Diff for /imach/src/imach.c between versions 1.21 and 1.75

version 1.21, 2002/02/21 18:42:24 version 1.75, 2003/05/03 01:18:24
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************             Interpolated Markov Chain
   This program computes Healthy Life Expectancies from cross-longitudinal  
   data. Cross-longitudinal consist in a first survey ("cross") where    Short summary of the programme:
   individuals from different ages are interviewed on their health status    
   or degree of  disability. At least a second wave of interviews    This program computes Healthy Life Expectancies from
   ("longitudinal") should  measure each new individual health status.    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   Health expectancies are computed from the transistions observed between    first survey ("cross") where individuals from different ages are
   waves and are computed for each degree of severity of disability (number    interviewed on their health status or degree of disability (in the
   of life states). More degrees you consider, more time is necessary to    case of a health survey which is our main interest) -2- at least a
   reach the Maximum Likelihood of the parameters involved in the model.    second wave of interviews ("longitudinal") which measure each change
   The simplest model is the multinomial logistic model where pij is    (if any) in individual health status.  Health expectancies are
   the probabibility to be observed in state j at the second wave conditional    computed from the time spent in each health state according to a
   to be observed in state i at the first wave. Therefore the model is:    model. More health states you consider, more time is necessary to reach the
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Maximum Likelihood of the parameters involved in the model.  The
   is a covariate. If you want to have a more complex model than "constant and    simplest model is the multinomial logistic model where pij is the
   age", you should modify the program where the markup    probability to be observed in state j at the second wave
     *Covariates have to be included here again* invites you to do it.    conditional to be observed in state i at the first wave. Therefore
   More covariates you add, less is the speed of the convergence.    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
   The advantage that this computer programme claims, comes from that if the    complex model than "constant and age", you should modify the program
   delay between waves is not identical for each individual, or if some    where the markup *Covariates have to be included here again* invites
   individual missed an interview, the information is not rounded or lost, but    you to do it.  More covariates you add, slower the
   taken into account using an interpolation or extrapolation.    convergence.
   hPijx is the probability to be  
   observed in state i at age x+h conditional to the observed state i at age    The advantage of this computer programme, compared to a simple
   x. The delay 'h' can be split into an exact number (nh*stepm) of    multinomial logistic model, is clear when the delay between waves is not
   unobserved intermediate  states. This elementary transition (by month or    identical for each individual. Also, if a individual missed an
   quarter trimester, semester or year) is model as a multinomial logistic.    intermediate interview, the information is lost, but taken into
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    account using an interpolation or extrapolation.  
   and the contribution of each individual to the likelihood is simply hPijx.  
     hPijx is the probability to be observed in state i at age x+h
   Also this programme outputs the covariance matrix of the parameters but also    conditional to the observed state i at age x. The delay 'h' can be
   of the life expectancies. It also computes the prevalence limits.    split into an exact number (nh*stepm) of unobserved intermediate
      states. This elementary transition (by month, quarter,
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    semester or year) is modelled as a multinomial logistic.  The hPx
            Institut national d'études démographiques, Paris.    matrix is simply the matrix product of nh*stepm elementary matrices
   This software have been partly granted by Euro-REVES, a concerted action    and the contribution of each individual to the likelihood is simply
   from the European Union.    hPijx.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Also this programme outputs the covariance matrix of the parameters but also
   can be accessed at http://euroreves.ined.fr/imach .    of the life expectancies. It also computes the stable prevalence. 
   **********************************************************************/    
      Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #include <math.h>             Institut national d'études démographiques, Paris.
 #include <stdio.h>    This software have been partly granted by Euro-REVES, a concerted action
 #include <stdlib.h>    from the European Union.
 #include <unistd.h>    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 #define MAXLINE 256    can be accessed at http://euroreves.ined.fr/imach .
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define windows    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    **********************************************************************/
   /*
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    main
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    read parameterfile
     read datafile
 #define NINTERVMAX 8    concatwav
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    if (mle >= 1)
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */      mlikeli
 #define NCOVMAX 8 /* Maximum number of covariates */    print results files
 #define MAXN 20000    if mle==1 
 #define YEARM 12. /* Number of months per year */       computes hessian
 #define AGESUP 130    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define AGEBASE 40        begin-prev-date,...
     open gnuplot file
     open html file
 int erreur; /* Error number */    stable prevalence
 int nvar;     for age prevalim()
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    h Pij x
 int npar=NPARMAX;    variance of p varprob
 int nlstate=2; /* Number of live states */    forecasting if prevfcast==1 prevforecast call prevalence()
 int ndeath=1; /* Number of dead states */    health expectancies
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Variance-covariance of DFLE
 int popbased=0;    prevalence()
      movingaverage()
 int *wav; /* Number of waves for this individuual 0 is possible */    varevsij() 
 int maxwav; /* Maxim number of waves */    if popbased==1 varevsij(,popbased)
 int jmin, jmax; /* min, max spacing between 2 waves */    total life expectancies
 int mle, weightopt;    Variance of stable prevalence
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */   end
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  */
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;   
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;  #include <math.h>
 FILE *ficreseij;  #include <stdio.h>
   char filerese[FILENAMELENGTH];  #include <stdlib.h>
  FILE  *ficresvij;  #include <unistd.h>
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;  #define MAXLINE 256
   char fileresvpl[FILENAMELENGTH];  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define NR_END 1  #define FILENAMELENGTH 80
 #define FREE_ARG char*  /*#define DEBUG*/
 #define FTOL 1.0e-10  #define windows
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define NRANSI  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define ITMAX 200  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define TOL 2.0e-4  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 #define CGOLD 0.3819660  #define NINTERVMAX 8
 #define ZEPS 1.0e-10  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 #define GOLD 1.618034  #define MAXN 20000
 #define GLIMIT 100.0  #define YEARM 12. /* Number of months per year */
 #define TINY 1.0e-20  #define AGESUP 130
   #define AGEBASE 40
 static double maxarg1,maxarg2;  #ifdef windows
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define DIRSEPARATOR '\\'
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define ODIRSEPARATOR '/'
    #else
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define DIRSEPARATOR '/'
 #define rint(a) floor(a+0.5)  #define ODIRSEPARATOR '\\'
   #endif
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  char version[80]="Imach version 0.95, May 2003, INED-EUROREVES ";
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  int erreur; /* Error number */
   int nvar;
 int imx;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 int stepm;  int npar=NPARMAX;
 /* Stepm, step in month: minimum step interpolation*/  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 int m,nb;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  int popbased=0;
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;  int *wav; /* Number of waves for this individuual 0 is possible */
 double dateintmean=0;  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 double *weight;  int mle, weightopt;
 int **s; /* Status */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 double *agedc, **covar, idx;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  double jmean; /* Mean space between 2 waves */
 double ftolhess; /* Tolerance for computing hessian */  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 /**************** split *************************/  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 static  int split( char *path, char *dirc, char *name )  FILE *ficlog;
 {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    char *s;                             /* pointer */  FILE *ficresprobmorprev;
    int  l1, l2;                         /* length counters */  FILE *fichtm; /* Html File */
   FILE *ficreseij;
    l1 = strlen( path );                 /* length of path */  char filerese[FILENAMELENGTH];
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  FILE  *ficresvij;
    s = strrchr( path, '\\' );           /* find last / */  char fileresv[FILENAMELENGTH];
    if ( s == NULL ) {                   /* no directory, so use current */  FILE  *ficresvpl;
 #if     defined(__bsd__)                /* get current working directory */  char fileresvpl[FILENAMELENGTH];
       extern char       *getwd( );  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       if ( getwd( dirc ) == NULL ) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 #else  
       extern char       *getcwd( );  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   char filelog[FILENAMELENGTH]; /* Log file */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  char filerest[FILENAMELENGTH];
 #endif  char fileregp[FILENAMELENGTH];
          return( GLOCK_ERROR_GETCWD );  char popfile[FILENAMELENGTH];
       }  
       strcpy( name, path );             /* we've got it */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */  #define NR_END 1
       l2 = strlen( s );                 /* length of filename */  #define FREE_ARG char*
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define FTOL 1.0e-10
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define NRANSI 
       dirc[l1-l2] = 0;                  /* add zero */  #define ITMAX 200 
    }  
    l1 = strlen( dirc );                 /* length of directory */  #define TOL 2.0e-4 
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
    return( 0 );                         /* we're done */  #define CGOLD 0.3819660 
 }  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /******************************************/  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 void replace(char *s, char*t)  #define TINY 1.0e-20 
 {  
   int i;  static double maxarg1,maxarg2;
   int lg=20;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   i=0;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   lg=strlen(t);    
   for(i=0; i<= lg; i++) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     (s[i] = t[i]);  #define rint(a) floor(a+0.5)
     if (t[i]== '\\') s[i]='/';  
   }  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 int nbocc(char *s, char occ)  
 {  int imx; 
   int i,j=0;  int stepm;
   int lg=20;  /* Stepm, step in month: minimum step interpolation*/
   i=0;  
   lg=strlen(s);  int estepm;
   for(i=0; i<= lg; i++) {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   if  (s[i] == occ ) j++;  
   }  int m,nb;
   return j;  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
 void cutv(char *u,char *v, char*t, char occ)  double dateintmean=0;
 {  
   int i,lg,j,p=0;  double *weight;
   i=0;  int **s; /* Status */
   for(j=0; j<=strlen(t)-1; j++) {  double *agedc, **covar, idx;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   lg=strlen(t);  double ftolhess; /* Tolerance for computing hessian */
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  /**************** split *************************/
   }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
      u[p]='\0';  {
     char  *ss;                            /* pointer */
    for(j=0; j<= lg; j++) {    int   l1, l2;                         /* length counters */
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 /********************** nrerror ********************/    if ( ss == NULL ) {                   /* no directory, so use current */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 void nrerror(char error_text[])        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   fprintf(stderr,"ERREUR ...\n");      /*    extern  char* getcwd ( char *buf , int len);*/
   fprintf(stderr,"%s\n",error_text);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   exit(1);        return( GLOCK_ERROR_GETCWD );
 }      }
 /*********************** vector *******************/      strcpy( name, path );               /* we've got it */
 double *vector(int nl, int nh)    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   double *v;      l2 = strlen( ss );                  /* length of filename */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!v) nrerror("allocation failure in vector");      strcpy( name, ss );         /* save file name */
   return v-nl+NR_END;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = 0;                    /* add zero */
     }
 /************************ free vector ******************/    l1 = strlen( dirc );                  /* length of directory */
 void free_vector(double*v, int nl, int nh)  #ifdef windows
 {    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   free((FREE_ARG)(v+nl-NR_END));  #else
 }    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   #endif
 /************************ivector *******************************/    ss = strrchr( name, '.' );            /* find last / */
 int *ivector(long nl,long nh)    ss++;
 {    strcpy(ext,ss);                       /* save extension */
   int *v;    l1= strlen( name);
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    l2= strlen(ss)+1;
   if (!v) nrerror("allocation failure in ivector");    strncpy( finame, name, l1-l2);
   return v-nl+NR_END;    finame[l1-l2]= 0;
 }    return( 0 );                          /* we're done */
   }
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  
 {  /******************************************/
   free((FREE_ARG)(v+nl-NR_END));  
 }  void replace(char *s, char*t)
   {
 /******************* imatrix *******************************/    int i;
 int **imatrix(long nrl, long nrh, long ncl, long nch)    int lg=20;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    i=0;
 {    lg=strlen(t);
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    for(i=0; i<= lg; i++) {
   int **m;      (s[i] = t[i]);
        if (t[i]== '\\') s[i]='/';
   /* allocate pointers to rows */    }
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  }
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  int nbocc(char *s, char occ)
   m -= nrl;  {
      int i,j=0;
      int lg=20;
   /* allocate rows and set pointers to them */    i=0;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    lg=strlen(s);
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    for(i=0; i<= lg; i++) {
   m[nrl] += NR_END;    if  (s[i] == occ ) j++;
   m[nrl] -= ncl;    }
      return j;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  }
    
   /* return pointer to array of pointers to rows */  void cutv(char *u,char *v, char*t, char occ)
   return m;  {
 }    /* cuts string t into u and v where u is ended by char occ excluding it
        and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 /****************** free_imatrix *************************/       gives u="abcedf" and v="ghi2j" */
 void free_imatrix(m,nrl,nrh,ncl,nch)    int i,lg,j,p=0;
       int **m;    i=0;
       long nch,ncl,nrh,nrl;    for(j=0; j<=strlen(t)-1; j++) {
      /* free an int matrix allocated by imatrix() */      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 {    }
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    lg=strlen(t);
 }    for(j=0; j<p; j++) {
       (u[j] = t[j]);
 /******************* matrix *******************************/    }
 double **matrix(long nrl, long nrh, long ncl, long nch)       u[p]='\0';
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;     for(j=0; j<= lg; j++) {
   double **m;      if (j>=(p+1))(v[j-p-1] = t[j]);
     }
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  }
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /********************** nrerror ********************/
   m -= nrl;  
   void nrerror(char error_text[])
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    fprintf(stderr,"ERREUR ...\n");
   m[nrl] += NR_END;    fprintf(stderr,"%s\n",error_text);
   m[nrl] -= ncl;    exit(EXIT_FAILURE);
   }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /*********************** vector *******************/
   return m;  double *vector(int nl, int nh)
 }  {
     double *v;
 /*************************free matrix ************************/    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    if (!v) nrerror("allocation failure in vector");
 {    return v-nl+NR_END;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /******************* ma3x *******************************/  {
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  /************************ivector *******************************/
   int *ivector(long nl,long nh)
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    int *v;
   m += NR_END;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   m -= nrl;    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /******************free ivector **************************/
   m[nrl] -= ncl;  void free_ivector(int *v, long nl, long nh)
   {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    free((FREE_ARG)(v+nl-NR_END));
   }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  /******************* imatrix *******************************/
   m[nrl][ncl] += NR_END;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   m[nrl][ncl] -= nll;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for (j=ncl+1; j<=nch; j++)  { 
     m[nrl][j]=m[nrl][j-1]+nlay;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
      int **m; 
   for (i=nrl+1; i<=nrh; i++) {    
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    /* allocate pointers to rows */ 
     for (j=ncl+1; j<=nch; j++)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       m[i][j]=m[i][j-1]+nlay;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   }    m += NR_END; 
   return m;    m -= nrl; 
 }    
     
 /*************************free ma3x ************************/    /* allocate rows and set pointers to them */ 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    m[nrl] += NR_END; 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    m[nrl] -= ncl; 
   free((FREE_ARG)(m+nrl-NR_END));    
 }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
 /***************** f1dim *************************/    /* return pointer to array of pointers to rows */ 
 extern int ncom;    return m; 
 extern double *pcom,*xicom;  } 
 extern double (*nrfunc)(double []);  
    /****************** free_imatrix *************************/
 double f1dim(double x)  void free_imatrix(m,nrl,nrh,ncl,nch)
 {        int **m;
   int j;        long nch,ncl,nrh,nrl; 
   double f;       /* free an int matrix allocated by imatrix() */ 
   double *xt;  { 
      free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   xt=vector(1,ncom);    free((FREE_ARG) (m+nrl-NR_END)); 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  } 
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  /******************* matrix *******************************/
   return f;  double **matrix(long nrl, long nrh, long ncl, long nch)
 }  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 /*****************brent *************************/    double **m;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int iter;    if (!m) nrerror("allocation failure 1 in matrix()");
   double a,b,d,etemp;    m += NR_END;
   double fu,fv,fw,fx;    m -= nrl;
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double e=0.0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      m[nrl] += NR_END;
   a=(ax < cx ? ax : cx);    m[nrl] -= ncl;
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   fw=fv=fx=(*f)(x);    return m;
   for (iter=1;iter<=ITMAX;iter++) {    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
     xm=0.5*(a+b);     */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  /*************************free matrix ************************/
 #ifdef DEBUG  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  {
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #endif    free((FREE_ARG)(m+nrl-NR_END));
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  }
       *xmin=x;  
       return fx;  /******************* ma3x *******************************/
     }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     ftemp=fu;  {
     if (fabs(e) > tol1) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       r=(x-w)*(fx-fv);    double ***m;
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       q=2.0*(q-r);    if (!m) nrerror("allocation failure 1 in matrix()");
       if (q > 0.0) p = -p;    m += NR_END;
       q=fabs(q);    m -= nrl;
       etemp=e;  
       e=d;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl] += NR_END;
       else {    m[nrl] -= ncl;
         d=p/q;  
         u=x+d;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     } else {    m[nrl][ncl] += NR_END;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl][ncl] -= nll;
     }    for (j=ncl+1; j<=nch; j++) 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      m[nrl][j]=m[nrl][j-1]+nlay;
     fu=(*f)(u);    
     if (fu <= fx) {    for (i=nrl+1; i<=nrh; i++) {
       if (u >= x) a=x; else b=x;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       SHFT(v,w,x,u)      for (j=ncl+1; j<=nch; j++) 
         SHFT(fv,fw,fx,fu)        m[i][j]=m[i][j-1]+nlay;
         } else {    }
           if (u < x) a=u; else b=u;    return m; 
           if (fu <= fw || w == x) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
             v=w;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
             w=u;    */
             fv=fw;  }
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /*************************free ma3x ************************/
             v=u;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
             fv=fu;  {
           }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   }    free((FREE_ARG)(m+nrl-NR_END));
   nrerror("Too many iterations in brent");  }
   *xmin=x;  
   return fx;  /***************** f1dim *************************/
 }  extern int ncom; 
   extern double *pcom,*xicom;
 /****************** mnbrak ***********************/  extern double (*nrfunc)(double []); 
    
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  double f1dim(double x) 
             double (*func)(double))  { 
 {    int j; 
   double ulim,u,r,q, dum;    double f;
   double fu;    double *xt; 
     
   *fa=(*func)(*ax);    xt=vector(1,ncom); 
   *fb=(*func)(*bx);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   if (*fb > *fa) {    f=(*nrfunc)(xt); 
     SHFT(dum,*ax,*bx,dum)    free_vector(xt,1,ncom); 
       SHFT(dum,*fb,*fa,dum)    return f; 
       }  } 
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  /*****************brent *************************/
   while (*fb > *fc) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     r=(*bx-*ax)*(*fb-*fc);  { 
     q=(*bx-*cx)*(*fb-*fa);    int iter; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    double a,b,d,etemp;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    double fu,fv,fw,fx;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    double ftemp;
     if ((*bx-u)*(u-*cx) > 0.0) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       fu=(*func)(u);    double e=0.0; 
     } else if ((*cx-u)*(u-ulim) > 0.0) {   
       fu=(*func)(u);    a=(ax < cx ? ax : cx); 
       if (fu < *fc) {    b=(ax > cx ? ax : cx); 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    x=w=v=bx; 
           SHFT(*fb,*fc,fu,(*func)(u))    fw=fv=fx=(*f)(x); 
           }    for (iter=1;iter<=ITMAX;iter++) { 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      xm=0.5*(a+b); 
       u=ulim;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       fu=(*func)(u);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     } else {      printf(".");fflush(stdout);
       u=(*cx)+GOLD*(*cx-*bx);      fprintf(ficlog,".");fflush(ficlog);
       fu=(*func)(u);  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     SHFT(*ax,*bx,*cx,u)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       SHFT(*fa,*fb,*fc,fu)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
 }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
 /*************** linmin ************************/        return fx; 
       } 
 int ncom;      ftemp=fu;
 double *pcom,*xicom;      if (fabs(e) > tol1) { 
 double (*nrfunc)(double []);        r=(x-w)*(fx-fv); 
          q=(x-v)*(fx-fw); 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))        p=(x-v)*q-(x-w)*r; 
 {        q=2.0*(q-r); 
   double brent(double ax, double bx, double cx,        if (q > 0.0) p = -p; 
                double (*f)(double), double tol, double *xmin);        q=fabs(q); 
   double f1dim(double x);        etemp=e; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,        e=d; 
               double *fc, double (*func)(double));        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   int j;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double xx,xmin,bx,ax;        else { 
   double fx,fb,fa;          d=p/q; 
            u=x+d; 
   ncom=n;          if (u-a < tol2 || b-u < tol2) 
   pcom=vector(1,n);            d=SIGN(tol1,xm-x); 
   xicom=vector(1,n);        } 
   nrfunc=func;      } else { 
   for (j=1;j<=n;j++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     pcom[j]=p[j];      } 
     xicom[j]=xi[j];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   }      fu=(*f)(u); 
   ax=0.0;      if (fu <= fx) { 
   xx=1.0;        if (u >= x) a=x; else b=x; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);        SHFT(v,w,x,u) 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);          SHFT(fv,fw,fx,fu) 
 #ifdef DEBUG          } else { 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);            if (u < x) a=u; else b=u; 
 #endif            if (fu <= fw || w == x) { 
   for (j=1;j<=n;j++) {              v=w; 
     xi[j] *= xmin;              w=u; 
     p[j] += xi[j];              fv=fw; 
   }              fw=fu; 
   free_vector(xicom,1,n);            } else if (fu <= fv || v == x || v == w) { 
   free_vector(pcom,1,n);              v=u; 
 }              fv=fu; 
             } 
 /*************** powell ************************/          } 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    } 
             double (*func)(double []))    nrerror("Too many iterations in brent"); 
 {    *xmin=x; 
   void linmin(double p[], double xi[], int n, double *fret,    return fx; 
               double (*func)(double []));  } 
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /****************** mnbrak ***********************/
   double fp,fptt;  
   double *xits;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   pt=vector(1,n);              double (*func)(double)) 
   ptt=vector(1,n);  { 
   xit=vector(1,n);    double ulim,u,r,q, dum;
   xits=vector(1,n);    double fu; 
   *fret=(*func)(p);   
   for (j=1;j<=n;j++) pt[j]=p[j];    *fa=(*func)(*ax); 
   for (*iter=1;;++(*iter)) {    *fb=(*func)(*bx); 
     fp=(*fret);    if (*fb > *fa) { 
     ibig=0;      SHFT(dum,*ax,*bx,dum) 
     del=0.0;        SHFT(dum,*fb,*fa,dum) 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        } 
     for (i=1;i<=n;i++)    *cx=(*bx)+GOLD*(*bx-*ax); 
       printf(" %d %.12f",i, p[i]);    *fc=(*func)(*cx); 
     printf("\n");    while (*fb > *fc) { 
     for (i=1;i<=n;i++) {      r=(*bx-*ax)*(*fb-*fc); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      q=(*bx-*cx)*(*fb-*fa); 
       fptt=(*fret);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 #ifdef DEBUG        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       printf("fret=%lf \n",*fret);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 #endif      if ((*bx-u)*(u-*cx) > 0.0) { 
       printf("%d",i);fflush(stdout);        fu=(*func)(u); 
       linmin(p,xit,n,fret,func);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       if (fabs(fptt-(*fret)) > del) {        fu=(*func)(u); 
         del=fabs(fptt-(*fret));        if (fu < *fc) { 
         ibig=i;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       }            SHFT(*fb,*fc,fu,(*func)(u)) 
 #ifdef DEBUG            } 
       printf("%d %.12e",i,(*fret));      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       for (j=1;j<=n;j++) {        u=ulim; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        fu=(*func)(u); 
         printf(" x(%d)=%.12e",j,xit[j]);      } else { 
       }        u=(*cx)+GOLD*(*cx-*bx); 
       for(j=1;j<=n;j++)        fu=(*func)(u); 
         printf(" p=%.12e",p[j]);      } 
       printf("\n");      SHFT(*ax,*bx,*cx,u) 
 #endif        SHFT(*fa,*fb,*fc,fu) 
     }        } 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  } 
 #ifdef DEBUG  
       int k[2],l;  /*************** linmin ************************/
       k[0]=1;  
       k[1]=-1;  int ncom; 
       printf("Max: %.12e",(*func)(p));  double *pcom,*xicom;
       for (j=1;j<=n;j++)  double (*nrfunc)(double []); 
         printf(" %.12e",p[j]);   
       printf("\n");  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       for(l=0;l<=1;l++) {  { 
         for (j=1;j<=n;j++) {    double brent(double ax, double bx, double cx, 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];                 double (*f)(double), double tol, double *xmin); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    double f1dim(double x); 
         }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));                double *fc, double (*func)(double)); 
       }    int j; 
 #endif    double xx,xmin,bx,ax; 
     double fx,fb,fa;
    
       free_vector(xit,1,n);    ncom=n; 
       free_vector(xits,1,n);    pcom=vector(1,n); 
       free_vector(ptt,1,n);    xicom=vector(1,n); 
       free_vector(pt,1,n);    nrfunc=func; 
       return;    for (j=1;j<=n;j++) { 
     }      pcom[j]=p[j]; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      xicom[j]=xi[j]; 
     for (j=1;j<=n;j++) {    } 
       ptt[j]=2.0*p[j]-pt[j];    ax=0.0; 
       xit[j]=p[j]-pt[j];    xx=1.0; 
       pt[j]=p[j];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     fptt=(*func)(ptt);  #ifdef DEBUG
     if (fptt < fp) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       if (t < 0.0) {  #endif
         linmin(p,xit,n,fret,func);    for (j=1;j<=n;j++) { 
         for (j=1;j<=n;j++) {      xi[j] *= xmin; 
           xi[j][ibig]=xi[j][n];      p[j] += xi[j]; 
           xi[j][n]=xit[j];    } 
         }    free_vector(xicom,1,n); 
 #ifdef DEBUG    free_vector(pcom,1,n); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  } 
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  /*************** powell ************************/
         printf("\n");  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 #endif              double (*func)(double [])) 
       }  { 
     }    void linmin(double p[], double xi[], int n, double *fret, 
   }                double (*func)(double [])); 
 }    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
 /**** Prevalence limit ****************/    double fp,fptt;
     double *xits;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    pt=vector(1,n); 
 {    ptt=vector(1,n); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    xit=vector(1,n); 
      matrix by transitions matrix until convergence is reached */    xits=vector(1,n); 
     *fret=(*func)(p); 
   int i, ii,j,k;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double min, max, maxmin, maxmax,sumnew=0.;    for (*iter=1;;++(*iter)) { 
   double **matprod2();      fp=(*fret); 
   double **out, cov[NCOVMAX], **pmij();      ibig=0; 
   double **newm;      del=0.0; 
   double agefin, delaymax=50 ; /* Max number of years to converge */      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   for (ii=1;ii<=nlstate+ndeath;ii++)      for (i=1;i<=n;i++) 
     for (j=1;j<=nlstate+ndeath;j++){        printf(" %d %.12f",i, p[i]);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      fprintf(ficlog," %d %.12f",i, p[i]);
     }      printf("\n");
       fprintf(ficlog,"\n");
    cov[1]=1.;      for (i=1;i<=n;i++) { 
          for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        fptt=(*fret); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #ifdef DEBUG
     newm=savm;        printf("fret=%lf \n",*fret);
     /* Covariates have to be included here again */        fprintf(ficlog,"fret=%lf \n",*fret);
      cov[2]=agefin;  #endif
          printf("%d",i);fflush(stdout);
       for (k=1; k<=cptcovn;k++) {        fprintf(ficlog,"%d",i);fflush(ficlog);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        linmin(p,xit,n,fret,func); 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/        if (fabs(fptt-(*fret)) > del) { 
       }          del=fabs(fptt-(*fret)); 
       for (k=1; k<=cptcovage;k++)          ibig=i; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        } 
       for (k=1; k<=cptcovprod;k++)  #ifdef DEBUG
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        for (j=1;j<=n;j++) {
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
     savm=oldm;        for(j=1;j<=n;j++) {
     oldm=newm;          printf(" p=%.12e",p[j]);
     maxmax=0.;          fprintf(ficlog," p=%.12e",p[j]);
     for(j=1;j<=nlstate;j++){        }
       min=1.;        printf("\n");
       max=0.;        fprintf(ficlog,"\n");
       for(i=1; i<=nlstate; i++) {  #endif
         sumnew=0;      } 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         prlim[i][j]= newm[i][j]/(1-sumnew);  #ifdef DEBUG
         max=FMAX(max,prlim[i][j]);        int k[2],l;
         min=FMIN(min,prlim[i][j]);        k[0]=1;
       }        k[1]=-1;
       maxmin=max-min;        printf("Max: %.12e",(*func)(p));
       maxmax=FMAX(maxmax,maxmin);        fprintf(ficlog,"Max: %.12e",(*func)(p));
     }        for (j=1;j<=n;j++) {
     if(maxmax < ftolpl){          printf(" %.12e",p[j]);
       return prlim;          fprintf(ficlog," %.12e",p[j]);
     }        }
   }        printf("\n");
 }        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
 /*************** transition probabilities ***************/          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double s1, s2;          }
   /*double t34;*/          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int i,j,j1, nc, ii, jj;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
     for(i=1; i<= nlstate; i++){  #endif
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/        free_vector(xit,1,n); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        free_vector(xits,1,n); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        free_vector(ptt,1,n); 
       }        free_vector(pt,1,n); 
       ps[i][j]=s2;        return; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      } 
     }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for(j=i+1; j<=nlstate+ndeath;j++){      for (j=1;j<=n;j++) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        ptt[j]=2.0*p[j]-pt[j]; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        xit[j]=p[j]-pt[j]; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        pt[j]=p[j]; 
       }      } 
       ps[i][j]=(s2);      fptt=(*func)(ptt); 
     }      if (fptt < fp) { 
   }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     /*ps[3][2]=1;*/        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
   for(i=1; i<= nlstate; i++){          for (j=1;j<=n;j++) { 
      s1=0;            xi[j][ibig]=xi[j][n]; 
     for(j=1; j<i; j++)            xi[j][n]=xit[j]; 
       s1+=exp(ps[i][j]);          }
     for(j=i+1; j<=nlstate+ndeath; j++)  #ifdef DEBUG
       s1+=exp(ps[i][j]);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     ps[i][i]=1./(s1+1.);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(j=1; j<i; j++)          for(j=1;j<=n;j++){
       ps[i][j]= exp(ps[i][j])*ps[i][i];            printf(" %.12e",xit[j]);
     for(j=i+1; j<=nlstate+ndeath; j++)            fprintf(ficlog," %.12e",xit[j]);
       ps[i][j]= exp(ps[i][j])*ps[i][i];          }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          printf("\n");
   } /* end i */          fprintf(ficlog,"\n");
   #endif
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        }
     for(jj=1; jj<= nlstate+ndeath; jj++){      } 
       ps[ii][jj]=0;    } 
       ps[ii][ii]=1;  } 
     }  
   }  /**** Prevalence limit (stable prevalence)  ****************/
   
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
      printf("%lf ",ps[ii][jj]);       matrix by transitions matrix until convergence is reached */
    }  
     printf("\n ");    int i, ii,j,k;
     }    double min, max, maxmin, maxmax,sumnew=0.;
     printf("\n ");printf("%lf ",cov[2]);*/    double **matprod2();
 /*    double **out, cov[NCOVMAX], **pmij();
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    double **newm;
   goto end;*/    double agefin, delaymax=50 ; /* Max number of years to converge */
     return ps;  
 }    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
 /**************** Product of 2 matrices ******************/        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {     cov[1]=1.;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times   
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /* in, b, out are matrice of pointers which should have been initialized    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
      before: only the contents of out is modified. The function returns      newm=savm;
      a pointer to pointers identical to out */      /* Covariates have to be included here again */
   long i, j, k;       cov[2]=agefin;
   for(i=nrl; i<= nrh; i++)    
     for(k=ncolol; k<=ncoloh; k++)        for (k=1; k<=cptcovn;k++) {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         out[i][k] +=in[i][j]*b[j][k];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
   return out;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 /************* Higher Matrix Product ***************/        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until      savm=oldm;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      oldm=newm;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      maxmax=0.;
      (typically every 2 years instead of every month which is too big).      for(j=1;j<=nlstate;j++){
      Model is determined by parameters x and covariates have to be        min=1.;
      included manually here.        max=0.;
         for(i=1; i<=nlstate; i++) {
      */          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   int i, j, d, h, k;          prlim[i][j]= newm[i][j]/(1-sumnew);
   double **out, cov[NCOVMAX];          max=FMAX(max,prlim[i][j]);
   double **newm;          min=FMIN(min,prlim[i][j]);
         }
   /* Hstepm could be zero and should return the unit matrix */        maxmin=max-min;
   for (i=1;i<=nlstate+ndeath;i++)        maxmax=FMAX(maxmax,maxmin);
     for (j=1;j<=nlstate+ndeath;j++){      }
       oldm[i][j]=(i==j ? 1.0 : 0.0);      if(maxmax < ftolpl){
       po[i][j][0]=(i==j ? 1.0 : 0.0);        return prlim;
     }      }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    }
   for(h=1; h <=nhstepm; h++){  }
     for(d=1; d <=hstepm; d++){  
       newm=savm;  /*************** transition probabilities ***************/ 
       /* Covariates have to be included here again */  
       cov[1]=1.;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  {
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double s1, s2;
       for (k=1; k<=cptcovage;k++)    /*double t34;*/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    int i,j,j1, nc, ii, jj;
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      for(i=1; i<= nlstate; i++){
       for(j=1; j<i;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          /*s2 += param[i][j][nc]*cov[nc];*/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        }
       savm=oldm;        ps[i][j]=s2;
       oldm=newm;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
     }      }
     for(i=1; i<=nlstate+ndeath; i++)      for(j=i+1; j<=nlstate+ndeath;j++){
       for(j=1;j<=nlstate+ndeath;j++) {        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         po[i][j][h]=newm[i][j];          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
          */        }
       }        ps[i][j]=s2;
   } /* end h */      }
   return po;    }
 }      /*ps[3][2]=1;*/
   
     for(i=1; i<= nlstate; i++){
 /*************** log-likelihood *************/       s1=0;
 double func( double *x)      for(j=1; j<i; j++)
 {        s1+=exp(ps[i][j]);
   int i, ii, j, k, mi, d, kk;      for(j=i+1; j<=nlstate+ndeath; j++)
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        s1+=exp(ps[i][j]);
   double **out;      ps[i][i]=1./(s1+1.);
   double sw; /* Sum of weights */      for(j=1; j<i; j++)
   double lli; /* Individual log likelihood */        ps[i][j]= exp(ps[i][j])*ps[i][i];
   long ipmx;      for(j=i+1; j<=nlstate+ndeath; j++)
   /*extern weight */        ps[i][j]= exp(ps[i][j])*ps[i][i];
   /* We are differentiating ll according to initial status */      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    } /* end i */
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   */      for(jj=1; jj<= nlstate+ndeath; jj++){
   cov[1]=1.;        ps[ii][jj]=0;
         ps[ii][ii]=1;
   for(k=1; k<=nlstate; k++) ll[k]=0.;      }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for(jj=1; jj<= nlstate+ndeath; jj++){
       for(d=0; d<dh[mi][i]; d++){       printf("%lf ",ps[ii][jj]);
         newm=savm;     }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      printf("\n ");
         for (kk=1; kk<=cptcovage;kk++) {      }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      printf("\n ");printf("%lf ",cov[2]);*/
         }  /*
            for(i=1; i<= npar; i++) printf("%f ",x[i]);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    goto end;*/
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      return ps;
         savm=oldm;  }
         oldm=newm;  
          /**************** Product of 2 matrices ******************/
          
       } /* end mult */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
        {
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       ipmx +=1;    /* in, b, out are matrice of pointers which should have been initialized 
       sw += weight[i];       before: only the contents of out is modified. The function returns
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       a pointer to pointers identical to out */
     } /* end of wave */    long i, j, k;
   } /* end of individual */    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          out[i][k] +=in[i][j]*b[j][k];
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;    return out;
 }  }
   
   
 /*********** Maximum Likelihood Estimation ***************/  /************* Higher Matrix Product ***************/
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 {  {
   int i,j, iter;    /* Computes the transition matrix starting at age 'age' over 
   double **xi,*delti;       'nhstepm*hstepm*stepm' months (i.e. until
   double fret;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   xi=matrix(1,npar,1,npar);       nhstepm*hstepm matrices. 
   for (i=1;i<=npar;i++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for (j=1;j<=npar;j++)       (typically every 2 years instead of every month which is too big 
       xi[i][j]=(i==j ? 1.0 : 0.0);       for the memory).
   printf("Powell\n");       Model is determined by parameters x and covariates have to be 
   powell(p,xi,npar,ftol,&iter,&fret,func);       included manually here. 
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));       */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
     int i, j, d, h, k;
 }    double **out, cov[NCOVMAX];
     double **newm;
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    /* Hstepm could be zero and should return the unit matrix */
 {    for (i=1;i<=nlstate+ndeath;i++)
   double  **a,**y,*x,pd;      for (j=1;j<=nlstate+ndeath;j++){
   double **hess;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   int i, j,jk;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   int *indx;      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double hessii(double p[], double delta, int theta, double delti[]);    for(h=1; h <=nhstepm; h++){
   double hessij(double p[], double delti[], int i, int j);      for(d=1; d <=hstepm; d++){
   void lubksb(double **a, int npar, int *indx, double b[]) ;        newm=savm;
   void ludcmp(double **a, int npar, int *indx, double *d) ;        /* Covariates have to be included here again */
         cov[1]=1.;
   hess=matrix(1,npar,1,npar);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   printf("\nCalculation of the hessian matrix. Wait...\n");        for (k=1; k<=cptcovage;k++)
   for (i=1;i<=npar;i++){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     printf("%d",i);fflush(stdout);        for (k=1; k<=cptcovprod;k++)
     hess[i][i]=hessii(p,ftolhess,i,delti);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/  
   }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   for (i=1;i<=npar;i++) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for (j=1;j<=npar;j++)  {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       if (j>i) {        savm=oldm;
         printf(".%d%d",i,j);fflush(stdout);        oldm=newm;
         hess[i][j]=hessij(p,delti,i,j);      }
         hess[j][i]=hess[i][j];          for(i=1; i<=nlstate+ndeath; i++)
         /*printf(" %lf ",hess[i][j]);*/        for(j=1;j<=nlstate+ndeath;j++) {
       }          po[i][j][h]=newm[i][j];
     }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   }           */
   printf("\n");        }
     } /* end h */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    return po;
    }
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  /*************** log-likelihood *************/
   indx=ivector(1,npar);  double func( double *x)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    int i, ii, j, k, mi, d, kk;
   ludcmp(a,npar,indx,&pd);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
   for (j=1;j<=npar;j++) {    double sw; /* Sum of weights */
     for (i=1;i<=npar;i++) x[i]=0;    double lli; /* Individual log likelihood */
     x[j]=1;    int s1, s2;
     lubksb(a,npar,indx,x);    double bbh, survp;
     for (i=1;i<=npar;i++){    long ipmx;
       matcov[i][j]=x[i];    /*extern weight */
     }    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   printf("\n#Hessian matrix#\n");      printf(" %d\n",s[4][i]);
   for (i=1;i<=npar;i++) {    */
     for (j=1;j<=npar;j++) {    cov[1]=1.;
       printf("%.3e ",hess[i][j]);  
     }    for(k=1; k<=nlstate; k++) ll[k]=0.;
     printf("\n");  
   }    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* Recompute Inverse */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (i=1;i<=npar;i++)        for(mi=1; mi<= wav[i]-1; mi++){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          for (ii=1;ii<=nlstate+ndeath;ii++)
   ludcmp(a,npar,indx,&pd);            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*  printf("\n#Hessian matrix recomputed#\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   for (j=1;j<=npar;j++) {          for(d=0; d<dh[mi][i]; d++){
     for (i=1;i<=npar;i++) x[i]=0;            newm=savm;
     x[j]=1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     lubksb(a,npar,indx,x);            for (kk=1; kk<=cptcovage;kk++) {
     for (i=1;i<=npar;i++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       y[i][j]=x[i];            }
       printf("%.3e ",y[i][j]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("\n");            savm=oldm;
   }            oldm=newm;
   */          } /* end mult */
         
   free_matrix(a,1,npar,1,npar);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   free_matrix(y,1,npar,1,npar);          /* But now since version 0.9 we anticipate for bias and large stepm.
   free_vector(x,1,npar);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   free_ivector(indx,1,npar);           * (in months) between two waves is not a multiple of stepm, we rounded to 
   free_matrix(hess,1,npar,1,npar);           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 }           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 /*************** hessian matrix ****************/           * -stepm/2 to stepm/2 .
 double hessii( double x[], double delta, int theta, double delti[])           * For stepm=1 the results are the same as for previous versions of Imach.
 {           * For stepm > 1 the results are less biased than in previous versions. 
   int i;           */
   int l=1, lmax=20;          s1=s[mw[mi][i]][i];
   double k1,k2;          s2=s[mw[mi+1][i]][i];
   double p2[NPARMAX+1];          bbh=(double)bh[mi][i]/(double)stepm; 
   double res;          /* bias is positive if real duration
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;           * is higher than the multiple of stepm and negative otherwise.
   double fx;           */
   int k=0,kmax=10;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   double l1;          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known then the contribution
   fx=func(x);               to the likelihood is the probability to die between last step unit time and current 
   for (i=1;i<=npar;i++) p2[i]=x[i];               step unit time, which is also the differences between probability to die before dh 
   for(l=0 ; l <=lmax; l++){               and probability to die before dh-stepm . 
     l1=pow(10,l);               In version up to 0.92 likelihood was computed
     delts=delt;          as if date of death was unknown. Death was treated as any other
     for(k=1 ; k <kmax; k=k+1){          health state: the date of the interview describes the actual state
       delt = delta*(l1*k);          and not the date of a change in health state. The former idea was
       p2[theta]=x[theta] +delt;          to consider that at each interview the state was recorded
       k1=func(p2)-fx;          (healthy, disable or death) and IMaCh was corrected; but when we
       p2[theta]=x[theta]-delt;          introduced the exact date of death then we should have modified
       k2=func(p2)-fx;          the contribution of an exact death to the likelihood. This new
       /*res= (k1-2.0*fx+k2)/delt/delt; */          contribution is smaller and very dependent of the step unit
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          stepm. It is no more the probability to die between last interview
                and month of death but the probability to survive from last
 #ifdef DEBUG          interview up to one month before death multiplied by the
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          probability to die within a month. Thanks to Chris
 #endif          Jackson for correcting this bug.  Former versions increased
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          mortality artificially. The bad side is that we add another loop
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          which slows down the processing. The difference can be up to 10%
         k=kmax;          lower mortality.
       }            */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            lli=log(out[s1][s2] - savm[s1][s2]);
         k=kmax; l=lmax*10.;          }else{
       }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         delts=delt;          } 
       }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }          /*if(lli ==000.0)*/
   }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   delti[theta]=delts;          ipmx +=1;
   return res;          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }        } /* end of wave */
       } /* end of individual */
 double hessij( double x[], double delti[], int thetai,int thetaj)    }  else if(mle==2){
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int i;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int l=1, l1, lmax=20;        for(mi=1; mi<= wav[i]-1; mi++){
   double k1,k2,k3,k4,res,fx;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double p2[NPARMAX+1];            for (j=1;j<=nlstate+ndeath;j++){
   int k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fx=func(x);            }
   for (k=1; k<=2; k++) {          for(d=0; d<=dh[mi][i]; d++){
     for (i=1;i<=npar;i++) p2[i]=x[i];            newm=savm;
     p2[thetai]=x[thetai]+delti[thetai]/k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            for (kk=1; kk<=cptcovage;kk++) {
     k1=func(p2)-fx;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
     p2[thetai]=x[thetai]+delti[thetai]/k;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     k2=func(p2)-fx;            savm=oldm;
              oldm=newm;
     p2[thetai]=x[thetai]-delti[thetai]/k;          } /* end mult */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        
     k3=func(p2)-fx;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            /* But now since version 0.9 we anticipate for bias and large stepm.
     p2[thetai]=x[thetai]-delti[thetai]/k;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     k4=func(p2)-fx;           * the nearest (and in case of equal distance, to the lowest) interval but now
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 #ifdef DEBUG           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           * probability in order to take into account the bias as a fraction of the way
 #endif           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   }           * -stepm/2 to stepm/2 .
   return res;           * For stepm=1 the results are the same as for previous versions of Imach.
 }           * For stepm > 1 the results are less biased than in previous versions. 
            */
 /************** Inverse of matrix **************/          s1=s[mw[mi][i]][i];
 void ludcmp(double **a, int n, int *indx, double *d)          s2=s[mw[mi+1][i]][i];
 {          bbh=(double)bh[mi][i]/(double)stepm; 
   int i,imax,j,k;          /* bias is positive if real duration
   double big,dum,sum,temp;           * is higher than the multiple of stepm and negative otherwise.
   double *vv;           */
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   vv=vector(1,n);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   *d=1.0;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
   for (i=1;i<=n;i++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     big=0.0;          /*if(lli ==000.0)*/
     for (j=1;j<=n;j++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       if ((temp=fabs(a[i][j])) > big) big=temp;          ipmx +=1;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          sw += weight[i];
     vv[i]=1.0/big;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
   for (j=1;j<=n;j++) {      } /* end of individual */
     for (i=1;i<j;i++) {    }  else if(mle==3){  /* exponential inter-extrapolation */
       sum=a[i][j];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       a[i][j]=sum;        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
     big=0.0;            for (j=1;j<=nlstate+ndeath;j++){
     for (i=j;i<=n;i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       sum=a[i][j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=1;k<j;k++)            }
         sum -= a[i][k]*a[k][j];          for(d=0; d<dh[mi][i]; d++){
       a[i][j]=sum;            newm=savm;
       if ( (dum=vv[i]*fabs(sum)) >= big) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         big=dum;            for (kk=1; kk<=cptcovage;kk++) {
         imax=i;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if (j != imax) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (k=1;k<=n;k++) {            savm=oldm;
         dum=a[imax][k];            oldm=newm;
         a[imax][k]=a[j][k];          } /* end mult */
         a[j][k]=dum;        
       }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       *d = -(*d);          /* But now since version 0.9 we anticipate for bias and large stepm.
       vv[imax]=vv[j];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     }           * (in months) between two waves is not a multiple of stepm, we rounded to 
     indx[j]=imax;           * the nearest (and in case of equal distance, to the lowest) interval but now
     if (a[j][j] == 0.0) a[j][j]=TINY;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     if (j != n) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       dum=1.0/(a[j][j]);           * probability in order to take into account the bias as a fraction of the way
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     }           * -stepm/2 to stepm/2 .
   }           * For stepm=1 the results are the same as for previous versions of Imach.
   free_vector(vv,1,n);  /* Doesn't work */           * For stepm > 1 the results are less biased than in previous versions. 
 ;           */
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 void lubksb(double **a, int n, int *indx, double b[])          bbh=(double)bh[mi][i]/(double)stepm; 
 {          /* bias is positive if real duration
   int i,ii=0,ip,j;           * is higher than the multiple of stepm and negative otherwise.
   double sum;           */
            /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   for (i=1;i<=n;i++) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     ip=indx[i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     sum=b[ip];          /*if(lli ==000.0)*/
     b[ip]=b[i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     if (ii)          ipmx +=1;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          sw += weight[i];
     else if (sum) ii=i;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     b[i]=sum;        } /* end of wave */
   }      } /* end of individual */
   for (i=n;i>=1;i--) {    }else{  /* ml=4 no inter-extrapolation */
     sum=b[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     b[i]=sum/a[i][i];        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Frequencies ********************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)            }
 {  /* Some frequencies */          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double ***freq; /* Frequencies */            for (kk=1; kk<=cptcovage;kk++) {
   double *pp;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double pos, k2, dateintsum=0,k2cpt=0;            }
   FILE *ficresp;          
   char fileresp[FILENAMELENGTH];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   pp=vector(1,nlstate);            savm=oldm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            oldm=newm;
   strcpy(fileresp,"p");          } /* end mult */
   strcat(fileresp,fileres);        
   if((ficresp=fopen(fileresp,"w"))==NULL) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     printf("Problem with prevalence resultfile: %s\n", fileresp);          ipmx +=1;
     exit(0);          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        } /* end of wave */
   j1=0;      } /* end of individual */
     } /* End of if */
   j=cptcoveff;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for(k1=1; k1<=j;k1++){    return -l;
    for(i1=1; i1<=ncodemax[k1];i1++){  }
        j1++;  
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
          scanf("%d", i);*/  /*********** Maximum Likelihood Estimation ***************/
         for (i=-1; i<=nlstate+ndeath; i++)    
          for (jk=-1; jk<=nlstate+ndeath; jk++)    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
            for(m=agemin; m <= agemax+3; m++)  {
              freq[i][jk][m]=0;    int i,j, iter;
     double **xi;
         dateintsum=0;    double fret;
         k2cpt=0;    xi=matrix(1,npar,1,npar);
        for (i=1; i<=imx; i++) {    for (i=1;i<=npar;i++)
          bool=1;      for (j=1;j<=npar;j++)
          if  (cptcovn>0) {        xi[i][j]=(i==j ? 1.0 : 0.0);
            for (z1=1; z1<=cptcoveff; z1++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    powell(p,xi,npar,ftol,&iter,&fret,func);
                bool=0;  
          }     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
          if (bool==1) {    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
            for(m=firstpass; m<=lastpass; m++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
              k2=anint[m][i]+(mint[m][i]/12.);  
              if ((k2>=dateprev1) && (k2<=dateprev2)) {  }
                if(agev[m][i]==0) agev[m][i]=agemax+1;  
                if(agev[m][i]==1) agev[m][i]=agemax+2;  /**** Computes Hessian and covariance matrix ***/
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  {
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    double  **a,**y,*x,pd;
                  dateintsum=dateintsum+k2;    double **hess;
                  k2cpt++;    int i, j,jk;
                }    int *indx;
   
              }    double hessii(double p[], double delta, int theta, double delti[]);
            }    double hessij(double p[], double delti[], int i, int j);
          }    void lubksb(double **a, int npar, int *indx, double b[]) ;
        }    void ludcmp(double **a, int npar, int *indx, double *d) ;
         if  (cptcovn>0) {  
          fprintf(ficresp, "\n#********** Variable ");    hess=matrix(1,npar,1,npar);
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
        fprintf(ficresp, "**********\n#");    printf("\nCalculation of the hessian matrix. Wait...\n");
         }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
        for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++){
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      printf("%d",i);fflush(stdout);
        fprintf(ficresp, "\n");      fprintf(ficlog,"%d",i);fflush(ficlog);
              hess[i][i]=hessii(p,ftolhess,i,delti);
   for(i=(int)agemin; i <= (int)agemax+3; i++){      /*printf(" %f ",p[i]);*/
     if(i==(int)agemax+3)      /*printf(" %lf ",hess[i][i]);*/
       printf("Total");    }
     else    
       printf("Age %d", i);    for (i=1;i<=npar;i++) {
     for(jk=1; jk <=nlstate ; jk++){      for (j=1;j<=npar;j++)  {
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        if (j>i) { 
         pp[jk] += freq[jk][m][i];          printf(".%d%d",i,j);fflush(stdout);
     }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     for(jk=1; jk <=nlstate ; jk++){          hess[i][j]=hessij(p,delti,i,j);
       for(m=-1, pos=0; m <=0 ; m++)          hess[j][i]=hess[i][j];    
         pos += freq[jk][m][i];          /*printf(" %lf ",hess[i][j]);*/
       if(pp[jk]>=1.e-10)        }
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      }
       else    }
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    printf("\n");
     }    fprintf(ficlog,"\n");
   
      for(jk=1; jk <=nlstate ; jk++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         pp[jk] += freq[jk][m][i];    
      }    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
     for(jk=1,pos=0; jk <=nlstate ; jk++)    x=vector(1,npar);
       pos += pp[jk];    indx=ivector(1,npar);
     for(jk=1; jk <=nlstate ; jk++){    for (i=1;i<=npar;i++)
       if(pos>=1.e-5)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    ludcmp(a,npar,indx,&pd);
       else  
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    for (j=1;j<=npar;j++) {
       if( i <= (int) agemax){      for (i=1;i<=npar;i++) x[i]=0;
         if(pos>=1.e-5){      x[j]=1;
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      lubksb(a,npar,indx,x);
           probs[i][jk][j1]= pp[jk]/pos;      for (i=1;i<=npar;i++){ 
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        matcov[i][j]=x[i];
         }      }
       else    }
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
       }    printf("\n#Hessian matrix#\n");
     }    fprintf(ficlog,"\n#Hessian matrix#\n");
     for(jk=-1; jk <=nlstate+ndeath; jk++)    for (i=1;i<=npar;i++) { 
       for(m=-1; m <=nlstate+ndeath; m++)      for (j=1;j<=npar;j++) { 
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        printf("%.3e ",hess[i][j]);
     if(i <= (int) agemax)        fprintf(ficlog,"%.3e ",hess[i][j]);
       fprintf(ficresp,"\n");      }
     printf("\n");      printf("\n");
     }      fprintf(ficlog,"\n");
     }    }
  }  
   dateintmean=dateintsum/k2cpt;    /* Recompute Inverse */
      for (i=1;i<=npar;i++)
   fclose(ficresp);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    ludcmp(a,npar,indx,&pd);
   free_vector(pp,1,nlstate);  
     /*  printf("\n#Hessian matrix recomputed#\n");
   /* End of Freq */  
 }    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
 /************ Prevalence ********************/      x[j]=1;
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      lubksb(a,npar,indx,x);
 {  /* Some frequencies */      for (i=1;i<=npar;i++){ 
          y[i][j]=x[i];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        printf("%.3e ",y[i][j]);
   double ***freq; /* Frequencies */        fprintf(ficlog,"%.3e ",y[i][j]);
   double *pp;      }
   double pos, k2;      printf("\n");
       fprintf(ficlog,"\n");
   pp=vector(1,nlstate);    }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    */
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    free_matrix(a,1,npar,1,npar);
   j1=0;    free_matrix(y,1,npar,1,npar);
      free_vector(x,1,npar);
   j=cptcoveff;    free_ivector(indx,1,npar);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    free_matrix(hess,1,npar,1,npar);
    
  for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  }
       j1++;  
    /*************** hessian matrix ****************/
       for (i=-1; i<=nlstate+ndeath; i++)    double hessii( double x[], double delta, int theta, double delti[])
         for (jk=-1; jk<=nlstate+ndeath; jk++)    {
           for(m=agemin; m <= agemax+3; m++)    int i;
             freq[i][jk][m]=0;    int l=1, lmax=20;
          double k1,k2;
       for (i=1; i<=imx; i++) {    double p2[NPARMAX+1];
         bool=1;    double res;
         if  (cptcovn>0) {    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           for (z1=1; z1<=cptcoveff; z1++)    double fx;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    int k=0,kmax=10;
               bool=0;    double l1;
         }  
         if (bool==1) {    fx=func(x);
           for(m=firstpass; m<=lastpass; m++){    for (i=1;i<=npar;i++) p2[i]=x[i];
             k2=anint[m][i]+(mint[m][i]/12.);    for(l=0 ; l <=lmax; l++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      l1=pow(10,l);
               if(agev[m][i]==0) agev[m][i]=agemax+1;      delts=delt;
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for(k=1 ; k <kmax; k=k+1){
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        delt = delta*(l1*k);
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];          p2[theta]=x[theta] +delt;
             }        k1=func(p2)-fx;
           }        p2[theta]=x[theta]-delt;
         }        k2=func(p2)-fx;
       }        /*res= (k1-2.0*fx+k2)/delt/delt; */
              res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         for(i=(int)agemin; i <= (int)agemax+3; i++){        
           for(jk=1; jk <=nlstate ; jk++){  #ifdef DEBUG
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
               pp[jk] += freq[jk][m][i];        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           }  #endif
           for(jk=1; jk <=nlstate ; jk++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
             for(m=-1, pos=0; m <=0 ; m++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
             pos += freq[jk][m][i];          k=kmax;
         }        }
                else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
          for(jk=1; jk <=nlstate ; jk++){          k=kmax; l=lmax*10.;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        }
              pp[jk] += freq[jk][m][i];        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
          }          delts=delt;
                  }
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      }
     }
          for(jk=1; jk <=nlstate ; jk++){              delti[theta]=delts;
            if( i <= (int) agemax){    return res; 
              if(pos>=1.e-5){    
                probs[i][jk][j1]= pp[jk]/pos;  }
              }  
            }  double hessij( double x[], double delti[], int thetai,int thetaj)
          }  {
              int i;
         }    int l=1, l1, lmax=20;
     }    double k1,k2,k3,k4,res,fx;
   }    double p2[NPARMAX+1];
      int k;
    
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    fx=func(x);
   free_vector(pp,1,nlstate);    for (k=1; k<=2; k++) {
        for (i=1;i<=npar;i++) p2[i]=x[i];
 }  /* End of Freq */      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 /************* Waves Concatenation ***************/      k1=func(p2)-fx;
     
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      p2[thetai]=x[thetai]+delti[thetai]/k;
 {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      k2=func(p2)-fx;
      Death is a valid wave (if date is known).    
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      p2[thetai]=x[thetai]-delti[thetai]/k;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      and mw[mi+1][i]. dh depends on stepm.      k3=func(p2)-fx;
      */    
       p2[thetai]=x[thetai]-delti[thetai]/k;
   int i, mi, m;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      k4=func(p2)-fx;
      double sum=0., jmean=0.;*/      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
   int j, k=0,jk, ju, jl;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double sum=0.;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   jmin=1e+5;  #endif
   jmax=-1;    }
   jmean=0.;    return res;
   for(i=1; i<=imx; i++){  }
     mi=0;  
     m=firstpass;  /************** Inverse of matrix **************/
     while(s[m][i] <= nlstate){  void ludcmp(double **a, int n, int *indx, double *d) 
       if(s[m][i]>=1)  { 
         mw[++mi][i]=m;    int i,imax,j,k; 
       if(m >=lastpass)    double big,dum,sum,temp; 
         break;    double *vv; 
       else   
         m++;    vv=vector(1,n); 
     }/* end while */    *d=1.0; 
     if (s[m][i] > nlstate){    for (i=1;i<=n;i++) { 
       mi++;     /* Death is another wave */      big=0.0; 
       /* if(mi==0)  never been interviewed correctly before death */      for (j=1;j<=n;j++) 
          /* Only death is a correct wave */        if ((temp=fabs(a[i][j])) > big) big=temp; 
       mw[mi][i]=m;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     }      vv[i]=1.0/big; 
     } 
     wav[i]=mi;    for (j=1;j<=n;j++) { 
     if(mi==0)      for (i=1;i<j;i++) { 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        sum=a[i][j]; 
   }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   for(i=1; i<=imx; i++){      } 
     for(mi=1; mi<wav[i];mi++){      big=0.0; 
       if (stepm <=0)      for (i=j;i<=n;i++) { 
         dh[mi][i]=1;        sum=a[i][j]; 
       else{        for (k=1;k<j;k++) 
         if (s[mw[mi+1][i]][i] > nlstate) {          sum -= a[i][k]*a[k][j]; 
           if (agedc[i] < 2*AGESUP) {        a[i][j]=sum; 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           if(j==0) j=1;  /* Survives at least one month after exam */          big=dum; 
           k=k+1;          imax=i; 
           if (j >= jmax) jmax=j;        } 
           if (j <= jmin) jmin=j;      } 
           sum=sum+j;      if (j != imax) { 
           /* if (j<10) printf("j=%d num=%d ",j,i); */        for (k=1;k<=n;k++) { 
           }          dum=a[imax][k]; 
         }          a[imax][k]=a[j][k]; 
         else{          a[j][k]=dum; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        } 
           k=k+1;        *d = -(*d); 
           if (j >= jmax) jmax=j;        vv[imax]=vv[j]; 
           else if (j <= jmin)jmin=j;      } 
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      indx[j]=imax; 
           sum=sum+j;      if (a[j][j] == 0.0) a[j][j]=TINY; 
         }      if (j != n) { 
         jk= j/stepm;        dum=1.0/(a[j][j]); 
         jl= j -jk*stepm;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         ju= j -(jk+1)*stepm;      } 
         if(jl <= -ju)    } 
           dh[mi][i]=jk;    free_vector(vv,1,n);  /* Doesn't work */
         else  ;
           dh[mi][i]=jk+1;  } 
         if(dh[mi][i]==0)  
           dh[mi][i]=1; /* At least one step */  void lubksb(double **a, int n, int *indx, double b[]) 
       }  { 
     }    int i,ii=0,ip,j; 
   }    double sum; 
   jmean=sum/k;   
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    for (i=1;i<=n;i++) { 
  }      ip=indx[i]; 
 /*********** Tricode ****************************/      sum=b[ip]; 
 void tricode(int *Tvar, int **nbcode, int imx)      b[ip]=b[i]; 
 {      if (ii) 
   int Ndum[20],ij=1, k, j, i;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   int cptcode=0;      else if (sum) ii=i; 
   cptcoveff=0;      b[i]=sum; 
      } 
   for (k=0; k<19; k++) Ndum[k]=0;    for (i=n;i>=1;i--) { 
   for (k=1; k<=7; k++) ncodemax[k]=0;      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      b[i]=sum/a[i][i]; 
     for (i=1; i<=imx; i++) {    } 
       ij=(int)(covar[Tvar[j]][i]);  } 
       Ndum[ij]++;  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  /************ Frequencies ********************/
       if (ij > cptcode) cptcode=ij;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
     }  {  /* Some frequencies */
     
     for (i=0; i<=cptcode; i++) {    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       if(Ndum[i]!=0) ncodemax[j]++;    int first;
     }    double ***freq; /* Frequencies */
     ij=1;    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
     for (i=1; i<=ncodemax[j]; i++) {    char fileresp[FILENAMELENGTH];
       for (k=0; k<=19; k++) {    
         if (Ndum[k] != 0) {    pp=vector(1,nlstate);
           nbcode[Tvar[j]][ij]=k;    prop=matrix(1,nlstate,iagemin,iagemax+3);
           ij++;    strcpy(fileresp,"p");
         }    strcat(fileresp,fileres);
         if (ij > ncodemax[j]) break;    if((ficresp=fopen(fileresp,"w"))==NULL) {
       }        printf("Problem with prevalence resultfile: %s\n", fileresp);
     }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   }        exit(0);
     }
  for (k=0; k<19; k++) Ndum[k]=0;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
  for (i=1; i<=ncovmodel-2; i++) {    
       ij=Tvar[i];    j=cptcoveff;
       Ndum[ij]++;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     }  
     first=1;
  ij=1;  
  for (i=1; i<=10; i++) {    for(k1=1; k1<=j;k1++){
    if((Ndum[i]!=0) && (i<=ncov)){      for(i1=1; i1<=ncodemax[k1];i1++){
      Tvaraff[ij]=i;        j1++;
      ij++;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
    }          scanf("%d", i);*/
  }        for (i=-1; i<=nlstate+ndeath; i++)  
            for (jk=-1; jk<=nlstate+ndeath; jk++)  
     cptcoveff=ij-1;            for(m=iagemin; m <= iagemax+3; m++)
 }              freq[i][jk][m]=0;
   
 /*********** Health Expectancies ****************/      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          prop[i][m]=0;
 {        
   /* Health expectancies */        dateintsum=0;
   int i, j, nhstepm, hstepm, h;        k2cpt=0;
   double age, agelim,hf;        for (i=1; i<=imx; i++) {
   double ***p3mat;          bool=1;
            if  (cptcovn>0) {
   fprintf(ficreseij,"# Health expectancies\n");            for (z1=1; z1<=cptcoveff; z1++) 
   fprintf(ficreseij,"# Age");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   for(i=1; i<=nlstate;i++)                bool=0;
     for(j=1; j<=nlstate;j++)          }
       fprintf(ficreseij," %1d-%1d",i,j);          if (bool==1){
   fprintf(ficreseij,"\n");            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
   hstepm=1*YEARM; /*  Every j years of age (in month) */              if ((k2>=dateprev1) && (k2<=dateprev2)) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   agelim=AGESUP;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                if (m<lastpass) {
     /* nhstepm age range expressed in number of stepm */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     /* Typically if 20 years = 20*12/6=40 stepm */                }
     if (stepm >= YEARM) hstepm=1;                
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  dateintsum=dateintsum+k2;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored                  k2cpt++;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */                }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                }
             }
           }
     for(i=1; i<=nlstate;i++)        }
       for(j=1; j<=nlstate;j++)         
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
           eij[i][j][(int)age] +=p3mat[i][j][h];  
         }        if  (cptcovn>0) {
              fprintf(ficresp, "\n#********** Variable "); 
     hf=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if (stepm >= YEARM) hf=stepm/YEARM;          fprintf(ficresp, "**********\n#");
     fprintf(ficreseij,"%.0f",age );        }
     for(i=1; i<=nlstate;i++)        for(i=1; i<=nlstate;i++) 
       for(j=1; j<=nlstate;j++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);        fprintf(ficresp, "\n");
       }        
     fprintf(ficreseij,"\n");        for(i=iagemin; i <= iagemax+3; i++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if(i==iagemax+3){
   }            fprintf(ficlog,"Total");
 }          }else{
             if(first==1){
 /************ Variance ******************/              first=0;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)              printf("See log file for details...\n");
 {            }
   /* Variance of health expectancies */            fprintf(ficlog,"Age %d", i);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          }
   double **newm;          for(jk=1; jk <=nlstate ; jk++){
   double **dnewm,**doldm;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   int i, j, nhstepm, hstepm, h;              pp[jk] += freq[jk][m][i]; 
   int k, cptcode;          }
   double *xp;          for(jk=1; jk <=nlstate ; jk++){
   double **gp, **gm;            for(m=-1, pos=0; m <=0 ; m++)
   double ***gradg, ***trgradg;              pos += freq[jk][m][i];
   double ***p3mat;            if(pp[jk]>=1.e-10){
   double age,agelim;              if(first==1){
   int theta;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
    fprintf(ficresvij,"# Covariances of life expectancies\n");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   fprintf(ficresvij,"# Age");            }else{
   for(i=1; i<=nlstate;i++)              if(first==1)
     for(j=1; j<=nlstate;j++)                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(ficresvij,"\n");            }
           }
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);          for(jk=1; jk <=nlstate ; jk++){
   doldm=matrix(1,nlstate,1,nlstate);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                pp[jk] += freq[jk][m][i];
   hstepm=1*YEARM; /* Every year of age */          }       
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   agelim = AGESUP;            pos += pp[jk];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            posprop += prop[jk][i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          }
     if (stepm >= YEARM) hstepm=1;          for(jk=1; jk <=nlstate ; jk++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            if(pos>=1.e-5){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if(first==1)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     gp=matrix(0,nhstepm,1,nlstate);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     gm=matrix(0,nhstepm,1,nlstate);            }else{
               if(first==1)
     for(theta=1; theta <=npar; theta++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for(i=1; i<=npar; i++){ /* Computes gradient */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            }
       }            if( i <= iagemax){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                if(pos>=1.e-5){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 probs[i][jk][j1]= pp[jk]/pos;
       if (popbased==1) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         for(i=1; i<=nlstate;i++)              }
           prlim[i][i]=probs[(int)age][i][ij];              else
       }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                  }
       for(j=1; j<= nlstate; j++){          }
         for(h=0; h<=nhstepm; h++){          
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          for(jk=-1; jk <=nlstate+ndeath; jk++)
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            for(m=-1; m <=nlstate+ndeath; m++)
         }              if(freq[jk][m][i] !=0 ) {
       }              if(first==1)
                    printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       for(i=1; i<=npar; i++) /* Computes gradient */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            if(i <= iagemax)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            fprintf(ficresp,"\n");
           if(first==1)
       if (popbased==1) {            printf("Others in log...\n");
         for(i=1; i<=nlstate;i++)          fprintf(ficlog,"\n");
           prlim[i][i]=probs[(int)age][i][ij];        }
       }      }
     }
       for(j=1; j<= nlstate; j++){    dateintmean=dateintsum/k2cpt; 
         for(h=0; h<=nhstepm; h++){   
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    fclose(ficresp);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
         }    free_vector(pp,1,nlstate);
       }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
       for(j=1; j<= nlstate; j++)  }
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  /************ Prevalence ********************/
         }  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     } /* End theta */  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     for(h=0; h<=nhstepm; h++)    */
       for(j=1; j<=nlstate;j++)   
         for(theta=1; theta <=npar; theta++)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
           trgradg[h][j][theta]=gradg[h][theta][j];    double ***freq; /* Frequencies */
     double *pp, **prop;
     for(i=1;i<=nlstate;i++)    double pos,posprop; 
       for(j=1;j<=nlstate;j++)    double  y2; /* in fractional years */
         vareij[i][j][(int)age] =0.;    int iagemin, iagemax;
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){    iagemin= (int) agemin;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    iagemax= (int) agemax;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    /*pp=vector(1,nlstate);*/
         for(i=1;i<=nlstate;i++)    prop=matrix(1,nlstate,iagemin,iagemax+3); 
           for(j=1;j<=nlstate;j++)    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
             vareij[i][j][(int)age] += doldm[i][j];    j1=0;
       }    
     }    j=cptcoveff;
     h=1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     if (stepm >= YEARM) h=stepm/YEARM;    
     fprintf(ficresvij,"%.0f ",age );    for(k1=1; k1<=j;k1++){
     for(i=1; i<=nlstate;i++)      for(i1=1; i1<=ncodemax[k1];i1++){
       for(j=1; j<=nlstate;j++){        j1++;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);        
       }        for (i=1; i<=nlstate; i++)  
     fprintf(ficresvij,"\n");          for(m=iagemin; m <= iagemax+3; m++)
     free_matrix(gp,0,nhstepm,1,nlstate);            prop[i][m]=0.0;
     free_matrix(gm,0,nhstepm,1,nlstate);       
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        for (i=1; i<=imx; i++) { /* Each individual */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          bool=1;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if  (cptcovn>0) {
   } /* End age */            for (z1=1; z1<=cptcoveff; z1++) 
                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   free_vector(xp,1,npar);                bool=0;
   free_matrix(doldm,1,nlstate,1,npar);          } 
   free_matrix(dnewm,1,nlstate,1,nlstate);          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 /************ Variance of prevlim ******************/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   /* Variance of prevalence limit */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   double **newm;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   double **dnewm,**doldm;                  prop[s[m][i]][iagemax+3] += weight[i]; 
   int i, j, nhstepm, hstepm;                } 
   int k, cptcode;              }
   double *xp;            } /* end selection of waves */
   double *gp, *gm;          }
   double **gradg, **trgradg;        }
   double age,agelim;        for(i=iagemin; i <= iagemax+3; i++){  
   int theta;          
              for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");            posprop += prop[jk][i]; 
   fprintf(ficresvpl,"# Age");          } 
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);          for(jk=1; jk <=nlstate ; jk++){     
   fprintf(ficresvpl,"\n");            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
   xp=vector(1,npar);                probs[i][jk][j1]= prop[jk][i]/posprop;
   dnewm=matrix(1,nlstate,1,npar);              } 
   doldm=matrix(1,nlstate,1,nlstate);            } 
            }/* end jk */ 
   hstepm=1*YEARM; /* Every year of age */        }/* end i */ 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      } /* end i1 */
   agelim = AGESUP;    } /* end k1 */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     if (stepm >= YEARM) hstepm=1;    /*free_vector(pp,1,nlstate);*/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     gradg=matrix(1,npar,1,nlstate);  }  /* End of prevalence */
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);  /************* Waves Concatenation ***************/
   
     for(theta=1; theta <=npar; theta++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       for(i=1; i<=npar; i++){ /* Computes gradient */  {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       }       Death is a valid wave (if date is known).
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       for(i=1;i<=nlstate;i++)       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         gp[i] = prlim[i][i];       and mw[mi+1][i]. dh depends on stepm.
           */
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int i, mi, m;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       for(i=1;i<=nlstate;i++)       double sum=0., jmean=0.;*/
         gm[i] = prlim[i][i];    int first;
     int j, k=0,jk, ju, jl;
       for(i=1;i<=nlstate;i++)    double sum=0.;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    first=0;
     } /* End theta */    jmin=1e+5;
     jmax=-1;
     trgradg =matrix(1,nlstate,1,npar);    jmean=0.;
     for(i=1; i<=imx; i++){
     for(j=1; j<=nlstate;j++)      mi=0;
       for(theta=1; theta <=npar; theta++)      m=firstpass;
         trgradg[j][theta]=gradg[theta][j];      while(s[m][i] <= nlstate){
         if(s[m][i]>=1)
     for(i=1;i<=nlstate;i++)          mw[++mi][i]=m;
       varpl[i][(int)age] =0.;        if(m >=lastpass)
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          break;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        else
     for(i=1;i<=nlstate;i++)          m++;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      }/* end while */
       if (s[m][i] > nlstate){
     fprintf(ficresvpl,"%.0f ",age );        mi++;     /* Death is another wave */
     for(i=1; i<=nlstate;i++)        /* if(mi==0)  never been interviewed correctly before death */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));           /* Only death is a correct wave */
     fprintf(ficresvpl,"\n");        mw[mi][i]=m;
     free_vector(gp,1,nlstate);      }
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);      wav[i]=mi;
     free_matrix(trgradg,1,nlstate,1,npar);      if(mi==0){
   } /* End age */        if(first==0){
           printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);
   free_vector(xp,1,npar);          first=1;
   free_matrix(doldm,1,nlstate,1,npar);        }
   free_matrix(dnewm,1,nlstate,1,nlstate);        if(first==1){
           fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);
 }        }
       } /* end mi==0 */
 /************ Variance of one-step probabilities  ******************/    }
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)  
 {    for(i=1; i<=imx; i++){
   int i, j;      for(mi=1; mi<wav[i];mi++){
   int k=0, cptcode;        if (stepm <=0)
   double **dnewm,**doldm;          dh[mi][i]=1;
   double *xp;        else{
   double *gp, *gm;          if (s[mw[mi+1][i]][i] > nlstate) {
   double **gradg, **trgradg;            if (agedc[i] < 2*AGESUP) {
   double age,agelim, cov[NCOVMAX];            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   int theta;            if(j==0) j=1;  /* Survives at least one month after exam */
   char fileresprob[FILENAMELENGTH];            k=k+1;
             if (j >= jmax) jmax=j;
   strcpy(fileresprob,"prob");            if (j <= jmin) jmin=j;
   strcat(fileresprob,fileres);            sum=sum+j;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            /*if (j<0) printf("j=%d num=%d \n",j,i); */
     printf("Problem with resultfile: %s\n", fileresprob);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);            }
            }
           else{
   xp=vector(1,npar);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));            k=k+1;
              if (j >= jmax) jmax=j;
   cov[1]=1;            else if (j <= jmin)jmin=j;
   for (age=bage; age<=fage; age ++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     cov[2]=age;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     gradg=matrix(1,npar,1,9);            sum=sum+j;
     trgradg=matrix(1,9,1,npar);          }
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          jk= j/stepm;
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          jl= j -jk*stepm;
              ju= j -(jk+1)*stepm;
     for(theta=1; theta <=npar; theta++){          if(mle <=1){ 
       for(i=1; i<=npar; i++)            if(jl==0){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              dh[mi][i]=jk;
                    bh[mi][i]=0;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            }else{ /* We want a negative bias in order to only have interpolation ie
                        * at the price of an extra matrix product in likelihood */
       k=0;              dh[mi][i]=jk+1;
       for(i=1; i<= (nlstate+ndeath); i++){              bh[mi][i]=ju;
         for(j=1; j<=(nlstate+ndeath);j++){            }
            k=k+1;          }else{
           gp[k]=pmmij[i][j];            if(jl <= -ju){
         }              dh[mi][i]=jk;
       }              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
       for(i=1; i<=npar; i++)                                   */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            }
                else{
               dh[mi][i]=jk+1;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);              bh[mi][i]=ju;
       k=0;            }
       for(i=1; i<=(nlstate+ndeath); i++){            if(dh[mi][i]==0){
         for(j=1; j<=(nlstate+ndeath);j++){              dh[mi][i]=1; /* At least one step */
           k=k+1;              bh[mi][i]=ju; /* At least one step */
           gm[k]=pmmij[i][j];              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         }            }
       }          }
              } /* end if mle */
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      } /* end wave */
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      }
     }    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       for(theta=1; theta <=npar; theta++)   }
       trgradg[j][theta]=gradg[theta][j];  
    /*********** Tricode ****************************/
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);  void tricode(int *Tvar, int **nbcode, int imx)
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  {
     
      pmij(pmmij,cov,ncovmodel,x,nlstate);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
      k=0;    cptcoveff=0; 
      for(i=1; i<=(nlstate+ndeath); i++){   
        for(j=1; j<=(nlstate+ndeath);j++){    for (k=0; k<maxncov; k++) Ndum[k]=0;
          k=k+1;    for (k=1; k<=7; k++) ncodemax[k]=0;
          gm[k]=pmmij[i][j];  
         }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
      }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                       modality*/ 
      /*printf("\n%d ",(int)age);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        Ndum[ij]++; /*store the modality */
                /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                                         Tvar[j]. If V=sex and male is 0 and 
      }*/                                         female is 1, then  cptcode=1.*/
       }
   fprintf(ficresprob,"\n%d ",(int)age);  
       for (i=0; i<=cptcode; i++) {
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      }
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  
   }      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        for (k=0; k<= maxncov; k++) {
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          if (Ndum[k] != 0) {
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            nbcode[Tvar[j]][ij]=k; 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 }            
  free_vector(xp,1,npar);            ij++;
 fclose(ficresprob);          }
  exit(0);          if (ij > ncodemax[j]) break; 
 }        }  
       } 
 /***********************************************/    }  
 /**************** Main Program *****************/  
 /***********************************************/   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
 /*int main(int argc, char *argv[])*/   for (i=1; i<=ncovmodel-2; i++) { 
 int main()     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 {     ij=Tvar[i];
      Ndum[ij]++;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;   }
   double agedeb, agefin,hf;  
   double agemin=1.e20, agemax=-1.e20;   ij=1;
    for (i=1; i<= maxncov; i++) {
   double fret;     if((Ndum[i]!=0) && (i<=ncovcol)){
   double **xi,tmp,delta;       Tvaraff[ij]=i; /*For printing */
        ij++;
   double dum; /* Dummy variable */     }
   double ***p3mat;   }
   int *indx;   
   char line[MAXLINE], linepar[MAXLINE];   cptcoveff=ij-1; /*Number of simple covariates*/
   char title[MAXLINE];  }
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];  /*********** Health Expectancies ****************/
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   char popfile[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  {
   int firstobs=1, lastobs=10;    /* Health expectancies */
   int sdeb, sfin; /* Status at beginning and end */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   int c,  h , cpt,l;    double age, agelim, hf;
   int ju,jl, mi;    double ***p3mat,***varhe;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    double **dnewm,**doldm;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    double *xp;
   int mobilav=0,popforecast=0;    double **gp, **gm;
   int hstepm, nhstepm;    double ***gradg, ***trgradg;
   int *popage;/*boolprev=0 if date and zero if wave*/    int theta;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   double bage, fage, age, agelim, agebase;    xp=vector(1,npar);
   double ftolpl=FTOL;    dnewm=matrix(1,nlstate*nlstate,1,npar);
   double **prlim;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   double *severity;    
   double ***param; /* Matrix of parameters */    fprintf(ficreseij,"# Health expectancies\n");
   double  *p;    fprintf(ficreseij,"# Age");
   double **matcov; /* Matrix of covariance */    for(i=1; i<=nlstate;i++)
   double ***delti3; /* Scale */      for(j=1; j<=nlstate;j++)
   double *delti; /* Scale */        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   double ***eij, ***vareij;    fprintf(ficreseij,"\n");
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;    if(estepm < stepm){
   double kk1, kk2;      printf ("Problem %d lower than %d\n",estepm, stepm);
   double *popeffectif,*popcount;    }
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;    else  hstepm=estepm;   
   double yp,yp1,yp2;    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";     * if stepm=24 months pijx are given only every 2 years and by summing them
   char *alph[]={"a","a","b","c","d","e"}, str[4];     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   char z[1]="c", occ;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 #include <sys/time.h>     * to compare the new estimate of Life expectancy with the same linear 
 #include <time.h>     * hypothesis. A more precise result, taking into account a more precise
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];     * curvature will be obtained if estepm is as small as stepm. */
    
   /* long total_usecs;    /* For example we decided to compute the life expectancy with the smallest unit */
   struct timeval start_time, end_time;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
   printf("\nIMACH, Version 0.7");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   printf("\nEnter the parameter file name: ");       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
 #ifdef windows       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   scanf("%s",pathtot);       results. So we changed our mind and took the option of the best precision.
   getcwd(pathcd, size);    */
   /*cygwin_split_path(pathtot,path,optionfile);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/    agelim=AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 split(pathtot, path,optionfile);      /* nhstepm age range expressed in number of stepm */
   chdir(path);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   replace(pathc,path);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 #endif      /* if (stepm >= YEARM) hstepm=1;*/
 #ifdef unix      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   scanf("%s",optionfile);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #endif      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
 /*-------- arguments in the command line --------*/      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
   strcpy(fileres,"r");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   strcat(fileres, optionfile);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   /*---------arguments file --------*/   
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     printf("Problem with optionfile %s\n",optionfile);  
     goto end;      /* Computing Variances of health expectancies */
   }  
        for(theta=1; theta <=npar; theta++){
   strcpy(filereso,"o");        for(i=1; i<=npar; i++){ 
   strcat(filereso,fileres);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if((ficparo=fopen(filereso,"w"))==NULL) {        }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }    
         cptj=0;
   /* Reads comments: lines beginning with '#' */        for(j=1; j<= nlstate; j++){
   while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1; i<=nlstate; i++){
     ungetc(c,ficpar);            cptj=cptj+1;
     fgets(line, MAXLINE, ficpar);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     puts(line);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     fputs(line,ficparo);            }
   }          }
   ungetc(c,ficpar);        }
        
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);       
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);        for(i=1; i<=npar; i++) 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 while((c=getc(ficpar))=='#' && c!= EOF){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     ungetc(c,ficpar);        
     fgets(line, MAXLINE, ficpar);        cptj=0;
     puts(line);        for(j=1; j<= nlstate; j++){
     fputs(line,ficparo);          for(i=1;i<=nlstate;i++){
   }            cptj=cptj+1;
   ungetc(c,ficpar);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
                gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                }
   covar=matrix(0,NCOVMAX,1,n);          }
   cptcovn=0;        }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        for(j=1; j<= nlstate*nlstate; j++)
           for(h=0; h<=nhstepm-1; h++){
   ncovmodel=2+cptcovn;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          }
         } 
   /* Read guess parameters */     
   /* Reads comments: lines beginning with '#' */  /* End theta */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     fgets(line, MAXLINE, ficpar);  
     puts(line);       for(h=0; h<=nhstepm-1; h++)
     fputs(line,ficparo);        for(j=1; j<=nlstate*nlstate;j++)
   }          for(theta=1; theta <=npar; theta++)
   ungetc(c,ficpar);            trgradg[h][j][theta]=gradg[h][theta][j];
         
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)       for(i=1;i<=nlstate*nlstate;i++)
     for(j=1; j <=nlstate+ndeath-1; j++){        for(j=1;j<=nlstate*nlstate;j++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);          varhe[i][j][(int)age] =0.;
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);       printf("%d|",(int)age);fflush(stdout);
       for(k=1; k<=ncovmodel;k++){       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         fscanf(ficpar," %lf",&param[i][j][k]);       for(h=0;h<=nhstepm-1;h++){
         printf(" %lf",param[i][j][k]);        for(k=0;k<=nhstepm-1;k++){
         fprintf(ficparo," %lf",param[i][j][k]);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       fscanf(ficpar,"\n");          for(i=1;i<=nlstate*nlstate;i++)
       printf("\n");            for(j=1;j<=nlstate*nlstate;j++)
       fprintf(ficparo,"\n");              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
     }        }
        }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
   p=param[1][1];        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   /* Reads comments: lines beginning with '#' */            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   while((c=getc(ficpar))=='#' && c!= EOF){            
     ungetc(c,ficpar);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fgets(line, MAXLINE, ficpar);  
     puts(line);          }
     fputs(line,ficparo);  
   }      fprintf(ficreseij,"%3.0f",age );
   ungetc(c,ficpar);      cptj=0;
       for(i=1; i<=nlstate;i++)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for(j=1; j<=nlstate;j++){
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          cptj++;
   for(i=1; i <=nlstate; i++){          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
     for(j=1; j <=nlstate+ndeath-1; j++){        }
       fscanf(ficpar,"%1d%1d",&i1,&j1);      fprintf(ficreseij,"\n");
       printf("%1d%1d",i,j);     
       fprintf(ficparo,"%1d%1d",i1,j1);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       for(k=1; k<=ncovmodel;k++){      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         fscanf(ficpar,"%le",&delti3[i][j][k]);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         printf(" %le",delti3[i][j][k]);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         fprintf(ficparo," %le",delti3[i][j][k]);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    }
       fscanf(ficpar,"\n");    printf("\n");
       printf("\n");    fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");  
     }    free_vector(xp,1,npar);
   }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   delti=delti3[1][1];    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   /* Reads comments: lines beginning with '#' */  }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************ Variance ******************/
     fgets(line, MAXLINE, ficpar);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
     puts(line);  {
     fputs(line,ficparo);    /* Variance of health expectancies */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   ungetc(c,ficpar);    /* double **newm;*/
      double **dnewm,**doldm;
   matcov=matrix(1,npar,1,npar);    double **dnewmp,**doldmp;
   for(i=1; i <=npar; i++){    int i, j, nhstepm, hstepm, h, nstepm ;
     fscanf(ficpar,"%s",&str);    int k, cptcode;
     printf("%s",str);    double *xp;
     fprintf(ficparo,"%s",str);    double **gp, **gm;  /* for var eij */
     for(j=1; j <=i; j++){    double ***gradg, ***trgradg; /*for var eij */
       fscanf(ficpar," %le",&matcov[i][j]);    double **gradgp, **trgradgp; /* for var p point j */
       printf(" %.5le",matcov[i][j]);    double *gpp, *gmp; /* for var p point j */
       fprintf(ficparo," %.5le",matcov[i][j]);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     }    double ***p3mat;
     fscanf(ficpar,"\n");    double age,agelim, hf;
     printf("\n");    double ***mobaverage;
     fprintf(ficparo,"\n");    int theta;
   }    char digit[4];
   for(i=1; i <=npar; i++)    char digitp[25];
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];    char fileresprobmorprev[FILENAMELENGTH];
      
   printf("\n");    if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
     /*-------- data file ----------*/      else strcpy(digitp,"-populbased-nomobil-");
     if((ficres =fopen(fileres,"w"))==NULL) {    }
       printf("Problem with resultfile: %s\n", fileres);goto end;    else 
     }      strcpy(digitp,"-stablbased-");
     fprintf(ficres,"#%s\n",version);  
        if (mobilav!=0) {
     if((fic=fopen(datafile,"r"))==NULL)    {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("Problem with datafile: %s\n", datafile);goto end;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
     n= lastobs;      }
     severity = vector(1,maxwav);    }
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);    strcpy(fileresprobmorprev,"prmorprev"); 
     moisnais=vector(1,n);    sprintf(digit,"%-d",ij);
     annais=vector(1,n);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     moisdc=vector(1,n);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     andc=vector(1,n);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     agedc=vector(1,n);    strcat(fileresprobmorprev,fileres);
     cod=ivector(1,n);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     weight=vector(1,n);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     mint=matrix(1,maxwav,1,n);    }
     anint=matrix(1,maxwav,1,n);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     s=imatrix(1,maxwav+1,1,n);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     adl=imatrix(1,maxwav+1,1,n);        fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     tab=ivector(1,NCOVMAX);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     ncodemax=ivector(1,8);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
     i=1;      for(i=1; i<=nlstate;i++)
     while (fgets(line, MAXLINE, fic) != NULL)    {        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       if ((i >= firstobs) && (i <=lastobs)) {    }  
            fprintf(ficresprobmorprev,"\n");
         for (j=maxwav;j>=1;j--){    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
           strcpy(line,stra);      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      exit(0);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }
         }    else{
              fprintf(ficgp,"\n# Routine varevsij");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       printf("Problem with html file: %s\n", optionfilehtm);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      exit(0);
     }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    else{
         for (j=ncov;j>=1;j--){      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         }    }
         num[i]=atol(stra);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
         i=i+1;      for(j=1; j<=nlstate;j++)
       }        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     }    fprintf(ficresvij,"\n");
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/    xp=vector(1,npar);
   imx=i-1; /* Number of individuals */    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   /* for (i=1; i<=imx; i++){    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     }    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     for (i=1; i<=imx; i++)    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    
     if(estepm < stepm){
   /* Calculation of the number of parameter from char model*/      printf ("Problem %d lower than %d\n",estepm, stepm);
   Tvar=ivector(1,15);    }
   Tprod=ivector(1,15);    else  hstepm=estepm;   
   Tvaraff=ivector(1,15);    /* For example we decided to compute the life expectancy with the smallest unit */
   Tvard=imatrix(1,15,1,2);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   Tage=ivector(1,15);             nhstepm is the number of hstepm from age to agelim 
           nstepm is the number of stepm from age to agelin. 
   if (strlen(model) >1){       Look at hpijx to understand the reason of that which relies in memory size
     j=0, j1=0, k1=1, k2=1;       and note for a fixed period like k years */
     j=nbocc(model,'+');    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     j1=nbocc(model,'*');       survival function given by stepm (the optimization length). Unfortunately it
     cptcovn=j+1;       means that if the survival funtion is printed every two years of age and if
     cptcovprod=j1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           results. So we changed our mind and took the option of the best precision.
        */
     strcpy(modelsav,model);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    agelim = AGESUP;
       printf("Error. Non available option model=%s ",model);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       goto end;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=(j+1); i>=1;i--){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       cutv(stra,strb,modelsav,'+');      gp=matrix(0,nhstepm,1,nlstate);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      gm=matrix(0,nhstepm,1,nlstate);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {      for(theta=1; theta <=npar; theta++){
         cutv(strd,strc,strb,'*');        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         if (strcmp(strc,"age")==0) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           cptcovprod--;        }
           cutv(strb,stre,strd,'V');        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           Tvar[i]=atoi(stre);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           cptcovage++;  
             Tage[cptcovage]=i;        if (popbased==1) {
             /*printf("stre=%s ", stre);*/          if(mobilav ==0){
         }            for(i=1; i<=nlstate;i++)
         else if (strcmp(strd,"age")==0) {              prlim[i][i]=probs[(int)age][i][ij];
           cptcovprod--;          }else{ /* mobilav */ 
           cutv(strb,stre,strc,'V');            for(i=1; i<=nlstate;i++)
           Tvar[i]=atoi(stre);              prlim[i][i]=mobaverage[(int)age][i][ij];
           cptcovage++;          }
           Tage[cptcovage]=i;        }
         }    
         else {        for(j=1; j<= nlstate; j++){
           cutv(strb,stre,strc,'V');          for(h=0; h<=nhstepm; h++){
           Tvar[i]=ncov+k1;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           cutv(strb,strc,strd,'V');              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           Tprod[k1]=i;          }
           Tvard[k1][1]=atoi(strc);        }
           Tvard[k1][2]=atoi(stre);        /* This for computing probability of death (h=1 means
           Tvar[cptcovn+k2]=Tvard[k1][1];           computed over hstepm matrices product = hstepm*stepm months) 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];           as a weighted average of prlim.
           for (k=1; k<=lastobs;k++)        */
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           k1++;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           k2=k2+2;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }        }    
       }        /* end probability of death */
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
        /*  scanf("%d",i);*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       cutv(strd,strc,strb,'V');        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       Tvar[i]=atoi(strc);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }   
       strcpy(modelsav,stra);          if (popbased==1) {
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          if(mobilav ==0){
         scanf("%d",i);*/            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=probs[(int)age][i][ij];
 }          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              prlim[i][i]=mobaverage[(int)age][i][ij];
   printf("cptcovprod=%d ", cptcovprod);          }
   scanf("%d ",i);*/        }
     fclose(fic);  
         for(j=1; j<= nlstate; j++){
     /*  if(mle==1){*/          for(h=0; h<=nhstepm; h++){
     if (weightopt != 1) { /* Maximisation without weights*/            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       for(i=1;i<=n;i++) weight[i]=1.0;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     }          }
     /*-calculation of age at interview from date of interview and age at death -*/        }
     agev=matrix(1,maxwav,1,imx);        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
    for (i=1; i<=imx; i++)           as a weighted average of prlim.
      for(m=2; (m<= maxwav); m++)        */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
          anint[m][i]=9999;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
          s[m][i]=-1;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
        }        }    
            /* end probability of death */
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        for(j=1; j<= nlstate; j++) /* vareij */
       for(m=1; (m<= maxwav); m++){          for(h=0; h<=nhstepm; h++){
         if(s[m][i] >0){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           if (s[m][i] == nlstate+1) {          }
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
               agev[m][i]=agedc[i];          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
             else {        }
               if (andc[i]!=9999){  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      } /* End theta */
               agev[m][i]=-1;  
               }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
             }  
           }      for(h=0; h<=nhstepm; h++) /* veij */
           else if(s[m][i] !=9){ /* Should no more exist */        for(j=1; j<=nlstate;j++)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          for(theta=1; theta <=npar; theta++)
             if(mint[m][i]==99 || anint[m][i]==9999)            trgradg[h][j][theta]=gradg[h][theta][j];
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
               agemin=agev[m][i];        for(theta=1; theta <=npar; theta++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          trgradgp[j][theta]=gradgp[theta][j];
             }    
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      for(i=1;i<=nlstate;i++)
             }        for(j=1;j<=nlstate;j++)
             /*agev[m][i]=anint[m][i]-annais[i];*/          vareij[i][j][(int)age] =0.;
             /*   agev[m][i] = age[i]+2*m;*/  
           }      for(h=0;h<=nhstepm;h++){
           else { /* =9 */        for(k=0;k<=nhstepm;k++){
             agev[m][i]=1;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
             s[m][i]=-1;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           }          for(i=1;i<=nlstate;i++)
         }            for(j=1;j<=nlstate;j++)
         else /*= 0 Unknown */              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           agev[m][i]=1;        }
       }      }
        
     }      /* pptj */
     for (i=1; i<=imx; i++)  {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       for(m=1; (m<= maxwav); m++){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         if (s[m][i] > (nlstate+ndeath)) {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           printf("Error: Wrong value in nlstate or ndeath\n");          for(i=nlstate+1;i<=nlstate+ndeath;i++)
           goto end;          varppt[j][i]=doldmp[j][i];
         }      /* end ppptj */
       }      /*  x centered again */
     }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   
       if (popbased==1) {
     free_vector(severity,1,maxwav);        if(mobilav ==0){
     free_imatrix(outcome,1,maxwav+1,1,n);          for(i=1; i<=nlstate;i++)
     free_vector(moisnais,1,n);            prlim[i][i]=probs[(int)age][i][ij];
     free_vector(annais,1,n);        }else{ /* mobilav */ 
     /* free_matrix(mint,1,maxwav,1,n);          for(i=1; i<=nlstate;i++)
        free_matrix(anint,1,maxwav,1,n);*/            prlim[i][i]=mobaverage[(int)age][i][ij];
     free_vector(moisdc,1,n);        }
     free_vector(andc,1,n);      }
                
          /* This for computing probability of death (h=1 means
     wav=ivector(1,imx);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);         as a weighted average of prlim.
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
     /* Concatenates waves */        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       ncodemax[1]=1;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
              for(i=1; i<=nlstate;i++){
    codtab=imatrix(1,100,1,10);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
    h=0;        }
    m=pow(2,cptcoveff);      } 
        fprintf(ficresprobmorprev,"\n");
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){      fprintf(ficresvij,"%.0f ",age );
        for(j=1; j <= ncodemax[k]; j++){      for(i=1; i<=nlstate;i++)
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        for(j=1; j<=nlstate;j++){
            h++;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
            if (h>m) h=1;codtab[h][k]=j;        }
          }      fprintf(ficresvij,"\n");
        }      free_matrix(gp,0,nhstepm,1,nlstate);
      }      free_matrix(gm,0,nhstepm,1,nlstate);
    }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
          free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
    /* Calculates basic frequencies. Computes observed prevalence at single age      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        and prints on file fileres'p'. */    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
        free_vector(gmp,nlstate+1,nlstate+ndeath);
        free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
        /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     /* For Powell, parameters are in a vector p[] starting at p[1]  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
     if(mle==1){    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
     }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
      */
     /*--------- results files --------------*/    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);  
      free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
    jk=1;    free_matrix(dnewm,1,nlstate,1,npar);
    fprintf(ficres,"# Parameters\n");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    printf("# Parameters\n");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
    for(i=1,jk=1; i <=nlstate; i++){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      for(k=1; k <=(nlstate+ndeath); k++){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (k != i)    fclose(ficresprobmorprev);
          {    fclose(ficgp);
            printf("%d%d ",i,k);    fclose(fichtm);
            fprintf(ficres,"%1d%1d ",i,k);  }  
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);  /************ Variance of prevlim ******************/
              fprintf(ficres,"%f ",p[jk]);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
              jk++;  {
            }    /* Variance of prevalence limit */
            printf("\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
            fprintf(ficres,"\n");    double **newm;
          }    double **dnewm,**doldm;
      }    int i, j, nhstepm, hstepm;
    }    int k, cptcode;
  if(mle==1){    double *xp;
     /* Computing hessian and covariance matrix */    double *gp, *gm;
     ftolhess=ftol; /* Usually correct */    double **gradg, **trgradg;
     hesscov(matcov, p, npar, delti, ftolhess, func);    double age,agelim;
  }    int theta;
     fprintf(ficres,"# Scales\n");     
     printf("# Scales\n");    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
      for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficresvpl,"# Age");
       for(j=1; j <=nlstate+ndeath; j++){    for(i=1; i<=nlstate;i++)
         if (j!=i) {        fprintf(ficresvpl," %1d-%1d",i,i);
           fprintf(ficres,"%1d%1d",i,j);    fprintf(ficresvpl,"\n");
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){    xp=vector(1,npar);
             printf(" %.5e",delti[jk]);    dnewm=matrix(1,nlstate,1,npar);
             fprintf(ficres," %.5e",delti[jk]);    doldm=matrix(1,nlstate,1,nlstate);
             jk++;    
           }    hstepm=1*YEARM; /* Every year of age */
           printf("\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           fprintf(ficres,"\n");    agelim = AGESUP;
         }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
      }      if (stepm >= YEARM) hstepm=1;
          nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     k=1;      gradg=matrix(1,npar,1,nlstate);
     fprintf(ficres,"# Covariance\n");      gp=vector(1,nlstate);
     printf("# Covariance\n");      gm=vector(1,nlstate);
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;      for(theta=1; theta <=npar; theta++){
       i1=(i-1)/(ncovmodel*nlstate)+1;        for(i=1; i<=npar; i++){ /* Computes gradient */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       printf("%s%d%d",alph[k],i1,tab[i]);*/        }
       fprintf(ficres,"%3d",i);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       printf("%3d",i);        for(i=1;i<=nlstate;i++)
       for(j=1; j<=i;j++){          gp[i] = prlim[i][i];
         fprintf(ficres," %.5e",matcov[i][j]);      
         printf(" %.5e",matcov[i][j]);        for(i=1; i<=npar; i++) /* Computes gradient */
       }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficres,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       printf("\n");        for(i=1;i<=nlstate;i++)
       k++;          gm[i] = prlim[i][i];
     }  
            for(i=1;i<=nlstate;i++)
     while((c=getc(ficpar))=='#' && c!= EOF){          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       ungetc(c,ficpar);      } /* End theta */
       fgets(line, MAXLINE, ficpar);  
       puts(line);      trgradg =matrix(1,nlstate,1,npar);
       fputs(line,ficparo);  
     }      for(j=1; j<=nlstate;j++)
     ungetc(c,ficpar);        for(theta=1; theta <=npar; theta++)
            trgradg[j][theta]=gradg[theta][j];
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
          for(i=1;i<=nlstate;i++)
     if (fage <= 2) {        varpl[i][(int)age] =0.;
       bage = agemin;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       fage = agemax;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     }      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     fprintf(ficres,"# agemin agemax for life expectancy.\n");  
       fprintf(ficresvpl,"%.0f ",age );
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      for(i=1; i<=nlstate;i++)
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        fprintf(ficresvpl,"\n");
     while((c=getc(ficpar))=='#' && c!= EOF){      free_vector(gp,1,nlstate);
     ungetc(c,ficpar);      free_vector(gm,1,nlstate);
     fgets(line, MAXLINE, ficpar);      free_matrix(gradg,1,npar,1,nlstate);
     puts(line);      free_matrix(trgradg,1,nlstate,1,npar);
     fputs(line,ficparo);    } /* End age */
   }  
   ungetc(c,ficpar);    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,npar);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);    free_matrix(dnewm,1,nlstate,1,nlstate);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  }
        
   while((c=getc(ficpar))=='#' && c!= EOF){  /************ Variance of one-step probabilities  ******************/
     ungetc(c,ficpar);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     fgets(line, MAXLINE, ficpar);  {
     puts(line);    int i, j=0,  i1, k1, l1, t, tj;
     fputs(line,ficparo);    int k2, l2, j1,  z1;
   }    int k=0,l, cptcode;
   ungetc(c,ficpar);    int first=1, first1;
      double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    double *xp;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    double *gp, *gm;
     double **gradg, **trgradg;
   fscanf(ficpar,"pop_based=%d\n",&popbased);    double **mu;
    fprintf(ficparo,"pop_based=%d\n",popbased);      double age,agelim, cov[NCOVMAX];
    fprintf(ficres,"pop_based=%d\n",popbased);      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
   while((c=getc(ficpar))=='#' && c!= EOF){    char fileresprob[FILENAMELENGTH];
     ungetc(c,ficpar);    char fileresprobcov[FILENAMELENGTH];
     fgets(line, MAXLINE, ficpar);    char fileresprobcor[FILENAMELENGTH];
     puts(line);  
     fputs(line,ficparo);    double ***varpij;
   }  
   ungetc(c,ficpar);    strcpy(fileresprob,"prob"); 
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);    strcat(fileresprob,fileres);
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);    }
     strcpy(fileresprobcov,"probcov"); 
  /*------------ gnuplot -------------*/    strcat(fileresprobcov,fileres);
 chdir(pathcd);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   if((ficgp=fopen("graph.plt","w"))==NULL) {      printf("Problem with resultfile: %s\n", fileresprobcov);
     printf("Problem with file graph.gp");goto end;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   }    }
 #ifdef windows    strcpy(fileresprobcor,"probcor"); 
   fprintf(ficgp,"cd \"%s\" \n",pathc);    strcat(fileresprobcor,fileres);
 #endif    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 m=pow(2,cptcoveff);      printf("Problem with resultfile: %s\n", fileresprobcor);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
  /* 1eme*/    }
   for (cpt=1; cpt<= nlstate ; cpt ++) {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
    for (k1=1; k1<= m ; k1 ++) {    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 #ifdef windows    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 #endif    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 #ifdef unix    
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 #endif    fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 for (i=1; i<= nlstate ; i ++) {    fprintf(ficresprobcov,"# Age");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobcov,"# Age");
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {    for(i=1; i<=nlstate;i++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for(j=1; j<=(nlstate+ndeath);j++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
      for (i=1; i<= nlstate ; i ++) {      }  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   /* fprintf(ficresprob,"\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobcov,"\n");
 }      fprintf(ficresprobcor,"\n");
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));   */
 #ifdef unix   xp=vector(1,npar);
 fprintf(ficgp,"\nset ter gif small size 400,300");    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 #endif    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
    }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   }    first=1;
   /*2 eme*/    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   for (k1=1; k1<= m ; k1 ++) {      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);      exit(0);
        }
     for (i=1; i<= nlstate+1 ; i ++) {    else{
       k=2*i;      fprintf(ficgp,"\n# Routine varprob");
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    }
       for (j=1; j<= nlstate+1 ; j ++) {    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      printf("Problem with html file: %s\n", optionfilehtm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
 }        exit(0);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    else{
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       for (j=1; j<= nlstate+1 ; j ++) {      fprintf(fichtm,"\n");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
 }        fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    cov[1]=1;
 }      tj=cptcoveff;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       else fprintf(ficgp,"\" t\"\" w l 0,");    j1=0;
     }    for(t=1; t<=tj;t++){
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      for(i1=1; i1<=ncodemax[t];i1++){ 
   }        j1++;
          if  (cptcovn>0) {
   /*3eme*/          fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for (k1=1; k1<= m ; k1 ++) {          fprintf(ficresprob, "**********\n#\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {          fprintf(ficresprobcov, "\n#********** Variable "); 
       k=2+nlstate*(cpt-1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);          fprintf(ficresprobcov, "**********\n#\n");
       for (i=1; i< nlstate ; i ++) {          
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);          fprintf(ficgp, "\n#********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          fprintf(ficgp, "**********\n#\n");
     }          
   }          
            fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   /* CV preval stat */          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for (k1=1; k1<= m ; k1 ++) {          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     for (cpt=1; cpt<nlstate ; cpt ++) {          
       k=3;          fprintf(ficresprobcor, "\n#********** Variable ");    
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for (i=1; i< nlstate ; i ++)          fprintf(ficresprobcor, "**********\n#");    
         fprintf(ficgp,"+$%d",k+i+1);        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        
              for (age=bage; age<=fage; age ++){ 
       l=3+(nlstate+ndeath)*cpt;          cov[2]=age;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          for (k=1; k<=cptcovn;k++) {
       for (i=1; i< nlstate ; i ++) {            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         l=3+(nlstate+ndeath)*cpt;          }
         fprintf(ficgp,"+$%d",l+i+1);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }          for (k=1; k<=cptcovprod;k++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          
     }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   }            trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
   /* proba elementaires */          gm=vector(1,(nlstate)*(nlstate+ndeath));
    for(i=1,jk=1; i <=nlstate; i++){      
     for(k=1; k <=(nlstate+ndeath); k++){          for(theta=1; theta <=npar; theta++){
       if (k != i) {            for(i=1; i<=npar; i++)
         for(j=1; j <=ncovmodel; j++){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/            
           /*fprintf(ficgp,"%s",alph[1]);*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            
           jk++;            k=0;
           fprintf(ficgp,"\n");            for(i=1; i<= (nlstate); i++){
         }              for(j=1; j<=(nlstate+ndeath);j++){
       }                k=k+1;
     }                gp[k]=pmmij[i][j];
     }              }
             }
   for(jk=1; jk <=m; jk++) {            
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);            for(i=1; i<=npar; i++)
    i=1;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
    for(k2=1; k2<=nlstate; k2++) {      
      k3=i;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      for(k=1; k<=(nlstate+ndeath); k++) {            k=0;
        if (k != k2){            for(i=1; i<=(nlstate); i++){
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              for(j=1; j<=(nlstate+ndeath);j++){
 ij=1;                k=k+1;
         for(j=3; j <=ncovmodel; j++) {                gm[k]=pmmij[i][j];
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              }
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            }
             ij++;       
           }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           else              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }
         }  
           fprintf(ficgp,")/(1");          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                    for(theta=1; theta <=npar; theta++)
         for(k1=1; k1 <=nlstate; k1++){                trgradg[j][theta]=gradg[theta][j];
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          
 ij=1;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           for(j=3; j <=ncovmodel; j++){          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
             ij++;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           else  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          pmij(pmmij,cov,ncovmodel,x,nlstate);
           }          
           fprintf(ficgp,")");          k=0;
         }          for(i=1; i<=(nlstate); i++){
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            for(j=1; j<=(nlstate+ndeath);j++){
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              k=k+1;
         i=i+ncovmodel;              mu[k][(int) age]=pmmij[i][j];
        }            }
      }          }
    }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   }              varpij[i][j][(int)age] = doldm[i][j];
      
   fclose(ficgp);          /*printf("\n%d ",(int)age);
   /* end gnuplot */            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 chdir(path);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                }*/
     free_ivector(wav,1,imx);  
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          fprintf(ficresprob,"\n%d ",(int)age);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            fprintf(ficresprobcov,"\n%d ",(int)age);
     free_ivector(num,1,n);          fprintf(ficresprobcor,"\n%d ",(int)age);
     free_vector(agedc,1,n);  
     /*free_matrix(covar,1,NCOVMAX,1,n);*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     fclose(ficparo);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     fclose(ficres);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     /*  }*/            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
    /*________fin mle=1_________*/          }
              i=0;
           for (k=1; k<=(nlstate);k++){
              for (l=1; l<=(nlstate+ndeath);l++){ 
     /* No more information from the sample is required now */              i=i++;
   /* Reads comments: lines beginning with '#' */              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   while((c=getc(ficpar))=='#' && c!= EOF){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     ungetc(c,ficpar);              for (j=1; j<=i;j++){
     fgets(line, MAXLINE, ficpar);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     puts(line);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     fputs(line,ficparo);              }
   }            }
   ungetc(c,ficpar);          }/* end of loop for state */
          } /* end of loop for age */
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);        /* Confidence intervalle of pij  */
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        /*
 /*--------- index.htm --------*/          fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   strcpy(optionfilehtm,optionfile);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   strcat(optionfilehtm,".htm");          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     printf("Problem with %s \n",optionfilehtm);goto end;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   }          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">  
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 Total number of observations=%d <br>        first1=1;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>        for (k2=1; k2<=(nlstate);k2++){
 <hr  size=\"2\" color=\"#EC5E5E\">          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 <li>Outputs files<br><br>\n            if(l2==k2) continue;
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            j=(k2-1)*(nlstate+ndeath)+l2;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>            for (k1=1; k1<=(nlstate);k1++){
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>                if(l1==k1) continue;
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>                i=(k1-1)*(nlstate+ndeath)+l1;
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>                if(i<=j) continue;
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>                for (age=bage; age<=fage; age ++){ 
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>                  if ((int)age %5==0){
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
  fprintf(fichtm," <li>Graphs</li><p>");                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
  m=cptcoveff;                    /* Computing eigen value of matrix of covariance */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
  j1=0;                    /* Eigen vectors */
  for(k1=1; k1<=m;k1++){                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
    for(i1=1; i1<=ncodemax[k1];i1++){                    /*v21=sqrt(1.-v11*v11); *//* error */
        j1++;                    v21=(lc1-v1)/cv12*v11;
        if (cptcovn > 0) {                    v12=-v21;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                    v22=v11;
          for (cpt=1; cpt<=cptcoveff;cpt++)                    tnalp=v21/v11;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);                    if(first1==1){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                      first1=0;
        }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>                    }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                        fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
        for(cpt=1; cpt<nlstate;cpt++){                    /*printf(fignu*/
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
        }                    if(first==1){
     for(cpt=1; cpt<=nlstate;cpt++) {                      first=0;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                      fprintf(ficgp,"\nset parametric;unset label");
 interval) in state (%d): v%s%d%d.gif <br>                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);                        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
      }                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
      for(cpt=1; cpt<=nlstate;cpt++) {                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
      }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 health expectancies in states (1) and (2): e%s%d.gif<br>                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 fprintf(fichtm,"\n</body>");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
    }                    }else{
  }                      first=0;
 fclose(fichtm);                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   /*--------------- Prevalence limit --------------*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                        fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   strcpy(filerespl,"pl");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   strcat(filerespl,fileres);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                    }/* if first */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                  } /* age mod 5 */
   }                } /* end loop age */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
   fprintf(ficrespl,"#Prevalence limit\n");                first=1;
   fprintf(ficrespl,"#Age ");              } /*l12 */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            } /* k12 */
   fprintf(ficrespl,"\n");          } /*l1 */
          }/* k1 */
   prlim=matrix(1,nlstate,1,nlstate);      } /* loop covariates */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_vector(xp,1,npar);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fclose(ficresprob);
   k=0;    fclose(ficresprobcov);
   agebase=agemin;    fclose(ficresprobcor);
   agelim=agemax;    fclose(ficgp);
   ftolpl=1.e-10;    fclose(fichtm);
   i1=cptcoveff;  }
   if (cptcovn < 1){i1=1;}  
   
   for(cptcov=1;cptcov<=i1;cptcov++){  /******************* Printing html file ***********/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
         k=k+1;                    int lastpass, int stepm, int weightopt, char model[],\
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         fprintf(ficrespl,"\n#******");                    int popforecast, int estepm ,\
         for(j=1;j<=cptcoveff;j++)                    double jprev1, double mprev1,double anprev1, \
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    double jprev2, double mprev2,double anprev2){
         fprintf(ficrespl,"******\n");    int jj1, k1, i1, cpt;
            /*char optionfilehtm[FILENAMELENGTH];*/
         for (age=agebase; age<=agelim; age++){    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      printf("Problem with %s \n",optionfilehtm), exit(0);
           fprintf(ficrespl,"%.0f",age );      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
           for(i=1; i<=nlstate;i++)    }
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
         }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
       }   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
     }   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
   fclose(ficrespl);   - Life expectancies by age and initial health status (estepm=%2d months): 
      <a href=\"e%s\">e%s</a> <br>\n</li>", \
   /*------------- h Pij x at various ages ------------*/    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;   m=cptcoveff;
   }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   printf("Computing pij: result on file '%s' \n", filerespij);  
     jj1=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;   for(k1=1; k1<=m;k1++){
   /*if (stepm<=24) stepsize=2;*/     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   agelim=AGESUP;       if (cptcovn > 0) {
   hstepm=stepsize*YEARM; /* Every year of age */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */         for (cpt=1; cpt<=cptcoveff;cpt++) 
             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   k=0;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   for(cptcov=1;cptcov<=i1;cptcov++){       }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       /* Pij */
       k=k+1;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>
         fprintf(ficrespij,"\n#****** ");  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
         for(j=1;j<=cptcoveff;j++)       /* Quasi-incidences */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
         fprintf(ficrespij,"******\n");  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
                 /* Stable prevalence in each health state */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */         for(cpt=1; cpt<nlstate;cpt++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         }
           oldm=oldms;savm=savms;       for(cpt=1; cpt<=nlstate;cpt++) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
           fprintf(ficrespij,"# Age");  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
           for(i=1; i<=nlstate;i++)       }
             for(j=1; j<=nlstate+ndeath;j++)       fprintf(fichtm,"\n<br>- Total life expectancy by age and
               fprintf(ficrespij," %1d-%1d",i,j);  health expectancies in states (1) and (2): e%s%d.png<br>
           fprintf(ficrespij,"\n");  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
           for (h=0; h<=nhstepm; h++){     } /* end i1 */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );   }/* End k1 */
             for(i=1; i<=nlstate;i++)   fprintf(fichtm,"</ul>");
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
           }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
           fprintf(ficrespij,"\n");   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
         }   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
     }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
   }   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
    - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/  
    if(popforecast==1) fprintf(fichtm,"\n
   fclose(ficrespij);   - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n
    - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n
   if(stepm == 1) {          <br>",fileres,fileres,fileres,fileres);
   /*---------- Forecasting ------------------*/   else 
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;     fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   /*printf("calage= %f", calagedate);*/  
     m=cptcoveff;
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
   strcpy(fileresf,"f");   for(k1=1; k1<=m;k1++){
   strcat(fileresf,fileres);     for(i1=1; i1<=ncodemax[k1];i1++){
   if((ficresf=fopen(fileresf,"w"))==NULL) {       jj1++;
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;       if (cptcovn > 0) {
   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   printf("Computing forecasting: result on file '%s' \n", fileresf);         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   free_matrix(mint,1,maxwav,1,n);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   free_matrix(anint,1,maxwav,1,n);       }
   free_matrix(agev,1,maxwav,1,imx);       for(cpt=1; cpt<=nlstate;cpt++) {
   /* Mobile average */         fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
   interval) in state (%d): v%s%d%d.png <br>
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }
   if (mobilav==1) {     } /* end i1 */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   }/* End k1 */
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)   fprintf(fichtm,"</ul>");
       for (i=1; i<=nlstate;i++)  fclose(fichtm);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  }
           mobaverage[(int)agedeb][i][cptcod]=0.;  
      /******************* Gnuplot file **************/
     for (agedeb=bage+4; agedeb<=fage; agedeb++){  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
           for (cpt=0;cpt<=4;cpt++){    int ng;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
           }      printf("Problem with file %s",optionfilegnuplot);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
         }    }
       }  
     }      /*#ifdef windows */
   }      fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  m=pow(2,cptcoveff);
   if (stepm<=12) stepsize=1;    
    /* 1eme*/
   agelim=AGESUP;    for (cpt=1; cpt<= nlstate ; cpt ++) {
   /*hstepm=stepsize*YEARM; *//* Every year of age */     for (k1=1; k1<= m ; k1 ++) {
   hstepm=1;       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;       for (i=1; i<= nlstate ; i ++) {
   yp2=modf((yp1*12),&yp);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   mprojmean=yp;         else fprintf(ficgp," \%%*lf (\%%*lf)");
   yp1=modf((yp2*30.5),&yp);       }
   jprojmean=yp;       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
   if(jprojmean==0) jprojmean=1;       for (i=1; i<= nlstate ; i ++) {
   if(mprojmean==0) jprojmean=1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);       } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
   if (popforecast==1) {       for (i=1; i<= nlstate ; i ++) {
     if((ficpop=fopen(popfile,"r"))==NULL)    {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       printf("Problem with population file : %s\n",popfile);goto end;         else fprintf(ficgp," \%%*lf (\%%*lf)");
     }       }  
     popage=ivector(0,AGESUP);       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
     popeffectif=vector(0,AGESUP);     }
     popcount=vector(0,AGESUP);    }
     /*2 eme*/
     i=1;      
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)    for (k1=1; k1<= m ; k1 ++) { 
       {      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
         i=i+1;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       }      
     imx=i;      for (i=1; i<= nlstate+1 ; i ++) {
            k=2*i;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
   }        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   for(cptcov=1;cptcov<=i1;cptcov++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }   
       k=k+1;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       fprintf(ficresf,"\n#******");        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       for(j=1;j<=cptcoveff;j++) {        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (j=1; j<= nlstate+1 ; j ++) {
       }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficresf,"******\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficresf,"# StartingAge FinalAge");        }   
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        fprintf(ficgp,"\" t\"\" w l 0,");
       if (popforecast==1)  fprintf(ficresf," [Population]");        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
            for (j=1; j<= nlstate+1 ; j ++) {
       for (cpt=0; cpt<4;cpt++) {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficresf,"\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */        else fprintf(ficgp,"\" t\"\" w l 0,");
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      }
         nhstepm = nhstepm/hstepm;    }
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/    
     /*3eme*/
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
         oldm=oldms;savm=savms;    for (k1=1; k1<= m ; k1 ++) { 
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for (cpt=1; cpt<= nlstate ; cpt ++) {
                k=2+nlstate*(2*cpt-2);
         for (h=0; h<=nhstepm; h++){        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
           if (h==(int) (calagedate+YEARM*cpt)) {        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           for(j=1; j<=nlstate+ndeath;j++) {          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
             kk1=0.;kk2=0;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             for(i=1; i<=nlstate;i++) {                  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
               if (mobilav==1)          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          
               else {        */
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for (i=1; i< nlstate ; i ++) {
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
               }          
         } 
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];      }
             }    }
              
             if (h==(int)(calagedate+12*cpt)){    /* CV preval stat */
               fprintf(ficresf," %.3f", kk1);    for (k1=1; k1<= m ; k1 ++) { 
                    for (cpt=1; cpt<nlstate ; cpt ++) {
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);        k=3;
             }        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
           }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         }        
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (i=1; i< nlstate ; i ++)
       }          fprintf(ficgp,"+$%d",k+i+1);
       }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     }        
   }        l=3+(nlstate+ndeath)*cpt;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
   if (popforecast==1) {        for (i=1; i< nlstate ; i ++) {
     free_ivector(popage,0,AGESUP);          l=3+(nlstate+ndeath)*cpt;
     free_vector(popeffectif,0,AGESUP);          fprintf(ficgp,"+$%d",l+i+1);
     free_vector(popcount,0,AGESUP);        }
   }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   free_imatrix(s,1,maxwav+1,1,n);      } 
   free_vector(weight,1,n);    }  
   fclose(ficresf);    
   }/* End forecasting */    /* proba elementaires */
   else{    for(i=1,jk=1; i <=nlstate; i++){
     erreur=108;      for(k=1; k <=(nlstate+ndeath); k++){
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);        if (k != i) {
   }          for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   /*---------- Health expectancies and variances ------------*/            jk++; 
             fprintf(ficgp,"\n");
   strcpy(filerest,"t");          }
   strcat(filerest,fileres);        }
   if((ficrest=fopen(filerest,"w"))==NULL) {      }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;     }
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
   strcpy(filerese,"e");         if (ng==2)
   strcat(filerese,fileres);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   if((ficreseij=fopen(filerese,"w"))==NULL) {         else
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);           fprintf(ficgp,"\nset title \"Probability\"\n");
   }         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);         i=1;
          for(k2=1; k2<=nlstate; k2++) {
  strcpy(fileresv,"v");           k3=i;
   strcat(fileresv,fileres);           for(k=1; k<=(nlstate+ndeath); k++) {
   if((ficresvij=fopen(fileresv,"w"))==NULL) {             if (k != k2){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);               if(ng==2)
   }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);               else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   k=0;               ij=1;
   for(cptcov=1;cptcov<=i1;cptcov++){               for(j=3; j <=ncovmodel; j++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       k=k+1;                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       fprintf(ficrest,"\n#****** ");                   ij++;
       for(j=1;j<=cptcoveff;j++)                 }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                 else
       fprintf(ficrest,"******\n");                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
       fprintf(ficreseij,"\n#****** ");               fprintf(ficgp,")/(1");
       for(j=1;j<=cptcoveff;j++)               
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);               for(k1=1; k1 <=nlstate; k1++){   
       fprintf(ficreseij,"******\n");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
       fprintf(ficresvij,"\n#****** ");                 for(j=3; j <=ncovmodel; j++){
       for(j=1;j<=cptcoveff;j++)                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       fprintf(ficresvij,"******\n");                     ij++;
                    }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                   else
       oldm=oldms;savm=savms;                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);                   }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                 fprintf(ficgp,")");
       oldm=oldms;savm=savms;               }
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");               i=i+ncovmodel;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);             }
       fprintf(ficrest,"\n");           } /* end k */
                 } /* end k2 */
       hf=1;       } /* end jk */
       if (stepm >= YEARM) hf=stepm/YEARM;     } /* end ng */
       epj=vector(1,nlstate+1);     fclose(ficgp); 
       for(age=bage; age <=fage ;age++){  }  /* end gnuplot */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)  /*************** Moving average **************/
             prlim[i][i]=probs[(int)age][i][k];  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
         }  
            int i, cpt, cptcod;
         fprintf(ficrest," %.0f",age);    int modcovmax =1;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    int mobilavrange, mob;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    double age;
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];  
           }    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
           epj[nlstate+1] +=epj[j];                             a covariate has 2 modalities */
         }    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
             vepp += vareij[i][j][(int)age];      if(mobilav==1) mobilavrange=5; /* default */
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));      else mobilavrange=mobilav;
         for(j=1;j <=nlstate;j++){      for (age=bage; age<=fage; age++)
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));        for (i=1; i<=nlstate;i++)
         }          for (cptcod=1;cptcod<=modcovmax;cptcod++)
         fprintf(ficrest,"\n");            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       }      /* We keep the original values on the extreme ages bage, fage and for 
     }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   }         we use a 5 terms etc. until the borders are no more concerned. 
              */ 
              for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
  fclose(ficreseij);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
  fclose(ficresvij);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   fclose(ficrest);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   fclose(ficpar);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   free_vector(epj,1,nlstate+1);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   /*  scanf("%d ",i); */                }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   /*------- Variance limit prevalence------*/              }
           }
 strcpy(fileresvpl,"vpl");        }/* end age */
   strcat(fileresvpl,fileres);      }/* end mob */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    }else return -1;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    return 0;
     exit(0);  }/* End movingaverage */
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
   /************** Forecasting ******************/
  k=0;  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
  for(cptcov=1;cptcov<=i1;cptcov++){    /* proj1, year, month, day of starting projection 
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       agemin, agemax range of age
      k=k+1;       dateprev1 dateprev2 range of dates during which prevalence is computed
      fprintf(ficresvpl,"\n#****** ");       anproj2 year of en of projection (same day and month as proj1).
      for(j=1;j<=cptcoveff;j++)    */
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
      fprintf(ficresvpl,"******\n");    int *popage;
          double agec; /* generic age */
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
      oldm=oldms;savm=savms;    double *popeffectif,*popcount;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    double ***p3mat;
    }    double ***mobaverage;
  }    char fileresf[FILENAMELENGTH];
   
   fclose(ficresvpl);    agelim=AGESUP;
     prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   /*---------- End : free ----------------*/   
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    strcpy(fileresf,"f"); 
      strcat(fileresf,fileres);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    if((ficresf=fopen(fileresf,"w"))==NULL) {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      printf("Problem with forecast resultfile: %s\n", fileresf);
        fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
      }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    printf("Computing forecasting: result on file '%s' \n", fileresf);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    
   free_matrix(matcov,1,npar,1,npar);    if (mobilav!=0) {
   free_vector(delti,1,npar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   if(erreur >0)      }
     printf("End of Imach with error %d\n",erreur);    }
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    stepsize=(int) (stepm+YEARM-1)/YEARM;
      if (stepm<=12) stepsize=1;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    if(estepm < stepm){
   /*printf("Total time was %d uSec.\n", total_usecs);*/      printf ("Problem %d lower than %d\n",estepm, stepm);
   /*------ End -----------*/    }
     else  hstepm=estepm;   
   
  end:    hstepm=hstepm/stepm; 
 #ifdef windows    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
  chdir(pathcd);                                 fractional in yp1 */
 #endif    anprojmean=yp;
      yp2=modf((yp1*12),&yp);
  system("..\\gp37mgw\\wgnuplot graph.plt");    mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
 #ifdef windows    jprojmean=yp;
   while (z[0] != 'q') {    if(jprojmean==0) jprojmean=1;
     chdir(pathcd);    if(mprojmean==0) jprojmean=1;
     printf("\nType e to edit output files, c to start again, and q for exiting: ");  
     scanf("%s",z);    i1=cptcoveff;
     if (z[0] == 'c') system("./imach");    if (cptcovn < 1){i1=1;}
     else if (z[0] == 'e') {    
       chdir(path);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       system(optionfilehtm);    
     }    fprintf(ficresf,"#****** Routine prevforecast **\n");
     else if (z[0] == 'q') exit(0);  
   }  /*            if (h==(int)(YEARM*yearp)){ */
 #endif    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 }      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   #include <sys/time.h>
   #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
     /* long total_usecs;
        struct timeval start_time, end_time;
     
        gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     getcwd(pathcd, size);
   
     printf("\n%s",version);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s",version);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if(moisdc[i]!=99 && andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if (andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if(mint[m][i]==99 || anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.21  
changed lines
  Added in v.1.75


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>