Diff for /imach/src/imach.c between versions 1.21 and 1.122

version 1.21, 2002/02/21 18:42:24 version 1.122, 2006/03/20 09:45:41
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.122  2006/03/20 09:45:41  brouard
   individuals from different ages are interviewed on their health status    (Module): Weights can have a decimal point as for
   or degree of  disability. At least a second wave of interviews    English (a comma might work with a correct LC_NUMERIC environment,
   ("longitudinal") should  measure each new individual health status.    otherwise the weight is truncated).
   Health expectancies are computed from the transistions observed between    Modification of warning when the covariates values are not 0 or
   waves and are computed for each degree of severity of disability (number    1.
   of life states). More degrees you consider, more time is necessary to    Version 0.98g
   reach the Maximum Likelihood of the parameters involved in the model.  
   The simplest model is the multinomial logistic model where pij is    Revision 1.121  2006/03/16 17:45:01  lievre
   the probabibility to be observed in state j at the second wave conditional    * imach.c (Module): Comments concerning covariates added
   to be observed in state i at the first wave. Therefore the model is:  
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    * imach.c (Module): refinements in the computation of lli if
   is a covariate. If you want to have a more complex model than "constant and    status=-2 in order to have more reliable computation if stepm is
   age", you should modify the program where the markup    not 1 month. Version 0.98f
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
   The advantage that this computer programme claims, comes from that if the    status=-2 in order to have more reliable computation if stepm is
   delay between waves is not identical for each individual, or if some    not 1 month. Version 0.98f
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.119  2006/03/15 17:42:26  brouard
   hPijx is the probability to be    (Module): Bug if status = -2, the loglikelihood was
   observed in state i at age x+h conditional to the observed state i at age    computed as likelihood omitting the logarithm. Version O.98e
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.118  2006/03/14 18:20:07  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    (Module): varevsij Comments added explaining the second
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    table of variances if popbased=1 .
   and the contribution of each individual to the likelihood is simply hPijx.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   Also this programme outputs the covariance matrix of the parameters but also    (Module): Version 0.98d
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.117  2006/03/14 17:16:22  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): varevsij Comments added explaining the second
            Institut national d'études démographiques, Paris.    table of variances if popbased=1 .
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   from the European Union.    (Module): Function pstamp added
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Version 0.98d
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.116  2006/03/06 10:29:27  brouard
   **********************************************************************/    (Module): Variance-covariance wrong links and
      varian-covariance of ej. is needed (Saito).
 #include <math.h>  
 #include <stdio.h>    Revision 1.115  2006/02/27 12:17:45  brouard
 #include <stdlib.h>    (Module): One freematrix added in mlikeli! 0.98c
 #include <unistd.h>  
     Revision 1.114  2006/02/26 12:57:58  brouard
 #define MAXLINE 256    (Module): Some improvements in processing parameter
 #define FILENAMELENGTH 80    filename with strsep.
 /*#define DEBUG*/  
 #define windows    Revision 1.113  2006/02/24 14:20:24  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Memory leaks checks with valgrind and:
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.111  2006/01/25 20:38:18  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): Lots of cleaning and bugs added (Gompertz)
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): Comments can be added in data file. Missing date values
 #define MAXN 20000    can be a simple dot '.'.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.110  2006/01/25 00:51:50  brouard
 #define AGEBASE 40    (Module): Lots of cleaning and bugs added (Gompertz)
   
     Revision 1.109  2006/01/24 19:37:15  brouard
 int erreur; /* Error number */    (Module): Comments (lines starting with a #) are allowed in data.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.108  2006/01/19 18:05:42  lievre
 int npar=NPARMAX;    Gnuplot problem appeared...
 int nlstate=2; /* Number of live states */    To be fixed
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.107  2006/01/19 16:20:37  brouard
 int popbased=0;    Test existence of gnuplot in imach path
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.106  2006/01/19 13:24:36  brouard
 int maxwav; /* Maxim number of waves */    Some cleaning and links added in html output
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.105  2006/01/05 20:23:19  lievre
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    *** empty log message ***
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.104  2005/09/30 16:11:43  lievre
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): sump fixed, loop imx fixed, and simplifications.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): If the status is missing at the last wave but we know
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    that the person is alive, then we can code his/her status as -2
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    (instead of missing=-1 in earlier versions) and his/her
 FILE *ficreseij;    contributions to the likelihood is 1 - Prob of dying from last
   char filerese[FILENAMELENGTH];    health status (= 1-p13= p11+p12 in the easiest case of somebody in
  FILE  *ficresvij;    the healthy state at last known wave). Version is 0.98
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.103  2005/09/30 15:54:49  lievre
   char fileresvpl[FILENAMELENGTH];    (Module): sump fixed, loop imx fixed, and simplifications.
   
 #define NR_END 1    Revision 1.102  2004/09/15 17:31:30  brouard
 #define FREE_ARG char*    Add the possibility to read data file including tab characters.
 #define FTOL 1.0e-10  
     Revision 1.101  2004/09/15 10:38:38  brouard
 #define NRANSI    Fix on curr_time
 #define ITMAX 200  
     Revision 1.100  2004/07/12 18:29:06  brouard
 #define TOL 2.0e-4    Add version for Mac OS X. Just define UNIX in Makefile
   
 #define CGOLD 0.3819660    Revision 1.99  2004/06/05 08:57:40  brouard
 #define ZEPS 1.0e-10    *** empty log message ***
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.98  2004/05/16 15:05:56  brouard
 #define GOLD 1.618034    New version 0.97 . First attempt to estimate force of mortality
 #define GLIMIT 100.0    directly from the data i.e. without the need of knowing the health
 #define TINY 1.0e-20    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 static double maxarg1,maxarg2;    other analysis, in order to test if the mortality estimated from the
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    cross-longitudinal survey is different from the mortality estimated
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    from other sources like vital statistic data.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    The same imach parameter file can be used but the option for mle should be -3.
 #define rint(a) floor(a+0.5)  
     Agnès, who wrote this part of the code, tried to keep most of the
 static double sqrarg;    former routines in order to include the new code within the former code.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 int imx;  
 int stepm;    Current limitations:
 /* Stepm, step in month: minimum step interpolation*/    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int m,nb;    B) There is no computation of Life Expectancy nor Life Table.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.97  2004/02/20 13:25:42  lievre
 double **pmmij, ***probs, ***mobaverage;    Version 0.96d. Population forecasting command line is (temporarily)
 double dateintmean=0;    suppressed.
   
 double *weight;    Revision 1.96  2003/07/15 15:38:55  brouard
 int **s; /* Status */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 double *agedc, **covar, idx;    rewritten within the same printf. Workaround: many printfs.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.95  2003/07/08 07:54:34  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    * imach.c (Repository):
 double ftolhess; /* Tolerance for computing hessian */    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name )    Revision 1.94  2003/06/27 13:00:02  brouard
 {    Just cleaning
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
    l1 = strlen( path );                 /* length of path */    exist so I changed back to asctime which exists.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Version 0.96b
    s = strrchr( path, '\\' );           /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.92  2003/06/25 16:30:45  brouard
 #if     defined(__bsd__)                /* get current working directory */    (Module): On windows (cygwin) function asctime_r doesn't
       extern char       *getwd( );    exist so I changed back to asctime which exists.
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.91  2003/06/25 15:30:29  brouard
 #else    * imach.c (Repository): Duplicated warning errors corrected.
       extern char       *getcwd( );    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    is stamped in powell.  We created a new html file for the graphs
 #endif    concerning matrix of covariance. It has extension -cov.htm.
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.90  2003/06/24 12:34:15  brouard
       strcpy( name, path );             /* we've got it */    (Module): Some bugs corrected for windows. Also, when
    } else {                             /* strip direcotry from path */    mle=-1 a template is output in file "or"mypar.txt with the design
       s++;                              /* after this, the filename */    of the covariance matrix to be input.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.89  2003/06/24 12:30:52  brouard
       strcpy( name, s );                /* save file name */    (Module): Some bugs corrected for windows. Also, when
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    mle=-1 a template is output in file "or"mypar.txt with the design
       dirc[l1-l2] = 0;                  /* add zero */    of the covariance matrix to be input.
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.88  2003/06/23 17:54:56  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    return( 0 );                         /* we're done */  
 }    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
   
 /******************************************/    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 void replace(char *s, char*t)    routine fileappend.
 {  
   int i;    Revision 1.85  2003/06/17 13:12:43  brouard
   int lg=20;    * imach.c (Repository): Check when date of death was earlier that
   i=0;    current date of interview. It may happen when the death was just
   lg=strlen(t);    prior to the death. In this case, dh was negative and likelihood
   for(i=0; i<= lg; i++) {    was wrong (infinity). We still send an "Error" but patch by
     (s[i] = t[i]);    assuming that the date of death was just one stepm after the
     if (t[i]== '\\') s[i]='/';    interview.
   }    (Repository): Because some people have very long ID (first column)
 }    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 int nbocc(char *s, char occ)    truncation)
 {    (Repository): No more line truncation errors.
   int i,j=0;  
   int lg=20;    Revision 1.84  2003/06/13 21:44:43  brouard
   i=0;    * imach.c (Repository): Replace "freqsummary" at a correct
   lg=strlen(s);    place. It differs from routine "prevalence" which may be called
   for(i=0; i<= lg; i++) {    many times. Probs is memory consuming and must be used with
   if  (s[i] == occ ) j++;    parcimony.
   }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   return j;  
 }    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.82  2003/06/05 15:57:20  brouard
   int i,lg,j,p=0;    Add log in  imach.c and  fullversion number is now printed.
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  /*
   }     Interpolated Markov Chain
   
   lg=strlen(t);    Short summary of the programme:
   for(j=0; j<p; j++) {    
     (u[j] = t[j]);    This program computes Healthy Life Expectancies from
   }    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
      u[p]='\0';    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
    for(j=0; j<= lg; j++) {    case of a health survey which is our main interest) -2- at least a
     if (j>=(p+1))(v[j-p-1] = t[j]);    second wave of interviews ("longitudinal") which measure each change
   }    (if any) in individual health status.  Health expectancies are
 }    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 /********************** nrerror ********************/    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 void nrerror(char error_text[])    probability to be observed in state j at the second wave
 {    conditional to be observed in state i at the first wave. Therefore
   fprintf(stderr,"ERREUR ...\n");    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   fprintf(stderr,"%s\n",error_text);    'age' is age and 'sex' is a covariate. If you want to have a more
   exit(1);    complex model than "constant and age", you should modify the program
 }    where the markup *Covariates have to be included here again* invites
 /*********************** vector *******************/    you to do it.  More covariates you add, slower the
 double *vector(int nl, int nh)    convergence.
 {  
   double *v;    The advantage of this computer programme, compared to a simple
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    multinomial logistic model, is clear when the delay between waves is not
   if (!v) nrerror("allocation failure in vector");    identical for each individual. Also, if a individual missed an
   return v-nl+NR_END;    intermediate interview, the information is lost, but taken into
 }    account using an interpolation or extrapolation.  
   
 /************************ free vector ******************/    hPijx is the probability to be observed in state i at age x+h
 void free_vector(double*v, int nl, int nh)    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
   free((FREE_ARG)(v+nl-NR_END));    states. This elementary transition (by month, quarter,
 }    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 /************************ivector *******************************/    and the contribution of each individual to the likelihood is simply
 int *ivector(long nl,long nh)    hPijx.
 {  
   int *v;    Also this programme outputs the covariance matrix of the parameters but also
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    of the life expectancies. It also computes the period (stable) prevalence. 
   if (!v) nrerror("allocation failure in ivector");    
   return v-nl+NR_END;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /******************free ivector **************************/    from the European Union.
 void free_ivector(int *v, long nl, long nh)    It is copyrighted identically to a GNU software product, ie programme and
 {    software can be distributed freely for non commercial use. Latest version
   free((FREE_ARG)(v+nl-NR_END));    can be accessed at http://euroreves.ined.fr/imach .
 }  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 /******************* imatrix *******************************/    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int **imatrix(long nrl, long nrh, long ncl, long nch)    
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    **********************************************************************/
 {  /*
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    main
   int **m;    read parameterfile
      read datafile
   /* allocate pointers to rows */    concatwav
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    freqsummary
   if (!m) nrerror("allocation failure 1 in matrix()");    if (mle >= 1)
   m += NR_END;      mlikeli
   m -= nrl;    print results files
      if mle==1 
         computes hessian
   /* allocate rows and set pointers to them */    read end of parameter file: agemin, agemax, bage, fage, estepm
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));        begin-prev-date,...
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    open gnuplot file
   m[nrl] += NR_END;    open html file
   m[nrl] -= ncl;    period (stable) prevalence
       for age prevalim()
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    h Pij x
      variance of p varprob
   /* return pointer to array of pointers to rows */    forecasting if prevfcast==1 prevforecast call prevalence()
   return m;    health expectancies
 }    Variance-covariance of DFLE
     prevalence()
 /****************** free_imatrix *************************/     movingaverage()
 void free_imatrix(m,nrl,nrh,ncl,nch)    varevsij() 
       int **m;    if popbased==1 varevsij(,popbased)
       long nch,ncl,nrh,nrl;    total life expectancies
      /* free an int matrix allocated by imatrix() */    Variance of period (stable) prevalence
 {   end
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  */
   free((FREE_ARG) (m+nrl-NR_END));  
 }  
   
 /******************* matrix *******************************/   
 double **matrix(long nrl, long nrh, long ncl, long nch)  #include <math.h>
 {  #include <stdio.h>
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #include <stdlib.h>
   double **m;  #include <string.h>
   #include <unistd.h>
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  #include <limits.h>
   m += NR_END;  #include <sys/types.h>
   m -= nrl;  #include <sys/stat.h>
   #include <errno.h>
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  extern int errno;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /* #include <sys/time.h> */
   m[nrl] -= ncl;  #include <time.h>
   #include "timeval.h"
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
   
 /*************************free matrix ************************/  #define MAXLINE 256
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  #define GNUPLOTPROGRAM "gnuplot"
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   free((FREE_ARG)(m+nrl-NR_END));  #define FILENAMELENGTH 132
 }  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 /******************* ma3x *******************************/  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   double ***m;  
   #define NINTERVMAX 8
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   if (!m) nrerror("allocation failure 1 in matrix()");  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m += NR_END;  #define NCOVMAX 8 /* Maximum number of covariates */
   m -= nrl;  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define AGESUP 130
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define AGEBASE 40
   m[nrl] += NR_END;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   m[nrl] -= ncl;  #ifdef UNIX
   #define DIRSEPARATOR '/'
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #else
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define DIRSEPARATOR '\\'
   m[nrl][ncl] += NR_END;  #define CHARSEPARATOR "\\"
   m[nrl][ncl] -= nll;  #define ODIRSEPARATOR '/'
   for (j=ncl+1; j<=nch; j++)  #endif
     m[nrl][j]=m[nrl][j-1]+nlay;  
    /* $Id$ */
   for (i=nrl+1; i<=nrh; i++) {  /* $State$ */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
       m[i][j]=m[i][j-1]+nlay;  char fullversion[]="$Revision$ $Date$"; 
   }  char strstart[80];
   return m;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 /*************************free ma3x ************************/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int ndeath=1; /* Number of dead states */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   free((FREE_ARG)(m+nrl-NR_END));  int popbased=0;
 }  
   int *wav; /* Number of waves for this individuual 0 is possible */
 /***************** f1dim *************************/  int maxwav; /* Maxim number of waves */
 extern int ncom;  int jmin, jmax; /* min, max spacing between 2 waves */
 extern double *pcom,*xicom;  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 extern double (*nrfunc)(double []);  int gipmx, gsw; /* Global variables on the number of contributions 
                       to the likelihood and the sum of weights (done by funcone)*/
 double f1dim(double x)  int mle, weightopt;
 {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int j;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   double f;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   double *xt;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
    double jmean; /* Mean space between 2 waves */
   xt=vector(1,ncom);  double **oldm, **newm, **savm; /* Working pointers to matrices */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   f=(*nrfunc)(xt);  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   free_vector(xt,1,ncom);  FILE *ficlog, *ficrespow;
   return f;  int globpr; /* Global variable for printing or not */
 }  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
 /*****************brent *************************/  double sw; /* Sum of weights */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  char filerespow[FILENAMELENGTH];
 {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   int iter;  FILE *ficresilk;
   double a,b,d,etemp;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   double fu,fv,fw,fx;  FILE *ficresprobmorprev;
   double ftemp;  FILE *fichtm, *fichtmcov; /* Html File */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  FILE *ficreseij;
   double e=0.0;  char filerese[FILENAMELENGTH];
    FILE *ficresstdeij;
   a=(ax < cx ? ax : cx);  char fileresstde[FILENAMELENGTH];
   b=(ax > cx ? ax : cx);  FILE *ficrescveij;
   x=w=v=bx;  char filerescve[FILENAMELENGTH];
   fw=fv=fx=(*f)(x);  FILE  *ficresvij;
   for (iter=1;iter<=ITMAX;iter++) {  char fileresv[FILENAMELENGTH];
     xm=0.5*(a+b);  FILE  *ficresvpl;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  char fileresvpl[FILENAMELENGTH];
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char title[MAXLINE];
     printf(".");fflush(stdout);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #ifdef DEBUG  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char command[FILENAMELENGTH];
 #endif  int  outcmd=0;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       return fx;  
     }  char filelog[FILENAMELENGTH]; /* Log file */
     ftemp=fu;  char filerest[FILENAMELENGTH];
     if (fabs(e) > tol1) {  char fileregp[FILENAMELENGTH];
       r=(x-w)*(fx-fv);  char popfile[FILENAMELENGTH];
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       q=fabs(q);  struct timezone tzp;
       etemp=e;  extern int gettimeofday();
       e=d;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  long time_value;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  extern long time();
       else {  char strcurr[80], strfor[80];
         d=p/q;  
         u=x+d;  char *endptr;
         if (u-a < tol2 || b-u < tol2)  long lval;
           d=SIGN(tol1,xm-x);  double dval;
       }  
     } else {  #define NR_END 1
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define FREE_ARG char*
     }  #define FTOL 1.0e-10
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  #define NRANSI 
     if (fu <= fx) {  #define ITMAX 200 
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  #define TOL 2.0e-4 
         SHFT(fv,fw,fx,fu)  
         } else {  #define CGOLD 0.3819660 
           if (u < x) a=u; else b=u;  #define ZEPS 1.0e-10 
           if (fu <= fw || w == x) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
             v=w;  
             w=u;  #define GOLD 1.618034 
             fv=fw;  #define GLIMIT 100.0 
             fw=fu;  #define TINY 1.0e-20 
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  static double maxarg1,maxarg2;
             fv=fu;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
           }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
         }    
   }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   nrerror("Too many iterations in brent");  #define rint(a) floor(a+0.5)
   *xmin=x;  
   return fx;  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 /****************** mnbrak ***********************/  int agegomp= AGEGOMP;
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int imx; 
             double (*func)(double))  int stepm=1;
 {  /* Stepm, step in month: minimum step interpolation*/
   double ulim,u,r,q, dum;  
   double fu;  int estepm;
    /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  int m,nb;
   if (*fb > *fa) {  long *num;
     SHFT(dum,*ax,*bx,dum)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       SHFT(dum,*fb,*fa,dum)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       }  double **pmmij, ***probs;
   *cx=(*bx)+GOLD*(*bx-*ax);  double *ageexmed,*agecens;
   *fc=(*func)(*cx);  double dateintmean=0;
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  double *weight;
     q=(*bx-*cx)*(*fb-*fa);  int **s; /* Status */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  double *agedc, **covar, idx;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  double *lsurv, *lpop, *tpop;
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  double ftolhess; /* Tolerance for computing hessian */
       fu=(*func)(u);  
       if (fu < *fc) {  /**************** split *************************/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
           SHFT(*fb,*fc,fu,(*func)(u))  {
           }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       u=ulim;    */ 
       fu=(*func)(u);    char  *ss;                            /* pointer */
     } else {    int   l1, l2;                         /* length counters */
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);    l1 = strlen(path );                   /* length of path */
     }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     SHFT(*ax,*bx,*cx,u)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       SHFT(*fa,*fb,*fc,fu)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       }      strcpy( name, path );               /* we got the fullname name because no directory */
 }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 /*************** linmin ************************/      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
 int ncom;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 double *pcom,*xicom;        return( GLOCK_ERROR_GETCWD );
 double (*nrfunc)(double []);      }
        /* got dirc from getcwd*/
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      printf(" DIRC = %s \n",dirc);
 {    } else {                              /* strip direcotry from path */
   double brent(double ax, double bx, double cx,      ss++;                               /* after this, the filename */
                double (*f)(double), double tol, double *xmin);      l2 = strlen( ss );                  /* length of filename */
   double f1dim(double x);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      strcpy( name, ss );         /* save file name */
               double *fc, double (*func)(double));      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   int j;      dirc[l1-l2] = 0;                    /* add zero */
   double xx,xmin,bx,ax;      printf(" DIRC2 = %s \n",dirc);
   double fx,fb,fa;    }
      /* We add a separator at the end of dirc if not exists */
   ncom=n;    l1 = strlen( dirc );                  /* length of directory */
   pcom=vector(1,n);    if( dirc[l1-1] != DIRSEPARATOR ){
   xicom=vector(1,n);      dirc[l1] =  DIRSEPARATOR;
   nrfunc=func;      dirc[l1+1] = 0; 
   for (j=1;j<=n;j++) {      printf(" DIRC3 = %s \n",dirc);
     pcom[j]=p[j];    }
     xicom[j]=xi[j];    ss = strrchr( name, '.' );            /* find last / */
   }    if (ss >0){
   ax=0.0;      ss++;
   xx=1.0;      strcpy(ext,ss);                     /* save extension */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      l1= strlen( name);
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      l2= strlen(ss)+1;
 #ifdef DEBUG      strncpy( finame, name, l1-l2);
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      finame[l1-l2]= 0;
 #endif    }
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;    return( 0 );                          /* we're done */
     p[j] += xi[j];  }
   }  
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  /******************************************/
 }  
   void replace_back_to_slash(char *s, char*t)
 /*************** powell ************************/  {
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    int i;
             double (*func)(double []))    int lg=0;
 {    i=0;
   void linmin(double p[], double xi[], int n, double *fret,    lg=strlen(t);
               double (*func)(double []));    for(i=0; i<= lg; i++) {
   int i,ibig,j;      (s[i] = t[i]);
   double del,t,*pt,*ptt,*xit;      if (t[i]== '\\') s[i]='/';
   double fp,fptt;    }
   double *xits;  }
   pt=vector(1,n);  
   ptt=vector(1,n);  int nbocc(char *s, char occ)
   xit=vector(1,n);  {
   xits=vector(1,n);    int i,j=0;
   *fret=(*func)(p);    int lg=20;
   for (j=1;j<=n;j++) pt[j]=p[j];    i=0;
   for (*iter=1;;++(*iter)) {    lg=strlen(s);
     fp=(*fret);    for(i=0; i<= lg; i++) {
     ibig=0;    if  (s[i] == occ ) j++;
     del=0.0;    }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    return j;
     for (i=1;i<=n;i++)  }
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  void cutv(char *u,char *v, char*t, char occ)
     for (i=1;i<=n;i++) {  {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       fptt=(*fret);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 #ifdef DEBUG       gives u="abcedf" and v="ghi2j" */
       printf("fret=%lf \n",*fret);    int i,lg,j,p=0;
 #endif    i=0;
       printf("%d",i);fflush(stdout);    for(j=0; j<=strlen(t)-1; j++) {
       linmin(p,xit,n,fret,func);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       if (fabs(fptt-(*fret)) > del) {    }
         del=fabs(fptt-(*fret));  
         ibig=i;    lg=strlen(t);
       }    for(j=0; j<p; j++) {
 #ifdef DEBUG      (u[j] = t[j]);
       printf("%d %.12e",i,(*fret));    }
       for (j=1;j<=n;j++) {       u[p]='\0';
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);     for(j=0; j<= lg; j++) {
       }      if (j>=(p+1))(v[j-p-1] = t[j]);
       for(j=1;j<=n;j++)    }
         printf(" p=%.12e",p[j]);  }
       printf("\n");  
 #endif  /********************** nrerror ********************/
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  void nrerror(char error_text[])
 #ifdef DEBUG  {
       int k[2],l;    fprintf(stderr,"ERREUR ...\n");
       k[0]=1;    fprintf(stderr,"%s\n",error_text);
       k[1]=-1;    exit(EXIT_FAILURE);
       printf("Max: %.12e",(*func)(p));  }
       for (j=1;j<=n;j++)  /*********************** vector *******************/
         printf(" %.12e",p[j]);  double *vector(int nl, int nh)
       printf("\n");  {
       for(l=0;l<=1;l++) {    double *v;
         for (j=1;j<=n;j++) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    if (!v) nrerror("allocation failure in vector");
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    return v-nl+NR_END;
         }  }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  /************************ free vector ******************/
 #endif  void free_vector(double*v, int nl, int nh)
   {
     free((FREE_ARG)(v+nl-NR_END));
       free_vector(xit,1,n);  }
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  /************************ivector *******************************/
       free_vector(pt,1,n);  int *ivector(long nl,long nh)
       return;  {
     }    int *v;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     for (j=1;j<=n;j++) {    if (!v) nrerror("allocation failure in ivector");
       ptt[j]=2.0*p[j]-pt[j];    return v-nl+NR_END;
       xit[j]=p[j]-pt[j];  }
       pt[j]=p[j];  
     }  /******************free ivector **************************/
     fptt=(*func)(ptt);  void free_ivector(int *v, long nl, long nh)
     if (fptt < fp) {  {
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    free((FREE_ARG)(v+nl-NR_END));
       if (t < 0.0) {  }
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  /************************lvector *******************************/
           xi[j][ibig]=xi[j][n];  long *lvector(long nl,long nh)
           xi[j][n]=xit[j];  {
         }    long *v;
 #ifdef DEBUG    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    if (!v) nrerror("allocation failure in ivector");
         for(j=1;j<=n;j++)    return v-nl+NR_END;
           printf(" %.12e",xit[j]);  }
         printf("\n");  
 #endif  /******************free lvector **************************/
       }  void free_lvector(long *v, long nl, long nh)
     }  {
   }    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /**** Prevalence limit ****************/  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 {  { 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
      matrix by transitions matrix until convergence is reached */    int **m; 
     
   int i, ii,j,k;    /* allocate pointers to rows */ 
   double min, max, maxmin, maxmax,sumnew=0.;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   double **matprod2();    if (!m) nrerror("allocation failure 1 in matrix()"); 
   double **out, cov[NCOVMAX], **pmij();    m += NR_END; 
   double **newm;    m -= nrl; 
   double agefin, delaymax=50 ; /* Max number of years to converge */    
     
   for (ii=1;ii<=nlstate+ndeath;ii++)    /* allocate rows and set pointers to them */ 
     for (j=1;j<=nlstate+ndeath;j++){    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     }    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
    cov[1]=1.;    
      for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    /* return pointer to array of pointers to rows */ 
     newm=savm;    return m; 
     /* Covariates have to be included here again */  } 
      cov[2]=agefin;  
    /****************** free_imatrix *************************/
       for (k=1; k<=cptcovn;k++) {  void free_imatrix(m,nrl,nrh,ncl,nch)
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        int **m;
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/        long nch,ncl,nrh,nrl; 
       }       /* free an int matrix allocated by imatrix() */ 
       for (k=1; k<=cptcovage;k++)  { 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       for (k=1; k<=cptcovprod;k++)    free((FREE_ARG) (m+nrl-NR_END)); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  } 
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /******************* matrix *******************************/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
     savm=oldm;  
     oldm=newm;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     maxmax=0.;    if (!m) nrerror("allocation failure 1 in matrix()");
     for(j=1;j<=nlstate;j++){    m += NR_END;
       min=1.;    m -= nrl;
       max=0.;  
       for(i=1; i<=nlstate; i++) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         sumnew=0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    m[nrl] += NR_END;
         prlim[i][j]= newm[i][j]/(1-sumnew);    m[nrl] -= ncl;
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       }    return m;
       maxmin=max-min;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       maxmax=FMAX(maxmax,maxmin);     */
     }  }
     if(maxmax < ftolpl){  
       return prlim;  /*************************free matrix ************************/
     }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   }  {
 }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 /*************** transition probabilities ***************/  }
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /******************* ma3x *******************************/
 {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double s1, s2;  {
   /*double t34;*/    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   int i,j,j1, nc, ii, jj;    double ***m;
   
     for(i=1; i<= nlstate; i++){    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(j=1; j<i;j++){    if (!m) nrerror("allocation failure 1 in matrix()");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m += NR_END;
         /*s2 += param[i][j][nc]*cov[nc];*/    m -= nrl;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       ps[i][j]=s2;    m[nrl] += NR_END;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    m[nrl] -= ncl;
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       }    m[nrl][ncl] += NR_END;
       ps[i][j]=(s2);    m[nrl][ncl] -= nll;
     }    for (j=ncl+1; j<=nch; j++) 
   }      m[nrl][j]=m[nrl][j-1]+nlay;
     /*ps[3][2]=1;*/    
     for (i=nrl+1; i<=nrh; i++) {
   for(i=1; i<= nlstate; i++){      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
      s1=0;      for (j=ncl+1; j<=nch; j++) 
     for(j=1; j<i; j++)        m[i][j]=m[i][j-1]+nlay;
       s1+=exp(ps[i][j]);    }
     for(j=i+1; j<=nlstate+ndeath; j++)    return m; 
       s1+=exp(ps[i][j]);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     ps[i][i]=1./(s1+1.);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     for(j=1; j<i; j++)    */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  }
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*************************free ma3x ************************/
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   } /* end i */  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for(jj=1; jj<= nlstate+ndeath; jj++){    free((FREE_ARG)(m+nrl-NR_END));
       ps[ii][jj]=0;  }
       ps[ii][ii]=1;  
     }  /*************** function subdirf ***********/
   }  char *subdirf(char fileres[])
   {
     /* Caution optionfilefiname is hidden */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    strcpy(tmpout,optionfilefiname);
     for(jj=1; jj<= nlstate+ndeath; jj++){    strcat(tmpout,"/"); /* Add to the right */
      printf("%lf ",ps[ii][jj]);    strcat(tmpout,fileres);
    }    return tmpout;
     printf("\n ");  }
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  /*************** function subdirf2 ***********/
 /*  char *subdirf2(char fileres[], char *preop)
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  {
   goto end;*/    
     return ps;    /* Caution optionfilefiname is hidden */
 }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 /**************** Product of 2 matrices ******************/    strcat(tmpout,preop);
     strcat(tmpout,fileres);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    return tmpout;
 {  }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /*************** function subdirf3 ***********/
   /* in, b, out are matrice of pointers which should have been initialized  char *subdirf3(char fileres[], char *preop, char *preop2)
      before: only the contents of out is modified. The function returns  {
      a pointer to pointers identical to out */    
   long i, j, k;    /* Caution optionfilefiname is hidden */
   for(i=nrl; i<= nrh; i++)    strcpy(tmpout,optionfilefiname);
     for(k=ncolol; k<=ncoloh; k++)    strcat(tmpout,"/");
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    strcat(tmpout,preop);
         out[i][k] +=in[i][j]*b[j][k];    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
   return out;    return tmpout;
 }  }
   
   /***************** f1dim *************************/
 /************* Higher Matrix Product ***************/  extern int ncom; 
   extern double *pcom,*xicom;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  extern double (*nrfunc)(double []); 
 {   
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  double f1dim(double x) 
      duration (i.e. until  { 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    int j; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    double f;
      (typically every 2 years instead of every month which is too big).    double *xt; 
      Model is determined by parameters x and covariates have to be   
      included manually here.    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
      */    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
   int i, j, d, h, k;    return f; 
   double **out, cov[NCOVMAX];  } 
   double **newm;  
   /*****************brent *************************/
   /* Hstepm could be zero and should return the unit matrix */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   for (i=1;i<=nlstate+ndeath;i++)  { 
     for (j=1;j<=nlstate+ndeath;j++){    int iter; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double a,b,d,etemp;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double fu,fv,fw,fx;
     }    double ftemp;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   for(h=1; h <=nhstepm; h++){    double e=0.0; 
     for(d=1; d <=hstepm; d++){   
       newm=savm;    a=(ax < cx ? ax : cx); 
       /* Covariates have to be included here again */    b=(ax > cx ? ax : cx); 
       cov[1]=1.;    x=w=v=bx; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    fw=fv=fx=(*f)(x); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    for (iter=1;iter<=ITMAX;iter++) { 
       for (k=1; k<=cptcovage;k++)      xm=0.5*(a+b); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       for (k=1; k<=cptcovprod;k++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  #endif
       savm=oldm;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       oldm=newm;        *xmin=x; 
     }        return fx; 
     for(i=1; i<=nlstate+ndeath; i++)      } 
       for(j=1;j<=nlstate+ndeath;j++) {      ftemp=fu;
         po[i][j][h]=newm[i][j];      if (fabs(e) > tol1) { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        r=(x-w)*(fx-fv); 
          */        q=(x-v)*(fx-fw); 
       }        p=(x-v)*q-(x-w)*r; 
   } /* end h */        q=2.0*(q-r); 
   return po;        if (q > 0.0) p = -p; 
 }        q=fabs(q); 
         etemp=e; 
         e=d; 
 /*************** log-likelihood *************/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 double func( double *x)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {        else { 
   int i, ii, j, k, mi, d, kk;          d=p/q; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          u=x+d; 
   double **out;          if (u-a < tol2 || b-u < tol2) 
   double sw; /* Sum of weights */            d=SIGN(tol1,xm-x); 
   double lli; /* Individual log likelihood */        } 
   long ipmx;      } else { 
   /*extern weight */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   /* We are differentiating ll according to initial status */      } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   /*for(i=1;i<imx;i++)      fu=(*f)(u); 
     printf(" %d\n",s[4][i]);      if (fu <= fx) { 
   */        if (u >= x) a=x; else b=x; 
   cov[1]=1.;        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
   for(k=1; k<=nlstate; k++) ll[k]=0.;          } else { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){            if (u < x) a=u; else b=u; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            if (fu <= fw || w == x) { 
     for(mi=1; mi<= wav[i]-1; mi++){              v=w; 
       for (ii=1;ii<=nlstate+ndeath;ii++)              w=u; 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);              fv=fw; 
       for(d=0; d<dh[mi][i]; d++){              fw=fu; 
         newm=savm;            } else if (fu <= fv || v == x || v == w) { 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              v=u; 
         for (kk=1; kk<=cptcovage;kk++) {              fv=fu; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            } 
         }          } 
            } 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    nrerror("Too many iterations in brent"); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    *xmin=x; 
         savm=oldm;    return fx; 
         oldm=newm;  } 
          
          /****************** mnbrak ***********************/
       } /* end mult */  
        void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);              double (*func)(double)) 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  { 
       ipmx +=1;    double ulim,u,r,q, dum;
       sw += weight[i];    double fu; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;   
     } /* end of wave */    *fa=(*func)(*ax); 
   } /* end of individual */    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      SHFT(dum,*ax,*bx,dum) 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        SHFT(dum,*fb,*fa,dum) 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        } 
   return -l;    *cx=(*bx)+GOLD*(*bx-*ax); 
 }    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
 /*********** Maximum Likelihood Estimation ***************/      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   int i,j, iter;      if ((*bx-u)*(u-*cx) > 0.0) { 
   double **xi,*delti;        fu=(*func)(u); 
   double fret;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   xi=matrix(1,npar,1,npar);        fu=(*func)(u); 
   for (i=1;i<=npar;i++)        if (fu < *fc) { 
     for (j=1;j<=npar;j++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       xi[i][j]=(i==j ? 1.0 : 0.0);            SHFT(*fb,*fc,fu,(*func)(u)) 
   printf("Powell\n");            } 
   powell(p,xi,npar,ftol,&iter,&fret,func);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        fu=(*func)(u); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
 }        fu=(*func)(u); 
       } 
 /**** Computes Hessian and covariance matrix ***/      SHFT(*ax,*bx,*cx,u) 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        SHFT(*fa,*fb,*fc,fu) 
 {        } 
   double  **a,**y,*x,pd;  } 
   double **hess;  
   int i, j,jk;  /*************** linmin ************************/
   int *indx;  
   int ncom; 
   double hessii(double p[], double delta, int theta, double delti[]);  double *pcom,*xicom;
   double hessij(double p[], double delti[], int i, int j);  double (*nrfunc)(double []); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;   
   void ludcmp(double **a, int npar, int *indx, double *d) ;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   hess=matrix(1,npar,1,npar);    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
   printf("\nCalculation of the hessian matrix. Wait...\n");    double f1dim(double x); 
   for (i=1;i<=npar;i++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     printf("%d",i);fflush(stdout);                double *fc, double (*func)(double)); 
     hess[i][i]=hessii(p,ftolhess,i,delti);    int j; 
     /*printf(" %f ",p[i]);*/    double xx,xmin,bx,ax; 
     /*printf(" %lf ",hess[i][i]);*/    double fx,fb,fa;
   }   
      ncom=n; 
   for (i=1;i<=npar;i++) {    pcom=vector(1,n); 
     for (j=1;j<=npar;j++)  {    xicom=vector(1,n); 
       if (j>i) {    nrfunc=func; 
         printf(".%d%d",i,j);fflush(stdout);    for (j=1;j<=n;j++) { 
         hess[i][j]=hessij(p,delti,i,j);      pcom[j]=p[j]; 
         hess[j][i]=hess[i][j];          xicom[j]=xi[j]; 
         /*printf(" %lf ",hess[i][j]);*/    } 
       }    ax=0.0; 
     }    xx=1.0; 
   }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   printf("\n");    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   a=matrix(1,npar,1,npar);  #endif
   y=matrix(1,npar,1,npar);    for (j=1;j<=n;j++) { 
   x=vector(1,npar);      xi[j] *= xmin; 
   indx=ivector(1,npar);      p[j] += xi[j]; 
   for (i=1;i<=npar;i++)    } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    free_vector(xicom,1,n); 
   ludcmp(a,npar,indx,&pd);    free_vector(pcom,1,n); 
   } 
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  char *asc_diff_time(long time_sec, char ascdiff[])
     x[j]=1;  {
     lubksb(a,npar,indx,x);    long sec_left, days, hours, minutes;
     for (i=1;i<=npar;i++){    days = (time_sec) / (60*60*24);
       matcov[i][j]=x[i];    sec_left = (time_sec) % (60*60*24);
     }    hours = (sec_left) / (60*60) ;
   }    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
   printf("\n#Hessian matrix#\n");    sec_left = (sec_left) % (60);
   for (i=1;i<=npar;i++) {    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     for (j=1;j<=npar;j++) {    return ascdiff;
       printf("%.3e ",hess[i][j]);  }
     }  
     printf("\n");  /*************** powell ************************/
   }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
   /* Recompute Inverse */  { 
   for (i=1;i<=npar;i++)    void linmin(double p[], double xi[], int n, double *fret, 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];                double (*func)(double [])); 
   ludcmp(a,npar,indx,&pd);    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
   /*  printf("\n#Hessian matrix recomputed#\n");    double fp,fptt;
     double *xits;
   for (j=1;j<=npar;j++) {    int niterf, itmp;
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    pt=vector(1,n); 
     lubksb(a,npar,indx,x);    ptt=vector(1,n); 
     for (i=1;i<=npar;i++){    xit=vector(1,n); 
       y[i][j]=x[i];    xits=vector(1,n); 
       printf("%.3e ",y[i][j]);    *fret=(*func)(p); 
     }    for (j=1;j<=n;j++) pt[j]=p[j]; 
     printf("\n");    for (*iter=1;;++(*iter)) { 
   }      fp=(*fret); 
   */      ibig=0; 
       del=0.0; 
   free_matrix(a,1,npar,1,npar);      last_time=curr_time;
   free_matrix(y,1,npar,1,npar);      (void) gettimeofday(&curr_time,&tzp);
   free_vector(x,1,npar);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   free_ivector(indx,1,npar);      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   free_matrix(hess,1,npar,1,npar);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       */
      for (i=1;i<=n;i++) {
 }        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
 /*************** hessian matrix ****************/        fprintf(ficrespow," %.12lf", p[i]);
 double hessii( double x[], double delta, int theta, double delti[])      }
 {      printf("\n");
   int i;      fprintf(ficlog,"\n");
   int l=1, lmax=20;      fprintf(ficrespow,"\n");fflush(ficrespow);
   double k1,k2;      if(*iter <=3){
   double p2[NPARMAX+1];        tm = *localtime(&curr_time.tv_sec);
   double res;        strcpy(strcurr,asctime(&tm));
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  /*       asctime_r(&tm,strcurr); */
   double fx;        forecast_time=curr_time; 
   int k=0,kmax=10;        itmp = strlen(strcurr);
   double l1;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
   fx=func(x);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=npar;i++) p2[i]=x[i];        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for(l=0 ; l <=lmax; l++){        for(niterf=10;niterf<=30;niterf+=10){
     l1=pow(10,l);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     delts=delt;          tmf = *localtime(&forecast_time.tv_sec);
     for(k=1 ; k <kmax; k=k+1){  /*      asctime_r(&tmf,strfor); */
       delt = delta*(l1*k);          strcpy(strfor,asctime(&tmf));
       p2[theta]=x[theta] +delt;          itmp = strlen(strfor);
       k1=func(p2)-fx;          if(strfor[itmp-1]=='\n')
       p2[theta]=x[theta]-delt;          strfor[itmp-1]='\0';
       k2=func(p2)-fx;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       /*res= (k1-2.0*fx+k2)/delt/delt; */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        }
            }
 #ifdef DEBUG      for (i=1;i<=n;i++) { 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 #endif        fptt=(*fret); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  #ifdef DEBUG
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        printf("fret=%lf \n",*fret);
         k=kmax;        fprintf(ficlog,"fret=%lf \n",*fret);
       }  #endif
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        printf("%d",i);fflush(stdout);
         k=kmax; l=lmax*10.;        fprintf(ficlog,"%d",i);fflush(ficlog);
       }        linmin(p,xit,n,fret,func); 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        if (fabs(fptt-(*fret)) > del) { 
         delts=delt;          del=fabs(fptt-(*fret)); 
       }          ibig=i; 
     }        } 
   }  #ifdef DEBUG
   delti[theta]=delts;        printf("%d %.12e",i,(*fret));
   return res;        fprintf(ficlog,"%d %.12e",i,(*fret));
          for (j=1;j<=n;j++) {
 }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
 double hessij( double x[], double delti[], int thetai,int thetaj)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 {        }
   int i;        for(j=1;j<=n;j++) {
   int l=1, l1, lmax=20;          printf(" p=%.12e",p[j]);
   double k1,k2,k3,k4,res,fx;          fprintf(ficlog," p=%.12e",p[j]);
   double p2[NPARMAX+1];        }
   int k;        printf("\n");
         fprintf(ficlog,"\n");
   fx=func(x);  #endif
   for (k=1; k<=2; k++) {      } 
     for (i=1;i<=npar;i++) p2[i]=x[i];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     p2[thetai]=x[thetai]+delti[thetai]/k;  #ifdef DEBUG
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        int k[2],l;
     k1=func(p2)-fx;        k[0]=1;
          k[1]=-1;
     p2[thetai]=x[thetai]+delti[thetai]/k;        printf("Max: %.12e",(*func)(p));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        fprintf(ficlog,"Max: %.12e",(*func)(p));
     k2=func(p2)-fx;        for (j=1;j<=n;j++) {
            printf(" %.12e",p[j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;          fprintf(ficlog," %.12e",p[j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        }
     k3=func(p2)-fx;        printf("\n");
          fprintf(ficlog,"\n");
     p2[thetai]=x[thetai]-delti[thetai]/k;        for(l=0;l<=1;l++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          for (j=1;j<=n;j++) {
     k4=func(p2)-fx;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 #ifdef DEBUG            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          }
 #endif          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   return res;        }
 }  #endif
   
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)        free_vector(xit,1,n); 
 {        free_vector(xits,1,n); 
   int i,imax,j,k;        free_vector(ptt,1,n); 
   double big,dum,sum,temp;        free_vector(pt,1,n); 
   double *vv;        return; 
        } 
   vv=vector(1,n);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   *d=1.0;      for (j=1;j<=n;j++) { 
   for (i=1;i<=n;i++) {        ptt[j]=2.0*p[j]-pt[j]; 
     big=0.0;        xit[j]=p[j]-pt[j]; 
     for (j=1;j<=n;j++)        pt[j]=p[j]; 
       if ((temp=fabs(a[i][j])) > big) big=temp;      } 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      fptt=(*func)(ptt); 
     vv[i]=1.0/big;      if (fptt < fp) { 
   }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   for (j=1;j<=n;j++) {        if (t < 0.0) { 
     for (i=1;i<j;i++) {          linmin(p,xit,n,fret,func); 
       sum=a[i][j];          for (j=1;j<=n;j++) { 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            xi[j][ibig]=xi[j][n]; 
       a[i][j]=sum;            xi[j][n]=xit[j]; 
     }          }
     big=0.0;  #ifdef DEBUG
     for (i=j;i<=n;i++) {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       sum=a[i][j];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for (k=1;k<j;k++)          for(j=1;j<=n;j++){
         sum -= a[i][k]*a[k][j];            printf(" %.12e",xit[j]);
       a[i][j]=sum;            fprintf(ficlog," %.12e",xit[j]);
       if ( (dum=vv[i]*fabs(sum)) >= big) {          }
         big=dum;          printf("\n");
         imax=i;          fprintf(ficlog,"\n");
       }  #endif
     }        }
     if (j != imax) {      } 
       for (k=1;k<=n;k++) {    } 
         dum=a[imax][k];  } 
         a[imax][k]=a[j][k];  
         a[j][k]=dum;  /**** Prevalence limit (stable or period prevalence)  ****************/
       }  
       *d = -(*d);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       vv[imax]=vv[j];  {
     }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     indx[j]=imax;       matrix by transitions matrix until convergence is reached */
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {    int i, ii,j,k;
       dum=1.0/(a[j][j]);    double min, max, maxmin, maxmax,sumnew=0.;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    double **matprod2();
     }    double **out, cov[NCOVMAX], **pmij();
   }    double **newm;
   free_vector(vv,1,n);  /* Doesn't work */    double agefin, delaymax=50 ; /* Max number of years to converge */
 ;  
 }    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
 void lubksb(double **a, int n, int *indx, double b[])        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {      }
   int i,ii=0,ip,j;  
   double sum;     cov[1]=1.;
     
   for (i=1;i<=n;i++) {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     ip=indx[i];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     sum=b[ip];      newm=savm;
     b[ip]=b[i];      /* Covariates have to be included here again */
     if (ii)       cov[2]=agefin;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    
     else if (sum) ii=i;        for (k=1; k<=cptcovn;k++) {
     b[i]=sum;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   for (i=n;i>=1;i--) {        }
     sum=b[i];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for (k=1; k<=cptcovprod;k++)
     b[i]=sum/a[i][i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }  
 }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 /************ Frequencies ********************/        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 {  /* Some frequencies */  
        savm=oldm;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      oldm=newm;
   double ***freq; /* Frequencies */      maxmax=0.;
   double *pp;      for(j=1;j<=nlstate;j++){
   double pos, k2, dateintsum=0,k2cpt=0;        min=1.;
   FILE *ficresp;        max=0.;
   char fileresp[FILENAMELENGTH];        for(i=1; i<=nlstate; i++) {
           sumnew=0;
   pp=vector(1,nlstate);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          prlim[i][j]= newm[i][j]/(1-sumnew);
   strcpy(fileresp,"p");          max=FMAX(max,prlim[i][j]);
   strcat(fileresp,fileres);          min=FMIN(min,prlim[i][j]);
   if((ficresp=fopen(fileresp,"w"))==NULL) {        }
     printf("Problem with prevalence resultfile: %s\n", fileresp);        maxmin=max-min;
     exit(0);        maxmax=FMAX(maxmax,maxmin);
   }      }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      if(maxmax < ftolpl){
   j1=0;        return prlim;
       }
   j=cptcoveff;    }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  }
   
   for(k1=1; k1<=j;k1++){  /*************** transition probabilities ***************/ 
    for(i1=1; i1<=ncodemax[k1];i1++){  
        j1++;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  {
          scanf("%d", i);*/    double s1, s2;
         for (i=-1; i<=nlstate+ndeath; i++)      /*double t34;*/
          for (jk=-1; jk<=nlstate+ndeath; jk++)      int i,j,j1, nc, ii, jj;
            for(m=agemin; m <= agemax+3; m++)  
              freq[i][jk][m]=0;      for(i=1; i<= nlstate; i++){
         for(j=1; j<i;j++){
         dateintsum=0;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         k2cpt=0;            /*s2 += param[i][j][nc]*cov[nc];*/
        for (i=1; i<=imx; i++) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
          bool=1;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
          if  (cptcovn>0) {          }
            for (z1=1; z1<=cptcoveff; z1++)          ps[i][j]=s2;
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
                bool=0;        }
          }        for(j=i+1; j<=nlstate+ndeath;j++){
          if (bool==1) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
            for(m=firstpass; m<=lastpass; m++){            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
              k2=anint[m][i]+(mint[m][i]/12.);  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
              if ((k2>=dateprev1) && (k2<=dateprev2)) {          }
                if(agev[m][i]==0) agev[m][i]=agemax+1;          ps[i][j]=s2;
                if(agev[m][i]==1) agev[m][i]=agemax+2;        }
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      }
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      /*ps[3][2]=1;*/
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      
                  dateintsum=dateintsum+k2;      for(i=1; i<= nlstate; i++){
                  k2cpt++;        s1=0;
                }        for(j=1; j<i; j++)
           s1+=exp(ps[i][j]);
              }        for(j=i+1; j<=nlstate+ndeath; j++)
            }          s1+=exp(ps[i][j]);
          }        ps[i][i]=1./(s1+1.);
        }        for(j=1; j<i; j++)
         if  (cptcovn>0) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
          fprintf(ficresp, "\n#********** Variable ");        for(j=i+1; j<=nlstate+ndeath; j++)
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          ps[i][j]= exp(ps[i][j])*ps[i][i];
        fprintf(ficresp, "**********\n#");        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         }      } /* end i */
        for(i=1; i<=nlstate;i++)      
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
        fprintf(ficresp, "\n");        for(jj=1; jj<= nlstate+ndeath; jj++){
                  ps[ii][jj]=0;
   for(i=(int)agemin; i <= (int)agemax+3; i++){          ps[ii][ii]=1;
     if(i==(int)agemax+3)        }
       printf("Total");      }
     else      
       printf("Age %d", i);  
     for(jk=1; jk <=nlstate ; jk++){  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         pp[jk] += freq[jk][m][i];  /*         printf("ddd %lf ",ps[ii][jj]); */
     }  /*       } */
     for(jk=1; jk <=nlstate ; jk++){  /*       printf("\n "); */
       for(m=-1, pos=0; m <=0 ; m++)  /*        } */
         pos += freq[jk][m][i];  /*        printf("\n ");printf("%lf ",cov[2]); */
       if(pp[jk]>=1.e-10)         /*
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       else        goto end;*/
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      return ps;
     }  }
   
      for(jk=1; jk <=nlstate ; jk++){  /**************** Product of 2 matrices ******************/
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
         pp[jk] += freq[jk][m][i];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
      }  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     for(jk=1,pos=0; jk <=nlstate ; jk++)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       pos += pp[jk];    /* in, b, out are matrice of pointers which should have been initialized 
     for(jk=1; jk <=nlstate ; jk++){       before: only the contents of out is modified. The function returns
       if(pos>=1.e-5)       a pointer to pointers identical to out */
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    long i, j, k;
       else    for(i=nrl; i<= nrh; i++)
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      for(k=ncolol; k<=ncoloh; k++)
       if( i <= (int) agemax){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         if(pos>=1.e-5){          out[i][k] +=in[i][j]*b[j][k];
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
           probs[i][jk][j1]= pp[jk]/pos;    return out;
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  }
         }  
       else  
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  /************* Higher Matrix Product ***************/
       }  
     }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     for(jk=-1; jk <=nlstate+ndeath; jk++)  {
       for(m=-1; m <=nlstate+ndeath; m++)    /* Computes the transition matrix starting at age 'age' over 
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);       'nhstepm*hstepm*stepm' months (i.e. until
     if(i <= (int) agemax)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       fprintf(ficresp,"\n");       nhstepm*hstepm matrices. 
     printf("\n");       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     }       (typically every 2 years instead of every month which is too big 
     }       for the memory).
  }       Model is determined by parameters x and covariates have to be 
   dateintmean=dateintsum/k2cpt;       included manually here. 
    
   fclose(ficresp);       */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
   /* End of Freq */    double **newm;
 }  
     /* Hstepm could be zero and should return the unit matrix */
 /************ Prevalence ********************/    for (i=1;i<=nlstate+ndeath;i++)
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      for (j=1;j<=nlstate+ndeath;j++){
 {  /* Some frequencies */        oldm[i][j]=(i==j ? 1.0 : 0.0);
          po[i][j][0]=(i==j ? 1.0 : 0.0);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      }
   double ***freq; /* Frequencies */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double *pp;    for(h=1; h <=nhstepm; h++){
   double pos, k2;      for(d=1; d <=hstepm; d++){
         newm=savm;
   pp=vector(1,nlstate);        /* Covariates have to be included here again */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        cov[1]=1.;
          cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   j1=0;        for (k=1; k<=cptcovage;k++)
            cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   j=cptcoveff;        for (k=1; k<=cptcovprod;k++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
  for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       j1++;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       for (i=-1; i<=nlstate+ndeath; i++)                       pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (jk=-1; jk<=nlstate+ndeath; jk++)          savm=oldm;
           for(m=agemin; m <= agemax+3; m++)        oldm=newm;
             freq[i][jk][m]=0;      }
            for(i=1; i<=nlstate+ndeath; i++)
       for (i=1; i<=imx; i++) {        for(j=1;j<=nlstate+ndeath;j++) {
         bool=1;          po[i][j][h]=newm[i][j];
         if  (cptcovn>0) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
           for (z1=1; z1<=cptcoveff; z1++)           */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        }
               bool=0;    } /* end h */
         }    return po;
         if (bool==1) {  }
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /*************** log-likelihood *************/
               if(agev[m][i]==0) agev[m][i]=agemax+1;  double func( double *x)
               if(agev[m][i]==1) agev[m][i]=agemax+2;  {
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    int i, ii, j, k, mi, d, kk;
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];      double l, ll[NLSTATEMAX], cov[NCOVMAX];
             }    double **out;
           }    double sw; /* Sum of weights */
         }    double lli; /* Individual log likelihood */
       }    int s1, s2;
          double bbh, survp;
         for(i=(int)agemin; i <= (int)agemax+3; i++){    long ipmx;
           for(jk=1; jk <=nlstate ; jk++){    /*extern weight */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    /* We are differentiating ll according to initial status */
               pp[jk] += freq[jk][m][i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           }    /*for(i=1;i<imx;i++) 
           for(jk=1; jk <=nlstate ; jk++){      printf(" %d\n",s[4][i]);
             for(m=-1, pos=0; m <=0 ; m++)    */
             pos += freq[jk][m][i];    cov[1]=1.;
         }  
            for(k=1; k<=nlstate; k++) ll[k]=0.;
          for(jk=1; jk <=nlstate ; jk++){  
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    if(mle==1){
              pp[jk] += freq[jk][m][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                  for(mi=1; mi<= wav[i]-1; mi++){
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
          for(jk=1; jk <=nlstate ; jk++){                        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            if( i <= (int) agemax){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              if(pos>=1.e-5){            }
                probs[i][jk][j1]= pp[jk]/pos;          for(d=0; d<dh[mi][i]; d++){
              }            newm=savm;
            }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          }            for (kk=1; kk<=cptcovage;kk++) {
                        cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
              oldm=newm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          } /* end mult */
   free_vector(pp,1,nlstate);        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 }  /* End of Freq */          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
 /************* Waves Concatenation ***************/           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 {           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.           * probability in order to take into account the bias as a fraction of the way
      Death is a valid wave (if date is known).           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i           * -stepm/2 to stepm/2 .
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]           * For stepm=1 the results are the same as for previous versions of Imach.
      and mw[mi+1][i]. dh depends on stepm.           * For stepm > 1 the results are less biased than in previous versions. 
      */           */
           s1=s[mw[mi][i]][i];
   int i, mi, m;          s2=s[mw[mi+1][i]][i];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          bbh=(double)bh[mi][i]/(double)stepm; 
      double sum=0., jmean=0.;*/          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
   int j, k=0,jk, ju, jl;           */
   double sum=0.;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   jmin=1e+5;          if( s2 > nlstate){ 
   jmax=-1;            /* i.e. if s2 is a death state and if the date of death is known 
   jmean=0.;               then the contribution to the likelihood is the probability to 
   for(i=1; i<=imx; i++){               die between last step unit time and current  step unit time, 
     mi=0;               which is also equal to probability to die before dh 
     m=firstpass;               minus probability to die before dh-stepm . 
     while(s[m][i] <= nlstate){               In version up to 0.92 likelihood was computed
       if(s[m][i]>=1)          as if date of death was unknown. Death was treated as any other
         mw[++mi][i]=m;          health state: the date of the interview describes the actual state
       if(m >=lastpass)          and not the date of a change in health state. The former idea was
         break;          to consider that at each interview the state was recorded
       else          (healthy, disable or death) and IMaCh was corrected; but when we
         m++;          introduced the exact date of death then we should have modified
     }/* end while */          the contribution of an exact death to the likelihood. This new
     if (s[m][i] > nlstate){          contribution is smaller and very dependent of the step unit
       mi++;     /* Death is another wave */          stepm. It is no more the probability to die between last interview
       /* if(mi==0)  never been interviewed correctly before death */          and month of death but the probability to survive from last
          /* Only death is a correct wave */          interview up to one month before death multiplied by the
       mw[mi][i]=m;          probability to die within a month. Thanks to Chris
     }          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
     wav[i]=mi;          which slows down the processing. The difference can be up to 10%
     if(mi==0)          lower mortality.
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            */
   }            lli=log(out[s1][s2] - savm[s1][s2]);
   
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){          } else if  (s2==-2) {
       if (stepm <=0)            for (j=1,survp=0. ; j<=nlstate; j++) 
         dh[mi][i]=1;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       else{            /*survp += out[s1][j]; */
         if (s[mw[mi+1][i]][i] > nlstate) {            lli= log(survp);
           if (agedc[i] < 2*AGESUP) {          }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          
           if(j==0) j=1;  /* Survives at least one month after exam */          else if  (s2==-4) { 
           k=k+1;            for (j=3,survp=0. ; j<=nlstate; j++)  
           if (j >= jmax) jmax=j;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           if (j <= jmin) jmin=j;            lli= log(survp); 
           sum=sum+j;          } 
           /* if (j<10) printf("j=%d num=%d ",j,i); */  
           }          else if  (s2==-5) { 
         }            for (j=1,survp=0. ; j<=2; j++)  
         else{              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            lli= log(survp); 
           k=k+1;          } 
           if (j >= jmax) jmax=j;          
           else if (j <= jmin)jmin=j;          else{
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           sum=sum+j;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         }          } 
         jk= j/stepm;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         jl= j -jk*stepm;          /*if(lli ==000.0)*/
         ju= j -(jk+1)*stepm;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         if(jl <= -ju)          ipmx +=1;
           dh[mi][i]=jk;          sw += weight[i];
         else          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           dh[mi][i]=jk+1;        } /* end of wave */
         if(dh[mi][i]==0)      } /* end of individual */
           dh[mi][i]=1; /* At least one step */    }  else if(mle==2){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   jmean=sum/k;          for (ii=1;ii<=nlstate+ndeath;ii++)
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            for (j=1;j<=nlstate+ndeath;j++){
  }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*********** Tricode ****************************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void tricode(int *Tvar, int **nbcode, int imx)            }
 {          for(d=0; d<=dh[mi][i]; d++){
   int Ndum[20],ij=1, k, j, i;            newm=savm;
   int cptcode=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   cptcoveff=0;            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (k=0; k<19; k++) Ndum[k]=0;            }
   for (k=1; k<=7; k++) ncodemax[k]=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            savm=oldm;
     for (i=1; i<=imx; i++) {            oldm=newm;
       ij=(int)(covar[Tvar[j]][i]);          } /* end mult */
       Ndum[ij]++;        
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          s1=s[mw[mi][i]][i];
       if (ij > cptcode) cptcode=ij;          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for (i=0; i<=cptcode; i++) {          ipmx +=1;
       if(Ndum[i]!=0) ncodemax[j]++;          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     ij=1;        } /* end of wave */
       } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
     for (i=1; i<=ncodemax[j]; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=0; k<=19; k++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if (Ndum[k] != 0) {        for(mi=1; mi<= wav[i]-1; mi++){
           nbcode[Tvar[j]][ij]=k;          for (ii=1;ii<=nlstate+ndeath;ii++)
           ij++;            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (ij > ncodemax[j]) break;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              }
     }          for(d=0; d<dh[mi][i]; d++){
   }              newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  for (k=0; k<19; k++) Ndum[k]=0;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  for (i=1; i<=ncovmodel-2; i++) {            }
       ij=Tvar[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       Ndum[ij]++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
             oldm=newm;
  ij=1;          } /* end mult */
  for (i=1; i<=10; i++) {        
    if((Ndum[i]!=0) && (i<=ncov)){          s1=s[mw[mi][i]][i];
      Tvaraff[ij]=i;          s2=s[mw[mi+1][i]][i];
      ij++;          bbh=(double)bh[mi][i]/(double)stepm; 
    }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
  }          ipmx +=1;
            sw += weight[i];
     cptcoveff=ij-1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }        } /* end of wave */
       } /* end of individual */
 /*********** Health Expectancies ****************/    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   /* Health expectancies */          for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, j, nhstepm, hstepm, h;            for (j=1;j<=nlstate+ndeath;j++){
   double age, agelim,hf;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***p3mat;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   fprintf(ficreseij,"# Health expectancies\n");          for(d=0; d<dh[mi][i]; d++){
   fprintf(ficreseij,"# Age");            newm=savm;
   for(i=1; i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(j=1; j<=nlstate;j++)            for (kk=1; kk<=cptcovage;kk++) {
       fprintf(ficreseij," %1d-%1d",i,j);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficreseij,"\n");            }
           
   hstepm=1*YEARM; /*  Every j years of age (in month) */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   agelim=AGESUP;            oldm=newm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          } /* end mult */
     /* nhstepm age range expressed in number of stepm */        
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          s1=s[mw[mi][i]][i];
     /* Typically if 20 years = 20*12/6=40 stepm */          s2=s[mw[mi+1][i]][i];
     if (stepm >= YEARM) hstepm=1;          if( s2 > nlstate){ 
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */            lli=log(out[s1][s2] - savm[s1][s2]);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }else{
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            ipmx +=1;
           sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(i=1; i<=nlstate;i++)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       for(j=1; j<=nlstate;j++)        } /* end of wave */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){      } /* end of individual */
           eij[i][j][(int)age] +=p3mat[i][j][h];    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     hf=1;        for(mi=1; mi<= wav[i]-1; mi++){
     if (stepm >= YEARM) hf=stepm/YEARM;          for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(ficreseij,"%.0f",age );            for (j=1;j<=nlstate+ndeath;j++){
     for(i=1; i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<=nlstate;j++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);            }
       }          for(d=0; d<dh[mi][i]; d++){
     fprintf(ficreseij,"\n");            newm=savm;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
 }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 /************ Variance ******************/          
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* Variance of health expectancies */            savm=oldm;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            oldm=newm;
   double **newm;          } /* end mult */
   double **dnewm,**doldm;        
   int i, j, nhstepm, hstepm, h;          s1=s[mw[mi][i]][i];
   int k, cptcode;          s2=s[mw[mi+1][i]][i];
   double *xp;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double **gp, **gm;          ipmx +=1;
   double ***gradg, ***trgradg;          sw += weight[i];
   double ***p3mat;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double age,agelim;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   int theta;        } /* end of wave */
       } /* end of individual */
    fprintf(ficresvij,"# Covariances of life expectancies\n");    } /* End of if */
   fprintf(ficresvij,"# Age");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   for(i=1; i<=nlstate;i++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for(j=1; j<=nlstate;j++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    return -l;
   fprintf(ficresvij,"\n");  }
   
   xp=vector(1,npar);  /*************** log-likelihood *************/
   dnewm=matrix(1,nlstate,1,npar);  double funcone( double *x)
   doldm=matrix(1,nlstate,1,nlstate);  {
      /* Same as likeli but slower because of a lot of printf and if */
   hstepm=1*YEARM; /* Every year of age */    int i, ii, j, k, mi, d, kk;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   agelim = AGESUP;    double **out;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double lli; /* Individual log likelihood */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double llt;
     if (stepm >= YEARM) hstepm=1;    int s1, s2;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double bbh, survp;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*extern weight */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /* We are differentiating ll according to initial status */
     gp=matrix(0,nhstepm,1,nlstate);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     gm=matrix(0,nhstepm,1,nlstate);    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
     for(theta=1; theta <=npar; theta++){    */
       for(i=1; i<=npar; i++){ /* Computes gradient */    cov[1]=1.;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    for(k=1; k<=nlstate; k++) ll[k]=0.;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if (popbased==1) {      for(mi=1; mi<= wav[i]-1; mi++){
         for(i=1; i<=nlstate;i++)        for (ii=1;ii<=nlstate+ndeath;ii++)
           prlim[i][i]=probs[(int)age][i][ij];          for (j=1;j<=nlstate+ndeath;j++){
       }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++){          }
         for(h=0; h<=nhstepm; h++){        for(d=0; d<dh[mi][i]; d++){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          newm=savm;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }          for (kk=1; kk<=cptcovage;kk++) {
       }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
       for(i=1; i<=npar; i++) /* Computes gradient */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            savm=oldm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          oldm=newm;
         } /* end mult */
       if (popbased==1) {        
         for(i=1; i<=nlstate;i++)        s1=s[mw[mi][i]][i];
           prlim[i][i]=probs[(int)age][i][ij];        s2=s[mw[mi+1][i]][i];
       }        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
       for(j=1; j<= nlstate; j++){         * is higher than the multiple of stepm and negative otherwise.
         for(h=0; h<=nhstepm; h++){         */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          lli=log(out[s1][s2] - savm[s1][s2]);
         }        } else if  (s2==-2) {
       }          for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(j=1; j<= nlstate; j++)          lli= log(survp);
         for(h=0; h<=nhstepm; h++){        }else if (mle==1){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }        } else if(mle==2){
     } /* End theta */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
     for(h=0; h<=nhstepm; h++)          lli=log(out[s1][s2]); /* Original formula */
       for(j=1; j<=nlstate;j++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         for(theta=1; theta <=npar; theta++)          lli=log(out[s1][s2]); /* Original formula */
           trgradg[h][j][theta]=gradg[h][theta][j];        } /* End of if */
         ipmx +=1;
     for(i=1;i<=nlstate;i++)        sw += weight[i];
       for(j=1;j<=nlstate;j++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         vareij[i][j][(int)age] =0.;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(h=0;h<=nhstepm;h++){        if(globpr){
       for(k=0;k<=nhstepm;k++){          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);   %11.6f %11.6f %11.6f ", \
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         for(i=1;i<=nlstate;i++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(j=1;j<=nlstate;j++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             vareij[i][j][(int)age] += doldm[i][j];            llt +=ll[k]*gipmx/gsw;
       }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     }          }
     h=1;          fprintf(ficresilk," %10.6f\n", -llt);
     if (stepm >= YEARM) h=stepm/YEARM;        }
     fprintf(ficresvij,"%.0f ",age );      } /* end of wave */
     for(i=1; i<=nlstate;i++)    } /* end of individual */
       for(j=1; j<=nlstate;j++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     fprintf(ficresvij,"\n");    if(globpr==0){ /* First time we count the contributions and weights */
     free_matrix(gp,0,nhstepm,1,nlstate);      gipmx=ipmx;
     free_matrix(gm,0,nhstepm,1,nlstate);      gsw=sw;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    return -l;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
   } /* End age */  
    
   free_vector(xp,1,npar);  /*************** function likelione ***********/
   free_matrix(doldm,1,nlstate,1,npar);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   free_matrix(dnewm,1,nlstate,1,nlstate);  {
     /* This routine should help understanding what is done with 
 }       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
 /************ Variance of prevlim ******************/       Plotting could be done.
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)     */
 {    int k;
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    if(*globpri !=0){ /* Just counts and sums, no printings */
   double **newm;      strcpy(fileresilk,"ilk"); 
   double **dnewm,**doldm;      strcat(fileresilk,fileres);
   int i, j, nhstepm, hstepm;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   int k, cptcode;        printf("Problem with resultfile: %s\n", fileresilk);
   double *xp;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double *gp, *gm;      }
   double **gradg, **trgradg;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double age,agelim;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   int theta;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
          for(k=1; k<=nlstate; k++) 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   fprintf(ficresvpl,"# Age");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   for(i=1; i<=nlstate;i++)    }
       fprintf(ficresvpl," %1d-%1d",i,i);  
   fprintf(ficresvpl,"\n");    *fretone=(*funcone)(p);
     if(*globpri !=0){
   xp=vector(1,npar);      fclose(ficresilk);
   dnewm=matrix(1,nlstate,1,npar);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   doldm=matrix(1,nlstate,1,nlstate);      fflush(fichtm); 
      } 
   hstepm=1*YEARM; /* Every year of age */    return;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  }
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  /*********** Maximum Likelihood Estimation ***************/
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     gradg=matrix(1,npar,1,nlstate);  {
     gp=vector(1,nlstate);    int i,j, iter;
     gm=vector(1,nlstate);    double **xi;
     double fret;
     for(theta=1; theta <=npar; theta++){    double fretone; /* Only one call to likelihood */
       for(i=1; i<=npar; i++){ /* Computes gradient */    /*  char filerespow[FILENAMELENGTH];*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    xi=matrix(1,npar,1,npar);
       }    for (i=1;i<=npar;i++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (j=1;j<=npar;j++)
       for(i=1;i<=nlstate;i++)        xi[i][j]=(i==j ? 1.0 : 0.0);
         gp[i] = prlim[i][i];    printf("Powell\n");  fprintf(ficlog,"Powell\n");
        strcpy(filerespow,"pow"); 
       for(i=1; i<=npar; i++) /* Computes gradient */    strcat(filerespow,fileres);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      printf("Problem with resultfile: %s\n", filerespow);
       for(i=1;i<=nlstate;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         gm[i] = prlim[i][i];    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
       for(i=1;i<=nlstate;i++)    for (i=1;i<=nlstate;i++)
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      for(j=1;j<=nlstate+ndeath;j++)
     } /* End theta */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
     trgradg =matrix(1,nlstate,1,npar);  
     powell(p,xi,npar,ftol,&iter,&fret,func);
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)    free_matrix(xi,1,npar,1,npar);
         trgradg[j][theta]=gradg[theta][j];    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     for(i=1;i<=nlstate;i++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       varpl[i][(int)age] =0.;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  }
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     fprintf(ficresvpl,"%.0f ",age );  {
     for(i=1; i<=nlstate;i++)    double  **a,**y,*x,pd;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double **hess;
     fprintf(ficresvpl,"\n");    int i, j,jk;
     free_vector(gp,1,nlstate);    int *indx;
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     free_matrix(trgradg,1,nlstate,1,npar);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   } /* End age */    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
   free_vector(xp,1,npar);    double gompertz(double p[]);
   free_matrix(doldm,1,nlstate,1,npar);    hess=matrix(1,npar,1,npar);
   free_matrix(dnewm,1,nlstate,1,nlstate);  
     printf("\nCalculation of the hessian matrix. Wait...\n");
 }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
 /************ Variance of one-step probabilities  ******************/      printf("%d",i);fflush(stdout);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)      fprintf(ficlog,"%d",i);fflush(ficlog);
 {     
   int i, j;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   int k=0, cptcode;      
   double **dnewm,**doldm;      /*  printf(" %f ",p[i]);
   double *xp;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   double *gp, *gm;    }
   double **gradg, **trgradg;    
   double age,agelim, cov[NCOVMAX];    for (i=1;i<=npar;i++) {
   int theta;      for (j=1;j<=npar;j++)  {
   char fileresprob[FILENAMELENGTH];        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
   strcpy(fileresprob,"prob");          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   strcat(fileresprob,fileres);          hess[i][j]=hessij(p,delti,i,j,func,npar);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          
     printf("Problem with resultfile: %s\n", fileresprob);          hess[j][i]=hess[i][j];    
   }          /*printf(" %lf ",hess[i][j]);*/
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);        }
        }
     }
   xp=vector(1,npar);    printf("\n");
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    fprintf(ficlog,"\n");
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  
      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   cov[1]=1;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   for (age=bage; age<=fage; age ++){    
     cov[2]=age;    a=matrix(1,npar,1,npar);
     gradg=matrix(1,npar,1,9);    y=matrix(1,npar,1,npar);
     trgradg=matrix(1,9,1,npar);    x=vector(1,npar);
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    indx=ivector(1,npar);
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    for (i=1;i<=npar;i++)
          for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     for(theta=1; theta <=npar; theta++){    ludcmp(a,npar,indx,&pd);
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (j=1;j<=npar;j++) {
            for (i=1;i<=npar;i++) x[i]=0;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      x[j]=1;
          lubksb(a,npar,indx,x);
       k=0;      for (i=1;i<=npar;i++){ 
       for(i=1; i<= (nlstate+ndeath); i++){        matcov[i][j]=x[i];
         for(j=1; j<=(nlstate+ndeath);j++){      }
            k=k+1;    }
           gp[k]=pmmij[i][j];  
         }    printf("\n#Hessian matrix#\n");
       }    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
       for(i=1; i<=npar; i++)      for (j=1;j<=npar;j++) { 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        printf("%.3e ",hess[i][j]);
            fprintf(ficlog,"%.3e ",hess[i][j]);
       }
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      printf("\n");
       k=0;      fprintf(ficlog,"\n");
       for(i=1; i<=(nlstate+ndeath); i++){    }
         for(j=1; j<=(nlstate+ndeath);j++){  
           k=k+1;    /* Recompute Inverse */
           gm[k]=pmmij[i][j];    for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       }    ludcmp(a,npar,indx,&pd);
        
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    /*  printf("\n#Hessian matrix recomputed#\n");
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    
     }    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      x[j]=1;
       for(theta=1; theta <=npar; theta++)      lubksb(a,npar,indx,x);
       trgradg[j][theta]=gradg[theta][j];      for (i=1;i<=npar;i++){ 
          y[i][j]=x[i];
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);        printf("%.3e ",y[i][j]);
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);        fprintf(ficlog,"%.3e ",y[i][j]);
       }
      pmij(pmmij,cov,ncovmodel,x,nlstate);      printf("\n");
       fprintf(ficlog,"\n");
      k=0;    }
      for(i=1; i<=(nlstate+ndeath); i++){    */
        for(j=1; j<=(nlstate+ndeath);j++){  
          k=k+1;    free_matrix(a,1,npar,1,npar);
          gm[k]=pmmij[i][j];    free_matrix(y,1,npar,1,npar);
         }    free_vector(x,1,npar);
      }    free_ivector(indx,1,npar);
          free_matrix(hess,1,npar,1,npar);
      /*printf("\n%d ",(int)age);  
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
          }
   
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  /*************** hessian matrix ****************/
      }*/  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
   fprintf(ficresprob,"\n%d ",(int)age);    int i;
     int l=1, lmax=20;
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    double k1,k2;
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    double p2[NPARMAX+1];
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    double res;
   }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    int k=0,kmax=10;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    double l1;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    fx=func(x);
 }    for (i=1;i<=npar;i++) p2[i]=x[i];
  free_vector(xp,1,npar);    for(l=0 ; l <=lmax; l++){
 fclose(ficresprob);      l1=pow(10,l);
  exit(0);      delts=delt;
 }      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
 /***********************************************/        p2[theta]=x[theta] +delt;
 /**************** Main Program *****************/        k1=func(p2)-fx;
 /***********************************************/        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
 /*int main(int argc, char *argv[])*/        /*res= (k1-2.0*fx+k2)/delt/delt; */
 int main()        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 {        
   #ifdef DEBUG
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double agedeb, agefin,hf;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double agemin=1.e20, agemax=-1.e20;  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   double fret;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   double **xi,tmp,delta;          k=kmax;
         }
   double dum; /* Dummy variable */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double ***p3mat;          k=kmax; l=lmax*10.;
   int *indx;        }
   char line[MAXLINE], linepar[MAXLINE];        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   char title[MAXLINE];          delts=delt;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];        }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];      }
   char filerest[FILENAMELENGTH];    }
   char fileregp[FILENAMELENGTH];    delti[theta]=delts;
   char popfile[FILENAMELENGTH];    return res; 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    
   int firstobs=1, lastobs=10;  }
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   int ju,jl, mi;  {
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    int i;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    int l=1, l1, lmax=20;
   int mobilav=0,popforecast=0;    double k1,k2,k3,k4,res,fx;
   int hstepm, nhstepm;    double p2[NPARMAX+1];
   int *popage;/*boolprev=0 if date and zero if wave*/    int k;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;  
     fx=func(x);
   double bage, fage, age, agelim, agebase;    for (k=1; k<=2; k++) {
   double ftolpl=FTOL;      for (i=1;i<=npar;i++) p2[i]=x[i];
   double **prlim;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double *severity;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double ***param; /* Matrix of parameters */      k1=func(p2)-fx;
   double  *p;    
   double **matcov; /* Matrix of covariance */      p2[thetai]=x[thetai]+delti[thetai]/k;
   double ***delti3; /* Scale */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double *delti; /* Scale */      k2=func(p2)-fx;
   double ***eij, ***vareij;    
   double **varpl; /* Variances of prevalence limits by age */      p2[thetai]=x[thetai]-delti[thetai]/k;
   double *epj, vepp;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double kk1, kk2;      k3=func(p2)-fx;
   double *popeffectif,*popcount;    
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;      p2[thetai]=x[thetai]-delti[thetai]/k;
   double yp,yp1,yp2;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   char *alph[]={"a","a","b","c","d","e"}, str[4];  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   char z[1]="c", occ;  #endif
 #include <sys/time.h>    }
 #include <time.h>    return res;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  }
    
   /* long total_usecs;  /************** Inverse of matrix **************/
   struct timeval start_time, end_time;  void ludcmp(double **a, int n, int *indx, double *d) 
    { 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    int i,imax,j,k; 
     double big,dum,sum,temp; 
     double *vv; 
   printf("\nIMACH, Version 0.7");   
   printf("\nEnter the parameter file name: ");    vv=vector(1,n); 
     *d=1.0; 
 #ifdef windows    for (i=1;i<=n;i++) { 
   scanf("%s",pathtot);      big=0.0; 
   getcwd(pathcd, size);      for (j=1;j<=n;j++) 
   /*cygwin_split_path(pathtot,path,optionfile);        if ((temp=fabs(a[i][j])) > big) big=temp; 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   /* cutv(path,optionfile,pathtot,'\\');*/      vv[i]=1.0/big; 
     } 
 split(pathtot, path,optionfile);    for (j=1;j<=n;j++) { 
   chdir(path);      for (i=1;i<j;i++) { 
   replace(pathc,path);        sum=a[i][j]; 
 #endif        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 #ifdef unix        a[i][j]=sum; 
   scanf("%s",optionfile);      } 
 #endif      big=0.0; 
       for (i=j;i<=n;i++) { 
 /*-------- arguments in the command line --------*/        sum=a[i][j]; 
         for (k=1;k<j;k++) 
   strcpy(fileres,"r");          sum -= a[i][k]*a[k][j]; 
   strcat(fileres, optionfile);        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
   /*---------arguments file --------*/          big=dum; 
           imax=i; 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        } 
     printf("Problem with optionfile %s\n",optionfile);      } 
     goto end;      if (j != imax) { 
   }        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
   strcpy(filereso,"o");          a[imax][k]=a[j][k]; 
   strcat(filereso,fileres);          a[j][k]=dum; 
   if((ficparo=fopen(filereso,"w"))==NULL) {        } 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        *d = -(*d); 
   }        vv[imax]=vv[j]; 
       } 
   /* Reads comments: lines beginning with '#' */      indx[j]=imax; 
   while((c=getc(ficpar))=='#' && c!= EOF){      if (a[j][j] == 0.0) a[j][j]=TINY; 
     ungetc(c,ficpar);      if (j != n) { 
     fgets(line, MAXLINE, ficpar);        dum=1.0/(a[j][j]); 
     puts(line);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     fputs(line,ficparo);      } 
   }    } 
   ungetc(c,ficpar);    free_vector(vv,1,n);  /* Doesn't work */
   ;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  } 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);  void lubksb(double **a, int n, int *indx, double b[]) 
 while((c=getc(ficpar))=='#' && c!= EOF){  { 
     ungetc(c,ficpar);    int i,ii=0,ip,j; 
     fgets(line, MAXLINE, ficpar);    double sum; 
     puts(line);   
     fputs(line,ficparo);    for (i=1;i<=n;i++) { 
   }      ip=indx[i]; 
   ungetc(c,ficpar);      sum=b[ip]; 
        b[ip]=b[i]; 
          if (ii) 
   covar=matrix(0,NCOVMAX,1,n);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   cptcovn=0;      else if (sum) ii=i; 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      b[i]=sum; 
     } 
   ncovmodel=2+cptcovn;    for (i=n;i>=1;i--) { 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      sum=b[i]; 
        for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   /* Read guess parameters */      b[i]=sum/a[i][i]; 
   /* Reads comments: lines beginning with '#' */    } 
   while((c=getc(ficpar))=='#' && c!= EOF){  } 
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  void pstamp(FILE *fichier)
     puts(line);  {
     fputs(line,ficparo);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }  }
   ungetc(c,ficpar);  
    /************ Frequencies ********************/
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     for(i=1; i <=nlstate; i++)  {  /* Some frequencies */
     for(j=1; j <=nlstate+ndeath-1; j++){    
       fscanf(ficpar,"%1d%1d",&i1,&j1);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       fprintf(ficparo,"%1d%1d",i1,j1);    int first;
       printf("%1d%1d",i,j);    double ***freq; /* Frequencies */
       for(k=1; k<=ncovmodel;k++){    double *pp, **prop;
         fscanf(ficpar," %lf",&param[i][j][k]);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         printf(" %lf",param[i][j][k]);    char fileresp[FILENAMELENGTH];
         fprintf(ficparo," %lf",param[i][j][k]);    
       }    pp=vector(1,nlstate);
       fscanf(ficpar,"\n");    prop=matrix(1,nlstate,iagemin,iagemax+3);
       printf("\n");    strcpy(fileresp,"p");
       fprintf(ficparo,"\n");    strcat(fileresp,fileres);
     }    if((ficresp=fopen(fileresp,"w"))==NULL) {
        printf("Problem with prevalence resultfile: %s\n", fileresp);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
   p=param[1][1];    }
      freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   /* Reads comments: lines beginning with '#' */    j1=0;
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    j=cptcoveff;
     fgets(line, MAXLINE, ficpar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     puts(line);  
     fputs(line,ficparo);    first=1;
   }  
   ungetc(c,ficpar);    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        j1++;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   for(i=1; i <=nlstate; i++){          scanf("%d", i);*/
     for(j=1; j <=nlstate+ndeath-1; j++){        for (i=-5; i<=nlstate+ndeath; i++)  
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
       printf("%1d%1d",i,j);            for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficparo,"%1d%1d",i1,j1);              freq[i][jk][m]=0;
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);      for (i=1; i<=nlstate; i++)  
         printf(" %le",delti3[i][j][k]);        for(m=iagemin; m <= iagemax+3; m++)
         fprintf(ficparo," %le",delti3[i][j][k]);          prop[i][m]=0;
       }        
       fscanf(ficpar,"\n");        dateintsum=0;
       printf("\n");        k2cpt=0;
       fprintf(ficparo,"\n");        for (i=1; i<=imx; i++) {
     }          bool=1;
   }          if  (cptcovn>0) {
   delti=delti3[1][1];            for (z1=1; z1<=cptcoveff; z1++) 
                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   /* Reads comments: lines beginning with '#' */                bool=0;
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);          if (bool==1){
     fgets(line, MAXLINE, ficpar);            for(m=firstpass; m<=lastpass; m++){
     puts(line);              k2=anint[m][i]+(mint[m][i]/12.);
     fputs(line,ficparo);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   ungetc(c,ficpar);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   matcov=matrix(1,npar,1,npar);                if (m<lastpass) {
   for(i=1; i <=npar; i++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     fscanf(ficpar,"%s",&str);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     printf("%s",str);                }
     fprintf(ficparo,"%s",str);                
     for(j=1; j <=i; j++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       fscanf(ficpar," %le",&matcov[i][j]);                  dateintsum=dateintsum+k2;
       printf(" %.5le",matcov[i][j]);                  k2cpt++;
       fprintf(ficparo," %.5le",matcov[i][j]);                }
     }                /*}*/
     fscanf(ficpar,"\n");            }
     printf("\n");          }
     fprintf(ficparo,"\n");        }
   }         
   for(i=1; i <=npar; i++)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     for(j=i+1;j<=npar;j++)        pstamp(ficresp);
       matcov[i][j]=matcov[j][i];        if  (cptcovn>0) {
              fprintf(ficresp, "\n#********** Variable "); 
   printf("\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
         }
     /*-------- data file ----------*/        for(i=1; i<=nlstate;i++) 
     if((ficres =fopen(fileres,"w"))==NULL) {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       printf("Problem with resultfile: %s\n", fileres);goto end;        fprintf(ficresp, "\n");
     }        
     fprintf(ficres,"#%s\n",version);        for(i=iagemin; i <= iagemax+3; i++){
              if(i==iagemax+3){
     if((fic=fopen(datafile,"r"))==NULL)    {            fprintf(ficlog,"Total");
       printf("Problem with datafile: %s\n", datafile);goto end;          }else{
     }            if(first==1){
               first=0;
     n= lastobs;              printf("See log file for details...\n");
     severity = vector(1,maxwav);            }
     outcome=imatrix(1,maxwav+1,1,n);            fprintf(ficlog,"Age %d", i);
     num=ivector(1,n);          }
     moisnais=vector(1,n);          for(jk=1; jk <=nlstate ; jk++){
     annais=vector(1,n);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     moisdc=vector(1,n);              pp[jk] += freq[jk][m][i]; 
     andc=vector(1,n);          }
     agedc=vector(1,n);          for(jk=1; jk <=nlstate ; jk++){
     cod=ivector(1,n);            for(m=-1, pos=0; m <=0 ; m++)
     weight=vector(1,n);              pos += freq[jk][m][i];
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            if(pp[jk]>=1.e-10){
     mint=matrix(1,maxwav,1,n);              if(first==1){
     anint=matrix(1,maxwav,1,n);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     s=imatrix(1,maxwav+1,1,n);              }
     adl=imatrix(1,maxwav+1,1,n);                  fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     tab=ivector(1,NCOVMAX);            }else{
     ncodemax=ivector(1,8);              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     i=1;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     while (fgets(line, MAXLINE, fic) != NULL)    {            }
       if ((i >= firstobs) && (i <=lastobs)) {          }
          
         for (j=maxwav;j>=1;j--){          for(jk=1; jk <=nlstate ; jk++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           strcpy(line,stra);              pp[jk] += freq[jk][m][i];
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }       
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         }            pos += pp[jk];
                    posprop += prop[jk][i];
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);              if(first==1)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            }else{
         for (j=ncov;j>=1;j--){              if(first==1)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         num[i]=atol(stra);            }
                    if( i <= iagemax){
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){              if(pos>=1.e-5){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
         i=i+1;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       }              }
     }              else
     /* printf("ii=%d", ij);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
        scanf("%d",i);*/            }
   imx=i-1; /* Number of individuals */          }
           
   /* for (i=1; i<=imx; i++){          for(jk=-1; jk <=nlstate+ndeath; jk++)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            for(m=-1; m <=nlstate+ndeath; m++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              if(freq[jk][m][i] !=0 ) {
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;              if(first==1)
     }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     for (i=1; i<=imx; i++)              }
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/          if(i <= iagemax)
             fprintf(ficresp,"\n");
   /* Calculation of the number of parameter from char model*/          if(first==1)
   Tvar=ivector(1,15);            printf("Others in log...\n");
   Tprod=ivector(1,15);          fprintf(ficlog,"\n");
   Tvaraff=ivector(1,15);        }
   Tvard=imatrix(1,15,1,2);      }
   Tage=ivector(1,15);          }
        dateintmean=dateintsum/k2cpt; 
   if (strlen(model) >1){   
     j=0, j1=0, k1=1, k2=1;    fclose(ficresp);
     j=nbocc(model,'+');    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     j1=nbocc(model,'*');    free_vector(pp,1,nlstate);
     cptcovn=j+1;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     cptcovprod=j1;    /* End of Freq */
      }
      
     strcpy(modelsav,model);  /************ Prevalence ********************/
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       printf("Error. Non available option model=%s ",model);  {  
       goto end;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     }       in each health status at the date of interview (if between dateprev1 and dateprev2).
           We still use firstpass and lastpass as another selection.
     for(i=(j+1); i>=1;i--){    */
       cutv(stra,strb,modelsav,'+');   
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    double ***freq; /* Frequencies */
       /*scanf("%d",i);*/    double *pp, **prop;
       if (strchr(strb,'*')) {    double pos,posprop; 
         cutv(strd,strc,strb,'*');    double  y2; /* in fractional years */
         if (strcmp(strc,"age")==0) {    int iagemin, iagemax;
           cptcovprod--;  
           cutv(strb,stre,strd,'V');    iagemin= (int) agemin;
           Tvar[i]=atoi(stre);    iagemax= (int) agemax;
           cptcovage++;    /*pp=vector(1,nlstate);*/
             Tage[cptcovage]=i;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
             /*printf("stre=%s ", stre);*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         }    j1=0;
         else if (strcmp(strd,"age")==0) {    
           cptcovprod--;    j=cptcoveff;
           cutv(strb,stre,strc,'V');    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           Tvar[i]=atoi(stre);    
           cptcovage++;    for(k1=1; k1<=j;k1++){
           Tage[cptcovage]=i;      for(i1=1; i1<=ncodemax[k1];i1++){
         }        j1++;
         else {        
           cutv(strb,stre,strc,'V');        for (i=1; i<=nlstate; i++)  
           Tvar[i]=ncov+k1;          for(m=iagemin; m <= iagemax+3; m++)
           cutv(strb,strc,strd,'V');            prop[i][m]=0.0;
           Tprod[k1]=i;       
           Tvard[k1][1]=atoi(strc);        for (i=1; i<=imx; i++) { /* Each individual */
           Tvard[k1][2]=atoi(stre);          bool=1;
           Tvar[cptcovn+k2]=Tvard[k1][1];          if  (cptcovn>0) {
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            for (z1=1; z1<=cptcoveff; z1++) 
           for (k=1; k<=lastobs;k++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                bool=0;
           k1++;          } 
           k2=k2+2;          if (bool==1) { 
         }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       else {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
        /*  scanf("%d",i);*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       cutv(strd,strc,strb,'V');                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       Tvar[i]=atoi(strc);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       strcpy(modelsav,stra);                    prop[s[m][i]][(int)agev[m][i]] += weight[i];
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                  prop[s[m][i]][iagemax+3] += weight[i]; 
         scanf("%d",i);*/                } 
     }              }
 }            } /* end selection of waves */
            }
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        }
   printf("cptcovprod=%d ", cptcovprod);        for(i=iagemin; i <= iagemax+3; i++){  
   scanf("%d ",i);*/          
     fclose(fic);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
     /*  if(mle==1){*/          } 
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;          for(jk=1; jk <=nlstate ; jk++){     
     }            if( i <=  iagemax){ 
     /*-calculation of age at interview from date of interview and age at death -*/              if(posprop>=1.e-5){ 
     agev=matrix(1,maxwav,1,imx);                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
    for (i=1; i<=imx; i++)            } 
      for(m=2; (m<= maxwav); m++)          }/* end jk */ 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        }/* end i */ 
          anint[m][i]=9999;      } /* end i1 */
          s[m][i]=-1;    } /* end k1 */
        }    
        /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     for (i=1; i<=imx; i++)  {    /*free_vector(pp,1,nlstate);*/
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       for(m=1; (m<= maxwav); m++){  }  /* End of prevalence */
         if(s[m][i] >0){  
           if (s[m][i] == nlstate+1) {  /************* Waves Concatenation ***************/
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
               agev[m][i]=agedc[i];  {
             else {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
               if (andc[i]!=9999){       Death is a valid wave (if date is known).
               printf("Warning negative age at death: %d line:%d\n",num[i],i);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
               agev[m][i]=-1;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
               }       and mw[mi+1][i]. dh depends on stepm.
             }       */
           }  
           else if(s[m][i] !=9){ /* Should no more exist */    int i, mi, m;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
             if(mint[m][i]==99 || anint[m][i]==9999)       double sum=0., jmean=0.;*/
               agev[m][i]=1;    int first;
             else if(agev[m][i] <agemin){    int j, k=0,jk, ju, jl;
               agemin=agev[m][i];    double sum=0.;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    first=0;
             }    jmin=1e+5;
             else if(agev[m][i] >agemax){    jmax=-1;
               agemax=agev[m][i];    jmean=0.;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    for(i=1; i<=imx; i++){
             }      mi=0;
             /*agev[m][i]=anint[m][i]-annais[i];*/      m=firstpass;
             /*   agev[m][i] = age[i]+2*m;*/      while(s[m][i] <= nlstate){
           }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           else { /* =9 */          mw[++mi][i]=m;
             agev[m][i]=1;        if(m >=lastpass)
             s[m][i]=-1;          break;
           }        else
         }          m++;
         else /*= 0 Unknown */      }/* end while */
           agev[m][i]=1;      if (s[m][i] > nlstate){
       }        mi++;     /* Death is another wave */
            /* if(mi==0)  never been interviewed correctly before death */
     }           /* Only death is a correct wave */
     for (i=1; i<=imx; i++)  {        mw[mi][i]=m;
       for(m=1; (m<= maxwav); m++){      }
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: Wrong value in nlstate or ndeath\n");        wav[i]=mi;
           goto end;      if(mi==0){
         }        nbwarn++;
       }        if(first==0){
     }          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        }
         if(first==1){
     free_vector(severity,1,maxwav);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     free_imatrix(outcome,1,maxwav+1,1,n);        }
     free_vector(moisnais,1,n);      } /* end mi==0 */
     free_vector(annais,1,n);    } /* End individuals */
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/    for(i=1; i<=imx; i++){
     free_vector(moisdc,1,n);      for(mi=1; mi<wav[i];mi++){
     free_vector(andc,1,n);        if (stepm <=0)
           dh[mi][i]=1;
            else{
     wav=ivector(1,imx);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            if (agedc[i] < 2*AGESUP) {
     mw=imatrix(1,lastpass-firstpass+1,1,imx);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                  if(j==0) j=1;  /* Survives at least one month after exam */
     /* Concatenates waves */              else if(j<0){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
       Tcode=ivector(1,100);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       ncodemax[1]=1;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);              }
                    k=k+1;
    codtab=imatrix(1,100,1,10);              if (j >= jmax){
    h=0;                jmax=j;
    m=pow(2,cptcoveff);                ijmax=i;
                }
    for(k=1;k<=cptcoveff; k++){              if (j <= jmin){
      for(i=1; i <=(m/pow(2,k));i++){                jmin=j;
        for(j=1; j <= ncodemax[k]; j++){                ijmin=i;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              }
            h++;              sum=sum+j;
            if (h>m) h=1;codtab[h][k]=j;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
          }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
        }            }
      }          }
    }          else{
                j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
    /* Calculates basic frequencies. Computes observed prevalence at single age  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
        and prints on file fileres'p'. */  
             k=k+1;
                if (j >= jmax) {
                  jmax=j;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              ijmax=i;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            else if (j <= jmin){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              jmin=j;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              ijmin=i;
                  }
     /* For Powell, parameters are in a vector p[] starting at p[1]            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            if(j<0){
               nberr++;
     if(mle==1){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }            }
                sum=sum+j;
     /*--------- results files --------------*/          }
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);          jk= j/stepm;
            jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
    jk=1;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
    fprintf(ficres,"# Parameters\n");            if(jl==0){
    printf("# Parameters\n");              dh[mi][i]=jk;
    for(i=1,jk=1; i <=nlstate; i++){              bh[mi][i]=0;
      for(k=1; k <=(nlstate+ndeath); k++){            }else{ /* We want a negative bias in order to only have interpolation ie
        if (k != i)                    * at the price of an extra matrix product in likelihood */
          {              dh[mi][i]=jk+1;
            printf("%d%d ",i,k);              bh[mi][i]=ju;
            fprintf(ficres,"%1d%1d ",i,k);            }
            for(j=1; j <=ncovmodel; j++){          }else{
              printf("%f ",p[jk]);            if(jl <= -ju){
              fprintf(ficres,"%f ",p[jk]);              dh[mi][i]=jk;
              jk++;              bh[mi][i]=jl;       /* bias is positive if real duration
            }                                   * is higher than the multiple of stepm and negative otherwise.
            printf("\n");                                   */
            fprintf(ficres,"\n");            }
          }            else{
      }              dh[mi][i]=jk+1;
    }              bh[mi][i]=ju;
  if(mle==1){            }
     /* Computing hessian and covariance matrix */            if(dh[mi][i]==0){
     ftolhess=ftol; /* Usually correct */              dh[mi][i]=1; /* At least one step */
     hesscov(matcov, p, npar, delti, ftolhess, func);              bh[mi][i]=ju; /* At least one step */
  }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     fprintf(ficres,"# Scales\n");            }
     printf("# Scales\n");          } /* end if mle */
      for(i=1,jk=1; i <=nlstate; i++){        }
       for(j=1; j <=nlstate+ndeath; j++){      } /* end wave */
         if (j!=i) {    }
           fprintf(ficres,"%1d%1d",i,j);    jmean=sum/k;
           printf("%1d%1d",i,j);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
           for(k=1; k<=ncovmodel;k++){    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
             printf(" %.5e",delti[jk]);   }
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;  /*********** Tricode ****************************/
           }  void tricode(int *Tvar, int **nbcode, int imx)
           printf("\n");  {
           fprintf(ficres,"\n");    
         }    int Ndum[20],ij=1, k, j, i, maxncov=19;
       }    int cptcode=0;
      }    cptcoveff=0; 
       
     k=1;    for (k=0; k<maxncov; k++) Ndum[k]=0;
     fprintf(ficres,"# Covariance\n");    for (k=1; k<=7; k++) ncodemax[k]=0;
     printf("# Covariance\n");  
     for(i=1;i<=npar;i++){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       /*  if (k>nlstate) k=1;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       i1=(i-1)/(ncovmodel*nlstate)+1;                                 modality*/ 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       printf("%s%d%d",alph[k],i1,tab[i]);*/        Ndum[ij]++; /*store the modality */
       fprintf(ficres,"%3d",i);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       printf("%3d",i);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       for(j=1; j<=i;j++){                                         Tvar[j]. If V=sex and male is 0 and 
         fprintf(ficres," %.5e",matcov[i][j]);                                         female is 1, then  cptcode=1.*/
         printf(" %.5e",matcov[i][j]);      }
       }  
       fprintf(ficres,"\n");      for (i=0; i<=cptcode; i++) {
       printf("\n");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       k++;      }
     }  
          ij=1; 
     while((c=getc(ficpar))=='#' && c!= EOF){      for (i=1; i<=ncodemax[j]; i++) {
       ungetc(c,ficpar);        for (k=0; k<= maxncov; k++) {
       fgets(line, MAXLINE, ficpar);          if (Ndum[k] != 0) {
       puts(line);            nbcode[Tvar[j]][ij]=k; 
       fputs(line,ficparo);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     }            
     ungetc(c,ficpar);            ij++;
            }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          if (ij > ncodemax[j]) break; 
            }  
     if (fage <= 2) {      } 
       bage = agemin;    }  
       fage = agemax;  
     }   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
     fprintf(ficres,"# agemin agemax for life expectancy.\n");   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);     ij=Tvar[i];
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);     Ndum[ij]++;
     }
     while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);   ij=1;
     fgets(line, MAXLINE, ficpar);   for (i=1; i<= maxncov; i++) {
     puts(line);     if((Ndum[i]!=0) && (i<=ncovcol)){
     fputs(line,ficparo);       Tvaraff[ij]=i; /*For printing */
   }       ij++;
   ungetc(c,ficpar);     }
     }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);   
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);   cptcoveff=ij-1; /*Number of simple covariates*/
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  }
        
   while((c=getc(ficpar))=='#' && c!= EOF){  /*********** Health Expectancies ****************/
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     puts(line);  
     fputs(line,ficparo);  {
   }    /* Health expectancies, no variances */
   ungetc(c,ficpar);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
      double age, agelim, hf;
     double ***p3mat;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    double eip;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
     pstamp(ficreseij);
   fscanf(ficpar,"pop_based=%d\n",&popbased);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
    fprintf(ficparo,"pop_based=%d\n",popbased);      fprintf(ficreseij,"# Age");
    fprintf(ficres,"pop_based=%d\n",popbased);      for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficreseij," e%1d%1d ",i,j);
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);      fprintf(ficreseij," e%1d. ",i);
     puts(line);    }
     fputs(line,ficparo);    fprintf(ficreseij,"\n");
   }  
   ungetc(c,ficpar);    
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);    if(estepm < stepm){
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);      printf ("Problem %d lower than %d\n",estepm, stepm);
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);    }
     else  hstepm=estepm;   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
  /*------------ gnuplot -------------*/     * if stepm=24 months pijx are given only every 2 years and by summing them
 chdir(pathcd);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   if((ficgp=fopen("graph.plt","w"))==NULL) {     * progression in between and thus overestimating or underestimating according
     printf("Problem with file graph.gp");goto end;     * to the curvature of the survival function. If, for the same date, we 
   }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 #ifdef windows     * to compare the new estimate of Life expectancy with the same linear 
   fprintf(ficgp,"cd \"%s\" \n",pathc);     * hypothesis. A more precise result, taking into account a more precise
 #endif     * curvature will be obtained if estepm is as small as stepm. */
 m=pow(2,cptcoveff);  
      /* For example we decided to compute the life expectancy with the smallest unit */
  /* 1eme*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   for (cpt=1; cpt<= nlstate ; cpt ++) {       nhstepm is the number of hstepm from age to agelim 
    for (k1=1; k1<= m ; k1 ++) {       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
 #ifdef windows       and note for a fixed period like estepm months */
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 #endif       survival function given by stepm (the optimization length). Unfortunately it
 #ifdef unix       means that if the survival funtion is printed only each two years of age and if
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 #endif       results. So we changed our mind and took the option of the best precision.
     */
 for (i=1; i<= nlstate ; i ++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    agelim=AGESUP;
 }    /* nhstepm age range expressed in number of stepm */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     for (i=1; i<= nlstate ; i ++) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* if (stepm >= YEARM) hstepm=1;*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   else fprintf(ficgp," \%%*lf (\%%*lf)");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 }        
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 #ifdef unix      
 fprintf(ficgp,"\nset ter gif small size 400,300");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 #endif      
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      printf("%d|",(int)age);fflush(stdout);
    }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   }      
   /*2 eme*/      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
   for (k1=1; k1<= m ; k1 ++) {        for(j=1; j<=nlstate;j++)
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     for (i=1; i<= nlstate+1 ; i ++) {            
       k=2*i;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {          }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficreseij,"%3.0f",age );
 }        for(i=1; i<=nlstate;i++){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        eip=0;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        for(j=1; j<=nlstate;j++){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          eip +=eij[i][j][(int)age];
       for (j=1; j<= nlstate+1 ; j ++) {          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
         else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficreseij,"%9.4f", eip );
 }        }
       fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficreseij,"\n");
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      
       for (j=1; j<= nlstate+1 ; j ++) {    }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    printf("\n");
 }      fprintf(ficlog,"\n");
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    
       else fprintf(ficgp,"\" t\"\" w l 0,");  }
     }  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   }  
    {
   /*3eme*/    /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
   for (k1=1; k1<= m ; k1 ++) {    */
     for (cpt=1; cpt<= nlstate ; cpt ++) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       k=2+nlstate*(cpt-1);    double age, agelim, hf;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    double ***p3matp, ***p3matm, ***varhe;
       for (i=1; i< nlstate ; i ++) {    double **dnewm,**doldm;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    double *xp, *xm;
       }    double **gp, **gm;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    double ***gradg, ***trgradg;
     }    int theta;
   }  
      double eip, vip;
   /* CV preval stat */  
   for (k1=1; k1<= m ; k1 ++) {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     for (cpt=1; cpt<nlstate ; cpt ++) {    xp=vector(1,npar);
       k=3;    xm=vector(1,npar);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    dnewm=matrix(1,nlstate*nlstate,1,npar);
       for (i=1; i< nlstate ; i ++)    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(ficgp,"+$%d",k+i+1);    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    pstamp(ficresstdeij);
          fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       l=3+(nlstate+ndeath)*cpt;    fprintf(ficresstdeij,"# Age");
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    for(i=1; i<=nlstate;i++){
       for (i=1; i< nlstate ; i ++) {      for(j=1; j<=nlstate;j++)
         l=3+(nlstate+ndeath)*cpt;        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
         fprintf(ficgp,"+$%d",l+i+1);      fprintf(ficresstdeij," e%1d. ",i);
       }    }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      fprintf(ficresstdeij,"\n");
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }    pstamp(ficrescveij);
   }      fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
   /* proba elementaires */    for(i=1; i<=nlstate;i++)
    for(i=1,jk=1; i <=nlstate; i++){      for(j=1; j<=nlstate;j++){
     for(k=1; k <=(nlstate+ndeath); k++){        cptj= (j-1)*nlstate+i;
       if (k != i) {        for(i2=1; i2<=nlstate;i2++)
         for(j=1; j <=ncovmodel; j++){          for(j2=1; j2<=nlstate;j2++){
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/            cptj2= (j2-1)*nlstate+i2;
           /*fprintf(ficgp,"%s",alph[1]);*/            if(cptj2 <= cptj)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           jk++;          }
           fprintf(ficgp,"\n");      }
         }    fprintf(ficrescveij,"\n");
       }    
     }    if(estepm < stepm){
     }      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   for(jk=1; jk <=m; jk++) {    else  hstepm=estepm;   
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    /* We compute the life expectancy from trapezoids spaced every estepm months
    i=1;     * This is mainly to measure the difference between two models: for example
    for(k2=1; k2<=nlstate; k2++) {     * if stepm=24 months pijx are given only every 2 years and by summing them
      k3=i;     * we are calculating an estimate of the Life Expectancy assuming a linear 
      for(k=1; k<=(nlstate+ndeath); k++) {     * progression in between and thus overestimating or underestimating according
        if (k != k2){     * to the curvature of the survival function. If, for the same date, we 
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 ij=1;     * to compare the new estimate of Life expectancy with the same linear 
         for(j=3; j <=ncovmodel; j++) {     * hypothesis. A more precise result, taking into account a more precise
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     * curvature will be obtained if estepm is as small as stepm. */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;    /* For example we decided to compute the life expectancy with the smallest unit */
           }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           else       nhstepm is the number of hstepm from age to agelim 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       nstepm is the number of stepm from age to agelin. 
         }       Look at hpijx to understand the reason of that which relies in memory size
           fprintf(ficgp,")/(1");       and note for a fixed period like estepm months */
            /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         for(k1=1; k1 <=nlstate; k1++){         survival function given by stepm (the optimization length). Unfortunately it
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);       means that if the survival funtion is printed only each two years of age and if
 ij=1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           for(j=3; j <=ncovmodel; j++){       results. So we changed our mind and took the option of the best precision.
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    */
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             ij++;  
           }    /* If stepm=6 months */
           else    /* nhstepm age range expressed in number of stepm */
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    agelim=AGESUP;
           }    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           fprintf(ficgp,")");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         }    /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    
         i=i+ncovmodel;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
    }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
      
   fclose(ficgp);    for (age=bage; age<=fage; age ++){ 
   /* end gnuplot */  
          /* Computed by stepm unit matrices, product of hstepm matrices, stored
 chdir(path);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
     free_ivector(wav,1,imx);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        /* Computing  Variances of health expectancies */
     free_ivector(num,1,n);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     free_vector(agedc,1,n);         decrease memory allocation */
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      for(theta=1; theta <=npar; theta++){
     fclose(ficparo);        for(i=1; i<=npar; i++){ 
     fclose(ficres);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     /*  }*/          xm[i] = x[i] - (i==theta ?delti[theta]:0);
            }
    /*________fin mle=1_________*/        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
            hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
          for(j=1; j<= nlstate; j++){
     /* No more information from the sample is required now */          for(i=1; i<=nlstate; i++){
   /* Reads comments: lines beginning with '#' */            for(h=0; h<=nhstepm-1; h++){
   while((c=getc(ficpar))=='#' && c!= EOF){              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     ungetc(c,ficpar);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     fgets(line, MAXLINE, ficpar);            }
     puts(line);          }
     fputs(line,ficparo);        }
   }       
   ungetc(c,ficpar);        for(ij=1; ij<= nlstate*nlstate; ij++)
            for(h=0; h<=nhstepm-1; h++){
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);          }
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      }/* End theta */
 /*--------- index.htm --------*/      
       
   strcpy(optionfilehtm,optionfile);      for(h=0; h<=nhstepm-1; h++)
   strcat(optionfilehtm,".htm");        for(j=1; j<=nlstate*nlstate;j++)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          for(theta=1; theta <=npar; theta++)
     printf("Problem with %s \n",optionfilehtm);goto end;            trgradg[h][j][theta]=gradg[h][theta][j];
   }      
   
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">       for(ij=1;ij<=nlstate*nlstate;ij++)
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>        for(ji=1;ji<=nlstate*nlstate;ji++)
 Total number of observations=%d <br>          varhe[ij][ji][(int)age] =0.;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>  
 <hr  size=\"2\" color=\"#EC5E5E\">       printf("%d|",(int)age);fflush(stdout);
 <li>Outputs files<br><br>\n       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n       for(h=0;h<=nhstepm-1;h++){
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>        for(k=0;k<=nhstepm-1;k++){
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>          for(ij=1;ij<=nlstate*nlstate;ij++)
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>            for(ji=1;ji<=nlstate*nlstate;ji++)
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>        }
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>      }
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>      /* Computing expectancies */
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
  fprintf(fichtm," <li>Graphs</li><p>");        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
  m=cptcoveff;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
  j1=0;  
  for(k1=1; k1<=m;k1++){          }
    for(i1=1; i1<=ncodemax[k1];i1++){  
        j1++;      fprintf(ficresstdeij,"%3.0f",age );
        if (cptcovn > 0) {      for(i=1; i<=nlstate;i++){
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        eip=0.;
          for (cpt=1; cpt<=cptcoveff;cpt++)        vip=0.;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);        for(j=1; j<=nlstate;j++){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          eip += eij[i][j][(int)age];
        }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);              fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
        for(cpt=1; cpt<nlstate;cpt++){        }
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      }
        }      fprintf(ficresstdeij,"\n");
     for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      fprintf(ficrescveij,"%3.0f",age );
 interval) in state (%d): v%s%d%d.gif <br>      for(i=1; i<=nlstate;i++)
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          for(j=1; j<=nlstate;j++){
      }          cptj= (j-1)*nlstate+i;
      for(cpt=1; cpt<=nlstate;cpt++) {          for(i2=1; i2<=nlstate;i2++)
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            for(j2=1; j2<=nlstate;j2++){
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              cptj2= (j2-1)*nlstate+i2;
      }              if(cptj2 <= cptj)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 health expectancies in states (1) and (2): e%s%d.gif<br>            }
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        }
 fprintf(fichtm,"\n</body>");      fprintf(ficrescveij,"\n");
    }     
  }    }
 fclose(fichtm);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   /*--------------- Prevalence limit --------------*/    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   strcpy(filerespl,"pl");    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(filerespl,fileres);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    printf("\n");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    fprintf(ficlog,"\n");
   }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    free_vector(xm,1,npar);
   fprintf(ficrespl,"#Prevalence limit\n");    free_vector(xp,1,npar);
   fprintf(ficrespl,"#Age ");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   fprintf(ficrespl,"\n");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
    }
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /************ Variance ******************/
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* Variance of health expectancies */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   k=0;    /* double **newm;*/
   agebase=agemin;    double **dnewm,**doldm;
   agelim=agemax;    double **dnewmp,**doldmp;
   ftolpl=1.e-10;    int i, j, nhstepm, hstepm, h, nstepm ;
   i1=cptcoveff;    int k, cptcode;
   if (cptcovn < 1){i1=1;}    double *xp;
     double **gp, **gm;  /* for var eij */
   for(cptcov=1;cptcov<=i1;cptcov++){    double ***gradg, ***trgradg; /*for var eij */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double **gradgp, **trgradgp; /* for var p point j */
         k=k+1;    double *gpp, *gmp; /* for var p point j */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         fprintf(ficrespl,"\n#******");    double ***p3mat;
         for(j=1;j<=cptcoveff;j++)    double age,agelim, hf;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ***mobaverage;
         fprintf(ficrespl,"******\n");    int theta;
            char digit[4];
         for (age=agebase; age<=agelim; age++){    char digitp[25];
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );    char fileresprobmorprev[FILENAMELENGTH];
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);    if(popbased==1){
           fprintf(ficrespl,"\n");      if(mobilav!=0)
         }        strcpy(digitp,"-populbased-mobilav-");
       }      else strcpy(digitp,"-populbased-nomobil-");
     }    }
   fclose(ficrespl);    else 
       strcpy(digitp,"-stablbased-");
   /*------------- h Pij x at various ages ------------*/  
      if (mobilav!=0) {
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   printf("Computing pij: result on file '%s' \n", filerespij);      }
      }
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
   agelim=AGESUP;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   hstepm=stepsize*YEARM; /* Every year of age */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      strcat(fileresprobmorprev,fileres);
   k=0;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   for(cptcov=1;cptcov<=i1;cptcov++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       k=k+1;    }
         fprintf(ficrespij,"\n#****** ");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         for(j=1;j<=cptcoveff;j++)   
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(ficrespij,"******\n");    pstamp(ficresprobmorprev);
            fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      fprintf(ficresprobmorprev," p.%-d SE",j);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<=nlstate;i++)
           oldm=oldms;savm=savms;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      }  
           fprintf(ficrespij,"# Age");    fprintf(ficresprobmorprev,"\n");
           for(i=1; i<=nlstate;i++)    fprintf(ficgp,"\n# Routine varevsij");
             for(j=1; j<=nlstate+ndeath;j++)    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
               fprintf(ficrespij," %1d-%1d",i,j);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           fprintf(ficrespij,"\n");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           for (h=0; h<=nhstepm; h++){  /*   } */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             for(i=1; i<=nlstate;i++)    pstamp(ficresvij);
               for(j=1; j<=nlstate+ndeath;j++)    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    if(popbased==1)
             fprintf(ficrespij,"\n");      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
           }    else
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
           fprintf(ficrespij,"\n");    fprintf(ficresvij,"# Age");
         }    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=nlstate;j++)
   }        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/  
     xp=vector(1,npar);
   fclose(ficrespij);    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   if(stepm == 1) {    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   /*---------- Forecasting ------------------*/    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   /*printf("calage= %f", calagedate);*/    gpp=vector(nlstate+1,nlstate+ndeath);
      gmp=vector(nlstate+1,nlstate+ndeath);
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
   strcpy(fileresf,"f");      printf ("Problem %d lower than %d\n",estepm, stepm);
   strcat(fileresf,fileres);    }
   if((ficresf=fopen(fileresf,"w"))==NULL) {    else  hstepm=estepm;   
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   printf("Computing forecasting: result on file '%s' \n", fileresf);       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   free_matrix(mint,1,maxwav,1,n);       Look at hpijx to understand the reason of that which relies in memory size
   free_matrix(anint,1,maxwav,1,n);       and note for a fixed period like k years */
   free_matrix(agev,1,maxwav,1,imx);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /* Mobile average */       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   if (mobilav==1) {    */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)    agelim = AGESUP;
       for (i=1; i<=nlstate;i++)    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           mobaverage[(int)agedeb][i][cptcod]=0.;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for (agedeb=bage+4; agedeb<=fage; agedeb++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       for (i=1; i<=nlstate;i++){      gp=matrix(0,nhstepm,1,nlstate);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      gm=matrix(0,nhstepm,1,nlstate);
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  
           }      for(theta=1; theta <=npar; theta++){
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }        }
     }          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;        if (popbased==1) {
   if (stepm<=12) stepsize=1;          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
   agelim=AGESUP;              prlim[i][i]=probs[(int)age][i][ij];
   /*hstepm=stepsize*YEARM; *//* Every year of age */          }else{ /* mobilav */ 
   hstepm=1;            for(i=1; i<=nlstate;i++)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */              prlim[i][i]=mobaverage[(int)age][i][ij];
   yp1=modf(dateintmean,&yp);          }
   anprojmean=yp;        }
   yp2=modf((yp1*12),&yp);    
   mprojmean=yp;        for(j=1; j<= nlstate; j++){
   yp1=modf((yp2*30.5),&yp);          for(h=0; h<=nhstepm; h++){
   jprojmean=yp;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   if(jprojmean==0) jprojmean=1;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   if(mprojmean==0) jprojmean=1;          }
         }
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
   if (popforecast==1) {           as a weighted average of prlim.
     if((ficpop=fopen(popfile,"r"))==NULL)    {        */
       printf("Problem with population file : %s\n",popfile);goto end;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     popage=ivector(0,AGESUP);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     popeffectif=vector(0,AGESUP);        }    
     popcount=vector(0,AGESUP);        /* end probability of death */
   
     i=1;          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         i=i+1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }   
     imx=i;        if (popbased==1) {
              if(mobilav ==0){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
   for(cptcov=1;cptcov<=i1;cptcov++){            for(i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              prlim[i][i]=mobaverage[(int)age][i][ij];
       k=k+1;          }
       fprintf(ficresf,"\n#******");        }
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j<= nlstate; j++){
       }          for(h=0; h<=nhstepm; h++){
       fprintf(ficresf,"******\n");            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       fprintf(ficresf,"# StartingAge FinalAge");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          }
       if (popforecast==1)  fprintf(ficresf," [Population]");        }
            /* This for computing probability of death (h=1 means
       for (cpt=0; cpt<4;cpt++) {           computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficresf,"\n");           as a weighted average of prlim.
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         nhstepm = nhstepm/hstepm;        }    
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/        /* end probability of death */
   
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<= nlstate; j++) /* vareij */
         oldm=oldms;savm=savms;          for(h=0; h<=nhstepm; h++){
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                  }
         for (h=0; h<=nhstepm; h++){  
           if (h==(int) (calagedate+YEARM*cpt)) {        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           }        }
           for(j=1; j<=nlstate+ndeath;j++) {  
             kk1=0.;kk2=0;      } /* End theta */
             for(i=1; i<=nlstate;i++) {          
               if (mobilav==1)      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
               else {      for(h=0; h<=nhstepm; h++) /* veij */
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for(j=1; j<=nlstate;j++)
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/          for(theta=1; theta <=npar; theta++)
               }            trgradg[h][j][theta]=gradg[h][theta][j];
   
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
             }        for(theta=1; theta <=npar; theta++)
                    trgradgp[j][theta]=gradgp[theta][j];
             if (h==(int)(calagedate+12*cpt)){    
               fprintf(ficresf," %.3f", kk1);  
                    hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);      for(i=1;i<=nlstate;i++)
             }        for(j=1;j<=nlstate;j++)
           }          vareij[i][j][(int)age] =0.;
         }  
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(h=0;h<=nhstepm;h++){
       }        for(k=0;k<=nhstepm;k++){
       }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   }          for(i=1;i<=nlstate;i++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(j=1;j<=nlstate;j++)
   if (popforecast==1) {              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     free_ivector(popage,0,AGESUP);        }
     free_vector(popeffectif,0,AGESUP);      }
     free_vector(popcount,0,AGESUP);    
   }      /* pptj */
   free_imatrix(s,1,maxwav+1,1,n);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   free_vector(weight,1,n);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   fclose(ficresf);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   }/* End forecasting */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   else{          varppt[j][i]=doldmp[j][i];
     erreur=108;      /* end ppptj */
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);      /*  x centered again */
   }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   /*---------- Health expectancies and variances ------------*/   
       if (popbased==1) {
   strcpy(filerest,"t");        if(mobilav ==0){
   strcat(filerest,fileres);          for(i=1; i<=nlstate;i++)
   if((ficrest=fopen(filerest,"w"))==NULL) {            prlim[i][i]=probs[(int)age][i][ij];
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        }else{ /* mobilav */ 
   }          for(i=1; i<=nlstate;i++)
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
   strcpy(filerese,"e");               
   strcat(filerese,fileres);      /* This for computing probability of death (h=1 means
   if((ficreseij=fopen(filerese,"w"))==NULL) {         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);         as a weighted average of prlim.
   }      */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
  strcpy(fileresv,"v");          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   strcat(fileresv,fileres);      }    
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      /* end probability of death */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   k=0;        for(i=1; i<=nlstate;i++){
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
       k=k+1;      } 
       fprintf(ficrest,"\n#****** ");      fprintf(ficresprobmorprev,"\n");
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficresvij,"%.0f ",age );
       fprintf(ficrest,"******\n");      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
       fprintf(ficreseij,"\n#****** ");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       for(j=1;j<=cptcoveff;j++)        }
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      fprintf(ficresvij,"\n");
       fprintf(ficreseij,"******\n");      free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       fprintf(ficresvij,"\n#****** ");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       for(j=1;j<=cptcoveff;j++)      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresvij,"******\n");    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    free_vector(gmp,nlstate+1,nlstate+ndeath);
       oldm=oldms;savm=savms;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       oldm=oldms;savm=savms;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
        /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficrest,"\n");    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
            fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       hf=1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       if (stepm >= YEARM) hf=stepm/YEARM;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       epj=vector(1,nlstate+1);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       for(age=bage; age <=fage ;age++){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  */
         if (popbased==1) {  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           for(i=1; i<=nlstate;i++)    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             prlim[i][i]=probs[(int)age][i][k];  
         }    free_vector(xp,1,npar);
            free_matrix(doldm,1,nlstate,1,nlstate);
         fprintf(ficrest," %.0f",age);    free_matrix(dnewm,1,nlstate,1,npar);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           epj[nlstate+1] +=epj[j];    fclose(ficresprobmorprev);
         }    fflush(ficgp);
         for(i=1, vepp=0.;i <=nlstate;i++)    fflush(fichtm); 
           for(j=1;j <=nlstate;j++)  }  /* end varevsij */
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  /************ Variance of prevlim ******************/
         for(j=1;j <=nlstate;j++){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));  {
         }    /* Variance of prevalence limit */
         fprintf(ficrest,"\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       }    double **newm;
     }    double **dnewm,**doldm;
   }    int i, j, nhstepm, hstepm;
            int k, cptcode;
            double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
  fclose(ficreseij);    double age,agelim;
  fclose(ficresvij);    int theta;
   fclose(ficrest);    
   fclose(ficpar);    pstamp(ficresvpl);
   free_vector(epj,1,nlstate+1);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   /*  scanf("%d ",i); */    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
   /*------- Variance limit prevalence------*/          fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
 strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);    xp=vector(1,npar);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    dnewm=matrix(1,nlstate,1,npar);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    doldm=matrix(1,nlstate,1,nlstate);
     exit(0);    
   }    hstepm=1*YEARM; /* Every year of age */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
  k=0;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  for(cptcov=1;cptcov<=i1;cptcov++){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      if (stepm >= YEARM) hstepm=1;
      k=k+1;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
      fprintf(ficresvpl,"\n#****** ");      gradg=matrix(1,npar,1,nlstate);
      for(j=1;j<=cptcoveff;j++)      gp=vector(1,nlstate);
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      gm=vector(1,nlstate);
      fprintf(ficresvpl,"******\n");  
            for(theta=1; theta <=npar; theta++){
      varpl=matrix(1,nlstate,(int) bage, (int) fage);        for(i=1; i<=npar; i++){ /* Computes gradient */
      oldm=oldms;savm=savms;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        }
    }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  }        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
   fclose(ficresvpl);      
         for(i=1; i<=npar; i++) /* Computes gradient */
   /*---------- End : free ----------------*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          gm[i] = prlim[i][i];
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
          for(i=1;i<=nlstate;i++)
            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      } /* End theta */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      trgradg =matrix(1,nlstate,1,npar);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
        for(j=1; j<=nlstate;j++)
   free_matrix(matcov,1,npar,1,npar);        for(theta=1; theta <=npar; theta++)
   free_vector(delti,1,npar);          trgradg[j][theta]=gradg[theta][j];
    
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
   if(erreur >0)      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     printf("End of Imach with error %d\n",erreur);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   else   printf("End of Imach\n");      for(i=1;i<=nlstate;i++)
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      fprintf(ficresvpl,"%.0f ",age );
   /*printf("Total time was %d uSec.\n", total_usecs);*/      for(i=1; i<=nlstate;i++)
   /*------ End -----------*/        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
  end:      free_vector(gm,1,nlstate);
 #ifdef windows      free_matrix(gradg,1,npar,1,nlstate);
  chdir(pathcd);      free_matrix(trgradg,1,nlstate,1,npar);
 #endif    } /* End age */
    
  system("..\\gp37mgw\\wgnuplot graph.plt");    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
 #ifdef windows    free_matrix(dnewm,1,nlstate,1,nlstate);
   while (z[0] != 'q') {  
     chdir(pathcd);  }
     printf("\nType e to edit output files, c to start again, and q for exiting: ");  
     scanf("%s",z);  /************ Variance of one-step probabilities  ******************/
     if (z[0] == 'c') system("./imach");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     else if (z[0] == 'e') {  {
       chdir(path);    int i, j=0,  i1, k1, l1, t, tj;
       system(optionfilehtm);    int k2, l2, j1,  z1;
     }    int k=0,l, cptcode;
     else if (z[0] == 'q') exit(0);    int first=1, first1;
   }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 #endif    double **dnewm,**doldm;
 }    double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.21  
changed lines
  Added in v.1.122


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>