstate,1,npar);    double **newm;
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    int ncvloop=0;
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    
   fclose(ficresprobmorprev);    min=vector(1,nlstate);
   fclose(ficgp);    max=vector(1,nlstate);
   fclose(fichtm);    meandiff=vector(1,nlstate);
   
 }    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
 /************ Variance of prevlim ******************/        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      }
 {    
   /* Variance of prevalence limit */    cov[1]=1.;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    
   double **newm;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double **dnewm,**doldm;    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
   int i, j, nhstepm, hstepm;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   int k, cptcode;      ncvloop++;
   double *xp;      newm=savm;
   double *gp, *gm;      /* Covariates have to be included here again */
   double **gradg, **trgradg;      cov[2]=agefin;
   double age,agelim;      if(nagesqr==1)
   int theta;        cov[3]= agefin*agefin;;
          for (k=1; k<=cptcovn;k++) {
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
   fprintf(ficresvpl,"# Age");        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
   for(i=1; i<=nlstate;i++)        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
       fprintf(ficresvpl," %1d-%1d",i,i);      }
   fprintf(ficresvpl,"\n");      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
   xp=vector(1,npar);      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
   dnewm=matrix(1,nlstate,1,npar);      for (k=1; k<=cptcovprod;k++) /* Useless */
   doldm=matrix(1,nlstate,1,nlstate);        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
   hstepm=1*YEARM; /* Every year of age */      
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   agelim = AGESUP;      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     if (stepm >= YEARM) hstepm=1;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
     gradg=matrix(1,npar,1,nlstate);      
     gp=vector(1,nlstate);      savm=oldm;
     gm=vector(1,nlstate);      oldm=newm;
   
     for(theta=1; theta <=npar; theta++){      for(j=1; j<=nlstate; j++){
       for(i=1; i<=npar; i++){ /* Computes gradient */        max[j]=0.;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        min[j]=1.;
       }      }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(i=1;i<=nlstate;i++){
       for(i=1;i<=nlstate;i++)        sumnew=0;
         gp[i] = prlim[i][i];        for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
            for(j=1; j<=nlstate; j++){ 
       for(i=1; i<=npar; i++) /* Computes gradient */          prlim[i][j]= newm[i][j]/(1-sumnew);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          max[j]=FMAX(max[j],prlim[i][j]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          min[j]=FMIN(min[j],prlim[i][j]);
       for(i=1;i<=nlstate;i++)        }
         gm[i] = prlim[i][i];      }
   
       for(i=1;i<=nlstate;i++)      maxmax=0.;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      for(j=1; j<=nlstate; j++){
     } /* End theta */        meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
         maxmax=FMAX(maxmax,meandiff[j]);
     trgradg =matrix(1,nlstate,1,npar);        /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
       } /* j loop */
     for(j=1; j<=nlstate;j++)      *ncvyear= (int)age- (int)agefin;
       for(theta=1; theta <=npar; theta++)      /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
         trgradg[j][theta]=gradg[theta][j];      if(maxmax < ftolpl){
         /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
     for(i=1;i<=nlstate;i++)        free_vector(min,1,nlstate);
       varpl[i][(int)age] =0.;        free_vector(max,1,nlstate);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        free_vector(meandiff,1,nlstate);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        return prlim;
     for(i=1;i<=nlstate;i++)      }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    } /* age loop */
       /* After some age loop it doesn't converge */
     fprintf(ficresvpl,"%.0f ",age );    printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
     for(i=1; i<=nlstate;i++)  Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
     fprintf(ficresvpl,"\n");    free_vector(min,1,nlstate);
     free_vector(gp,1,nlstate);    free_vector(max,1,nlstate);
     free_vector(gm,1,nlstate);    free_vector(meandiff,1,nlstate);
     free_matrix(gradg,1,npar,1,nlstate);    
     free_matrix(trgradg,1,nlstate,1,npar);    return prlim; /* should not reach here */
   } /* End age */  }
   
   free_vector(xp,1,npar);  /*************** transition probabilities ***************/ 
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
 }    /* According to parameters values stored in x and the covariate's values stored in cov,
        computes the probability to be observed in state j being in state i by appying the
 /************ Variance of one-step probabilities  ******************/       model to the ncovmodel covariates (including constant and age).
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 {       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   int i, j=0,  i1, k1, l1, t, tj;       ncth covariate in the global vector x is given by the formula:
   int k2, l2, j1,  z1;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   int k=0,l, cptcode;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
   int first=1, first1;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   double **dnewm,**doldm;       Outputs ps[i][j] the probability to be observed in j being in j according to
   double *xp;       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   double *gp, *gm;    */
   double **gradg, **trgradg;    double s1, lnpijopii;
   double **mu;    /*double t34;*/
   double age,agelim, cov[NCOVMAX];    int i,j, nc, ii, jj;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  
   int theta;      for(i=1; i<= nlstate; i++){
   char fileresprob[FILENAMELENGTH];        for(j=1; j<i;j++){
   char fileresprobcov[FILENAMELENGTH];          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   char fileresprobcor[FILENAMELENGTH];            /*lnpijopii += param[i][j][nc]*cov[nc];*/
             lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   double ***varpij;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           }
   strcpy(fileresprob,"prob");          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   strcat(fileresprob,fileres);  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        }
     printf("Problem with resultfile: %s\n", fileresprob);        for(j=i+1; j<=nlstate+ndeath;j++){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   }            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   strcpy(fileresprobcov,"probcov");            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   strcat(fileresprobcov,fileres);  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          }
     printf("Problem with resultfile: %s\n", fileresprobcov);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);        }
   }      }
   strcpy(fileresprobcor,"probcor");      
   strcat(fileresprobcor,fileres);      for(i=1; i<= nlstate; i++){
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        s1=0;
     printf("Problem with resultfile: %s\n", fileresprobcor);        for(j=1; j<i; j++){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        }
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        for(j=i+1; j<=nlstate+ndeath; j++){
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        }
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
          ps[i][i]=1./(s1+1.);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        /* Computing other pijs */
   fprintf(ficresprob,"# Age");        for(j=1; j<i; j++)
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          ps[i][j]= exp(ps[i][j])*ps[i][i];
   fprintf(ficresprobcov,"# Age");        for(j=i+1; j<=nlstate+ndeath; j++)
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          ps[i][j]= exp(ps[i][j])*ps[i][i];
   fprintf(ficresprobcov,"# Age");        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       } /* end i */
       
   for(i=1; i<=nlstate;i++)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for(j=1; j<=(nlstate+ndeath);j++){        for(jj=1; jj<= nlstate+ndeath; jj++){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          ps[ii][jj]=0;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          ps[ii][ii]=1;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        }
     }        }
   fprintf(ficresprob,"\n");      
   fprintf(ficresprobcov,"\n");      
   fprintf(ficresprobcor,"\n");      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   xp=vector(1,npar);      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      /*   } */
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      /*   printf("\n "); */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      /* } */
   first=1;      /* printf("\n ");printf("%lf ",cov[2]);*/
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      /*
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);        goto end;*/
     exit(0);      return ps;
   }  }
   else{  
     fprintf(ficgp,"\n# Routine varprob");  /**************** Product of 2 matrices ******************/
   }  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
     printf("Problem with html file: %s\n", optionfilehtm);  {
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     exit(0);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   }    /* in, b, out are matrice of pointers which should have been initialized 
   else{       before: only the contents of out is modified. The function returns
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");       a pointer to pointers identical to out */
     fprintf(fichtm,"\n");    int i, j, k;
     for(i=nrl; i<= nrh; i++)
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");      for(k=ncolol; k<=ncoloh; k++){
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        out[i][k]=0.;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        for(j=ncl; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
   }      }
     return out;
    }
   cov[1]=1;  
   tj=cptcoveff;  
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}  /************* Higher Matrix Product ***************/
   j1=0;  
   for(t=1; t<=tj;t++){  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     for(i1=1; i1<=ncodemax[t];i1++){  {
       j1++;    /* Computes the transition matrix starting at age 'age' over 
             'nhstepm*hstepm*stepm' months (i.e. until
       if  (cptcovn>0) {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         fprintf(ficresprob, "\n#********** Variable ");       nhstepm*hstepm matrices. 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         fprintf(ficresprob, "**********\n#");       (typically every 2 years instead of every month which is too big 
         fprintf(ficresprobcov, "\n#********** Variable ");       for the memory).
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       Model is determined by parameters x and covariates have to be 
         fprintf(ficresprobcov, "**********\n#");       included manually here. 
          
         fprintf(ficgp, "\n#********** Variable ");       */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficgp, "**********\n#");    int i, j, d, h, k;
            double **out, cov[NCOVMAX+1];
            double **newm;
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    double agexact;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double agebegin, ageend;
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");  
            /* Hstepm could be zero and should return the unit matrix */
         fprintf(ficresprobcor, "\n#********** Variable ");        for (i=1;i<=nlstate+ndeath;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficgp, "**********\n#");            oldm[i][j]=(i==j ? 1.0 : 0.0);
       }        po[i][j][0]=(i==j ? 1.0 : 0.0);
            }
       for (age=bage; age<=fage; age ++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         cov[2]=age;    for(h=1; h <=nhstepm; h++){
         for (k=1; k<=cptcovn;k++) {      for(d=1; d <=hstepm; d++){
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        newm=savm;
         }        /* Covariates have to be included here again */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        cov[1]=1.;
         for (k=1; k<=cptcovprod;k++)        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        cov[2]=agexact;
                if(nagesqr==1)
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          cov[3]= agexact*agexact;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        for (k=1; k<=cptcovn;k++) 
         gp=vector(1,(nlstate)*(nlstate+ndeath));          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
         gm=vector(1,(nlstate)*(nlstate+ndeath));          /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
            for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
         for(theta=1; theta <=npar; theta++){          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for(i=1; i<=npar; i++)          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
                  for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
                    /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
           k=0;  
           for(i=1; i<= (nlstate); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
               k=k+1;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
               gp[k]=pmmij[i][j];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
             }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           }        savm=oldm;
                  oldm=newm;
           for(i=1; i<=npar; i++)      }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      for(i=1; i<=nlstate+ndeath; i++)
            for(j=1;j<=nlstate+ndeath;j++) {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          po[i][j][h]=newm[i][j];
           k=0;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
           for(i=1; i<=(nlstate); i++){        }
             for(j=1; j<=(nlstate+ndeath);j++){      /*printf("h=%d ",h);*/
               k=k+1;    } /* end h */
               gm[k]=pmmij[i][j];  /*     printf("\n H=%d \n",h); */
             }    return po;
           }  }
        
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)  #ifdef NLOPT
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
         }    double fret;
     double *xt;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    int j;
           for(theta=1; theta <=npar; theta++)    myfunc_data *d2 = (myfunc_data *) pd;
             trgradg[j][theta]=gradg[theta][j];  /* xt = (p1-1); */
            xt=vector(1,n); 
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);  
            fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
         pmij(pmmij,cov,ncovmodel,x,nlstate);    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
            printf("Function = %.12lf ",fret);
         k=0;    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
         for(i=1; i<=(nlstate); i++){    printf("\n");
           for(j=1; j<=(nlstate+ndeath);j++){   free_vector(xt,1,n);
             k=k+1;    return fret;
             mu[k][(int) age]=pmmij[i][j];  }
           }  #endif
         }  
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  /*************** log-likelihood *************/
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  double func( double *x)
             varpij[i][j][(int)age] = doldm[i][j];  {
     int i, ii, j, k, mi, d, kk;
         /*printf("\n%d ",(int)age);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    double **out;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    double sw; /* Sum of weights */
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    double lli; /* Individual log likelihood */
      }*/    int s1, s2;
     double bbh, survp;
         fprintf(ficresprob,"\n%d ",(int)age);    long ipmx;
         fprintf(ficresprobcov,"\n%d ",(int)age);    double agexact;
         fprintf(ficresprobcor,"\n%d ",(int)age);    /*extern weight */
     /* We are differentiating ll according to initial status */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    /*for(i=1;i<imx;i++) 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      printf(" %d\n",s[4][i]);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    */
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  
         }    ++countcallfunc;
         i=0;  
         for (k=1; k<=(nlstate);k++){    cov[1]=1.;
           for (l=1; l<=(nlstate+ndeath);l++){  
             i=i++;    for(k=1; k<=nlstate; k++) ll[k]=0.;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    if(mle==1){
             for (j=1; j<=i;j++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        /* Computes the values of the ncovmodel covariates of the model
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
             }           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
           }           to be observed in j being in i according to the model.
         }/* end of loop for state */         */
       } /* end of loop for age */        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
             cov[2+nagesqr+k]=covar[Tvar[k]][i];
       /* Confidence intervalle of pij  */        }
       /*        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
       fprintf(ficgp,"\nset noparametric;unset label");           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");           has been calculated etc */
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);            for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       */            }
           for(d=0; d<dh[mi][i]; d++){
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            newm=savm;
       first1=1;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for (k1=1; k1<=(nlstate);k1++){            cov[2]=agexact;
         for (l1=1; l1<=(nlstate+ndeath);l1++){            if(nagesqr==1)
           if(l1==k1) continue;              cov[3]= agexact*agexact;
           i=(k1-1)*(nlstate+ndeath)+l1;            for (kk=1; kk<=cptcovage;kk++) {
           for (k2=1; k2<=(nlstate);k2++){              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
             for (l2=1; l2<=(nlstate+ndeath);l2++){            }
               if(l2==k2) continue;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               j=(k2-1)*(nlstate+ndeath)+l2;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if(j<=i) continue;            savm=oldm;
               for (age=bage; age<=fage; age ++){            oldm=newm;
                 if ((int)age %5==0){          } /* end mult */
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          /* But now since version 0.9 we anticipate for bias at large stepm.
                   mu1=mu[i][(int) age]/stepm*YEARM ;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
                   mu2=mu[j][(int) age]/stepm*YEARM;           * (in months) between two waves is not a multiple of stepm, we rounded to 
                   /* Computing eigen value of matrix of covariance */           * the nearest (and in case of equal distance, to the lowest) interval but now
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));           * we keep into memory the bias bh[mi][i] and also the previous matrix product
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                   if(first1==1){           * probability in order to take into account the bias as a fraction of the way
                     first1=0;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);           * -stepm/2 to stepm/2 .
                   }           * For stepm=1 the results are the same as for previous versions of Imach.
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);           * For stepm > 1 the results are less biased than in previous versions. 
                   /* Eigen vectors */           */
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          s1=s[mw[mi][i]][i];
                   v21=sqrt(1.-v11*v11);          s2=s[mw[mi+1][i]][i];
                   v12=-v21;          bbh=(double)bh[mi][i]/(double)stepm; 
                   v22=v11;          /* bias bh is positive if real duration
                   /*printf(fignu*/           * is higher than the multiple of stepm and negative otherwise.
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */           */
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
                   if(first==1){          if( s2 > nlstate){ 
                     first=0;            /* i.e. if s2 is a death state and if the date of death is known 
                     fprintf(ficgp,"\nset parametric;set nolabel");               then the contribution to the likelihood is the probability to 
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);               die between last step unit time and current  step unit time, 
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");               which is also equal to probability to die before dh 
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);               minus probability to die before dh-stepm . 
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);               In version up to 0.92 likelihood was computed
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);          as if date of death was unknown. Death was treated as any other
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          health state: the date of the interview describes the actual state
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          and not the date of a change in health state. The former idea was
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          to consider that at each interview the state was recorded
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          (healthy, disable or death) and IMaCh was corrected; but when we
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          introduced the exact date of death then we should have modified
                     */          the contribution of an exact death to the likelihood. This new
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          contribution is smaller and very dependent of the step unit
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          stepm. It is no more the probability to die between last interview
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));          and month of death but the probability to survive from last
                   }else{          interview up to one month before death multiplied by the
                     first=0;          probability to die within a month. Thanks to Chris
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          Jackson for correcting this bug.  Former versions increased
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          mortality artificially. The bad side is that we add another loop
                     /*          which slows down the processing. The difference can be up to 10%
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          lower mortality.
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          /* If, at the beginning of the maximization mostly, the
                     */             cumulative probability or probability to be dead is
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\             constant (ie = 1) over time d, the difference is equal to
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \             0.  out[s1][3] = savm[s1][3]: probability, being at state
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));             s1 at precedent wave, to be dead a month before current
                   }/* if first */             wave is equal to probability, being at state s1 at
                 } /* age mod 5 */             precedent wave, to be dead at mont of the current
               } /* end loop age */             wave. Then the observed probability (that this person died)
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);             is null according to current estimated parameter. In fact,
               first=1;             it should be very low but not zero otherwise the log go to
             } /*l12 */             infinity.
           } /* k12 */          */
         } /*l1 */  /* #ifdef INFINITYORIGINAL */
       }/* k1 */  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
     } /* loop covariates */  /* #else */
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  /*          lli=log(mytinydouble); */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  /*        else */
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  /* #endif */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            lli=log(out[s1][s2] - savm[s1][s2]);
   }            
   free_vector(xp,1,npar);          } else if  ( s2==-1 ) { /* alive */
   fclose(ficresprob);            for (j=1,survp=0. ; j<=nlstate; j++) 
   fclose(ficresprobcov);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   fclose(ficresprobcor);            /*survp += out[s1][j]; */
   fclose(ficgp);            lli= log(survp);
   fclose(fichtm);          }
 }          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 /******************* Printing html file ***********/            lli= log(survp); 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          } 
                   int lastpass, int stepm, int weightopt, char model[],\          else if  (s2==-5) { 
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\            for (j=1,survp=0. ; j<=2; j++)  
                   int popforecast, int estepm ,\              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   double jprev1, double mprev1,double anprev1, \            lli= log(survp); 
                   double jprev2, double mprev2,double anprev2){          } 
   int jj1, k1, i1, cpt;          else{
   /*char optionfilehtm[FILENAMELENGTH];*/            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     printf("Problem with %s \n",optionfilehtm), exit(0);          } 
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   }          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n          ipmx +=1;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          sw += weight[i];
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          /* if (lli < log(mytinydouble)){ */
  - Life expectancies by age and initial health status (estepm=%2d months):          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          /* } */
         } /* end of wave */
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");      } /* end of individual */
     }  else if(mle==2){
  m=cptcoveff;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
  jj1=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
  for(k1=1; k1<=m;k1++){            for (j=1;j<=nlstate+ndeath;j++){
    for(i1=1; i1<=ncodemax[k1];i1++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      jj1++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      if (cptcovn > 0) {            }
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          for(d=0; d<=dh[mi][i]; d++){
        for (cpt=1; cpt<=cptcoveff;cpt++)            newm=savm;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            cov[2]=agexact;
      }            if(nagesqr==1)
      /* Pij */              cov[3]= agexact*agexact;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>            for (kk=1; kk<=cptcovage;kk++) {
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                  cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
      /* Quasi-incidences */            }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
        /* Stable prevalence in each health state */            savm=oldm;
        for(cpt=1; cpt<nlstate;cpt++){            oldm=newm;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          } /* end mult */
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        
        }          s1=s[mw[mi][i]][i];
      for(cpt=1; cpt<=nlstate;cpt++) {          s2=s[mw[mi+1][i]][i];
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          bbh=(double)bh[mi][i]/(double)stepm; 
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      }          ipmx +=1;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          sw += weight[i];
 health expectancies in states (1) and (2): e%s%d.png<br>          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        } /* end of wave */
    } /* end i1 */      } /* end of individual */
  }/* End k1 */    }  else if(mle==3){  /* exponential inter-extrapolation */
  fprintf(fichtm,"</ul>");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n          for (ii=1;ii<=nlstate+ndeath;ii++)
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n            for (j=1;j<=nlstate+ndeath;j++){
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n              savm[ii][j]=(ii==j ? 1.0 : 0.0);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n            }
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          for(d=0; d<dh[mi][i]; d++){
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n            newm=savm;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
             cov[2]=agexact;
  if(popforecast==1) fprintf(fichtm,"\n            if(nagesqr==1)
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n              cov[3]= agexact*agexact;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n            for (kk=1; kk<=cptcovage;kk++) {
         <br>",fileres,fileres,fileres,fileres);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
  else            }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
  m=cptcoveff;            oldm=newm;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          } /* end mult */
         
  jj1=0;          s1=s[mw[mi][i]][i];
  for(k1=1; k1<=m;k1++){          s2=s[mw[mi+1][i]][i];
    for(i1=1; i1<=ncodemax[k1];i1++){          bbh=(double)bh[mi][i]/(double)stepm; 
      jj1++;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      if (cptcovn > 0) {          ipmx +=1;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          sw += weight[i];
        for (cpt=1; cpt<=cptcoveff;cpt++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        } /* end of wave */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      } /* end of individual */
      }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
      for(cpt=1; cpt<=nlstate;cpt++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
 interval) in state (%d): v%s%d%d.png <br>        for(mi=1; mi<= wav[i]-1; mi++){
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            for (ii=1;ii<=nlstate+ndeath;ii++)
      }            for (j=1;j<=nlstate+ndeath;j++){
    } /* end i1 */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  }/* End k1 */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
  fprintf(fichtm,"</ul>");            }
 fclose(fichtm);          for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
             agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /******************* Gnuplot file **************/            cov[2]=agexact;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            if(nagesqr==1)
               cov[3]= agexact*agexact;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            for (kk=1; kk<=cptcovage;kk++) {
   int ng;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            }
     printf("Problem with file %s",optionfilegnuplot);          
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 #ifdef windows            oldm=newm;
     fprintf(ficgp,"cd \"%s\" \n",pathc);          } /* end mult */
 #endif        
 m=pow(2,cptcoveff);          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
  /* 1eme*/          if( s2 > nlstate){ 
   for (cpt=1; cpt<= nlstate ; cpt ++) {            lli=log(out[s1][s2] - savm[s1][s2]);
    for (k1=1; k1<= m ; k1 ++) {          } else if  ( s2==-1 ) { /* alive */
             for (j=1,survp=0. ; j<=nlstate; j++) 
 #ifdef windows              survp += out[s1][j];
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            lli= log(survp);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          }else{
 #endif            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 #ifdef unix          }
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          ipmx +=1;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);          sw += weight[i];
 #endif          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 for (i=1; i<= nlstate ; i ++) {        } /* end of wave */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      } /* end of individual */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
     for (i=1; i<= nlstate ; i ++) {        for(mi=1; mi<= wav[i]-1; mi++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for (ii=1;ii<=nlstate+ndeath;ii++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for (j=1;j<=nlstate+ndeath;j++){
 }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for(d=0; d<dh[mi][i]; d++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");            newm=savm;
 }              agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            cov[2]=agexact;
 #ifdef unix            if(nagesqr==1)
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");              cov[3]= agexact*agexact;
 #endif            for (kk=1; kk<=cptcovage;kk++) {
    }              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   }            }
   /*2 eme*/          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (k1=1; k1<= m ; k1 ++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);            savm=oldm;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);            oldm=newm;
              } /* end mult */
     for (i=1; i<= nlstate+1 ; i ++) {        
       k=2*i;          s1=s[mw[mi][i]][i];
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          s2=s[mw[mi+1][i]][i];
       for (j=1; j<= nlstate+1 ; j ++) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          ipmx +=1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          sw += weight[i];
 }            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        } /* end of wave */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      } /* end of individual */
       for (j=1; j<= nlstate+1 ; j ++) {    } /* End of if */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         else fprintf(ficgp," \%%*lf (\%%*lf)");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 }      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       fprintf(ficgp,"\" t\"\" w l 0,");    return -l;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  /*************** log-likelihood *************/
   else fprintf(ficgp," \%%*lf (\%%*lf)");  double funcone( double *x)
 }    {
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    /* Same as likeli but slower because of a lot of printf and if */
       else fprintf(ficgp,"\" t\"\" w l 0,");    int i, ii, j, k, mi, d, kk;
     }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   }    double **out;
      double lli; /* Individual log likelihood */
   /*3eme*/    double llt;
     int s1, s2;
   for (k1=1; k1<= m ; k1 ++) {    double bbh, survp;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    double agexact;
       k=2+nlstate*(2*cpt-2);    double agebegin, ageend;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    /*extern weight */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    /* We are differentiating ll according to initial status */
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    /*for(i=1;i<imx;i++) 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      printf(" %d\n",s[4][i]);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    cov[1]=1.;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
 */  
       for (i=1; i< nlstate ; i ++) {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
       }        for (ii=1;ii<=nlstate+ndeath;ii++)
     }          for (j=1;j<=nlstate+ndeath;j++){
   }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* CV preval stat */          }
     for (k1=1; k1<= m ; k1 ++) {        
     for (cpt=1; cpt<nlstate ; cpt ++) {        agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
       k=3;        ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        for(d=0; d<dh[mi][i]; d++){  /* Delay between two effective waves */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             and mw[mi+1][i]. dh depends on stepm.*/
       for (i=1; i< nlstate ; i ++)          newm=savm;
         fprintf(ficgp,"+$%d",k+i+1);          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          cov[2]=agexact;
                if(nagesqr==1)
       l=3+(nlstate+ndeath)*cpt;            cov[3]= agexact*agexact;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          for (kk=1; kk<=cptcovage;kk++) {
       for (i=1; i< nlstate ; i ++) {            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
         l=3+(nlstate+ndeath)*cpt;          }
         fprintf(ficgp,"+$%d",l+i+1);  
       }          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
            /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   /* proba elementaires */          savm=oldm;
    for(i=1,jk=1; i <=nlstate; i++){          oldm=newm;
     for(k=1; k <=(nlstate+ndeath); k++){        } /* end mult */
       if (k != i) {        
         for(j=1; j <=ncovmodel; j++){        s1=s[mw[mi][i]][i];
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        s2=s[mw[mi+1][i]][i];
           jk++;        if(s2==-1){
           fprintf(ficgp,"\n");          printf(" s1=%d, s2=%d i=%d \n", s1, s2, i);
         }          /* exit(1); */
       }        }
     }        bbh=(double)bh[mi][i]/(double)stepm; 
    }        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/         */
      for(jk=1; jk <=m; jk++) {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          lli=log(out[s1][s2] - savm[s1][s2]);
        if (ng==2)        } else if  ( s2==-1 ) { /* alive */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          for (j=1,survp=0. ; j<=nlstate; j++) 
        else            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
          fprintf(ficgp,"\nset title \"Probability\"\n");          lli= log(survp);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        }else if (mle==1){
        i=1;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
        for(k2=1; k2<=nlstate; k2++) {        } else if(mle==2){
          k3=i;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
          for(k=1; k<=(nlstate+ndeath); k++) {        } else if(mle==3){  /* exponential inter-extrapolation */
            if (k != k2){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
              if(ng==2)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          lli=log(out[s1][s2]); /* Original formula */
              else        } else{  /* mle=0 back to 1 */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              ij=1;          /*lli=log(out[s1][s2]); */ /* Original formula */
              for(j=3; j <=ncovmodel; j++) {        } /* End of if */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        ipmx +=1;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        sw += weight[i];
                  ij++;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                }        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                else        if(globpr){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          fprintf(ficresilk,"%9ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %11.6f %8.4f %8.3f\
              }   %11.6f %11.6f %11.6f ", \
              fprintf(ficgp,")/(1");                  num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
                                2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
              for(k1=1; k1 <=nlstate; k1++){            for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            llt +=ll[k]*gipmx/gsw;
                ij=1;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
                for(j=3; j <=ncovmodel; j++){          }
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          fprintf(ficresilk," %10.6f\n", -llt);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
                    ij++;      } /* end of wave */
                  }    } /* end of individual */
                  else    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                fprintf(ficgp,")");    if(globpr==0){ /* First time we count the contributions and weights */
              }      gipmx=ipmx;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);      gsw=sw;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    }
              i=i+ncovmodel;    return -l;
            }  }
          } /* end k */  
        } /* end k2 */  
      } /* end jk */  /*************** function likelione ***********/
    } /* end ng */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
    fclose(ficgp);  {
 }  /* end gnuplot */    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
        to check the exact contribution to the likelihood.
 /*************** Moving average **************/       Plotting could be done.
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){     */
     int k;
   int i, cpt, cptcod;  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    if(*globpri !=0){ /* Just counts and sums, no printings */
       for (i=1; i<=nlstate;i++)      strcpy(fileresilk,"ILK_"); 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      strcat(fileresilk,fileresu);
           mobaverage[(int)agedeb][i][cptcod]=0.;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
            printf("Problem with resultfile: %s\n", fileresilk);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       for (i=1; i<=nlstate;i++){      }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
           for (cpt=0;cpt<=4;cpt++){      fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
           }      for(k=1; k<=nlstate; k++) 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       }    }
     }  
        *fretone=(*funcone)(p);
 }    if(*globpri !=0){
       fclose(ficresilk);
       if (mle ==0)
 /************** Forecasting ******************/        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      else if(mle >=1)
          fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   int *popage;      
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        
   double *popeffectif,*popcount;      for (k=1; k<= nlstate ; k++) {
   double ***p3mat;        fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
   char fileresf[FILENAMELENGTH];  <img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
       }
  agelim=AGESUP;      fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  <img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
       fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  <img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
        fflush(fichtm);
      }
   strcpy(fileresf,"f");    return;
   strcat(fileresf,fileres);  }
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);  /*********** Maximum Likelihood Estimation ***************/
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);  {
     int i,j, iter=0;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double **xi;
     double fret;
   if (mobilav==1) {    double fretone; /* Only one call to likelihood */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*  char filerespow[FILENAMELENGTH];*/
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }  #ifdef NLOPT
     int creturn;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    nlopt_opt opt;
   if (stepm<=12) stepsize=1;    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
      double *lb;
   agelim=AGESUP;    double minf; /* the minimum objective value, upon return */
      double * p1; /* Shifted parameters from 0 instead of 1 */
   hstepm=1;    myfunc_data dinst, *d = &dinst;
   hstepm=hstepm/stepm;  #endif
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);    xi=matrix(1,npar,1,npar);
   mprojmean=yp;    for (i=1;i<=npar;i++)
   yp1=modf((yp2*30.5),&yp);      for (j=1;j<=npar;j++)
   jprojmean=yp;        xi[i][j]=(i==j ? 1.0 : 0.0);
   if(jprojmean==0) jprojmean=1;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   if(mprojmean==0) jprojmean=1;    strcpy(filerespow,"POW_"); 
      strcat(filerespow,fileres);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", filerespow);
   for(cptcov=1;cptcov<=i2;cptcov++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    }
       k=k+1;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       fprintf(ficresf,"\n#******");    for (i=1;i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++) {      for(j=1;j<=nlstate+ndeath;j++)
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       }    fprintf(ficrespow,"\n");
       fprintf(ficresf,"******\n");  #ifdef POWELL
       fprintf(ficresf,"# StartingAge FinalAge");    powell(p,xi,npar,ftol,&iter,&fret,func);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  #endif
        
        #ifdef NLOPT
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  #ifdef NEWUOA
         fprintf(ficresf,"\n");    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    #else
     opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  #endif
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    lb=vector(0,npar-1);
           nhstepm = nhstepm/hstepm;    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
              nlopt_set_lower_bounds(opt, lb);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    nlopt_set_initial_step1(opt, 0.1);
           oldm=oldms;savm=savms;    
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
            d->function = func;
           for (h=0; h<=nhstepm; h++){    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
             if (h==(int) (calagedate+YEARM*cpt)) {    nlopt_set_min_objective(opt, myfunc, d);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    nlopt_set_xtol_rel(opt, ftol);
             }    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
             for(j=1; j<=nlstate+ndeath;j++) {      printf("nlopt failed! %d\n",creturn); 
               kk1=0.;kk2=0;    }
               for(i=1; i<=nlstate;i++) {                  else {
                 if (mobilav==1)      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
                 else {      iter=1; /* not equal */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    }
                 }    nlopt_destroy(opt);
                  #endif
               }    free_matrix(xi,1,npar,1,npar);
               if (h==(int)(calagedate+12*cpt)){    fclose(ficrespow);
                 fprintf(ficresf," %.3f", kk1);    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                            fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
               }    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
             }  
           }  }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }  /**** Computes Hessian and covariance matrix ***/
       }  void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     }  {
   }    double  **a,**y,*x,pd;
            /* double **hess; */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int i, j;
     int *indx;
   fclose(ficresf);  
 }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 /************** Forecasting ******************/    double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    void lubksb(double **a, int npar, int *indx, double b[]) ;
      void ludcmp(double **a, int npar, int *indx, double *d) ;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double gompertz(double p[]);
   int *popage;    /* hess=matrix(1,npar,1,npar); */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;    printf("\nCalculation of the hessian matrix. Wait...\n");
   double ***p3mat,***tabpop,***tabpopprev;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   char filerespop[FILENAMELENGTH];    for (i=1;i<=npar;i++){
       printf("%d-",i);fflush(stdout);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficlog,"%d-",i);fflush(ficlog);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     
   agelim=AGESUP;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      
        /*  printf(" %f ",p[i]);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
      }
      
   strcpy(filerespop,"pop");    for (i=1;i<=npar;i++) {
   strcat(filerespop,fileres);      for (j=1;j<=npar;j++)  {
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        if (j>i) { 
     printf("Problem with forecast resultfile: %s\n", filerespop);          printf(".%d-%d",i,j);fflush(stdout);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);          fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
   }          hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
   printf("Computing forecasting: result on file '%s' \n", filerespop);          
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        }
       }
   if (mobilav==1) {    }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    printf("\n");
     movingaverage(agedeb, fage, ageminpar, mobaverage);    fprintf(ficlog,"\n");
   }  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   if (stepm<=12) stepsize=1;    
      a=matrix(1,npar,1,npar);
   agelim=AGESUP;    y=matrix(1,npar,1,npar);
      x=vector(1,npar);
   hstepm=1;    indx=ivector(1,npar);
   hstepm=hstepm/stepm;    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   if (popforecast==1) {    ludcmp(a,npar,indx,&pd);
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);    for (j=1;j<=npar;j++) {
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);      for (i=1;i<=npar;i++) x[i]=0;
     }      x[j]=1;
     popage=ivector(0,AGESUP);      lubksb(a,npar,indx,x);
     popeffectif=vector(0,AGESUP);      for (i=1;i<=npar;i++){ 
     popcount=vector(0,AGESUP);        matcov[i][j]=x[i];
          }
     i=1;      }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  
        printf("\n#Hessian matrix#\n");
     imx=i;    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    for (i=1;i<=npar;i++) { 
   }      for (j=1;j<=npar;j++) { 
         printf("%.6e ",hess[i][j]);
   for(cptcov=1;cptcov<=i2;cptcov++){        fprintf(ficlog,"%.6e ",hess[i][j]);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      }
       k=k+1;      printf("\n");
       fprintf(ficrespop,"\n#******");      fprintf(ficlog,"\n");
       for(j=1;j<=cptcoveff;j++) {    }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    /* printf("\n#Covariance matrix#\n"); */
       fprintf(ficrespop,"******\n");    /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
       fprintf(ficrespop,"# Age");    /* for (i=1;i<=npar;i++) {  */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    /*   for (j=1;j<=npar;j++) {  */
       if (popforecast==1)  fprintf(ficrespop," [Population]");    /*     printf("%.6e ",matcov[i][j]); */
          /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
       for (cpt=0; cpt<=0;cpt++) {    /*   } */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /*   printf("\n"); */
            /*   fprintf(ficlog,"\n"); */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* } */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    /* Recompute Inverse */
              /* for (i=1;i<=npar;i++) */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
           oldm=oldms;savm=savms;    /* ludcmp(a,npar,indx,&pd); */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
            /*  printf("\n#Hessian matrix recomputed#\n"); */
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {    /* for (j=1;j<=npar;j++) { */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    /*   for (i=1;i<=npar;i++) x[i]=0; */
             }    /*   x[j]=1; */
             for(j=1; j<=nlstate+ndeath;j++) {    /*   lubksb(a,npar,indx,x); */
               kk1=0.;kk2=0;    /*   for (i=1;i<=npar;i++){  */
               for(i=1; i<=nlstate;i++) {                  /*     y[i][j]=x[i]; */
                 if (mobilav==1)    /*     printf("%.3e ",y[i][j]); */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    /*     fprintf(ficlog,"%.3e ",y[i][j]); */
                 else {    /*   } */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /*   printf("\n"); */
                 }    /*   fprintf(ficlog,"\n"); */
               }    /* } */
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    /* Verifying the inverse matrix */
                   /*fprintf(ficrespop," %.3f", kk1);  #ifdef DEBUGHESS
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
               }  
             }     printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
             for(i=1; i<=nlstate;i++){     fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){    for (j=1;j<=npar;j++) {
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      for (i=1;i<=npar;i++){ 
                 }        printf("%.2f ",y[i][j]);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        fprintf(ficlog,"%.2f ",y[i][j]);
             }      }
       printf("\n");
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      fprintf(ficlog,"\n");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    }
           }  #endif
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    free_matrix(a,1,npar,1,npar);
       }    free_matrix(y,1,npar,1,npar);
      free_vector(x,1,npar);
   /******/    free_ivector(indx,1,npar);
     /* free_matrix(hess,1,npar,1,npar); */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  /*************** hessian matrix ****************/
            double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  { /* Around values of x, computes the function func and returns the scales delti and hessian */
           oldm=oldms;savm=savms;    int i;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int l=1, lmax=20;
           for (h=0; h<=nhstepm; h++){    double k1,k2, res, fx;
             if (h==(int) (calagedate+YEARM*cpt)) {    double p2[MAXPARM+1]; /* identical to x */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
             }    int k=0,kmax=10;
             for(j=1; j<=nlstate+ndeath;j++) {    double l1;
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  fx=func(x);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        for (i=1;i<=npar;i++) p2[i]=x[i];
               }    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      l1=pow(10,l);
             }      delts=delt;
           }      for(k=1 ; k <kmax; k=k+1){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        delt = delta*(l1*k);
         }        p2[theta]=x[theta] +delt;
       }        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
    }        p2[theta]=x[theta]-delt;
   }        k2=func(p2)-fx;
          /*res= (k1-2.0*fx+k2)/delt/delt; */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
         
   if (popforecast==1) {  #ifdef DEBUGHESSII
     free_ivector(popage,0,AGESUP);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_vector(popeffectif,0,AGESUP);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_vector(popcount,0,AGESUP);  #endif
   }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          k=kmax;
   fclose(ficrespop);        }
 }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10;
 /***********************************************/        }
 /**************** Main Program *****************/        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 /***********************************************/          delts=delt;
         }
 int main(int argc, char *argv[])      } /* End loop k */
 {    }
     delti[theta]=delts;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    return res; 
   double agedeb, agefin,hf;    
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  }
   
   double fret;  double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   double **xi,tmp,delta;  {
     int i;
   double dum; /* Dummy variable */    int l=1, lmax=20;
   double ***p3mat;    double k1,k2,k3,k4,res,fx;
   int *indx;    double p2[MAXPARM+1];
   char line[MAXLINE], linepar[MAXLINE];    int k, kmax=1;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];    double v1, v2, cv12, lc1, lc2;
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */    int firstime=0;
   int c,  h , cpt,l;    
   int ju,jl, mi;    fx=func(x);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    for (k=1; k<=kmax; k=k+10) {
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      for (i=1;i<=npar;i++) p2[i]=x[i];
   int mobilav=0,popforecast=0;      p2[thetai]=x[thetai]+delti[thetai]*k;
   int hstepm, nhstepm;      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      k1=func(p2)-fx;
     
   double bage, fage, age, agelim, agebase;      p2[thetai]=x[thetai]+delti[thetai]*k;
   double ftolpl=FTOL;      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
   double **prlim;      k2=func(p2)-fx;
   double *severity;    
   double ***param; /* Matrix of parameters */      p2[thetai]=x[thetai]-delti[thetai]*k;
   double  *p;      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
   double **matcov; /* Matrix of covariance */      k3=func(p2)-fx;
   double ***delti3; /* Scale */    
   double *delti; /* Scale */      p2[thetai]=x[thetai]-delti[thetai]*k;
   double ***eij, ***vareij;      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
   double **varpl; /* Variances of prevalence limits by age */      k4=func(p2)-fx;
   double *epj, vepp;      res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
   double kk1, kk2;      if(k1*k2*k3*k4 <0.){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        firstime=1;
          kmax=kmax+10;
       }
   char *alph[]={"a","a","b","c","d","e"}, str[4];      if(kmax >=10 || firstime ==1){
         printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
         fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
   char z[1]="c", occ;        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 #include <sys/time.h>        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 #include <time.h>      }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  #ifdef DEBUGHESSIJ
        v1=hess[thetai][thetai];
   /* long total_usecs;      v2=hess[thetaj][thetaj];
   struct timeval start_time, end_time;      cv12=res;
        /* Computing eigen value of Hessian matrix */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   getcwd(pathcd, size);      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       if ((lc2 <0) || (lc1 <0) ){
   printf("\n%s",version);        printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
   if(argc <=1){        fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
     printf("\nEnter the parameter file name: ");        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     scanf("%s",pathtot);        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }      }
   else{  #endif
     strcpy(pathtot,argv[1]);    }
   }    return res;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  }
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      /* Not done yet: Was supposed to fix if not exactly at the maximum */
   /* cutv(path,optionfile,pathtot,'\\');*/  /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
   /* { */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  /*   int i; */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  /*   int l=1, lmax=20; */
   chdir(path);  /*   double k1,k2,k3,k4,res,fx; */
   replace(pathc,path);  /*   double p2[MAXPARM+1]; */
   /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
 /*-------- arguments in the command line --------*/  /*   int k=0,kmax=10; */
   /*   double l1; */
   /* Log file */    
   strcat(filelog, optionfilefiname);  /*   fx=func(x); */
   strcat(filelog,".log");    /* */  /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
   if((ficlog=fopen(filelog,"w"))==NULL)    {  /*     l1=pow(10,l); */
     printf("Problem with logfile %s\n",filelog);  /*     delts=delt; */
     goto end;  /*     for(k=1 ; k <kmax; k=k+1){ */
   }  /*       delt = delti*(l1*k); */
   fprintf(ficlog,"Log filename:%s\n",filelog);  /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
   fprintf(ficlog,"\n%s",version);  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
   fprintf(ficlog,"\nEnter the parameter file name: ");  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  /*       k1=func(p2)-fx; */
   fflush(ficlog);        
   /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
   /* */  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
   strcpy(fileres,"r");  /*       k2=func(p2)-fx; */
   strcat(fileres, optionfilefiname);        
   strcat(fileres,".txt");    /* Other files have txt extension */  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
   /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
   /*---------arguments file --------*/  /*       k3=func(p2)-fx; */
         
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
     printf("Problem with optionfile %s\n",optionfile);  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);  /*       k4=func(p2)-fx; */
     goto end;  /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
   }  /* #ifdef DEBUGHESSIJ */
   /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
   strcpy(filereso,"o");  /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
   strcat(filereso,fileres);  /* #endif */
   if((ficparo=fopen(filereso,"w"))==NULL) {  /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
     printf("Problem with Output resultfile: %s\n", filereso);  /*      k=kmax; */
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);  /*       } */
     goto end;  /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
   }  /*      k=kmax; l=lmax*10; */
   /*       } */
   /* Reads comments: lines beginning with '#' */  /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
   while((c=getc(ficpar))=='#' && c!= EOF){  /*      delts=delt; */
     ungetc(c,ficpar);  /*       } */
     fgets(line, MAXLINE, ficpar);  /*     } /\* End loop k *\/ */
     puts(line);  /*   } */
     fputs(line,ficparo);  /*   delti[theta]=delts; */
   }  /*   return res;  */
   ungetc(c,ficpar);  /* } */
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  /************** Inverse of matrix **************/
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  void ludcmp(double **a, int n, int *indx, double *d) 
 while((c=getc(ficpar))=='#' && c!= EOF){  { 
     ungetc(c,ficpar);    int i,imax,j,k; 
     fgets(line, MAXLINE, ficpar);    double big,dum,sum,temp; 
     puts(line);    double *vv; 
     fputs(line,ficparo);   
   }    vv=vector(1,n); 
   ungetc(c,ficpar);    *d=1.0; 
      for (i=1;i<=n;i++) { 
          big=0.0; 
   covar=matrix(0,NCOVMAX,1,n);      for (j=1;j<=n;j++) 
   cptcovn=0;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
   ncovmodel=2+cptcovn;    } 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    for (j=1;j<=n;j++) { 
        for (i=1;i<j;i++) { 
   /* Read guess parameters */        sum=a[i][j]; 
   /* Reads comments: lines beginning with '#' */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   while((c=getc(ficpar))=='#' && c!= EOF){        a[i][j]=sum; 
     ungetc(c,ficpar);      } 
     fgets(line, MAXLINE, ficpar);      big=0.0; 
     puts(line);      for (i=j;i<=n;i++) { 
     fputs(line,ficparo);        sum=a[i][j]; 
   }        for (k=1;k<j;k++) 
   ungetc(c,ficpar);          sum -= a[i][k]*a[k][j]; 
          a[i][j]=sum; 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     for(i=1; i <=nlstate; i++)          big=dum; 
     for(j=1; j <=nlstate+ndeath-1; j++){          imax=i; 
       fscanf(ficpar,"%1d%1d",&i1,&j1);        } 
       fprintf(ficparo,"%1d%1d",i1,j1);      } 
       if(mle==1)      if (j != imax) { 
         printf("%1d%1d",i,j);        for (k=1;k<=n;k++) { 
       fprintf(ficlog,"%1d%1d",i,j);          dum=a[imax][k]; 
       for(k=1; k<=ncovmodel;k++){          a[imax][k]=a[j][k]; 
         fscanf(ficpar," %lf",&param[i][j][k]);          a[j][k]=dum; 
         if(mle==1){        } 
           printf(" %lf",param[i][j][k]);        *d = -(*d); 
           fprintf(ficlog," %lf",param[i][j][k]);        vv[imax]=vv[j]; 
         }      } 
         else      indx[j]=imax; 
           fprintf(ficlog," %lf",param[i][j][k]);      if (a[j][j] == 0.0) a[j][j]=TINY; 
         fprintf(ficparo," %lf",param[i][j][k]);      if (j != n) { 
       }        dum=1.0/(a[j][j]); 
       fscanf(ficpar,"\n");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       if(mle==1)      } 
         printf("\n");    } 
       fprintf(ficlog,"\n");    free_vector(vv,1,n);  /* Doesn't work */
       fprintf(ficparo,"\n");  ;
     }  } 
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
   p=param[1][1];    int i,ii=0,ip,j; 
      double sum; 
   /* Reads comments: lines beginning with '#' */   
   while((c=getc(ficpar))=='#' && c!= EOF){    for (i=1;i<=n;i++) { 
     ungetc(c,ficpar);      ip=indx[i]; 
     fgets(line, MAXLINE, ficpar);      sum=b[ip]; 
     puts(line);      b[ip]=b[i]; 
     fputs(line,ficparo);      if (ii) 
   }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   ungetc(c,ficpar);      else if (sum) ii=i; 
       b[i]=sum; 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    } 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    for (i=n;i>=1;i--) { 
   for(i=1; i <=nlstate; i++){      sum=b[i]; 
     for(j=1; j <=nlstate+ndeath-1; j++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       fscanf(ficpar,"%1d%1d",&i1,&j1);      b[i]=sum/a[i][i]; 
       printf("%1d%1d",i,j);    } 
       fprintf(ficparo,"%1d%1d",i1,j1);  } 
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);  void pstamp(FILE *fichier)
         printf(" %le",delti3[i][j][k]);  {
         fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
       }  }
       fscanf(ficpar,"\n");  
       printf("\n");  /************ Frequencies ********************/
       fprintf(ficparo,"\n");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \
     }                    int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[],\
   }                    int firstpass,  int lastpass, int stepm, int weightopt, char model[])
   delti=delti3[1][1];  {  /* Some frequencies */
      
   /* Reads comments: lines beginning with '#' */    int i, m, jk, j1, bool, z1,j;
   while((c=getc(ficpar))=='#' && c!= EOF){    int mi; /* Effective wave */
     ungetc(c,ficpar);    int first;
     fgets(line, MAXLINE, ficpar);    double ***freq; /* Frequencies */
     puts(line);    double *pp, **prop;
     fputs(line,ficparo);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   }    char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH];
   ungetc(c,ficpar);    double agebegin, ageend;
        
   matcov=matrix(1,npar,1,npar);    pp=vector(1,nlstate);
   for(i=1; i <=npar; i++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
     fscanf(ficpar,"%s",&str);    strcpy(fileresp,"P_");
     if(mle==1)    strcat(fileresp,fileresu);
       printf("%s",str);    /*strcat(fileresphtm,fileresu);*/
     fprintf(ficlog,"%s",str);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     fprintf(ficparo,"%s",str);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     for(j=1; j <=i; j++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       fscanf(ficpar," %le",&matcov[i][j]);      exit(0);
       if(mle==1){    }
         printf(" %.5le",matcov[i][j]);  
         fprintf(ficlog," %.5le",matcov[i][j]);    strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));
       }    if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {
       else      printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
         fprintf(ficlog," %.5le",matcov[i][j]);      fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
       fprintf(ficparo," %.5le",matcov[i][j]);      fflush(ficlog);
     }      exit(70); 
     fscanf(ficpar,"\n");    }
     if(mle==1)    else{
       printf("\n");      fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
     fprintf(ficlog,"\n");  <hr size=\"2\" color=\"#EC5E5E\"> \n\
     fprintf(ficparo,"\n");  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
   }            fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
   for(i=1; i <=npar; i++)    }
     for(j=i+1;j<=npar;j++)      fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition</h4>\n",fileresphtm, fileresphtm);
       matcov[i][j]=matcov[j][i];      
        strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
   if(mle==1)    if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
     printf("\n");      printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
   fprintf(ficlog,"\n");      fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
       fflush(ficlog);
       exit(70); 
     /*-------- Rewriting paramater file ----------*/    }
      strcpy(rfileres,"r");    /* "Rparameterfile */    else{
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
      strcat(rfileres,".");    /* */  <hr size=\"2\" color=\"#EC5E5E\"> \n\
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
     if((ficres =fopen(rfileres,"w"))==NULL) {            fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    }
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions by age at begin of transition </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr);
     }  
     fprintf(ficres,"#%s\n",version);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
        j1=0;
     /*-------- data file ----------*/    
     if((fic=fopen(datafile,"r"))==NULL)    {    j=cptcoveff;
       printf("Problem with datafile: %s\n", datafile);goto end;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;  
     }    first=1;
   
     n= lastobs;    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){ /* Loop on covariates combination */
     severity = vector(1,maxwav);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     outcome=imatrix(1,maxwav+1,1,n);          scanf("%d", i);*/
     num=ivector(1,n);        for (i=-5; i<=nlstate+ndeath; i++)  
     moisnais=vector(1,n);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     annais=vector(1,n);            for(m=iagemin; m <= iagemax+3; m++)
     moisdc=vector(1,n);              freq[i][jk][m]=0;
     andc=vector(1,n);        
     agedc=vector(1,n);        for (i=1; i<=nlstate; i++)  
     cod=ivector(1,n);          for(m=iagemin; m <= iagemax+3; m++)
     weight=vector(1,n);            prop[i][m]=0;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        
     mint=matrix(1,maxwav,1,n);        dateintsum=0;
     anint=matrix(1,maxwav,1,n);        k2cpt=0;
     s=imatrix(1,maxwav+1,1,n);        for (i=1; i<=imx; i++) { /* For each individual i */
     adl=imatrix(1,maxwav+1,1,n);              bool=1;
     tab=ivector(1,NCOVMAX);          if (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
     ncodemax=ivector(1,8);            for (z1=1; z1<=cptcoveff; z1++)       
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
     i=1;                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
     while (fgets(line, MAXLINE, fic) != NULL)    {                bool=0;
       if ((i >= firstobs) && (i <=lastobs)) {                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
                          bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
         for (j=maxwav;j>=1;j--){                  j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
           strcpy(line,stra);              } 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          } /* cptcovn > 0 */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }          if (bool==1){
                    /* for(m=firstpass; m<=lastpass; m++){ */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            for(mi=1; mi<wav[i];mi++){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              m=mw[mi][i];
               /* dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective (mi) waves m=mw[mi][i]
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                 and mw[mi+1][i]. dh depends on stepm. */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);              agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
               ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /* Age at end of wave and transition */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              if(m >=firstpass && m <=lastpass){
         for (j=ncovcol;j>=1;j--){                k2=anint[m][i]+(mint[m][i]/12.);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);                /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         }                if(agev[m][i]==0) agev[m][i]=iagemax+1;  /* All ages equal to 0 are in iagemax+1 */
         num[i]=atol(stra);                if(agev[m][i]==1) agev[m][i]=iagemax+2;  /* All ages equal to 1 are in iagemax+2 */
                        if (s[m][i]>0 && s[m][i]<=nlstate)  /* If status at wave m is known and a live state */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];  /* At age of beginning of transition, where status is known */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/                if (m<lastpass) {
                   /* if(s[m][i]==4 && s[m+1][i]==4) */
         i=i+1;                  /*   printf(" num=%ld m=%d, i=%d s1=%d s2=%d agev at m=%d\n", num[i], m, i,s[m][i],s[m+1][i], (int)agev[m][i]); */
       }                  if(s[m][i]==-1)
     }                    printf(" num=%ld m=%d, i=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[i], m, i,s[m][i],s[m+1][i], (int)agev[m][i],agebegin, ageend, (int)((agebegin+ageend)/2.));
     /* printf("ii=%d", ij);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; /* At age of beginning of transition, where status is known */
        scanf("%d",i);*/                  /* freq[s[m][i]][s[m+1][i]][(int)((agebegin+ageend)/2.)] += weight[i]; */
   imx=i-1; /* Number of individuals */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */
                 }
   /* for (i=1; i<=imx; i++){              }  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;              if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3)) && (anint[m][i]!=9999) && (mint[m][i]!=99)) {
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                dateintsum=dateintsum+k2;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                k2cpt++;
     }*/                /* printf("i=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",i, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
    /*  for (i=1; i<=imx; i++){              }
      if (s[4][i]==9)  s[4][i]=-1;              /*}*/
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/            } /* end m */
            } /* end bool */
          } /* end i = 1 to imx */
   /* Calculation of the number of parameter from char model*/         
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   Tprod=ivector(1,15);        pstamp(ficresp);
   Tvaraff=ivector(1,15);        if  (cptcovn>0) {
   Tvard=imatrix(1,15,1,2);          fprintf(ficresp, "\n#********** Variable "); 
   Tage=ivector(1,15);                fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); 
              fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); 
   if (strlen(model) >1){          for (z1=1; z1<=cptcoveff; z1++){
     j=0, j1=0, k1=1, k2=1;            fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
     j=nbocc(model,'+');            fprintf(ficresphtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
     j1=nbocc(model,'*');            fprintf(ficresphtmfr, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
     cptcovn=j+1;          }
     cptcovprod=j1;            fprintf(ficresp, "**********\n#");
              fprintf(ficresphtm, "**********</h3>\n");
     strcpy(modelsav,model);          fprintf(ficresphtmfr, "**********</h3>\n");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          fprintf(ficlog, "\n#********** Variable "); 
       printf("Error. Non available option model=%s ",model);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
       fprintf(ficlog,"Error. Non available option model=%s ",model);          fprintf(ficlog, "**********\n");
       goto end;        }
     }        fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");
            for(i=1; i<=nlstate;i++) {
     for(i=(j+1); i>=1;i--){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */          fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */        }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        fprintf(ficresp, "\n");
       /*scanf("%d",i);*/        fprintf(ficresphtm, "\n");
       if (strchr(strb,'*')) {  /* Model includes a product */        
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/        /* Header of frequency table by age */
         if (strcmp(strc,"age")==0) { /* Vn*age */        fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">");
           cptcovprod--;        fprintf(ficresphtmfr,"<th>Age</th> ");
           cutv(strb,stre,strd,'V');        for(jk=-1; jk <=nlstate+ndeath; jk++){
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/          for(m=-1; m <=nlstate+ndeath; m++){
           cptcovage++;            if(jk!=0 && m!=0)
             Tage[cptcovage]=i;              fprintf(ficresphtmfr,"<th>%d%d</th> ",jk,m);
             /*printf("stre=%s ", stre);*/          }
         }        }
         else if (strcmp(strd,"age")==0) { /* or age*Vn */        fprintf(ficresphtmfr, "\n");
           cptcovprod--;        
           cutv(strb,stre,strc,'V');        /* For each age */
           Tvar[i]=atoi(stre);        for(i=iagemin; i <= iagemax+3; i++){
           cptcovage++;          fprintf(ficresphtm,"<tr>");
           Tage[cptcovage]=i;          if(i==iagemax+1){
         }            fprintf(ficlog,"1");
         else {  /* Age is not in the model */            fprintf(ficresphtmfr,"<tr><th>0</th> ");
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/          }else if(i==iagemax+2){
           Tvar[i]=ncovcol+k1;            fprintf(ficlog,"0");
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */            fprintf(ficresphtmfr,"<tr><th>Unknown</th> ");
           Tprod[k1]=i;          }else if(i==iagemax+3){
           Tvard[k1][1]=atoi(strc); /* m*/            fprintf(ficlog,"Total");
           Tvard[k1][2]=atoi(stre); /* n */            fprintf(ficresphtmfr,"<tr><th>Total</th> ");
           Tvar[cptcovn+k2]=Tvard[k1][1];          }else{
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            if(first==1){
           for (k=1; k<=lastobs;k++)              first=0;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];              printf("See log file for details...\n");
           k1++;            }
           k2=k2+2;            fprintf(ficresphtmfr,"<tr><th>%d</th> ",i);
         }            fprintf(ficlog,"Age %d", i);
       }          }
       else { /* no more sum */          for(jk=1; jk <=nlstate ; jk++){
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
        /*  scanf("%d",i);*/              pp[jk] += freq[jk][m][i]; 
       cutv(strd,strc,strb,'V');          }
       Tvar[i]=atoi(strc);          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=-1, pos=0; m <=0 ; m++)
       strcpy(modelsav,stra);                pos += freq[jk][m][i];
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            if(pp[jk]>=1.e-10){
         scanf("%d",i);*/              if(first==1){
     } /* end of loop + */                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   } /* end model */              }
                fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);            }else{
   printf("cptcovprod=%d ", cptcovprod);              if(first==1)
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   scanf("%d ",i);*/              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fclose(fic);            }
           }
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/          for(jk=1; jk <=nlstate ; jk++){
       for(i=1;i<=n;i++) weight[i]=1.0;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     }              pp[jk] += freq[jk][m][i];
     /*-calculation of age at interview from date of interview and age at death -*/          }       
     agev=matrix(1,maxwav,1,imx);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
     for (i=1; i<=imx; i++) {            posprop += prop[jk][i];
       for(m=2; (m<= maxwav); m++) {          }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          for(jk=1; jk <=nlstate ; jk++){
          anint[m][i]=9999;            if(pos>=1.e-5){
          s[m][i]=-1;              if(first==1)
        }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       }            }else{
     }              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for (i=1; i<=imx; i++)  {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            }
       for(m=1; (m<= maxwav); m++){            if( i <= iagemax){
         if(s[m][i] >0){              if(pos>=1.e-5){
           if (s[m][i] >= nlstate+1) {                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
             if(agedc[i]>0)                fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",i,prop[jk][i]/posprop, prop[jk][i],posprop);
               if(moisdc[i]!=99 && andc[i]!=9999)                /*probs[i][jk][j1]= pp[jk]/pos;*/
                 agev[m][i]=agedc[i];                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/              }
            else {              else{
               if (andc[i]!=9999){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",i, prop[jk][i],posprop);
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);              }
               agev[m][i]=-1;            }
               }          }
             }          
           }          for(jk=-1; jk <=nlstate+ndeath; jk++){
           else if(s[m][i] !=9){ /* Should no more exist */            for(m=-1; m <=nlstate+ndeath; m++){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              if(freq[jk][m][i] !=0 ) { /* minimizing output */
             if(mint[m][i]==99 || anint[m][i]==9999)                if(first==1){
               agev[m][i]=1;                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             else if(agev[m][i] <agemin){                }
               agemin=agev[m][i];                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/              }
             }              if(jk!=0 && m!=0)
             else if(agev[m][i] >agemax){                fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[jk][m][i]);
               agemax=agev[m][i];            }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          }
             }          fprintf(ficresphtmfr,"</tr>\n ");
             /*agev[m][i]=anint[m][i]-annais[i];*/          if(i <= iagemax){
             /*   agev[m][i] = age[i]+2*m;*/            fprintf(ficresp,"\n");
           }            fprintf(ficresphtm,"</tr>\n");
           else { /* =9 */          }
             agev[m][i]=1;          if(first==1)
             s[m][i]=-1;            printf("Others in log...\n");
           }          fprintf(ficlog,"\n");
         }        } /* end loop i */
         else /*= 0 Unknown */        fprintf(ficresphtm,"</table>\n");
           agev[m][i]=1;        fprintf(ficresphtmfr,"</table>\n");
       }        /*}*/
        } /* end j1 */
     }    dateintmean=dateintsum/k2cpt; 
     for (i=1; i<=imx; i++)  {   
       for(m=1; (m<= maxwav); m++){    fclose(ficresp);
         if (s[m][i] > (nlstate+ndeath)) {    fclose(ficresphtm);
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      fclose(ficresphtmfr);
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           goto end;    free_vector(pp,1,nlstate);
         }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       }    /* End of Freq */
     }  }
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  /************ Prevalence ********************/
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
     free_vector(severity,1,maxwav);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     free_imatrix(outcome,1,maxwav+1,1,n);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     free_vector(moisnais,1,n);       We still use firstpass and lastpass as another selection.
     free_vector(annais,1,n);    */
     /* free_matrix(mint,1,maxwav,1,n);   
        free_matrix(anint,1,maxwav,1,n);*/    int i, m, jk, j1, bool, z1,j;
     free_vector(moisdc,1,n);    int mi; /* Effective wave */
     free_vector(andc,1,n);    int iage;
     double agebegin, ageend;
      
     wav=ivector(1,imx);    double **prop;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    double posprop; 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    double  y2; /* in fractional years */
        int iagemin, iagemax;
     /* Concatenates waves */    int first; /** to stop verbosity which is redirected to log file */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
     iagemin= (int) agemin;
     iagemax= (int) agemax;
       Tcode=ivector(1,100);    /*pp=vector(1,nlstate);*/
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       ncodemax[1]=1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    j1=0;
          
    codtab=imatrix(1,100,1,10);    /*j=cptcoveff;*/
    h=0;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    m=pow(2,cptcoveff);    
      first=1;
    for(k=1;k<=cptcoveff; k++){    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
      for(i=1; i <=(m/pow(2,k));i++){      for (i=1; i<=nlstate; i++)  
        for(j=1; j <= ncodemax[k]; j++){        for(iage=iagemin; iage <= iagemax+3; iage++)
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          prop[i][iage]=0.0;
            h++;      
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      for (i=1; i<=imx; i++) { /* Each individual */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        bool=1;
          }        if  (cptcovn>0) {  /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
        }          for (z1=1; z1<=cptcoveff; z1++) 
      }            if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) 
    }              bool=0;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        } 
       codtab[1][2]=1;codtab[2][2]=2; */        if (bool==1) { 
    /* for(i=1; i <=m ;i++){          /* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */
       for(k=1; k <=cptcovn; k++){          for(mi=1; mi<wav[i];mi++){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);            m=mw[mi][i];
       }            agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
       printf("\n");            /* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */
       }            if(m >=firstpass && m <=lastpass){
       scanf("%d",i);*/              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                  if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
    /* Calculates basic frequencies. Computes observed prevalence at single age                if(agev[m][i]==0) agev[m][i]=iagemax+1;
        and prints on file fileres'p'. */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                    if (s[m][i]>0 && s[m][i]<=nlstate) { 
                      /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  prop[s[m][i]][iagemax+3] += weight[i]; 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                } /* end valid statuses */ 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              } /* end selection of dates */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            } /* end selection of waves */
                } /* end effective waves */
     /* For Powell, parameters are in a vector p[] starting at p[1]        } /* end bool */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      for(i=iagemin; i <= iagemax+3; i++){  
         for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     if(mle==1){          posprop += prop[jk][i]; 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        } 
     }        
            for(jk=1; jk <=nlstate ; jk++){       
     /*--------- results files --------------*/          if( i <=  iagemax){ 
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);            if(posprop>=1.e-5){ 
                probs[i][jk][j1]= prop[jk][i]/posprop;
             } else{
    jk=1;              if(first==1){
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                first=0;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              }
    for(i=1,jk=1; i <=nlstate; i++){            }
      for(k=1; k <=(nlstate+ndeath); k++){          } 
        if (k != i)        }/* end jk */ 
          {      }/* end i */ 
            printf("%d%d ",i,k);      /*} *//* end i1 */
            fprintf(ficlog,"%d%d ",i,k);    } /* end j1 */
            fprintf(ficres,"%1d%1d ",i,k);    
            for(j=1; j <=ncovmodel; j++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
              printf("%f ",p[jk]);    /*free_vector(pp,1,nlstate);*/
              fprintf(ficlog,"%f ",p[jk]);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
              fprintf(ficres,"%f ",p[jk]);  }  /* End of prevalence */
              jk++;  
            }  /************* Waves Concatenation ***************/
            printf("\n");  
            fprintf(ficlog,"\n");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
            fprintf(ficres,"\n");  {
          }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
      }       Death is a valid wave (if date is known).
    }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
    if(mle==1){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
      /* Computing hessian and covariance matrix */       and mw[mi+1][i]. dh depends on stepm.
      ftolhess=ftol; /* Usually correct */       */
      hesscov(matcov, p, npar, delti, ftolhess, func);  
    }    int i, mi, m;
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
    printf("# Scales (for hessian or gradient estimation)\n");       double sum=0., jmean=0.;*/
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    int first, firstwo;
    for(i=1,jk=1; i <=nlstate; i++){    int j, k=0,jk, ju, jl;
      for(j=1; j <=nlstate+ndeath; j++){    double sum=0.;
        if (j!=i) {    first=0;
          fprintf(ficres,"%1d%1d",i,j);    firstwo=0;
          printf("%1d%1d",i,j);    jmin=100000;
          fprintf(ficlog,"%1d%1d",i,j);    jmax=-1;
          for(k=1; k<=ncovmodel;k++){    jmean=0.;
            printf(" %.5e",delti[jk]);    for(i=1; i<=imx; i++){  /* For simple cases and if state is death */
            fprintf(ficlog," %.5e",delti[jk]);      mi=0;
            fprintf(ficres," %.5e",delti[jk]);      m=firstpass;
            jk++;      while(s[m][i] <= nlstate){  /* a live state */
          }        if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */
          printf("\n");          mw[++mi][i]=m;
          fprintf(ficlog,"\n");        }
          fprintf(ficres,"\n");        if(m >=lastpass){
        }          if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){
      }            printf("Information! Unknown health status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
    }            fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
                mw[++mi][i]=m;
    k=1;          }
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          if(s[m][i]==-2){ /* Vital status is really unknown */
    if(mle==1)            nbwarn++;
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified? */
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
    for(i=1;i<=npar;i++){              fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
      /*  if (k>nlstate) k=1;            }
          i1=(i-1)/(ncovmodel*nlstate)+1;            break;
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          }
          printf("%s%d%d",alph[k],i1,tab[i]);*/          break;
      fprintf(ficres,"%3d",i);        }
      if(mle==1)        else
        printf("%3d",i);          m++;
      fprintf(ficlog,"%3d",i);      }/* end while */
      for(j=1; j<=i;j++){      
        fprintf(ficres," %.5e",matcov[i][j]);      /* After last pass */
        if(mle==1)      if (s[m][i] > nlstate){  /* In a death state */
          printf(" %.5e",matcov[i][j]);        mi++;     /* Death is another wave */
        fprintf(ficlog," %.5e",matcov[i][j]);        /* if(mi==0)  never been interviewed correctly before death */
      }           /* Only death is a correct wave */
      fprintf(ficres,"\n");        mw[mi][i]=m;
      if(mle==1)      }else if ((int) andc[i] != 9999) { /* Status is either death or negative. A death occured after lastpass, we can't take it into account because of potential bias */
        printf("\n");        /* m++; */
      fprintf(ficlog,"\n");        /* mi++; */
      k++;        /* s[m][i]=nlstate+1;  /\* We are setting the status to the last of non live state *\/ */
    }        /* mw[mi][i]=m; */
            nberr++;
    while((c=getc(ficpar))=='#' && c!= EOF){        if(firstwo==0){
      ungetc(c,ficpar);          printf("Error! Death for individual %ld line=%d  occurred %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
      fgets(line, MAXLINE, ficpar);          fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
      puts(line);          firstwo=1;
      fputs(line,ficparo);        }else if(firstwo==1){
    }          fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
    ungetc(c,ficpar);        }
    estepm=0;      }
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      wav[i]=mi;
    if (estepm==0 || estepm < stepm) estepm=stepm;      if(mi==0){
    if (fage <= 2) {        nbwarn++;
      bage = ageminpar;        if(first==0){
      fage = agemaxpar;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
    }          first=1;
            }
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        if(first==1){
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        }
          } /* end mi==0 */
    while((c=getc(ficpar))=='#' && c!= EOF){    } /* End individuals */
      ungetc(c,ficpar);    /* wav and mw are no more changed */
      fgets(line, MAXLINE, ficpar);  
      puts(line);    
      fputs(line,ficparo);    for(i=1; i<=imx; i++){
    }      for(mi=1; mi<wav[i];mi++){
    ungetc(c,ficpar);        if (stepm <=0)
            dh[mi][i]=1;
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        else{
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            if (agedc[i] < 2*AGESUP) {
                  j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
    while((c=getc(ficpar))=='#' && c!= EOF){              if(j==0) j=1;  /* Survives at least one month after exam */
      ungetc(c,ficpar);              else if(j<0){
      fgets(line, MAXLINE, ficpar);                nberr++;
      puts(line);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      fputs(line,ficparo);                j=1; /* Temporary Dangerous patch */
    }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
    ungetc(c,ficpar);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;              k=k+1;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;              if (j >= jmax){
                 jmax=j;
   fscanf(ficpar,"pop_based=%d\n",&popbased);                ijmax=i;
   fprintf(ficparo,"pop_based=%d\n",popbased);                }
   fprintf(ficres,"pop_based=%d\n",popbased);                if (j <= jmin){
                  jmin=j;
   while((c=getc(ficpar))=='#' && c!= EOF){                ijmin=i;
     ungetc(c,ficpar);              }
     fgets(line, MAXLINE, ficpar);              sum=sum+j;
     puts(line);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     fputs(line,ficparo);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   }            }
   ungetc(c,ficpar);          }
           else{
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
             k=k+1;
             if (j >= jmax) {
 while((c=getc(ficpar))=='#' && c!= EOF){              jmax=j;
     ungetc(c,ficpar);              ijmax=i;
     fgets(line, MAXLINE, ficpar);            }
     puts(line);            else if (j <= jmin){
     fputs(line,ficparo);              jmin=j;
   }              ijmin=i;
   ungetc(c,ficpar);            }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            if(j<0){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
 /*------------ gnuplot -------------*/            sum=sum+j;
   strcpy(optionfilegnuplot,optionfilefiname);          }
   strcat(optionfilegnuplot,".gp");          jk= j/stepm;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          jl= j -jk*stepm;
     printf("Problem with file %s",optionfilegnuplot);          ju= j -(jk+1)*stepm;
   }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   fclose(ficgp);            if(jl==0){
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);              dh[mi][i]=jk;
 /*--------- index.htm --------*/              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
   strcpy(optionfilehtm,optionfile);                    * to avoid the price of an extra matrix product in likelihood */
   strcat(optionfilehtm,".htm");              dh[mi][i]=jk+1;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              bh[mi][i]=ju;
     printf("Problem with %s \n",optionfilehtm), exit(0);            }
   }          }else{
             if(jl <= -ju){
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              dh[mi][i]=jk;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n              bh[mi][i]=jl;       /* bias is positive if real duration
 \n                                   * is higher than the multiple of stepm and negative otherwise.
 Total number of observations=%d <br>\n                                   */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            }
 <hr  size=\"2\" color=\"#EC5E5E\">            else{
  <ul><li><h4>Parameter files</h4>\n              dh[mi][i]=jk+1;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n              bh[mi][i]=ju;
  - Log file of the run: <a href=\"%s\">%s</a><br>\n            }
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);            if(dh[mi][i]==0){
   fclose(fichtm);              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
              }
 /*------------ free_vector  -------------*/          } /* end if mle */
  chdir(path);        }
        } /* end wave */
  free_ivector(wav,1,imx);    }
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    jmean=sum/k;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
  free_ivector(num,1,n);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
  free_vector(agedc,1,n);   }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);  /*********** Tricode ****************************/
  fclose(ficres);  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   {
     /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   /*--------------- Prevalence limit --------------*/    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
       * Boring subroutine which should only output nbcode[Tvar[j]][k]
   strcpy(filerespl,"pl");     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   strcat(filerespl,fileres);     * nbcode[Tvar[j]][1]= 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   }    int modmaxcovj=0; /* Modality max of covariates j */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    int cptcode=0; /* Modality max of covariates j */
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);    int modmincovj=0; /* Modality min of covariates j */
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    cptcoveff=0; 
   fprintf(ficrespl,"\n");   
      for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* Loop on covariates without age and products */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (k=-1; k < maxncov; k++) Ndum[k]=0;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                                 modality of this covariate Vj*/ 
   k=0;        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   agebase=ageminpar;                                      * If product of Vn*Vm, still boolean *:
   agelim=agemaxpar;                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   ftolpl=1.e-10;                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   i1=cptcoveff;        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
   if (cptcovn < 1){i1=1;}                                        modality of the nth covariate of individual i. */
         if (ij > modmaxcovj)
   for(cptcov=1;cptcov<=i1;cptcov++){          modmaxcovj=ij; 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        else if (ij < modmincovj) 
         k=k+1;          modmincovj=ij; 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        if ((ij < -1) && (ij > NCOVMAX)){
         fprintf(ficrespl,"\n#******");          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
         printf("\n#******");          exit(1);
         fprintf(ficlog,"\n#******");        }else
         for(j=1;j<=cptcoveff;j++) {        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /* getting the maximum value of the modality of the covariate
         }           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
         fprintf(ficrespl,"******\n");           female is 1, then modmaxcovj=1.*/
         printf("******\n");      } /* end for loop on individuals i */
         fprintf(ficlog,"******\n");      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
              fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
         for (age=agebase; age<=agelim; age++){      cptcode=modmaxcovj;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
           fprintf(ficrespl,"%.0f",age );     /*for (i=0; i<=cptcode; i++) {*/
           for(i=1; i<=nlstate;i++)      for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
           fprintf(ficrespl," %.5f", prlim[i][i]);        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
           fprintf(ficrespl,"\n");        fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
         }        if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
       }          if( k != -1){
     }            ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
   fclose(ficrespl);                               covariate for which somebody answered excluding 
                                undefined. Usually 2: 0 and 1. */
   /*------------- h Pij x at various ages ------------*/          }
            ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                               covariate for which somebody answered including 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                               undefined. Usually 3: -1, 0 and 1. */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        }
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
   }           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
   printf("Computing pij: result on file '%s' \n", filerespij);      } /* Ndum[-1] number of undefined modalities */
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);  
        /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
   /*if (stepm<=24) stepsize=2;*/         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
          modmincovj=3; modmaxcovj = 7;
   agelim=AGESUP;         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
   hstepm=stepsize*YEARM; /* Every year of age */         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */         defining two dummy variables: variables V1_1 and V1_2.
          nbcode[Tvar[j]][ij]=k;
   /* hstepm=1;   aff par mois*/         nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
   k=0;         nbcode[Tvar[j]][3]=2;
   for(cptcov=1;cptcov<=i1;cptcov++){         To be continued (not working yet).
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      */
       k=k+1;      ij=0; /* ij is similar to i but can jump over null modalities */
         fprintf(ficrespij,"\n#****** ");      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
         for(j=1;j<=cptcoveff;j++)          if (Ndum[i] == 0) { /* If nobody responded to this modality k */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            break;
         fprintf(ficrespij,"******\n");          }
                  ij++;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          cptcode = ij; /* New max modality for covar j */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      } /* end of loop on modality i=-1 to 1 or more */
         
           /*      nhstepm=nhstepm*YEARM; aff par mois*/      /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
       /*  /\*recode from 0 *\/ */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*                               k is a modality. If we have model=V1+V1*sex  */
           oldm=oldms;savm=savms;      /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
           fprintf(ficrespij,"# Age");      /*  } */
           for(i=1; i<=nlstate;i++)      /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
             for(j=1; j<=nlstate+ndeath;j++)      /*  if (ij > ncodemax[j]) { */
               fprintf(ficrespij," %1d-%1d",i,j);      /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
           fprintf(ficrespij,"\n");      /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
            for (h=0; h<=nhstepm; h++){      /*    break; */
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      /*  } */
             for(i=1; i<=nlstate;i++)      /*   }  /\* end of loop on modality k *\/ */
               for(j=1; j<=nlstate+ndeath;j++)    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    
             fprintf(ficrespij,"\n");   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
              }    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
           fprintf(ficrespij,"\n");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
         }     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
     }     Ndum[ij]++; /* Might be supersed V1 + V1*age */
   }   } 
   
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);   ij=0;
    for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   fclose(ficrespij);     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
      if((Ndum[i]!=0) && (i<=ncovcol)){
        ij++;
   /*---------- Forecasting ------------------*/       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   if((stepm == 1) && (strcmp(model,".")==0)){       Tvaraff[ij]=i; /*For printing (unclear) */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);     }else{
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);         /* Tvaraff[ij]=0; */
   }     }
   else{   }
     erreur=108;   /* ij--; */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   cptcoveff=ij; /*Number of total covariates*/
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
   }  }
    
   
   /*---------- Health expectancies and variances ------------*/  /*********** Health Expectancies ****************/
   
   strcpy(filerest,"t");  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {  {
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    /* Health expectancies, no variances */
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    int i, j, nhstepm, hstepm, h, nstepm;
   }    int nhstepma, nstepma; /* Decreasing with age */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    double age, agelim, hf;
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);    double ***p3mat;
     double eip;
   
   strcpy(filerese,"e");    pstamp(ficreseij);
   strcat(filerese,fileres);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   if((ficreseij=fopen(filerese,"w"))==NULL) {    fprintf(ficreseij,"# Age");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    for(i=1; i<=nlstate;i++){
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      for(j=1; j<=nlstate;j++){
   }        fprintf(ficreseij," e%1d%1d ",i,j);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      }
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);      fprintf(ficreseij," e%1d. ",i);
     }
   strcpy(fileresv,"v");    fprintf(ficreseij,"\n");
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    if(estepm < stepm){
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    else  hstepm=estepm;   
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    /* We compute the life expectancy from trapezoids spaced every estepm months
   calagedate=-1;     * This is mainly to measure the difference between two models: for example
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
   k=0;     * progression in between and thus overestimating or underestimating according
   for(cptcov=1;cptcov<=i1;cptcov++){     * to the curvature of the survival function. If, for the same date, we 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       k=k+1;     * to compare the new estimate of Life expectancy with the same linear 
       fprintf(ficrest,"\n#****** ");     * hypothesis. A more precise result, taking into account a more precise
       for(j=1;j<=cptcoveff;j++)     * curvature will be obtained if estepm is as small as stepm. */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficreseij,"\n#****** ");       nhstepm is the number of hstepm from age to agelim 
       for(j=1;j<=cptcoveff;j++)       nstepm is the number of stepm from age to agelin. 
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficreseij,"******\n");       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficresvij,"\n#****** ");       survival function given by stepm (the optimization length). Unfortunately it
       for(j=1;j<=cptcoveff;j++)       means that if the survival funtion is printed only each two years of age and if
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficresvij,"******\n");       results. So we changed our mind and took the option of the best precision.
     */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      agelim=AGESUP;
      /* If stepm=6 months */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       oldm=oldms;savm=savms;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);      
       if(popbased==1){  /* nhstepm age range expressed in number of stepm */
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
        }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       epj=vector(1,nlstate+1);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       for(age=bage; age <=fage ;age++){      /* if (stepm >= YEARM) hstepm=1;*/
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)      /* If stepm=6 months */
             prlim[i][i]=probs[(int)age][i][k];      /* Computed by stepm unit matrices, product of hstepma matrices, stored
         }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
              
         fprintf(ficrest," %4.0f",age);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      printf("%d|",(int)age);fflush(stdout);
           }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           epj[nlstate+1] +=epj[j];      
         }      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(i=1, vepp=0.;i <=nlstate;i++)        for(j=1; j<=nlstate;j++)
           for(j=1;j <=nlstate;j++)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             vepp += vareij[i][j][(int)age];            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));            
         for(j=1;j <=nlstate;j++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }          }
         fprintf(ficrest,"\n");  
       }      fprintf(ficreseij,"%3.0f",age );
     }      for(i=1; i<=nlstate;i++){
   }        eip=0;
 free_matrix(mint,1,maxwav,1,n);        for(j=1; j<=nlstate;j++){
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          eip +=eij[i][j][(int)age];
     free_vector(weight,1,n);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   fclose(ficreseij);        }
   fclose(ficresvij);        fprintf(ficreseij,"%9.4f", eip );
   fclose(ficrest);      }
   fclose(ficpar);      fprintf(ficreseij,"\n");
   free_vector(epj,1,nlstate+1);      
      }
   /*------- Variance limit prevalence------*/      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
   strcpy(fileresvpl,"vpl");    fprintf(ficlog,"\n");
   strcat(fileresvpl,fileres);    
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  {
     /* Covariances of health expectancies eij and of total life expectancies according
   k=0;     to initial status i, ei. .
   for(cptcov=1;cptcov<=i1;cptcov++){    */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       k=k+1;    int nhstepma, nstepma; /* Decreasing with age */
       fprintf(ficresvpl,"\n#****** ");    double age, agelim, hf;
       for(j=1;j<=cptcoveff;j++)    double ***p3matp, ***p3matm, ***varhe;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double **dnewm,**doldm;
       fprintf(ficresvpl,"******\n");    double *xp, *xm;
          double **gp, **gm;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    double ***gradg, ***trgradg;
       oldm=oldms;savm=savms;    int theta;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }    double eip, vip;
  }  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   fclose(ficresvpl);    xp=vector(1,npar);
     xm=vector(1,npar);
   /*---------- End : free ----------------*/    dnewm=matrix(1,nlstate*nlstate,1,npar);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    pstamp(ficresstdeij);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
      fprintf(ficresstdeij,"# Age");
      for(i=1; i<=nlstate;i++){
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      for(j=1; j<=nlstate;j++)
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficresstdeij," e%1d. ",i);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
      fprintf(ficresstdeij,"\n");
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);    pstamp(ficrescveij);
   free_matrix(agev,1,maxwav,1,imx);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
   fprintf(fichtm,"\n</body>");      for(j=1; j<=nlstate;j++){
   fclose(fichtm);        cptj= (j-1)*nlstate+i;
   fclose(ficgp);        for(i2=1; i2<=nlstate;i2++)
            for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
   if(erreur >0){            if(cptj2 <= cptj)
     printf("End of Imach with error or warning %d\n",erreur);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);          }
   }else{      }
    printf("End of Imach\n");    fprintf(ficrescveij,"\n");
    fprintf(ficlog,"End of Imach\n");    
   }    if(estepm < stepm){
   printf("See log file on %s\n",filelog);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fclose(ficlog);    }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    else  hstepm=estepm;   
      /* We compute the life expectancy from trapezoids spaced every estepm months
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/     * This is mainly to measure the difference between two models: for example
   /*printf("Total time was %d uSec.\n", total_usecs);*/     * if stepm=24 months pijx are given only every 2 years and by summing them
   /*------ End -----------*/     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
  end:     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 #ifdef windows     * to compare the new estimate of Life expectancy with the same linear 
   /* chdir(pathcd);*/     * hypothesis. A more precise result, taking into account a more precise
 #endif     * curvature will be obtained if estepm is as small as stepm. */
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/    /* For example we decided to compute the life expectancy with the smallest unit */
  /*system("cd ../gp37mgw");*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/       nhstepm is the number of hstepm from age to agelim 
  strcpy(plotcmd,GNUPLOTPROGRAM);       nstepm is the number of stepm from age to agelin. 
  strcat(plotcmd," ");       Look at hpijx to understand the reason of that which relies in memory size
  strcat(plotcmd,optionfilegnuplot);       and note for a fixed period like estepm months */
  system(plotcmd);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
 #ifdef windows       means that if the survival funtion is printed only each two years of age and if
   while (z[0] != 'q') {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     /* chdir(path); */       results. So we changed our mind and took the option of the best precision.
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    */
     scanf("%s",z);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') system(optionfilehtm);    /* If stepm=6 months */
     else if (z[0] == 'g') system(plotcmd);    /* nhstepm age range expressed in number of stepm */
     else if (z[0] == 'q') exit(0);    agelim=AGESUP;
   }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 #endif    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 }    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
    void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
     int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-POPULBASED-MOBILAV_");
       else strcpy(digitp,"-POPULBASED-NOMOBIL_");
     }
     else 
       strcpy(digitp,"-STABLBASED_");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"PRMORPREV-"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileresu);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     
     fprintf(ficgp,"\n# Routine varevsij");
     fprintf(ficgp,"\nunset title \n");
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelim. 
        Look at function hpijx to understand why because of memory size limitations, 
        we decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  /* Returns p3mat[i][j][h] for h=1 to nhstepm */
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* Next for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
   
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
     fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[])
   {
     /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mgm, **mgp;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       mgp=matrix(1,npar,1,nlstate);
       mgm=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         else
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         for(i=1;i<=nlstate;i++){
           gp[i] = prlim[i][i];
           mgp[theta][i] = prlim[i][i];
         }
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         else
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         for(i=1;i<=nlstate;i++){
           gm[i] = prlim[i][i];
           mgm[theta][i] = prlim[i][i];
         }
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\nmgm mgp %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf(" %d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\n gradg %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf("%d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf("%d %lf ",theta,gradg[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       if((int)age==79 ||(int)age== 80  ||(int)age== 81){
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }else{
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(mgm,1,npar,1,nlstate);
       free_matrix(mgp,1,npar,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"PROB_"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"PROBCOV_"); 
     strcat(fileresprobcov,fileresu);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"PROBCOR_"); 
     strcat(fileresprobcor,fileresu);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
             /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter svg size 640, 480");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">\
   %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int prevfcast, int estepm ,          \
                     double jprev1, double mprev1,double anprev1, double dateprev1, \
                     double jprev2, double mprev2,double anprev2, double dateprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");
      fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
      fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
      fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
      if(prevfcast==1){
        fprintf(fichtm,"\
    - Prevalence projections by age and states:                            \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
      }
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
            printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
          }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* aij, bij */
        fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
   <img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
        /* Pij */
        fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
   <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\
    incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
   divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
   <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
        /* Survival functions (period) in state j */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
        }
        /* State specific survival functions (period) */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\
    Or probability to survive in various states (1 to %d) being in state %d at different ages.\
    <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
        }
        /* Period (stable) prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
        }
       if(prevfcast==1){
         /* Projection of prevalence up to period (stable) prevalence in each health state */
         for(cpt=1; cpt<=nlstate;cpt++){
           fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1);
         }
       }
   
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \
   <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
        }
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
   But because parameters are usually highly correlated (a higher incidence of disability \
   and a higher incidence of recovery can give very close observed transition) it might \
   be very useful to look not only at linear confidence intervals estimated from the \
   variances but at the covariance matrix. And instead of looking at the estimated coefficients \
   (parameters) of the logistic regression, it might be more meaningful to visualize the \
   covariance matrix of the one-step probabilities. \
   See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
   
    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d%d.svg\"> %s_%d-%d.svg <br>\
   <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences:  <a href=\"%s_%d.svg\">%s_%d.svg<br>\
   <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
       void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int lv=0, vlv=0, kl=0;
     int ng=0;
     int vpopbased;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     /* Contribution to likelihood */
     /* Plot the probability implied in the likelihood */
       fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
       fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
       /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
       fprintf(ficgp,"\nset ter pngcairo size 640, 480");
   /* nice for mle=4 plot by number of matrix products.
      replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
   /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
       /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
       fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
       fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
       fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
       fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
         fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
         fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
         for (j=2; j<= nlstate+ndeath ; j ++) {
           fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
         }
         fprintf(ficgp,";\nset out; unset ylabel;\n"); 
       }
       /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */              
       /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
       /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
       fprintf(ficgp,"\nset out;unset log\n");
       /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) { /* For each live state */
       for (k1=1; k1<= m ; k1 ++) { /* For each combination of covariate */
         /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
         fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files ");
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
        fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
        fprintf(ficgp,"\nset out \n");
       } /* k1 */
     } /* cpt */
     /*2 eme*/
     for (k1=1; k1<= m ; k1 ++) { 
         fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
       fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
         if(vpopbased==0)
           fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
         else
           fprintf(ficgp,"\nreplot ");
         for (i=1; i<= nlstate+1 ; i ++) {
           k=2*i;
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
           else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           fprintf(ficgp,"\" t\"\" w l lt 0,");
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
           else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
         } /* state */
       } /* vpopbased */
       fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
     } /* k1 */
   
   
     /*3eme*/
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files:  cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
         fprintf(ficgp,"set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* Survival functions (period) from state i in state j by initial state i */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3;
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate+ndeath ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3;
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           if(j==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(cpt-1) +j;
           fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
           /* for (i=2; i<= nlstate+ndeath ; i ++) */
           /*   fprintf(ficgp,"+$%d",k+l+i-1); */
           fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
         } /* nlstate */
         fprintf(ficgp,", '' ");
         fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           l=(nlstate+ndeath)*(cpt-1) +j;
           if(j < nlstate)
             fprintf(ficgp,"$%d +",k+l);
           else
             fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
         }
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* CV preval stable (period) for each covariate */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3; /* Offset */
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     if(prevfcast==1){
     /* Projection from cross-sectional to stable (period) for each covariate */
   
       for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[lv]][lv];
             fprintf(ficgp," V%d=%d ",k,vlv);
           }
           fprintf(ficgp,"\n#\n");
           
           fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
           for (i=1; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
             /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             if(i==1){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
             }else{
               fprintf(ficgp,",\\\n '' ");
             }
             if(cptcoveff ==0){ /* No covariate */
               fprintf(ficgp," u 2:("); /* Age is in 2 */
               /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               if(i==nlstate+1)
                 fprintf(ficgp," $%d/(1.-$%d)) t 'p.%d' with line ", \
                           2+(cpt-1)*(nlstate+1)+1+(i-1),  2+1+(i-1)+(nlstate+1)*nlstate,cpt );
               else
                 fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \
                         2+(cpt-1)*(nlstate+1)+1+(i-1),  2+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
             }else{
               fprintf(ficgp,"u 6:(("); /* Age is in 6 */
               /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
               /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
               kl=0;
               for (k=1; k<=cptcoveff; k++){    /* For each covariate  */
                 lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
                 /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                 /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                 /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                 vlv= nbcode[Tvaraff[lv]][lv];
                 kl++;
                 /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                 /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                 /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                 /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                 if(k==cptcoveff)
                   if(i==nlstate+1)
                     fprintf(ficgp,"$%d==%d && $%d==%d)? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv], \
                             6+(cpt-1)*(nlstate+1)+1+(i-1),  6+1+(i-1)+(nlstate+1)*nlstate,cpt );
                   else
                     fprintf(ficgp,"$%d==%d && $%d==%d)? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv], \
                             6+(cpt-1)*(nlstate+1)+1+(i-1),  6+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
                 else{
                   fprintf(ficgp,"$%d==%d && $%d==%d && ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv]);
                   kl++;
                 }
               } /* end covariate */
             } /* end if covariate */
           } /* nlstate */
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/
       } /* end covariate */
     } /* End if prevfcast */
   
   
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
          fprintf(ficgp,"\nset ter svg size 640, 480 ");
          if (ng==1){
            fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
            fprintf(ficgp,"\nunset log y");
          }else if (ng==2){
            fprintf(ficgp,"\nset ylabel \"Probability\"\n");
            fprintf(ficgp,"\nset log y");
          }else if (ng==3){
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
            fprintf(ficgp,"\nset log y");
          }else
            fprintf(ficgp,"\nunset title ");
          fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                switch( ng) {
                case 1:
                  if(nagesqr==0)
                    fprintf(ficgp," p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 2: /* ng=2 */
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                      fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 3:
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                  break;
                }
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                  if(ij <=cptcovage) { /* Bug valgrind */
                    if((j-2)==Tage[ij]) { /* Bug valgrind */
                      fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                      /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                      ij++;
                    }
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                }
                if(ng != 1){
                  fprintf(ficgp,")/(1");
                
                  for(k1=1; k1 <=nlstate; k1++){ 
                    if(nagesqr==0)
                      fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                    else /* nagesqr =1 */
                      fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
                    
                    ij=1;
                    for(j=3; j <=ncovmodel-nagesqr; j++){
                      if(ij <=cptcovage) { /* Bug valgrind */
                        if((j-2)==Tage[ij]) { /* Bug valgrind */
                          fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                          /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                          ij++;
                        }
                      }
                      else
                        fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                    }
                    fprintf(ficgp,")");
                  }
                  fprintf(ficgp,")");
                  if(ng ==2)
                    fprintf(ficgp," t \"p%d%d\" ", k2,k);
                  else /* ng= 3 */
                    fprintf(ficgp," t \"i%d%d\" ", k2,k);
                }else{ /* end ng <> 1 */
                  fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
                }
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
          fprintf(ficgp,"\n set out\n");
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
     /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
     /*          firstpass, lastpass,  stepm,  weightopt, model); */
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"F_"); 
     strcat(fileresf,fileresu);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s', please wait... \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s', please wait... \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresf," yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
     printf("End of Computing forecasting \n");
     fprintf(ficlog,"End of Computing forecasting\n");
   
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"POP_"); 
     strcat(filerespop,fileresu);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           if (s[m][i] != -2) /* Keeping initial status of unknown vital status */
             s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0  || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
                 /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           } /* end if */
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           } /* en if 9*/
           else { /* =9 */
             /* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else if(s[m][i]==0) /*= 0 Unknown */
           agev[m][i]=1;
         else{
           printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           agev[m][i]=0;
         }
       } /* End for lastpass */
     }
       
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
    int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
   
     strcpy(filerespl,"PL_");
     strcat(filerespl,fileresu);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     }
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     pstamp(ficrespl);
     fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
           fprintf(ficrespl,"#******");
           printf("#******");
           fprintf(ficlog,"#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
           fprintf(ficrespl,"Total Years_to_converge\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             tot=0.;
             for(i=1; i<=nlstate;i++){
               tot +=  prlim[i][i];
               fprintf(ficrespl," %.5f", prlim[i][i]);
             }
             fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
     int ncvyear=0; /* Number of years needed for the period prevalence to converge */
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char model[MAXLINE], modeltemp[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double **hess; /* Hessian matrix */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       if(!fgets(pathr,FILENAMELENGTH,stdin)){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
       }
       i=strlen(pathr);
       if( i==0 ){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 8) {
         printf("Not 8 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
         printf("but line=%s\n",line);
       }
       printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled == 0)
               model[0]='\0';
       else if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
       printf("model=1+age+%s\n",model);fflush(stdout);
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else
         if(mle==1)
           printf("%1d%1d%1d",i1,j1,jk);
         fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", rfileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     /* free_vector(moisdc,1,n); */
     /* free_vector(andc,1,n); */
     /* */
     
     wav=ivector(1,imx);
     /* dh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* bh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* mw=imatrix(1,lastpass-firstpass+1,1,imx); */
     dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/
     bh=imatrix(1,lastpass-firstpass+2,1,imx);
     mw=imatrix(1,lastpass-firstpass+2,1,imx);
      
     /* Concatenates waves */
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
        mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     */
   
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] which is the maximum value of this jth covariate */
   
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     /* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, 
      * codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded 
      * (currently 0 or 1) in the data.
      * In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of 
      * corresponding modality (h,j).
      */
   
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to m=2**k
              * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
              * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
        /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
        * and the value of each covariate?
        * V1=1, V2=1, V3=2, V4=1 ?
        * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
        * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
        * In order to get the real value in the data, we use nbcode
        * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
        * We are keeping this crazy system in order to be able (in the future?) 
        * to have more than 2 values (0 or 1) for a covariate.
        * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
        * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
        *              bbbbbbbb
        *              76543210     
        *   h-1        00000101 (6-1=5)
        *(h-1)>>(k-1)= 00000001 >> (2-1) = 1 right shift
        *           &
        *     1        00000001 (1)
        *              00000001        = 1 & ((h-1) >> (k-1))
        *          +1= 00000010 =2 
        *
        * h=14, k=3 => h'=h-1=13, k'=k-1=2
        *          h'      1101 =2^3+2^2+0x2^1+2^0
        *    >>k'            11
        *          &   00000001
        *            = 00000001
        *      +1    = 00000010=2    =  codtabm(14,3)   
        * Reverse h=6 and m=16?
        * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
        * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
        * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 
        * decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1)
        * V3=decodtabm(14,3,2**4)=2
        *          h'=13   1101 =2^3+2^2+0x2^1+2^0
        *(h-1) >> (j-1)    0011 =13 >> 2
        *          &1 000000001
        *           = 000000001
        *         +1= 000000010 =2
        *                  2211
        *                  V1=1+1, V2=0+1, V3=1+1, V4=1+1
        *                  V3=2
        */
   
     /* /\* for(h=1; h <=100 ;h++){  *\/ */
     /*   /\* printf("h=%2d ", h); *\/ */
     /*    /\* for(k=1; k <=10; k++){ *\/ */
     /*      /\* printf("k=%d %d ",k,codtabm(h,k)); *\/ */
     /*    /\*   codtab[h][k]=codtabm(h,k); *\/ */
     /*    /\* } *\/ */
     /*    /\* printf("\n"); *\/ */
     /* } */
     /* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */
     /*   for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/  */
     /*     for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */
     /*    for(cpt=1; cpt <=pow(2,k-1); cpt++){  /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/  */
     /*      h++; */
     /*      if (h>m)  */
     /*        h=1; */
     /*      codtab[h][k]=j; */
     /*      /\* codtab[12][3]=1; *\/ */
     /*      /\*codtab[h][Tvar[k]]=j;*\/ */
     /*      /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */
     /*    }  */
     /*     } */
     /*   } */
     /* }  */
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){  */
     /*    for(k=1; k <=cptcovn; k++){ */
     /*      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */
     /*    } */
     /*    printf("\n"); */
     /* } */
     /*   scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# IMaCh-%s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br>  \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   <font size=\"2\">IMaCh-%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\
                 firstpass, lastpass,  stepm,  weightopt, model);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       fprintf(ficlog,"\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
           fprintf(ficlog,"%f ",matcov[i][j]);
         }
         printf("\n ");  fprintf(ficlog,"\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard  */
     else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
       globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
       /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximization */
         /* mlikeli uses func not funcone */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
         globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
         /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
         likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       }
       globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle != 0){
         /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, hess, p, npar, delti, ftolhess, func);
         printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         for(i=1,jk=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(j=1; j <=ncovmodel; j++){
                 printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 jk++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         }
       } /* end of hesscov and Wald tests */
   
       /*  */
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle >= 1) /* To big for the screen */
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.7e",matcov[jj][ll]); 
                           fprintf(ficlog," %.7e",matcov[jj][ll]); 
                           fprintf(ficres," %.7e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
         while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
   
       /* while((c=getc(ficpar))=='#' && c!= EOF){ */
       /*   ungetc(c,ficpar); */
       /*   fgets(line, MAXLINE, ficpar); */
       /*   fputs(line,stdout); */
       /*   fputs(line,ficparo); */
       /* } */
       /* ungetc(c,ficpar); */
       
       estepm=0;
       if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
   
       if (num_filled != 6) {
         printf("Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n");
         printf("but line=%s\n",line);
         goto end;
       }
       printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
   
       /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, pathc,p);
       
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,estepm, \
                    jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       /* free_ivector(wav,1,imx); */  /* Moved after last prevalence call */
       /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+2,1,imx);   
   
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
       printf("done evsij\n");fflush(stdout);
       fprintf(ficlog,"done evsij\n");fflush(ficlog);
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
   
   
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("  Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"  Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("    Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"    Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("      Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(stdout);
       fprintf(ficlog,"      Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrest,"******\n");
         
         fprintf(ficresstdeij,"\n#****** ");
         fprintf(ficrescveij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresstdeij,"******\n");
         fprintf(ficrescveij,"******\n");
         
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficresvij,"******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         printf(" cvevsij %d, ",k);
         fprintf(ficlog, " cvevsij %d, ",k);
         cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);
         printf(" end cvevsij \n ");
         fprintf(ficlog, " end cvevsij \n ");
         
         /*
          */
         /* goto endfree; */
         
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         pstamp(ficrest);
         
         
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
           oldm=oldms;savm=savms; /* ZZ Segmentation fault */
           cptcod= 0; /* To be deleted */
           printf("varevsij %d \n",vpopbased);
           fprintf(ficlog, "varevsij %d \n",vpopbased);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
           if(vpopbased==1)
             fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
           else
             fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
           fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
           /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
           epj=vector(1,nlstate+1);
           printf("Computing age specific period (stable) prevalences in each health state \n");
           fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n");
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k); /*ZZ Is it the correct prevalim */
             if (vpopbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
             
             fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
             /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
             /* printf(" age %4.0f ",age); */
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
               }
               epj[nlstate+1] +=epj[j];
             }
             /* printf(" age %4.0f \n",age); */
             
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
         } /* End vpopbased */
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
         printf("done \n");fflush(stdout);
         fprintf(ficlog,"done\n");fflush(ficlog);
         
         /*}*/
       } /* End k */
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       printf("done Health expectancies\n");fflush(stdout);
       fprintf(ficlog,"done Health expectancies\n");fflush(ficlog);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
       fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
       printf("done variance-covariance of period prevalence\n");fflush(stdout);
       fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       free_matrix(hess,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.50  
changed lines
  Added in v.1.216


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>