Diff for /imach/src/imach.c between versions 1.22 and 1.155

version 1.22, 2002/02/22 17:54:20 version 1.155, 2014/08/25 18:32:34
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolate Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.155  2014/08/25 18:32:34  brouard
      Summary: New compile, minor changes
   This program computes Healthy Life Expectancies from    Author: Brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.154  2014/06/20 17:32:08  brouard
   interviewed on their health status or degree of disability (in the    Summary: Outputs now all graphs of convergence to period prevalence
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.153  2014/06/20 16:45:46  brouard
   (if any) in individual health status.  Health expectancies are    Summary: If 3 live state, convergence to period prevalence on same graph
   computed from the time spent in each health state according to a    Author: Brouard
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.152  2014/06/18 17:54:09  brouard
   simplest model is the multinomial logistic model where pij is the    Summary: open browser, use gnuplot on same dir than imach if not found in the path
   probabibility to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.151  2014/06/18 16:43:30  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    *** empty log message ***
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.150  2014/06/18 16:42:35  brouard
   where the markup *Covariates have to be included here again* invites    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   you to do it.  More covariates you add, slower the    Author: brouard
   convergence.  
     Revision 1.149  2014/06/18 15:51:14  brouard
   The advantage of this computer programme, compared to a simple    Summary: Some fixes in parameter files errors
   multinomial logistic model, is clear when the delay between waves is not    Author: Nicolas Brouard
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.148  2014/06/17 17:38:48  brouard
   account using an interpolation or extrapolation.      Summary: Nothing new
     Author: Brouard
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Just a new packaging for OS/X version 0.98nS
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.147  2014/06/16 10:33:11  brouard
   semester or year) is model as a multinomial logistic.  The hPx    *** empty log message ***
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.146  2014/06/16 10:20:28  brouard
   hPijx.    Summary: Merge
     Author: Brouard
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Merge, before building revised version.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.145  2014/06/10 21:23:15  brouard
            Institut national d'études démographiques, Paris.    Summary: Debugging with valgrind
   This software have been partly granted by Euro-REVES, a concerted action    Author: Nicolas Brouard
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Lot of changes in order to output the results with some covariates
   software can be distributed freely for non commercial use. Latest version    After the Edimburgh REVES conference 2014, it seems mandatory to
   can be accessed at http://euroreves.ined.fr/imach .    improve the code.
   **********************************************************************/    No more memory valgrind error but a lot has to be done in order to
      continue the work of splitting the code into subroutines.
 #include <math.h>    Also, decodemodel has been improved. Tricode is still not
 #include <stdio.h>    optimal. nbcode should be improved. Documentation has been added in
 #include <stdlib.h>    the source code.
 #include <unistd.h>  
     Revision 1.143  2014/01/26 09:45:38  brouard
 #define MAXLINE 256    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"  
 #define FILENAMELENGTH 80    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 /*#define DEBUG*/    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.142  2014/01/26 03:57:36  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.141  2014/01/26 02:42:01  brouard
 #define NINTERVMAX 8    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.140  2011/09/02 10:37:54  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Summary: times.h is ok with mingw32 now.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.139  2010/06/14 07:50:17  brouard
 #define AGESUP 130    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 #define AGEBASE 40    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   
     Revision 1.138  2010/04/30 18:19:40  brouard
 int erreur; /* Error number */    *** empty log message ***
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.137  2010/04/29 18:11:38  brouard
 int npar=NPARMAX;    (Module): Checking covariates for more complex models
 int nlstate=2; /* Number of live states */    than V1+V2. A lot of change to be done. Unstable.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.136  2010/04/26 20:30:53  brouard
 int popbased=0;    (Module): merging some libgsl code. Fixing computation
     of likelione (using inter/intrapolation if mle = 0) in order to
 int *wav; /* Number of waves for this individuual 0 is possible */    get same likelihood as if mle=1.
 int maxwav; /* Maxim number of waves */    Some cleaning of code and comments added.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.135  2009/10/29 15:33:14  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.134  2009/10/29 13:18:53  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    Revision 1.133  2009/07/06 10:21:25  brouard
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    just nforces
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.132  2009/07/06 08:22:05  brouard
  FILE  *ficresvij;    Many tings
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.131  2009/06/20 16:22:47  brouard
   char fileresvpl[FILENAMELENGTH];    Some dimensions resccaled
   
 #define NR_END 1    Revision 1.130  2009/05/26 06:44:34  brouard
 #define FREE_ARG char*    (Module): Max Covariate is now set to 20 instead of 8. A
 #define FTOL 1.0e-10    lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 #define NRANSI  
 #define ITMAX 200    Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define TOL 2.0e-4  
     Revision 1.128  2006/06/30 13:02:05  brouard
 #define CGOLD 0.3819660    (Module): Clarifications on computing e.j
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
 #define GOLD 1.618034    imach-114 because nhstepm was no more computed in the age
 #define GLIMIT 100.0    loop. Now we define nhstepma in the age loop.
 #define TINY 1.0e-20    (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
 static double maxarg1,maxarg2;    and then all the health expectancies with variances or standard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    deviation (needs data from the Hessian matrices) which slows the
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    computation.
      In the future we should be able to stop the program is only health
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    expectancies and graph are needed without standard deviations.
 #define rint(a) floor(a+0.5)  
     Revision 1.126  2006/04/28 17:23:28  brouard
 static double sqrarg;    (Module): Yes the sum of survivors was wrong since
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    imach-114 because nhstepm was no more computed in the age
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    loop. Now we define nhstepma in the age loop.
     Version 0.98h
 int imx;  
 int stepm;    Revision 1.125  2006/04/04 15:20:31  lievre
 /* Stepm, step in month: minimum step interpolation*/    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.124  2006/03/22 17:13:53  lievre
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Parameters are printed with %lf instead of %f (more numbers after the comma).
 double **pmmij, ***probs, ***mobaverage;    The log-likelihood is printed in the log file
 double dateintmean=0;  
     Revision 1.123  2006/03/20 10:52:43  brouard
 double *weight;    * imach.c (Module): <title> changed, corresponds to .htm file
 int **s; /* Status */    name. <head> headers where missing.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    otherwise the weight is truncated).
 double ftolhess; /* Tolerance for computing hessian */    Modification of warning when the covariates values are not 0 or
     1.
 /**************** split *************************/    Version 0.98g
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.122  2006/03/20 09:45:41  brouard
    char *s;                             /* pointer */    (Module): Weights can have a decimal point as for
    int  l1, l2;                         /* length counters */    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
    l1 = strlen( path );                 /* length of path */    Modification of warning when the covariates values are not 0 or
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    1.
 #ifdef windows    Version 0.98g
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Revision 1.121  2006/03/16 17:45:01  lievre
    s = strrchr( path, '/' );            /* find last / */    * imach.c (Module): Comments concerning covariates added
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */    * imach.c (Module): refinements in the computation of lli if
 #if     defined(__bsd__)                /* get current working directory */    status=-2 in order to have more reliable computation if stepm is
       extern char       *getwd( );    not 1 month. Version 0.98f
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.120  2006/03/16 15:10:38  lievre
 #else    (Module): refinements in the computation of lli if
       extern char       *getcwd( );    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.119  2006/03/15 17:42:26  brouard
          return( GLOCK_ERROR_GETCWD );    (Module): Bug if status = -2, the loglikelihood was
       }    computed as likelihood omitting the logarithm. Version O.98e
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.118  2006/03/14 18:20:07  brouard
       s++;                              /* after this, the filename */    (Module): varevsij Comments added explaining the second
       l2 = strlen( s );                 /* length of filename */    table of variances if popbased=1 .
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
       strcpy( name, s );                /* save file name */    (Module): Function pstamp added
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Module): Version 0.98d
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.117  2006/03/14 17:16:22  brouard
    l1 = strlen( dirc );                 /* length of directory */    (Module): varevsij Comments added explaining the second
 #ifdef windows    table of variances if popbased=1 .
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #else    (Module): Function pstamp added
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Module): Version 0.98d
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.116  2006/03/06 10:29:27  brouard
    s++;    (Module): Variance-covariance wrong links and
    strcpy(ext,s);                       /* save extension */    varian-covariance of ej. is needed (Saito).
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.115  2006/02/27 12:17:45  brouard
    strncpy( finame, name, l1-l2);    (Module): One freematrix added in mlikeli! 0.98c
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.114  2006/02/26 12:57:58  brouard
 }    (Module): Some improvements in processing parameter
     filename with strsep.
   
 /******************************************/    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 void replace(char *s, char*t)    datafile was not closed, some imatrix were not freed and on matrix
 {    allocation too.
   int i;  
   int lg=20;    Revision 1.112  2006/01/30 09:55:26  brouard
   i=0;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.111  2006/01/25 20:38:18  brouard
     (s[i] = t[i]);    (Module): Lots of cleaning and bugs added (Gompertz)
     if (t[i]== '\\') s[i]='/';    (Module): Comments can be added in data file. Missing date values
   }    can be a simple dot '.'.
 }  
     Revision 1.110  2006/01/25 00:51:50  brouard
 int nbocc(char *s, char occ)    (Module): Lots of cleaning and bugs added (Gompertz)
 {  
   int i,j=0;    Revision 1.109  2006/01/24 19:37:15  brouard
   int lg=20;    (Module): Comments (lines starting with a #) are allowed in data.
   i=0;  
   lg=strlen(s);    Revision 1.108  2006/01/19 18:05:42  lievre
   for(i=0; i<= lg; i++) {    Gnuplot problem appeared...
   if  (s[i] == occ ) j++;    To be fixed
   }  
   return j;    Revision 1.107  2006/01/19 16:20:37  brouard
 }    Test existence of gnuplot in imach path
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.106  2006/01/19 13:24:36  brouard
 {    Some cleaning and links added in html output
   int i,lg,j,p=0;  
   i=0;    Revision 1.105  2006/01/05 20:23:19  lievre
   for(j=0; j<=strlen(t)-1; j++) {    *** empty log message ***
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
   lg=strlen(t);    (Module): If the status is missing at the last wave but we know
   for(j=0; j<p; j++) {    that the person is alive, then we can code his/her status as -2
     (u[j] = t[j]);    (instead of missing=-1 in earlier versions) and his/her
   }    contributions to the likelihood is 1 - Prob of dying from last
      u[p]='\0';    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.103  2005/09/30 15:54:49  lievre
   }    (Module): sump fixed, loop imx fixed, and simplifications.
 }  
     Revision 1.102  2004/09/15 17:31:30  brouard
 /********************** nrerror ********************/    Add the possibility to read data file including tab characters.
   
 void nrerror(char error_text[])    Revision 1.101  2004/09/15 10:38:38  brouard
 {    Fix on curr_time
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.100  2004/07/12 18:29:06  brouard
   exit(1);    Add version for Mac OS X. Just define UNIX in Makefile
 }  
 /*********************** vector *******************/    Revision 1.99  2004/06/05 08:57:40  brouard
 double *vector(int nl, int nh)    *** empty log message ***
 {  
   double *v;    Revision 1.98  2004/05/16 15:05:56  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    New version 0.97 . First attempt to estimate force of mortality
   if (!v) nrerror("allocation failure in vector");    directly from the data i.e. without the need of knowing the health
   return v-nl+NR_END;    state at each age, but using a Gompertz model: log u =a + b*age .
 }    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 /************************ free vector ******************/    cross-longitudinal survey is different from the mortality estimated
 void free_vector(double*v, int nl, int nh)    from other sources like vital statistic data.
 {  
   free((FREE_ARG)(v+nl-NR_END));    The same imach parameter file can be used but the option for mle should be -3.
 }  
     Agnès, who wrote this part of the code, tried to keep most of the
 /************************ivector *******************************/    former routines in order to include the new code within the former code.
 int *ivector(long nl,long nh)  
 {    The output is very simple: only an estimate of the intercept and of
   int *v;    the slope with 95% confident intervals.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Current limitations:
   return v-nl+NR_END;    A) Even if you enter covariates, i.e. with the
 }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.97  2004/02/20 13:25:42  lievre
 {    Version 0.96d. Population forecasting command line is (temporarily)
   free((FREE_ARG)(v+nl-NR_END));    suppressed.
 }  
     Revision 1.96  2003/07/15 15:38:55  brouard
 /******************* imatrix *******************************/    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int **imatrix(long nrl, long nrh, long ncl, long nch)    rewritten within the same printf. Workaround: many printfs.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.95  2003/07/08 07:54:34  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    * imach.c (Repository):
   int **m;    (Repository): Using imachwizard code to output a more meaningful covariance
      matrix (cov(a12,c31) instead of numbers.
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.94  2003/06/27 13:00:02  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    Just cleaning
   m += NR_END;  
   m -= nrl;    Revision 1.93  2003/06/25 16:33:55  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
      exist so I changed back to asctime which exists.
   /* allocate rows and set pointers to them */    (Module): Version 0.96b
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.92  2003/06/25 16:30:45  brouard
   m[nrl] += NR_END;    (Module): On windows (cygwin) function asctime_r doesn't
   m[nrl] -= ncl;    exist so I changed back to asctime which exists.
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Revision 1.91  2003/06/25 15:30:29  brouard
      * imach.c (Repository): Duplicated warning errors corrected.
   /* return pointer to array of pointers to rows */    (Repository): Elapsed time after each iteration is now output. It
   return m;    helps to forecast when convergence will be reached. Elapsed time
 }    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Revision 1.90  2003/06/24 12:34:15  brouard
       int **m;    (Module): Some bugs corrected for windows. Also, when
       long nch,ncl,nrh,nrl;    mle=-1 a template is output in file "or"mypar.txt with the design
      /* free an int matrix allocated by imatrix() */    of the covariance matrix to be input.
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Revision 1.89  2003/06/24 12:30:52  brouard
   free((FREE_ARG) (m+nrl-NR_END));    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    Revision 1.88  2003/06/23 17:54:56  brouard
 {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.86  2003/06/17 20:04:08  brouard
   m += NR_END;    (Module): Change position of html and gnuplot routines and added
   m -= nrl;    routine fileappend.
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.85  2003/06/17 13:12:43  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    * imach.c (Repository): Check when date of death was earlier that
   m[nrl] += NR_END;    current date of interview. It may happen when the death was just
   m[nrl] -= ncl;    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    assuming that the date of death was just one stepm after the
   return m;    interview.
 }    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 /*************************free matrix ************************/    memory allocation. But we also truncated to 8 characters (left
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    truncation)
 {    (Repository): No more line truncation errors.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.84  2003/06/13 21:44:43  brouard
 }    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 /******************* ma3x *******************************/    many times. Probs is memory consuming and must be used with
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    parcimony.
 {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.82  2003/06/05 15:57:20  brouard
   m += NR_END;    Add log in  imach.c and  fullversion number is now printed.
   m -= nrl;  
   */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /*
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");     Interpolated Markov Chain
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Short summary of the programme:
     
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    first survey ("cross") where individuals from different ages are
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    interviewed on their health status or degree of disability (in the
   m[nrl][ncl] += NR_END;    case of a health survey which is our main interest) -2- at least a
   m[nrl][ncl] -= nll;    second wave of interviews ("longitudinal") which measure each change
   for (j=ncl+1; j<=nch; j++)    (if any) in individual health status.  Health expectancies are
     m[nrl][j]=m[nrl][j-1]+nlay;    computed from the time spent in each health state according to a
      model. More health states you consider, more time is necessary to reach the
   for (i=nrl+1; i<=nrh; i++) {    Maximum Likelihood of the parameters involved in the model.  The
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    simplest model is the multinomial logistic model where pij is the
     for (j=ncl+1; j<=nch; j++)    probability to be observed in state j at the second wave
       m[i][j]=m[i][j-1]+nlay;    conditional to be observed in state i at the first wave. Therefore
   }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   return m;    'age' is age and 'sex' is a covariate. If you want to have a more
 }    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 /*************************free ma3x ************************/    you to do it.  More covariates you add, slower the
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    convergence.
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    The advantage of this computer programme, compared to a simple
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    multinomial logistic model, is clear when the delay between waves is not
   free((FREE_ARG)(m+nrl-NR_END));    identical for each individual. Also, if a individual missed an
 }    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 /***************** f1dim *************************/  
 extern int ncom;    hPijx is the probability to be observed in state i at age x+h
 extern double *pcom,*xicom;    conditional to the observed state i at age x. The delay 'h' can be
 extern double (*nrfunc)(double []);    split into an exact number (nh*stepm) of unobserved intermediate
      states. This elementary transition (by month, quarter,
 double f1dim(double x)    semester or year) is modelled as a multinomial logistic.  The hPx
 {    matrix is simply the matrix product of nh*stepm elementary matrices
   int j;    and the contribution of each individual to the likelihood is simply
   double f;    hPijx.
   double *xt;  
      Also this programme outputs the covariance matrix of the parameters but also
   xt=vector(1,ncom);    of the life expectancies. It also computes the period (stable) prevalence. 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    
   f=(*nrfunc)(xt);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   free_vector(xt,1,ncom);             Institut national d'études démographiques, Paris.
   return f;    This software have been partly granted by Euro-REVES, a concerted action
 }    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 /*****************brent *************************/    software can be distributed freely for non commercial use. Latest version
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    can be accessed at http://euroreves.ined.fr/imach .
 {  
   int iter;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   double a,b,d,etemp;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   double fu,fv,fw,fx;    
   double ftemp;    **********************************************************************/
   double p,q,r,tol1,tol2,u,v,w,x,xm;  /*
   double e=0.0;    main
      read parameterfile
   a=(ax < cx ? ax : cx);    read datafile
   b=(ax > cx ? ax : cx);    concatwav
   x=w=v=bx;    freqsummary
   fw=fv=fx=(*f)(x);    if (mle >= 1)
   for (iter=1;iter<=ITMAX;iter++) {      mlikeli
     xm=0.5*(a+b);    print results files
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if mle==1 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/       computes hessian
     printf(".");fflush(stdout);    read end of parameter file: agemin, agemax, bage, fage, estepm
 #ifdef DEBUG        begin-prev-date,...
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    open gnuplot file
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    open html file
 #endif    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
       *xmin=x;                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       return fx;      freexexit2 possible for memory heap.
     }  
     ftemp=fu;    h Pij x                         | pij_nom  ficrestpij
     if (fabs(e) > tol1) {     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
       r=(x-w)*(fx-fv);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
       q=(x-v)*(fx-fw);         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
       if (q > 0.0) p = -p;         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
       q=fabs(q);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       etemp=e;     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       e=d;     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    forecasting if prevfcast==1 prevforecast call prevalence()
       else {    health expectancies
         d=p/q;    Variance-covariance of DFLE
         u=x+d;    prevalence()
         if (u-a < tol2 || b-u < tol2)     movingaverage()
           d=SIGN(tol1,xm-x);    varevsij() 
       }    if popbased==1 varevsij(,popbased)
     } else {    total life expectancies
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    Variance of period (stable) prevalence
     }   end
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  */
     fu=(*f)(u);  
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)   
         SHFT(fv,fw,fx,fu)  #include <math.h>
         } else {  #include <stdio.h>
           if (u < x) a=u; else b=u;  #include <stdlib.h>
           if (fu <= fw || w == x) {  #include <string.h>
             v=w;  #include <unistd.h>
             w=u;  
             fv=fw;  #include <limits.h>
             fw=fu;  #include <sys/types.h>
           } else if (fu <= fv || v == x || v == w) {  #include <sys/stat.h>
             v=u;  #include <errno.h>
             fv=fu;  extern int errno;
           }  
         }  #ifdef LINUX
   }  #include <time.h>
   nrerror("Too many iterations in brent");  #include "timeval.h"
   *xmin=x;  #else
   return fx;  #include <sys/time.h>
 }  #endif
   
 /****************** mnbrak ***********************/  #ifdef GSL
   #include <gsl/gsl_errno.h>
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #include <gsl/gsl_multimin.h>
             double (*func)(double))  #endif
 {  
   double ulim,u,r,q, dum;  /* #include <libintl.h> */
   double fu;  /* #define _(String) gettext (String) */
    
   *fa=(*func)(*ax);  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  #define GNUPLOTPROGRAM "gnuplot"
     SHFT(dum,*ax,*bx,dum)  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       SHFT(dum,*fb,*fa,dum)  #define FILENAMELENGTH 132
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   *fc=(*func)(*cx);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     q=(*bx-*cx)*(*fb-*fa);  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define NINTERVMAX 8
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     if ((*bx-u)*(u-*cx) > 0.0) {  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
       fu=(*func)(u);  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       fu=(*func)(u);  #define MAXN 20000
       if (fu < *fc) {  #define YEARM 12. /**< Number of months per year */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #define AGESUP 130
           SHFT(*fb,*fc,fu,(*func)(u))  #define AGEBASE 40
           }  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #ifdef UNIX
       u=ulim;  #define DIRSEPARATOR '/'
       fu=(*func)(u);  #define CHARSEPARATOR "/"
     } else {  #define ODIRSEPARATOR '\\'
       u=(*cx)+GOLD*(*cx-*bx);  #else
       fu=(*func)(u);  #define DIRSEPARATOR '\\'
     }  #define CHARSEPARATOR "\\"
     SHFT(*ax,*bx,*cx,u)  #define ODIRSEPARATOR '/'
       SHFT(*fa,*fb,*fc,fu)  #endif
       }  
 }  /* $Id$ */
   /* $State$ */
 /*************** linmin ************************/  
   char version[]="Imach version 0.98nV, August 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
 int ncom;  char fullversion[]="$Revision$ $Date$"; 
 double *pcom,*xicom;  char strstart[80];
 double (*nrfunc)(double []);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
    int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  int nvar=0, nforce=0; /* Number of variables, number of forces */
 {  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   double brent(double ax, double bx, double cx,  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
                double (*f)(double), double tol, double *xmin);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   double f1dim(double x);  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
               double *fc, double (*func)(double));  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   int j;  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   double xx,xmin,bx,ax;  int cptcov=0; /* Working variable */
   double fx,fb,fa;  int npar=NPARMAX;
    int nlstate=2; /* Number of live states */
   ncom=n;  int ndeath=1; /* Number of dead states */
   pcom=vector(1,n);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   xicom=vector(1,n);  int popbased=0;
   nrfunc=func;  
   for (j=1;j<=n;j++) {  int *wav; /* Number of waves for this individuual 0 is possible */
     pcom[j]=p[j];  int maxwav=0; /* Maxim number of waves */
     xicom[j]=xi[j];  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   }  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   ax=0.0;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   xx=1.0;                     to the likelihood and the sum of weights (done by funcone)*/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  int mle=1, weightopt=0;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 #ifdef DEBUG  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 #endif             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   for (j=1;j<=n;j++) {  double jmean=1; /* Mean space between 2 waves */
     xi[j] *= xmin;  double **matprod2(); /* test */
     p[j] += xi[j];  double **oldm, **newm, **savm; /* Working pointers to matrices */
   }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   free_vector(xicom,1,n);  /*FILE *fic ; */ /* Used in readdata only */
   free_vector(pcom,1,n);  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr=0; /* Global variable for printing or not */
 /*************** powell ************************/  double fretone; /* Only one call to likelihood */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  long ipmx=0; /* Number of contributions */
             double (*func)(double []))  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   void linmin(double p[], double xi[], int n, double *fret,  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
               double (*func)(double []));  FILE *ficresilk;
   int i,ibig,j;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   double del,t,*pt,*ptt,*xit;  FILE *ficresprobmorprev;
   double fp,fptt;  FILE *fichtm, *fichtmcov; /* Html File */
   double *xits;  FILE *ficreseij;
   pt=vector(1,n);  char filerese[FILENAMELENGTH];
   ptt=vector(1,n);  FILE *ficresstdeij;
   xit=vector(1,n);  char fileresstde[FILENAMELENGTH];
   xits=vector(1,n);  FILE *ficrescveij;
   *fret=(*func)(p);  char filerescve[FILENAMELENGTH];
   for (j=1;j<=n;j++) pt[j]=p[j];  FILE  *ficresvij;
   for (*iter=1;;++(*iter)) {  char fileresv[FILENAMELENGTH];
     fp=(*fret);  FILE  *ficresvpl;
     ibig=0;  char fileresvpl[FILENAMELENGTH];
     del=0.0;  char title[MAXLINE];
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     for (i=1;i<=n;i++)  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       printf(" %d %.12f",i, p[i]);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     printf("\n");  char command[FILENAMELENGTH];
     for (i=1;i<=n;i++) {  int  outcmd=0;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);  char filelog[FILENAMELENGTH]; /* Log file */
 #endif  char filerest[FILENAMELENGTH];
       printf("%d",i);fflush(stdout);  char fileregp[FILENAMELENGTH];
       linmin(p,xit,n,fret,func);  char popfile[FILENAMELENGTH];
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
         ibig=i;  
       }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 #ifdef DEBUG  struct timezone tzp;
       printf("%d %.12e",i,(*fret));  extern int gettimeofday();
       for (j=1;j<=n;j++) {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  long time_value;
         printf(" x(%d)=%.12e",j,xit[j]);  extern long time();
       }  char strcurr[80], strfor[80];
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  char *endptr;
       printf("\n");  long lval;
 #endif  double dval;
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #define NR_END 1
 #ifdef DEBUG  #define FREE_ARG char*
       int k[2],l;  #define FTOL 1.0e-10
       k[0]=1;  
       k[1]=-1;  #define NRANSI 
       printf("Max: %.12e",(*func)(p));  #define ITMAX 200 
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  #define TOL 2.0e-4 
       printf("\n");  
       for(l=0;l<=1;l++) {  #define CGOLD 0.3819660 
         for (j=1;j<=n;j++) {  #define ZEPS 1.0e-10 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  #define GOLD 1.618034 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #define GLIMIT 100.0 
       }  #define TINY 1.0e-20 
 #endif  
   static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       free_vector(xit,1,n);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       free_vector(xits,1,n);    
       free_vector(ptt,1,n);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       free_vector(pt,1,n);  #define rint(a) floor(a+0.5)
       return;  
     }  static double sqrarg;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     for (j=1;j<=n;j++) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       ptt[j]=2.0*p[j]-pt[j];  int agegomp= AGEGOMP;
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  int imx; 
     }  int stepm=1;
     fptt=(*func)(ptt);  /* Stepm, step in month: minimum step interpolation*/
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  int estepm;
       if (t < 0.0) {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  int m,nb;
           xi[j][ibig]=xi[j][n];  long *num;
           xi[j][n]=xit[j];  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
         }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 #ifdef DEBUG  double **pmmij, ***probs;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  double *ageexmed,*agecens;
         for(j=1;j<=n;j++)  double dateintmean=0;
           printf(" %.12e",xit[j]);  
         printf("\n");  double *weight;
 #endif  int **s; /* Status */
       }  double *agedc;
     }  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
   }                    * covar=matrix(0,NCOVMAX,1,n); 
 }                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
   double  idx; 
 /**** Prevalence limit ****************/  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   int *Ndum; /** Freq of modality (tricode */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  int **codtab; /**< codtab=imatrix(1,100,1,10); */
 {  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  double *lsurv, *lpop, *tpop;
      matrix by transitions matrix until convergence is reached */  
   double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   int i, ii,j,k;  double ftolhess; /**< Tolerance for computing hessian */
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  /**************** split *************************/
   double **out, cov[NCOVMAX], **pmij();  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double **newm;  {
   double agefin, delaymax=50 ; /* Max number of years to converge */    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
   for (ii=1;ii<=nlstate+ndeath;ii++)    */ 
     for (j=1;j<=nlstate+ndeath;j++){    char  *ss;                            /* pointer */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    int   l1, l2;                         /* length counters */
     }  
     l1 = strlen(path );                   /* length of path */
    cov[1]=1.;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      ss= strrchr( path, DIRSEPARATOR );            /* find last / */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      strcpy( name, path );               /* we got the fullname name because no directory */
     newm=savm;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     /* Covariates have to be included here again */        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
      cov[2]=agefin;      /* get current working directory */
        /*    extern  char* getcwd ( char *buf , int len);*/
       for (k=1; k<=cptcovn;k++) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        return( GLOCK_ERROR_GETCWD );
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/      }
       }      /* got dirc from getcwd*/
       for (k=1; k<=cptcovage;k++)      printf(" DIRC = %s \n",dirc);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    } else {                              /* strip direcotry from path */
       for (k=1; k<=cptcovprod;k++)      ss++;                               /* after this, the filename */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      strcpy( name, ss );         /* save file name */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      printf(" DIRC2 = %s \n",dirc);
     }
     savm=oldm;    /* We add a separator at the end of dirc if not exists */
     oldm=newm;    l1 = strlen( dirc );                  /* length of directory */
     maxmax=0.;    if( dirc[l1-1] != DIRSEPARATOR ){
     for(j=1;j<=nlstate;j++){      dirc[l1] =  DIRSEPARATOR;
       min=1.;      dirc[l1+1] = 0; 
       max=0.;      printf(" DIRC3 = %s \n",dirc);
       for(i=1; i<=nlstate; i++) {    }
         sumnew=0;    ss = strrchr( name, '.' );            /* find last / */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    if (ss >0){
         prlim[i][j]= newm[i][j]/(1-sumnew);      ss++;
         max=FMAX(max,prlim[i][j]);      strcpy(ext,ss);                     /* save extension */
         min=FMIN(min,prlim[i][j]);      l1= strlen( name);
       }      l2= strlen(ss)+1;
       maxmin=max-min;      strncpy( finame, name, l1-l2);
       maxmax=FMAX(maxmax,maxmin);      finame[l1-l2]= 0;
     }    }
     if(maxmax < ftolpl){  
       return prlim;    return( 0 );                          /* we're done */
     }  }
   }  
 }  
   /******************************************/
 /*************** transition probabilities ***************/  
   void replace_back_to_slash(char *s, char*t)
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  {
 {    int i;
   double s1, s2;    int lg=0;
   /*double t34;*/    i=0;
   int i,j,j1, nc, ii, jj;    lg=strlen(t);
     for(i=0; i<= lg; i++) {
     for(i=1; i<= nlstate; i++){      (s[i] = t[i]);
     for(j=1; j<i;j++){      if (t[i]== '\\') s[i]='/';
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    }
         /*s2 += param[i][j][nc]*cov[nc];*/  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  char *trimbb(char *out, char *in)
       }  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
       ps[i][j]=s2;    char *s;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    s=out;
     }    while (*in != '\0'){
     for(j=i+1; j<=nlstate+ndeath;j++){      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        in++;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      }
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      *out++ = *in++;
       }    }
       ps[i][j]=s2;    *out='\0';
     }    return s;
   }  }
     /*ps[3][2]=1;*/  
   char *cutl(char *blocc, char *alocc, char *in, char occ)
   for(i=1; i<= nlstate; i++){  {
      s1=0;    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
     for(j=1; j<i; j++)       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       s1+=exp(ps[i][j]);       gives blocc="abcdef2ghi" and alocc="j".
     for(j=i+1; j<=nlstate+ndeath; j++)       If occ is not found blocc is null and alocc is equal to in. Returns blocc
       s1+=exp(ps[i][j]);    */
     ps[i][i]=1./(s1+1.);    char *s, *t, *bl;
     for(j=1; j<i; j++)    t=in;s=in;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    while ((*in != occ) && (*in != '\0')){
     for(j=i+1; j<=nlstate+ndeath; j++)      *alocc++ = *in++;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    if( *in == occ){
   } /* end i */      *(alocc)='\0';
       s=++in;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    }
     for(jj=1; jj<= nlstate+ndeath; jj++){   
       ps[ii][jj]=0;    if (s == t) {/* occ not found */
       ps[ii][ii]=1;      *(alocc-(in-s))='\0';
     }      in=s;
   }    }
     while ( *in != '\0'){
       *blocc++ = *in++;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);    *blocc='\0';
    }    return t;
     printf("\n ");  }
     }  char *cutv(char *blocc, char *alocc, char *in, char occ)
     printf("\n ");printf("%lf ",cov[2]);*/  {
 /*    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   goto end;*/       gives blocc="abcdef2ghi" and alocc="j".
     return ps;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
 }    */
     char *s, *t;
 /**************** Product of 2 matrices ******************/    t=in;s=in;
     while (*in != '\0'){
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      while( *in == occ){
 {        *blocc++ = *in++;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        s=in;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      }
   /* in, b, out are matrice of pointers which should have been initialized      *blocc++ = *in++;
      before: only the contents of out is modified. The function returns    }
      a pointer to pointers identical to out */    if (s == t) /* occ not found */
   long i, j, k;      *(blocc-(in-s))='\0';
   for(i=nrl; i<= nrh; i++)    else
     for(k=ncolol; k<=ncoloh; k++)      *(blocc-(in-s)-1)='\0';
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    in=s;
         out[i][k] +=in[i][j]*b[j][k];    while ( *in != '\0'){
       *alocc++ = *in++;
   return out;    }
 }  
     *alocc='\0';
     return s;
 /************* Higher Matrix Product ***************/  }
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  int nbocc(char *s, char occ)
 {  {
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    int i,j=0;
      duration (i.e. until    int lg=20;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    i=0;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    lg=strlen(s);
      (typically every 2 years instead of every month which is too big).    for(i=0; i<= lg; i++) {
      Model is determined by parameters x and covariates have to be    if  (s[i] == occ ) j++;
      included manually here.    }
     return j;
      */  }
   
   int i, j, d, h, k;  /* void cutv(char *u,char *v, char*t, char occ) */
   double **out, cov[NCOVMAX];  /* { */
   double **newm;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   /* Hstepm could be zero and should return the unit matrix */  /*      gives u="abcdef2ghi" and v="j" *\/ */
   for (i=1;i<=nlstate+ndeath;i++)  /*   int i,lg,j,p=0; */
     for (j=1;j<=nlstate+ndeath;j++){  /*   i=0; */
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /*   lg=strlen(t); */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /*   for(j=0; j<=lg-1; j++) { */
     }  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*   } */
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  /*   for(j=0; j<p; j++) { */
       newm=savm;  /*     (u[j] = t[j]); */
       /* Covariates have to be included here again */  /*   } */
       cov[1]=1.;  /*      u[p]='\0'; */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*    for(j=0; j<= lg; j++) { */
       for (k=1; k<=cptcovage;k++)  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*   } */
       for (k=1; k<=cptcovprod;k++)  /* } */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /********************** nrerror ********************/
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  void nrerror(char error_text[])
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  {
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    fprintf(stderr,"ERREUR ...\n");
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    fprintf(stderr,"%s\n",error_text);
       savm=oldm;    exit(EXIT_FAILURE);
       oldm=newm;  }
     }  /*********************** vector *******************/
     for(i=1; i<=nlstate+ndeath; i++)  double *vector(int nl, int nh)
       for(j=1;j<=nlstate+ndeath;j++) {  {
         po[i][j][h]=newm[i][j];    double *v;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
          */    if (!v) nrerror("allocation failure in vector");
       }    return v-nl+NR_END;
   } /* end h */  }
   return po;  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
   {
 /*************** log-likelihood *************/    free((FREE_ARG)(v+nl-NR_END));
 double func( double *x)  }
 {  
   int i, ii, j, k, mi, d, kk;  /************************ivector *******************************/
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  int *ivector(long nl,long nh)
   double **out;  {
   double sw; /* Sum of weights */    int *v;
   double lli; /* Individual log likelihood */    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   long ipmx;    if (!v) nrerror("allocation failure in ivector");
   /*extern weight */    return v-nl+NR_END;
   /* We are differentiating ll according to initial status */  }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)  /******************free ivector **************************/
     printf(" %d\n",s[4][i]);  void free_ivector(int *v, long nl, long nh)
   */  {
   cov[1]=1.;    free((FREE_ARG)(v+nl-NR_END));
   }
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /************************lvector *******************************/
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  long *lvector(long nl,long nh)
     for(mi=1; mi<= wav[i]-1; mi++){  {
       for (ii=1;ii<=nlstate+ndeath;ii++)    long *v;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       for(d=0; d<dh[mi][i]; d++){    if (!v) nrerror("allocation failure in ivector");
         newm=savm;    return v-nl+NR_END;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  }
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /******************free lvector **************************/
         }  void free_lvector(long *v, long nl, long nh)
          {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    free((FREE_ARG)(v+nl-NR_END));
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  }
         savm=oldm;  
         oldm=newm;  /******************* imatrix *******************************/
          int **imatrix(long nrl, long nrh, long ncl, long nch) 
               /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       } /* end mult */  { 
          long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    int **m; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    
       ipmx +=1;    /* allocate pointers to rows */ 
       sw += weight[i];    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     } /* end of wave */    m += NR_END; 
   } /* end of individual */    m -= nrl; 
     
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    /* allocate rows and set pointers to them */ 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   return -l;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 }    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
     
 /*********** Maximum Likelihood Estimation ***************/    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    /* return pointer to array of pointers to rows */ 
 {    return m; 
   int i,j, iter;  } 
   double **xi,*delti;  
   double fret;  /****************** free_imatrix *************************/
   xi=matrix(1,npar,1,npar);  void free_imatrix(m,nrl,nrh,ncl,nch)
   for (i=1;i<=npar;i++)        int **m;
     for (j=1;j<=npar;j++)        long nch,ncl,nrh,nrl; 
       xi[i][j]=(i==j ? 1.0 : 0.0);       /* free an int matrix allocated by imatrix() */ 
   printf("Powell\n");  { 
   powell(p,xi,npar,ftol,&iter,&fret,func);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  } 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   /******************* matrix *******************************/
 }  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
 /**** Computes Hessian and covariance matrix ***/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    double **m;
 {  
   double  **a,**y,*x,pd;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double **hess;    if (!m) nrerror("allocation failure 1 in matrix()");
   int i, j,jk;    m += NR_END;
   int *indx;    m -= nrl;
   
   double hessii(double p[], double delta, int theta, double delti[]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double hessij(double p[], double delti[], int i, int j);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   void lubksb(double **a, int npar, int *indx, double b[]) ;    m[nrl] += NR_END;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    m[nrl] -= ncl;
   
   hess=matrix(1,npar,1,npar);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
   printf("\nCalculation of the hessian matrix. Wait...\n");    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   for (i=1;i<=npar;i++){  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
     printf("%d",i);fflush(stdout);  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     hess[i][i]=hessii(p,ftolhess,i,delti);     */
     /*printf(" %f ",p[i]);*/  }
     /*printf(" %lf ",hess[i][i]);*/  
   }  /*************************free matrix ************************/
    void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   for (i=1;i<=npar;i++) {  {
     for (j=1;j<=npar;j++)  {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       if (j>i) {    free((FREE_ARG)(m+nrl-NR_END));
         printf(".%d%d",i,j);fflush(stdout);  }
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      /******************* ma3x *******************************/
         /*printf(" %lf ",hess[i][j]);*/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       }  {
     }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   }    double ***m;
   printf("\n");  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
   a=matrix(1,npar,1,npar);    m -= nrl;
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   indx=ivector(1,npar);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for (i=1;i<=npar;i++)    m[nrl] += NR_END;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    m[nrl] -= ncl;
   ludcmp(a,npar,indx,&pd);  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     x[j]=1;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     lubksb(a,npar,indx,x);    m[nrl][ncl] += NR_END;
     for (i=1;i<=npar;i++){    m[nrl][ncl] -= nll;
       matcov[i][j]=x[i];    for (j=ncl+1; j<=nch; j++) 
     }      m[nrl][j]=m[nrl][j-1]+nlay;
   }    
     for (i=nrl+1; i<=nrh; i++) {
   printf("\n#Hessian matrix#\n");      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   for (i=1;i<=npar;i++) {      for (j=ncl+1; j<=nch; j++) 
     for (j=1;j<=npar;j++) {        m[i][j]=m[i][j-1]+nlay;
       printf("%.3e ",hess[i][j]);    }
     }    return m; 
     printf("\n");    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
   /* Recompute Inverse */  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  /*************************free ma3x ************************/
   ludcmp(a,npar,indx,&pd);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
   /*  printf("\n#Hessian matrix recomputed#\n");    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for (j=1;j<=npar;j++) {    free((FREE_ARG)(m+nrl-NR_END));
     for (i=1;i<=npar;i++) x[i]=0;  }
     x[j]=1;  
     lubksb(a,npar,indx,x);  /*************** function subdirf ***********/
     for (i=1;i<=npar;i++){  char *subdirf(char fileres[])
       y[i][j]=x[i];  {
       printf("%.3e ",y[i][j]);    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     printf("\n");    strcat(tmpout,"/"); /* Add to the right */
   }    strcat(tmpout,fileres);
   */    return tmpout;
   }
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  /*************** function subdirf2 ***********/
   free_vector(x,1,npar);  char *subdirf2(char fileres[], char *preop)
   free_ivector(indx,1,npar);  {
   free_matrix(hess,1,npar,1,npar);    
     /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 }    strcat(tmpout,"/");
     strcat(tmpout,preop);
 /*************** hessian matrix ****************/    strcat(tmpout,fileres);
 double hessii( double x[], double delta, int theta, double delti[])    return tmpout;
 {  }
   int i;  
   int l=1, lmax=20;  /*************** function subdirf3 ***********/
   double k1,k2;  char *subdirf3(char fileres[], char *preop, char *preop2)
   double p2[NPARMAX+1];  {
   double res;    
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    /* Caution optionfilefiname is hidden */
   double fx;    strcpy(tmpout,optionfilefiname);
   int k=0,kmax=10;    strcat(tmpout,"/");
   double l1;    strcat(tmpout,preop);
     strcat(tmpout,preop2);
   fx=func(x);    strcat(tmpout,fileres);
   for (i=1;i<=npar;i++) p2[i]=x[i];    return tmpout;
   for(l=0 ; l <=lmax; l++){  }
     l1=pow(10,l);  
     delts=delt;  /***************** f1dim *************************/
     for(k=1 ; k <kmax; k=k+1){  extern int ncom; 
       delt = delta*(l1*k);  extern double *pcom,*xicom;
       p2[theta]=x[theta] +delt;  extern double (*nrfunc)(double []); 
       k1=func(p2)-fx;   
       p2[theta]=x[theta]-delt;  double f1dim(double x) 
       k2=func(p2)-fx;  { 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    int j; 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double f;
          double *xt; 
 #ifdef DEBUG   
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    xt=vector(1,ncom); 
 #endif    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    f=(*nrfunc)(xt); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    free_vector(xt,1,ncom); 
         k=kmax;    return f; 
       }  } 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;  /*****************brent *************************/
       }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  { 
         delts=delt;    int iter; 
       }    double a,b,d,etemp;
     }    double fu,fv,fw,fx;
   }    double ftemp;
   delti[theta]=delts;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   return res;    double e=0.0; 
     
 }    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
 double hessij( double x[], double delti[], int thetai,int thetaj)    x=w=v=bx; 
 {    fw=fv=fx=(*f)(x); 
   int i;    for (iter=1;iter<=ITMAX;iter++) { 
   int l=1, l1, lmax=20;      xm=0.5*(a+b); 
   double k1,k2,k3,k4,res,fx;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   double p2[NPARMAX+1];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   int k;      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
   fx=func(x);  #ifdef DEBUG
   for (k=1; k<=2; k++) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for (i=1;i<=npar;i++) p2[i]=x[i];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     p2[thetai]=x[thetai]+delti[thetai]/k;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  #endif
     k1=func(p2)-fx;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
          *xmin=x; 
     p2[thetai]=x[thetai]+delti[thetai]/k;        return fx; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      } 
     k2=func(p2)-fx;      ftemp=fu;
        if (fabs(e) > tol1) { 
     p2[thetai]=x[thetai]-delti[thetai]/k;        r=(x-w)*(fx-fv); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        q=(x-v)*(fx-fw); 
     k3=func(p2)-fx;        p=(x-v)*q-(x-w)*r; 
          q=2.0*(q-r); 
     p2[thetai]=x[thetai]-delti[thetai]/k;        if (q > 0.0) p = -p; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        q=fabs(q); 
     k4=func(p2)-fx;        etemp=e; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        e=d; 
 #ifdef DEBUG        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #endif        else { 
   }          d=p/q; 
   return res;          u=x+d; 
 }          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
 /************** Inverse of matrix **************/        } 
 void ludcmp(double **a, int n, int *indx, double *d)      } else { 
 {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   int i,imax,j,k;      } 
   double big,dum,sum,temp;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   double *vv;      fu=(*f)(u); 
        if (fu <= fx) { 
   vv=vector(1,n);        if (u >= x) a=x; else b=x; 
   *d=1.0;        SHFT(v,w,x,u) 
   for (i=1;i<=n;i++) {          SHFT(fv,fw,fx,fu) 
     big=0.0;          } else { 
     for (j=1;j<=n;j++)            if (u < x) a=u; else b=u; 
       if ((temp=fabs(a[i][j])) > big) big=temp;            if (fu <= fw || w == x) { 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");              v=w; 
     vv[i]=1.0/big;              w=u; 
   }              fv=fw; 
   for (j=1;j<=n;j++) {              fw=fu; 
     for (i=1;i<j;i++) {            } else if (fu <= fv || v == x || v == w) { 
       sum=a[i][j];              v=u; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];              fv=fu; 
       a[i][j]=sum;            } 
     }          } 
     big=0.0;    } 
     for (i=j;i<=n;i++) {    nrerror("Too many iterations in brent"); 
       sum=a[i][j];    *xmin=x; 
       for (k=1;k<j;k++)    return fx; 
         sum -= a[i][k]*a[k][j];  } 
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {  /****************** mnbrak ***********************/
         big=dum;  
         imax=i;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       }              double (*func)(double)) 
     }  { 
     if (j != imax) {    double ulim,u,r,q, dum;
       for (k=1;k<=n;k++) {    double fu; 
         dum=a[imax][k];   
         a[imax][k]=a[j][k];    *fa=(*func)(*ax); 
         a[j][k]=dum;    *fb=(*func)(*bx); 
       }    if (*fb > *fa) { 
       *d = -(*d);      SHFT(dum,*ax,*bx,dum) 
       vv[imax]=vv[j];        SHFT(dum,*fb,*fa,dum) 
     }        } 
     indx[j]=imax;    *cx=(*bx)+GOLD*(*bx-*ax); 
     if (a[j][j] == 0.0) a[j][j]=TINY;    *fc=(*func)(*cx); 
     if (j != n) {    while (*fb > *fc) { 
       dum=1.0/(a[j][j]);      r=(*bx-*ax)*(*fb-*fc); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      q=(*bx-*cx)*(*fb-*fa); 
     }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   free_vector(vv,1,n);  /* Doesn't work */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 ;      if ((*bx-u)*(u-*cx) > 0.0) { 
 }        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
 void lubksb(double **a, int n, int *indx, double b[])        fu=(*func)(u); 
 {        if (fu < *fc) { 
   int i,ii=0,ip,j;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double sum;            SHFT(*fb,*fc,fu,(*func)(u)) 
              } 
   for (i=1;i<=n;i++) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     ip=indx[i];        u=ulim; 
     sum=b[ip];        fu=(*func)(u); 
     b[ip]=b[i];      } else { 
     if (ii)        u=(*cx)+GOLD*(*cx-*bx); 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        fu=(*func)(u); 
     else if (sum) ii=i;      } 
     b[i]=sum;      SHFT(*ax,*bx,*cx,u) 
   }        SHFT(*fa,*fb,*fc,fu) 
   for (i=n;i>=1;i--) {        } 
     sum=b[i];  } 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  /*************** linmin ************************/
   }  
 }  int ncom; 
   double *pcom,*xicom;
 /************ Frequencies ********************/  double (*nrfunc)(double []); 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)   
 {  /* Some frequencies */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
    { 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    double brent(double ax, double bx, double cx, 
   double ***freq; /* Frequencies */                 double (*f)(double), double tol, double *xmin); 
   double *pp;    double f1dim(double x); 
   double pos, k2, dateintsum=0,k2cpt=0;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   FILE *ficresp;                double *fc, double (*func)(double)); 
   char fileresp[FILENAMELENGTH];    int j; 
     double xx,xmin,bx,ax; 
   pp=vector(1,nlstate);    double fx,fb,fa;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);   
   strcpy(fileresp,"p");    ncom=n; 
   strcat(fileresp,fileres);    pcom=vector(1,n); 
   if((ficresp=fopen(fileresp,"w"))==NULL) {    xicom=vector(1,n); 
     printf("Problem with prevalence resultfile: %s\n", fileresp);    nrfunc=func; 
     exit(0);    for (j=1;j<=n;j++) { 
   }      pcom[j]=p[j]; 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      xicom[j]=xi[j]; 
   j1=0;    } 
     ax=0.0; 
   j=cptcoveff;    xx=1.0; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   for(k1=1; k1<=j;k1++){  #ifdef DEBUG
    for(i1=1; i1<=ncodemax[k1];i1++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
        j1++;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  #endif
          scanf("%d", i);*/    for (j=1;j<=n;j++) { 
         for (i=-1; i<=nlstate+ndeath; i++)        xi[j] *= xmin; 
          for (jk=-1; jk<=nlstate+ndeath; jk++)        p[j] += xi[j]; 
            for(m=agemin; m <= agemax+3; m++)    } 
              freq[i][jk][m]=0;    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
         dateintsum=0;  } 
         k2cpt=0;  
        for (i=1; i<=imx; i++) {  char *asc_diff_time(long time_sec, char ascdiff[])
          bool=1;  {
          if  (cptcovn>0) {    long sec_left, days, hours, minutes;
            for (z1=1; z1<=cptcoveff; z1++)    days = (time_sec) / (60*60*24);
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    sec_left = (time_sec) % (60*60*24);
                bool=0;    hours = (sec_left) / (60*60) ;
          }    sec_left = (sec_left) %(60*60);
          if (bool==1) {    minutes = (sec_left) /60;
            for(m=firstpass; m<=lastpass; m++){    sec_left = (sec_left) % (60);
              k2=anint[m][i]+(mint[m][i]/12.);    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
              if ((k2>=dateprev1) && (k2<=dateprev2)) {    return ascdiff;
                if(agev[m][i]==0) agev[m][i]=agemax+1;  }
                if(agev[m][i]==1) agev[m][i]=agemax+2;  
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /*************** powell ************************/
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {              double (*func)(double [])) 
                  dateintsum=dateintsum+k2;  { 
                  k2cpt++;    void linmin(double p[], double xi[], int n, double *fret, 
                }                double (*func)(double [])); 
     int i,ibig,j; 
              }    double del,t,*pt,*ptt,*xit;
            }    double fp,fptt;
          }    double *xits;
        }    int niterf, itmp;
         if  (cptcovn>0) {  
          fprintf(ficresp, "\n#********** Variable ");    pt=vector(1,n); 
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    ptt=vector(1,n); 
        fprintf(ficresp, "**********\n#");    xit=vector(1,n); 
         }    xits=vector(1,n); 
        for(i=1; i<=nlstate;i++)    *fret=(*func)(p); 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    for (j=1;j<=n;j++) pt[j]=p[j]; 
        fprintf(ficresp, "\n");    for (*iter=1;;++(*iter)) { 
              fp=(*fret); 
   for(i=(int)agemin; i <= (int)agemax+3; i++){      ibig=0; 
     if(i==(int)agemax+3)      del=0.0; 
       printf("Total");      last_time=curr_time;
     else      (void) gettimeofday(&curr_time,&tzp);
       printf("Age %d", i);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     for(jk=1; jk <=nlstate ; jk++){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
         pp[jk] += freq[jk][m][i];     for (i=1;i<=n;i++) {
     }        printf(" %d %.12f",i, p[i]);
     for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog," %d %.12lf",i, p[i]);
       for(m=-1, pos=0; m <=0 ; m++)        fprintf(ficrespow," %.12lf", p[i]);
         pos += freq[jk][m][i];      }
       if(pp[jk]>=1.e-10)      printf("\n");
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      fprintf(ficlog,"\n");
       else      fprintf(ficrespow,"\n");fflush(ficrespow);
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      if(*iter <=3){
     }        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
      for(jk=1; jk <=nlstate ; jk++){  /*       asctime_r(&tm,strcurr); */
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        forecast_time=curr_time; 
         pp[jk] += freq[jk][m][i];        itmp = strlen(strcurr);
      }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
     for(jk=1,pos=0; jk <=nlstate ; jk++)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       pos += pp[jk];        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for(jk=1; jk <=nlstate ; jk++){        for(niterf=10;niterf<=30;niterf+=10){
       if(pos>=1.e-5)          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          tmf = *localtime(&forecast_time.tv_sec);
       else  /*      asctime_r(&tmf,strfor); */
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          strcpy(strfor,asctime(&tmf));
       if( i <= (int) agemax){          itmp = strlen(strfor);
         if(pos>=1.e-5){          if(strfor[itmp-1]=='\n')
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          strfor[itmp-1]='\0';
           probs[i][jk][j1]= pp[jk]/pos;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }        }
       else      }
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      for (i=1;i<=n;i++) { 
       }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     }        fptt=(*fret); 
     for(jk=-1; jk <=nlstate+ndeath; jk++)  #ifdef DEBUG
       for(m=-1; m <=nlstate+ndeath; m++)        printf("fret=%lf \n",*fret);
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        fprintf(ficlog,"fret=%lf \n",*fret);
     if(i <= (int) agemax)  #endif
       fprintf(ficresp,"\n");        printf("%d",i);fflush(stdout);
     printf("\n");        fprintf(ficlog,"%d",i);fflush(ficlog);
     }        linmin(p,xit,n,fret,func); 
     }        if (fabs(fptt-(*fret)) > del) { 
  }          del=fabs(fptt-(*fret)); 
   dateintmean=dateintsum/k2cpt;          ibig=i; 
          } 
   fclose(ficresp);  #ifdef DEBUG
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        printf("%d %.12e",i,(*fret));
   free_vector(pp,1,nlstate);        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
   /* End of Freq */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 }          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 /************ Prevalence ********************/        }
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        for(j=1;j<=n;j++) {
 {  /* Some frequencies */          printf(" p=%.12e",p[j]);
            fprintf(ficlog," p=%.12e",p[j]);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        }
   double ***freq; /* Frequencies */        printf("\n");
   double *pp;        fprintf(ficlog,"\n");
   double pos, k2;  #endif
       } 
   pp=vector(1,nlstate);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  #ifdef DEBUG
          int k[2],l;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        k[0]=1;
   j1=0;        k[1]=-1;
          printf("Max: %.12e",(*func)(p));
   j=cptcoveff;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for (j=1;j<=n;j++) {
            printf(" %.12e",p[j]);
  for(k1=1; k1<=j;k1++){          fprintf(ficlog," %.12e",p[j]);
     for(i1=1; i1<=ncodemax[k1];i1++){        }
       j1++;        printf("\n");
          fprintf(ficlog,"\n");
       for (i=-1; i<=nlstate+ndeath; i++)          for(l=0;l<=1;l++) {
         for (jk=-1; jk<=nlstate+ndeath; jk++)            for (j=1;j<=n;j++) {
           for(m=agemin; m <= agemax+3; m++)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             freq[i][jk][m]=0;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for (i=1; i<=imx; i++) {          }
         bool=1;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         if  (cptcovn>0) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           for (z1=1; z1<=cptcoveff; z1++)        }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  #endif
               bool=0;  
         }  
         if (bool==1) {        free_vector(xit,1,n); 
           for(m=firstpass; m<=lastpass; m++){        free_vector(xits,1,n); 
             k2=anint[m][i]+(mint[m][i]/12.);        free_vector(ptt,1,n); 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        free_vector(pt,1,n); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        return; 
               if(agev[m][i]==1) agev[m][i]=agemax+2;      } 
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];        for (j=1;j<=n;j++) { 
             }        ptt[j]=2.0*p[j]-pt[j]; 
           }        xit[j]=p[j]-pt[j]; 
         }        pt[j]=p[j]; 
       }      } 
            fptt=(*func)(ptt); 
         for(i=(int)agemin; i <= (int)agemax+3; i++){      if (fptt < fp) { 
           for(jk=1; jk <=nlstate ; jk++){        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        if (t < 0.0) { 
               pp[jk] += freq[jk][m][i];          linmin(p,xit,n,fret,func); 
           }          for (j=1;j<=n;j++) { 
           for(jk=1; jk <=nlstate ; jk++){            xi[j][ibig]=xi[j][n]; 
             for(m=-1, pos=0; m <=0 ; m++)            xi[j][n]=xit[j]; 
             pos += freq[jk][m][i];          }
         }  #ifdef DEBUG
                  printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
          for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          for(j=1;j<=n;j++){
              pp[jk] += freq[jk][m][i];            printf(" %.12e",xit[j]);
          }            fprintf(ficlog," %.12e",xit[j]);
                    }
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          printf("\n");
           fprintf(ficlog,"\n");
          for(jk=1; jk <=nlstate ; jk++){            #endif
            if( i <= (int) agemax){        }
              if(pos>=1.e-5){      } 
                probs[i][jk][j1]= pp[jk]/pos;    } 
              }  } 
            }  
          }  /**** Prevalence limit (stable or period prevalence)  ****************/
            
         }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     }  {
   }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         matrix by transitions matrix until convergence is reached */
    
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    int i, ii,j,k;
   free_vector(pp,1,nlstate);    double min, max, maxmin, maxmax,sumnew=0.;
      /* double **matprod2(); */ /* test */
 }  /* End of Freq */    double **out, cov[NCOVMAX+1], **pmij();
     double **newm;
 /************* Waves Concatenation ***************/    double agefin, delaymax=50 ; /* Max number of years to converge */
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    for (ii=1;ii<=nlstate+ndeath;ii++)
 {      for (j=1;j<=nlstate+ndeath;j++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      Death is a valid wave (if date is known).      }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]     cov[1]=1.;
      and mw[mi+1][i]. dh depends on stepm.   
      */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   int i, mi, m;      newm=savm;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      /* Covariates have to be included here again */
      double sum=0., jmean=0.;*/      cov[2]=agefin;
       
   int j, k=0,jk, ju, jl;      for (k=1; k<=cptcovn;k++) {
   double sum=0.;        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   jmin=1e+5;        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
   jmax=-1;      }
   jmean=0.;      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   for(i=1; i<=imx; i++){      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
     mi=0;      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
     m=firstpass;      
     while(s[m][i] <= nlstate){      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       if(s[m][i]>=1)      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         mw[++mi][i]=m;      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       if(m >=lastpass)      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         break;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
       else      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
         m++;      
     }/* end while */      savm=oldm;
     if (s[m][i] > nlstate){      oldm=newm;
       mi++;     /* Death is another wave */      maxmax=0.;
       /* if(mi==0)  never been interviewed correctly before death */      for(j=1;j<=nlstate;j++){
          /* Only death is a correct wave */        min=1.;
       mw[mi][i]=m;        max=0.;
     }        for(i=1; i<=nlstate; i++) {
           sumnew=0;
     wav[i]=mi;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     if(mi==0)          prlim[i][j]= newm[i][j]/(1-sumnew);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
   }          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
   for(i=1; i<=imx; i++){        }
     for(mi=1; mi<wav[i];mi++){        maxmin=max-min;
       if (stepm <=0)        maxmax=FMAX(maxmax,maxmin);
         dh[mi][i]=1;      }
       else{      if(maxmax < ftolpl){
         if (s[mw[mi+1][i]][i] > nlstate) {        return prlim;
           if (agedc[i] < 2*AGESUP) {      }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    }
           if(j==0) j=1;  /* Survives at least one month after exam */  }
           k=k+1;  
           if (j >= jmax) jmax=j;  /*************** transition probabilities ***************/ 
           if (j <= jmin) jmin=j;  
           sum=sum+j;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
           /* if (j<10) printf("j=%d num=%d ",j,i); */  {
           }    /* According to parameters values stored in x and the covariate's values stored in cov,
         }       computes the probability to be observed in state j being in state i by appying the
         else{       model to the ncovmodel covariates (including constant and age).
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
           k=k+1;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
           if (j >= jmax) jmax=j;       ncth covariate in the global vector x is given by the formula:
           else if (j <= jmin)jmin=j;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
           sum=sum+j;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
         }       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         jk= j/stepm;       Outputs ps[i][j] the probability to be observed in j being in j according to
         jl= j -jk*stepm;       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         ju= j -(jk+1)*stepm;    */
         if(jl <= -ju)    double s1, lnpijopii;
           dh[mi][i]=jk;    /*double t34;*/
         else    int i,j,j1, nc, ii, jj;
           dh[mi][i]=jk+1;  
         if(dh[mi][i]==0)      for(i=1; i<= nlstate; i++){
           dh[mi][i]=1; /* At least one step */        for(j=1; j<i;j++){
       }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     }            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   }            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   jmean=sum/k;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          }
  }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 /*********** Tricode ****************************/  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 void tricode(int *Tvar, int **nbcode, int imx)        }
 {        for(j=i+1; j<=nlstate+ndeath;j++){
   int Ndum[20],ij=1, k, j, i;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   int cptcode=0;            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   cptcoveff=0;            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
    /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   for (k=0; k<19; k++) Ndum[k]=0;          }
   for (k=1; k<=7; k++) ncodemax[k]=0;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      }
     for (i=1; i<=imx; i++) {      
       ij=(int)(covar[Tvar[j]][i]);      for(i=1; i<= nlstate; i++){
       Ndum[ij]++;        s1=0;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        for(j=1; j<i; j++){
       if (ij > cptcode) cptcode=ij;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }
     for (i=0; i<=cptcode; i++) {        for(j=i+1; j<=nlstate+ndeath; j++){
       if(Ndum[i]!=0) ncodemax[j]++;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     }          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     ij=1;        }
         /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         ps[i][i]=1./(s1+1.);
     for (i=1; i<=ncodemax[j]; i++) {        /* Computing other pijs */
       for (k=0; k<=19; k++) {        for(j=1; j<i; j++)
         if (Ndum[k] != 0) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
           nbcode[Tvar[j]][ij]=k;        for(j=i+1; j<=nlstate+ndeath; j++)
           ij++;          ps[i][j]= exp(ps[i][j])*ps[i][i];
         }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         if (ij > ncodemax[j]) break;      } /* end i */
       }        
     }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   }          for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
  for (k=0; k<19; k++) Ndum[k]=0;          ps[ii][ii]=1;
         }
  for (i=1; i<=ncovmodel-2; i++) {      }
       ij=Tvar[i];      
       Ndum[ij]++;      
     }      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
       /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
  ij=1;      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
  for (i=1; i<=10; i++) {      /*   } */
    if((Ndum[i]!=0) && (i<=ncov)){      /*   printf("\n "); */
      Tvaraff[ij]=i;      /* } */
      ij++;      /* printf("\n ");printf("%lf ",cov[2]);*/
    }      /*
  }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
          goto end;*/
     cptcoveff=ij-1;      return ps;
 }  }
   
 /*********** Health Expectancies ****************/  /**************** Product of 2 matrices ******************/
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
 {  {
   /* Health expectancies */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   int i, j, nhstepm, hstepm, h;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   double age, agelim,hf;    /* in, b, out are matrice of pointers which should have been initialized 
   double ***p3mat;       before: only the contents of out is modified. The function returns
         a pointer to pointers identical to out */
   fprintf(ficreseij,"# Health expectancies\n");    int i, j, k;
   fprintf(ficreseij,"# Age");    for(i=nrl; i<= nrh; i++)
   for(i=1; i<=nlstate;i++)      for(k=ncolol; k<=ncoloh; k++){
     for(j=1; j<=nlstate;j++)        out[i][k]=0.;
       fprintf(ficreseij," %1d-%1d",i,j);        for(j=ncl; j<=nch; j++)
   fprintf(ficreseij,"\n");          out[i][k] +=in[i][j]*b[j][k];
       }
   hstepm=1*YEARM; /*  Every j years of age (in month) */    return out;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  }
   
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /************* Higher Matrix Product ***************/
     /* nhstepm age range expressed in number of stepm */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     /* Typically if 20 years = 20*12/6=40 stepm */  {
     if (stepm >= YEARM) hstepm=1;    /* Computes the transition matrix starting at age 'age' over 
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */       'nhstepm*hstepm*stepm' months (i.e. until
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored       nhstepm*hstepm matrices. 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);         (typically every 2 years instead of every month which is too big 
        for the memory).
        Model is determined by parameters x and covariates have to be 
     for(i=1; i<=nlstate;i++)       included manually here. 
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){       */
           eij[i][j][(int)age] +=p3mat[i][j][h];  
         }    int i, j, d, h, k;
        double **out, cov[NCOVMAX+1];
     hf=1;    double **newm;
     if (stepm >= YEARM) hf=stepm/YEARM;  
     fprintf(ficreseij,"%.0f",age );    /* Hstepm could be zero and should return the unit matrix */
     for(i=1; i<=nlstate;i++)    for (i=1;i<=nlstate+ndeath;i++)
       for(j=1; j<=nlstate;j++){      for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);        oldm[i][j]=(i==j ? 1.0 : 0.0);
       }        po[i][j][0]=(i==j ? 1.0 : 0.0);
     fprintf(ficreseij,"\n");      }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(h=1; h <=nhstepm; h++){
 }      for(d=1; d <=hstepm; d++){
         newm=savm;
 /************ Variance ******************/        /* Covariates have to be included here again */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        cov[1]=1.;
 {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   /* Variance of health expectancies */        for (k=1; k<=cptcovn;k++) 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double **newm;        for (k=1; k<=cptcovage;k++)
   double **dnewm,**doldm;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   int i, j, nhstepm, hstepm, h;        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   int k, cptcode;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double *xp;  
   double **gp, **gm;  
   double ***gradg, ***trgradg;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   double ***p3mat;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   double age,agelim;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   int theta;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
    fprintf(ficresvij,"# Covariances of life expectancies\n");        oldm=newm;
   fprintf(ficresvij,"# Age");      }
   for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate+ndeath; i++)
     for(j=1; j<=nlstate;j++)        for(j=1;j<=nlstate+ndeath;j++) {
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          po[i][j][h]=newm[i][j];
   fprintf(ficresvij,"\n");          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }
   xp=vector(1,npar);      /*printf("h=%d ",h);*/
   dnewm=matrix(1,nlstate,1,npar);    } /* end h */
   doldm=matrix(1,nlstate,1,nlstate);  /*     printf("\n H=%d \n",h); */
      return po;
   hstepm=1*YEARM; /* Every year of age */  }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /*************** log-likelihood *************/
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  double func( double *x)
     if (stepm >= YEARM) hstepm=1;  {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    int i, ii, j, k, mi, d, kk;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    double **out;
     gp=matrix(0,nhstepm,1,nlstate);    double sw; /* Sum of weights */
     gm=matrix(0,nhstepm,1,nlstate);    double lli; /* Individual log likelihood */
     int s1, s2;
     for(theta=1; theta <=npar; theta++){    double bbh, survp;
       for(i=1; i<=npar; i++){ /* Computes gradient */    long ipmx;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /*extern weight */
       }    /* We are differentiating ll according to initial status */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
       if (popbased==1) {    */
         for(i=1; i<=nlstate;i++)    cov[1]=1.;
           prlim[i][i]=probs[(int)age][i][ij];  
       }    for(k=1; k<=nlstate; k++) ll[k]=0.;
        
       for(j=1; j<= nlstate; j++){    if(mle==1){
         for(h=0; h<=nhstepm; h++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        /* Computes the values of the ncovmodel covariates of the model
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
         }           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
       }           to be observed in j being in i according to the model.
             */
       for(i=1; i<=npar; i++) /* Computes gradient */        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          cov[2+k]=covar[Tvar[k]][i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
            is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
       if (popbased==1) {           has been calculated etc */
         for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
           prlim[i][i]=probs[(int)age][i][ij];          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(h=0; h<=nhstepm; h++){            }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          for(d=0; d<dh[mi][i]; d++){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
       for(j=1; j<= nlstate; j++)            }
         for(h=0; h<=nhstepm; h++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
     } /* End theta */            oldm=newm;
           } /* end mult */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     for(h=0; h<=nhstepm; h++)          /* But now since version 0.9 we anticipate for bias at large stepm.
       for(j=1; j<=nlstate;j++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         for(theta=1; theta <=npar; theta++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
           trgradg[h][j][theta]=gradg[h][theta][j];           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for(i=1;i<=nlstate;i++)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       for(j=1;j<=nlstate;j++)           * probability in order to take into account the bias as a fraction of the way
         vareij[i][j][(int)age] =0.;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     for(h=0;h<=nhstepm;h++){           * -stepm/2 to stepm/2 .
       for(k=0;k<=nhstepm;k++){           * For stepm=1 the results are the same as for previous versions of Imach.
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);           * For stepm > 1 the results are less biased than in previous versions. 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);           */
         for(i=1;i<=nlstate;i++)          s1=s[mw[mi][i]][i];
           for(j=1;j<=nlstate;j++)          s2=s[mw[mi+1][i]][i];
             vareij[i][j][(int)age] += doldm[i][j];          bbh=(double)bh[mi][i]/(double)stepm; 
       }          /* bias bh is positive if real duration
     }           * is higher than the multiple of stepm and negative otherwise.
     h=1;           */
     if (stepm >= YEARM) h=stepm/YEARM;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     fprintf(ficresvij,"%.0f ",age );          if( s2 > nlstate){ 
     for(i=1; i<=nlstate;i++)            /* i.e. if s2 is a death state and if the date of death is known 
       for(j=1; j<=nlstate;j++){               then the contribution to the likelihood is the probability to 
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);               die between last step unit time and current  step unit time, 
       }               which is also equal to probability to die before dh 
     fprintf(ficresvij,"\n");               minus probability to die before dh-stepm . 
     free_matrix(gp,0,nhstepm,1,nlstate);               In version up to 0.92 likelihood was computed
     free_matrix(gm,0,nhstepm,1,nlstate);          as if date of death was unknown. Death was treated as any other
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          health state: the date of the interview describes the actual state
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          and not the date of a change in health state. The former idea was
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          to consider that at each interview the state was recorded
   } /* End age */          (healthy, disable or death) and IMaCh was corrected; but when we
            introduced the exact date of death then we should have modified
   free_vector(xp,1,npar);          the contribution of an exact death to the likelihood. This new
   free_matrix(doldm,1,nlstate,1,npar);          contribution is smaller and very dependent of the step unit
   free_matrix(dnewm,1,nlstate,1,nlstate);          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
 }          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
 /************ Variance of prevlim ******************/          Jackson for correcting this bug.  Former versions increased
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          mortality artificially. The bad side is that we add another loop
 {          which slows down the processing. The difference can be up to 10%
   /* Variance of prevalence limit */          lower mortality.
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            */
   double **newm;            lli=log(out[s1][s2] - savm[s1][s2]);
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;  
   int k, cptcode;          } else if  (s2==-2) {
   double *xp;            for (j=1,survp=0. ; j<=nlstate; j++) 
   double *gp, *gm;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double **gradg, **trgradg;            /*survp += out[s1][j]; */
   double age,agelim;            lli= log(survp);
   int theta;          }
              
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          else if  (s2==-4) { 
   fprintf(ficresvpl,"# Age");            for (j=3,survp=0. ; j<=nlstate; j++)  
   for(i=1; i<=nlstate;i++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       fprintf(ficresvpl," %1d-%1d",i,i);            lli= log(survp); 
   fprintf(ficresvpl,"\n");          } 
   
   xp=vector(1,npar);          else if  (s2==-5) { 
   dnewm=matrix(1,nlstate,1,npar);            for (j=1,survp=0. ; j<=2; j++)  
   doldm=matrix(1,nlstate,1,nlstate);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              lli= log(survp); 
   hstepm=1*YEARM; /* Every year of age */          } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          
   agelim = AGESUP;          else{
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     if (stepm >= YEARM) hstepm=1;          } 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     gradg=matrix(1,npar,1,nlstate);          /*if(lli ==000.0)*/
     gp=vector(1,nlstate);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     gm=vector(1,nlstate);          ipmx +=1;
           sw += weight[i];
     for(theta=1; theta <=npar; theta++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=1; i<=npar; i++){ /* Computes gradient */        } /* end of wave */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } /* end of individual */
       }    }  else if(mle==2){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=1;i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         gp[i] = prlim[i][i];        for(mi=1; mi<= wav[i]-1; mi++){
              for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1; i<=npar; i++) /* Computes gradient */            for (j=1;j<=nlstate+ndeath;j++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1;i<=nlstate;i++)            }
         gm[i] = prlim[i][i];          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
       for(i=1;i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            for (kk=1; kk<=cptcovage;kk++) {
     } /* End theta */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     trgradg =matrix(1,nlstate,1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(j=1; j<=nlstate;j++)            savm=oldm;
       for(theta=1; theta <=npar; theta++)            oldm=newm;
         trgradg[j][theta]=gradg[theta][j];          } /* end mult */
         
     for(i=1;i<=nlstate;i++)          s1=s[mw[mi][i]][i];
       varpl[i][(int)age] =0.;          s2=s[mw[mi+1][i]][i];
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          bbh=(double)bh[mi][i]/(double)stepm; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(i=1;i<=nlstate;i++)          ipmx +=1;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficresvpl,"%.0f ",age );        } /* end of wave */
     for(i=1; i<=nlstate;i++)      } /* end of individual */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    }  else if(mle==3){  /* exponential inter-extrapolation */
     fprintf(ficresvpl,"\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_vector(gp,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     free_vector(gm,1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
     free_matrix(gradg,1,npar,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
     free_matrix(trgradg,1,nlstate,1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   } /* End age */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(xp,1,npar);            }
   free_matrix(doldm,1,nlstate,1,npar);          for(d=0; d<dh[mi][i]; d++){
   free_matrix(dnewm,1,nlstate,1,nlstate);            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************ Variance of one-step probabilities  ******************/            }
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i, j;            savm=oldm;
   int k=0, cptcode;            oldm=newm;
   double **dnewm,**doldm;          } /* end mult */
   double *xp;        
   double *gp, *gm;          s1=s[mw[mi][i]][i];
   double **gradg, **trgradg;          s2=s[mw[mi+1][i]][i];
   double age,agelim, cov[NCOVMAX];          bbh=(double)bh[mi][i]/(double)stepm; 
   int theta;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   char fileresprob[FILENAMELENGTH];          ipmx +=1;
           sw += weight[i];
   strcpy(fileresprob,"prob");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   strcat(fileresprob,fileres);        } /* end of wave */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      } /* end of individual */
     printf("Problem with resultfile: %s\n", fileresprob);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   xp=vector(1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   cov[1]=1;          for(d=0; d<dh[mi][i]; d++){
   for (age=bage; age<=fage; age ++){            newm=savm;
     cov[2]=age;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     gradg=matrix(1,npar,1,9);            for (kk=1; kk<=cptcovage;kk++) {
     trgradg=matrix(1,9,1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            }
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          
                out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(theta=1; theta <=npar; theta++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1; i<=npar; i++)            savm=oldm;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            oldm=newm;
                } /* end mult */
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        
              s1=s[mw[mi][i]][i];
       k=0;          s2=s[mw[mi+1][i]][i];
       for(i=1; i<= (nlstate+ndeath); i++){          if( s2 > nlstate){ 
         for(j=1; j<=(nlstate+ndeath);j++){            lli=log(out[s1][s2] - savm[s1][s2]);
            k=k+1;          }else{
           gp[k]=pmmij[i][j];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          }
       }          ipmx +=1;
           sw += weight[i];
       for(i=1; i<=npar; i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
            } /* end of wave */
       } /* end of individual */
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       k=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=1; i<=(nlstate+ndeath); i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(j=1; j<=(nlstate+ndeath);j++){        for(mi=1; mi<= wav[i]-1; mi++){
           k=k+1;          for (ii=1;ii<=nlstate+ndeath;ii++)
           gm[k]=pmmij[i][j];            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                  }
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          for(d=0; d<dh[mi][i]; d++){
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(theta=1; theta <=npar; theta++)            }
       trgradg[j][theta]=gradg[theta][j];          
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            savm=oldm;
             oldm=newm;
      pmij(pmmij,cov,ncovmodel,x,nlstate);          } /* end mult */
         
      k=0;          s1=s[mw[mi][i]][i];
      for(i=1; i<=(nlstate+ndeath); i++){          s2=s[mw[mi+1][i]][i];
        for(j=1; j<=(nlstate+ndeath);j++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
          k=k+1;          ipmx +=1;
          gm[k]=pmmij[i][j];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
              } /* end of wave */
      /*printf("\n%d ",(int)age);      } /* end of individual */
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    } /* End of if */
            for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      }*/    return -l;
   }
   fprintf(ficresprob,"\n%d ",(int)age);  
   /*************** log-likelihood *************/
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  double funcone( double *x)
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  {
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    /* Same as likeli but slower because of a lot of printf and if */
   }    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    double **out;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    double lli; /* Individual log likelihood */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double llt;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int s1, s2;
 }    double bbh, survp;
  free_vector(xp,1,npar);    /*extern weight */
 fclose(ficresprob);    /* We are differentiating ll according to initial status */
  exit(0);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 }    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
 /***********************************************/    */
 /**************** Main Program *****************/    cov[1]=1.;
 /***********************************************/  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
 int main(int argc, char *argv[])  
 {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      for(mi=1; mi<= wav[i]-1; mi++){
   double agedeb, agefin,hf;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double agemin=1.e20, agemax=-1.e20;          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double fret;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **xi,tmp,delta;          }
         for(d=0; d<dh[mi][i]; d++){
   double dum; /* Dummy variable */          newm=savm;
   double ***p3mat;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int *indx;          for (kk=1; kk<=cptcovage;kk++) {
   char line[MAXLINE], linepar[MAXLINE];            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   char title[MAXLINE];          }
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];;          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
           /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   char filerest[FILENAMELENGTH];          savm=oldm;
   char fileregp[FILENAMELENGTH];          oldm=newm;
   char popfile[FILENAMELENGTH];        } /* end mult */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        
   int firstobs=1, lastobs=10;        s1=s[mw[mi][i]][i];
   int sdeb, sfin; /* Status at beginning and end */        s2=s[mw[mi+1][i]][i];
   int c,  h , cpt,l;        bbh=(double)bh[mi][i]/(double)stepm; 
   int ju,jl, mi;        /* bias is positive if real duration
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;         * is higher than the multiple of stepm and negative otherwise.
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;         */
   int mobilav=0,popforecast=0;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   int hstepm, nhstepm;          lli=log(out[s1][s2] - savm[s1][s2]);
   int *popage;/*boolprev=0 if date and zero if wave*/        } else if  (s2==-2) {
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;          for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double bage, fage, age, agelim, agebase;          lli= log(survp);
   double ftolpl=FTOL;        }else if (mle==1){
   double **prlim;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double *severity;        } else if(mle==2){
   double ***param; /* Matrix of parameters */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double  *p;        } else if(mle==3){  /* exponential inter-extrapolation */
   double **matcov; /* Matrix of covariance */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double ***delti3; /* Scale */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double *delti; /* Scale */          lli=log(out[s1][s2]); /* Original formula */
   double ***eij, ***vareij;        } else{  /* mle=0 back to 1 */
   double **varpl; /* Variances of prevalence limits by age */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double *epj, vepp;          /*lli=log(out[s1][s2]); */ /* Original formula */
   double kk1, kk2;        } /* End of if */
   double *popeffectif,*popcount;        ipmx +=1;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;        sw += weight[i];
   double yp,yp1,yp2;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   char version[80]="Imach version 0.7, February 2002, INED-EUROREVES ";        if(globpr){
   char *alph[]={"a","a","b","c","d","e"}, str[4];          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   char z[1]="c", occ;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 #include <sys/time.h>          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 #include <time.h>            llt +=ll[k]*gipmx/gsw;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
            }
   /* long total_usecs;          fprintf(ficresilk," %10.6f\n", -llt);
   struct timeval start_time, end_time;        }
        } /* end of wave */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   printf("\n%s",version);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   if(argc <=1){    if(globpr==0){ /* First time we count the contributions and weights */
     printf("\nEnter the parameter file name: ");      gipmx=ipmx;
     scanf("%s",pathtot);      gsw=sw;
   }    }
   else{    return -l;
     strcpy(pathtot,argv[1]);  }
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);  /*************** function likelione ***********/
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   /* cutv(path,optionfile,pathtot,'\\');*/  {
     /* This routine should help understanding what is done with 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);       the selection of individuals/waves and
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);       to check the exact contribution to the likelihood.
   chdir(path);       Plotting could be done.
   replace(pathc,path);     */
     int k;
 /*-------- arguments in the command line --------*/  
     if(*globpri !=0){ /* Just counts and sums, no printings */
   strcpy(fileres,"r");      strcpy(fileresilk,"ilk"); 
   strcat(fileres, optionfilefiname);      strcat(fileresilk,fileres);
   strcat(fileres,".txt");    /* Other files have txt extension */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
   /*---------arguments file --------*/        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     printf("Problem with optionfile %s\n",optionfile);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     goto end;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   }      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   strcpy(filereso,"o");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   strcat(filereso,fileres);    }
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    *fretone=(*funcone)(p);
   }    if(*globpri !=0){
       fclose(ficresilk);
   /* Reads comments: lines beginning with '#' */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   while((c=getc(ficpar))=='#' && c!= EOF){      fflush(fichtm); 
     ungetc(c,ficpar);    } 
     fgets(line, MAXLINE, ficpar);    return;
     puts(line);  }
     fputs(line,ficparo);  
   }  
   ungetc(c,ficpar);  /*********** Maximum Likelihood Estimation ***************/
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  {
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    int i,j, iter;
 while((c=getc(ficpar))=='#' && c!= EOF){    double **xi;
     ungetc(c,ficpar);    double fret;
     fgets(line, MAXLINE, ficpar);    double fretone; /* Only one call to likelihood */
     puts(line);    /*  char filerespow[FILENAMELENGTH];*/
     fputs(line,ficparo);    xi=matrix(1,npar,1,npar);
   }    for (i=1;i<=npar;i++)
   ungetc(c,ficpar);      for (j=1;j<=npar;j++)
          xi[i][j]=(i==j ? 1.0 : 0.0);
        printf("Powell\n");  fprintf(ficlog,"Powell\n");
   covar=matrix(0,NCOVMAX,1,n);    strcpy(filerespow,"pow"); 
   cptcovn=0;    strcat(filerespow,fileres);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
   ncovmodel=2+cptcovn;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    }
      fprintf(ficrespow,"# Powell\n# iter -2*LL");
   /* Read guess parameters */    for (i=1;i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */      for(j=1;j<=nlstate+ndeath;j++)
   while((c=getc(ficpar))=='#' && c!= EOF){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     ungetc(c,ficpar);    fprintf(ficrespow,"\n");
     fgets(line, MAXLINE, ficpar);  
     puts(line);    powell(p,xi,npar,ftol,&iter,&fret,func);
     fputs(line,ficparo);  
   }    free_matrix(xi,1,npar,1,npar);
   ungetc(c,ficpar);    fclose(ficrespow);
      printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for(i=1; i <=nlstate; i++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);  }
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);  /**** Computes Hessian and covariance matrix ***/
       for(k=1; k<=ncovmodel;k++){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         fscanf(ficpar," %lf",&param[i][j][k]);  {
         printf(" %lf",param[i][j][k]);    double  **a,**y,*x,pd;
         fprintf(ficparo," %lf",param[i][j][k]);    double **hess;
       }    int i, j,jk;
       fscanf(ficpar,"\n");    int *indx;
       printf("\n");  
       fprintf(ficparo,"\n");    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      void lubksb(double **a, int npar, int *indx, double b[]) ;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
   p=param[1][1];    hess=matrix(1,npar,1,npar);
    
   /* Reads comments: lines beginning with '#' */    printf("\nCalculation of the hessian matrix. Wait...\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     ungetc(c,ficpar);    for (i=1;i<=npar;i++){
     fgets(line, MAXLINE, ficpar);      printf("%d",i);fflush(stdout);
     puts(line);      fprintf(ficlog,"%d",i);fflush(ficlog);
     fputs(line,ficparo);     
   }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   ungetc(c,ficpar);      
       /*  printf(" %f ",p[i]);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    }
   for(i=1; i <=nlstate; i++){    
     for(j=1; j <=nlstate+ndeath-1; j++){    for (i=1;i<=npar;i++) {
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for (j=1;j<=npar;j++)  {
       printf("%1d%1d",i,j);        if (j>i) { 
       fprintf(ficparo,"%1d%1d",i1,j1);          printf(".%d%d",i,j);fflush(stdout);
       for(k=1; k<=ncovmodel;k++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         fscanf(ficpar,"%le",&delti3[i][j][k]);          hess[i][j]=hessij(p,delti,i,j,func,npar);
         printf(" %le",delti3[i][j][k]);          
         fprintf(ficparo," %le",delti3[i][j][k]);          hess[j][i]=hess[i][j];    
       }          /*printf(" %lf ",hess[i][j]);*/
       fscanf(ficpar,"\n");        }
       printf("\n");      }
       fprintf(ficparo,"\n");    }
     }    printf("\n");
   }    fprintf(ficlog,"\n");
   delti=delti3[1][1];  
      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   /* Reads comments: lines beginning with '#' */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    a=matrix(1,npar,1,npar);
     fgets(line, MAXLINE, ficpar);    y=matrix(1,npar,1,npar);
     puts(line);    x=vector(1,npar);
     fputs(line,ficparo);    indx=ivector(1,npar);
   }    for (i=1;i<=npar;i++)
   ungetc(c,ficpar);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
      ludcmp(a,npar,indx,&pd);
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){    for (j=1;j<=npar;j++) {
     fscanf(ficpar,"%s",&str);      for (i=1;i<=npar;i++) x[i]=0;
     printf("%s",str);      x[j]=1;
     fprintf(ficparo,"%s",str);      lubksb(a,npar,indx,x);
     for(j=1; j <=i; j++){      for (i=1;i<=npar;i++){ 
       fscanf(ficpar," %le",&matcov[i][j]);        matcov[i][j]=x[i];
       printf(" %.5le",matcov[i][j]);      }
       fprintf(ficparo," %.5le",matcov[i][j]);    }
     }  
     fscanf(ficpar,"\n");    printf("\n#Hessian matrix#\n");
     printf("\n");    fprintf(ficlog,"\n#Hessian matrix#\n");
     fprintf(ficparo,"\n");    for (i=1;i<=npar;i++) { 
   }      for (j=1;j<=npar;j++) { 
   for(i=1; i <=npar; i++)        printf("%.3e ",hess[i][j]);
     for(j=i+1;j<=npar;j++)        fprintf(ficlog,"%.3e ",hess[i][j]);
       matcov[i][j]=matcov[j][i];      }
          printf("\n");
   printf("\n");      fprintf(ficlog,"\n");
     }
   
     /*-------- data file ----------*/    /* Recompute Inverse */
     if((ficres =fopen(fileres,"w"))==NULL) {    for (i=1;i<=npar;i++)
       printf("Problem with resultfile: %s\n", fileres);goto end;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     }    ludcmp(a,npar,indx,&pd);
     fprintf(ficres,"#%s\n",version);  
        /*  printf("\n#Hessian matrix recomputed#\n");
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;    for (j=1;j<=npar;j++) {
     }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
     n= lastobs;      lubksb(a,npar,indx,x);
     severity = vector(1,maxwav);      for (i=1;i<=npar;i++){ 
     outcome=imatrix(1,maxwav+1,1,n);        y[i][j]=x[i];
     num=ivector(1,n);        printf("%.3e ",y[i][j]);
     moisnais=vector(1,n);        fprintf(ficlog,"%.3e ",y[i][j]);
     annais=vector(1,n);      }
     moisdc=vector(1,n);      printf("\n");
     andc=vector(1,n);      fprintf(ficlog,"\n");
     agedc=vector(1,n);    }
     cod=ivector(1,n);    */
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    free_matrix(a,1,npar,1,npar);
     mint=matrix(1,maxwav,1,n);    free_matrix(y,1,npar,1,npar);
     anint=matrix(1,maxwav,1,n);    free_vector(x,1,npar);
     s=imatrix(1,maxwav+1,1,n);    free_ivector(indx,1,npar);
     adl=imatrix(1,maxwav+1,1,n);        free_matrix(hess,1,npar,1,npar);
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);  
   }
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {  /*************** hessian matrix ****************/
       if ((i >= firstobs) && (i <=lastobs)) {  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
          {
         for (j=maxwav;j>=1;j--){    int i;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    int l=1, lmax=20;
           strcpy(line,stra);    double k1,k2;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double p2[MAXPARM+1]; /* identical to x */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double res;
         }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
            double fx;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    int k=0,kmax=10;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    double l1;
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    fx=func(x);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      l1=pow(10,l);
         for (j=ncov;j>=1;j--){      delts=delt;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(k=1 ; k <kmax; k=k+1){
         }        delt = delta*(l1*k);
         num[i]=atol(stra);        p2[theta]=x[theta] +delt;
                k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        p2[theta]=x[theta]-delt;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
         i=i+1;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       }        
     }  #ifdef DEBUGHESS
     /* printf("ii=%d", ij);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
        scanf("%d",i);*/        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   imx=i-1; /* Number of individuals */  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   /* for (i=1; i<=imx; i++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          k=kmax;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     }          k=kmax; l=lmax*10.;
         }
     for (i=1; i<=imx; i++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/          delts=delt;
         }
   /* Calculation of the number of parameter from char model*/      }
   Tvar=ivector(1,15);    }
   Tprod=ivector(1,15);    delti[theta]=delts;
   Tvaraff=ivector(1,15);    return res; 
   Tvard=imatrix(1,15,1,2);    
   Tage=ivector(1,15);        }
      
   if (strlen(model) >1){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     j=0, j1=0, k1=1, k2=1;  {
     j=nbocc(model,'+');    int i;
     j1=nbocc(model,'*');    int l=1, l1, lmax=20;
     cptcovn=j+1;    double k1,k2,k3,k4,res,fx;
     cptcovprod=j1;    double p2[MAXPARM+1];
        int k;
      
     strcpy(modelsav,model);    fx=func(x);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    for (k=1; k<=2; k++) {
       printf("Error. Non available option model=%s ",model);      for (i=1;i<=npar;i++) p2[i]=x[i];
       goto end;      p2[thetai]=x[thetai]+delti[thetai]/k;
     }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
          k1=func(p2)-fx;
     for(i=(j+1); i>=1;i--){    
       cutv(stra,strb,modelsav,'+');      p2[thetai]=x[thetai]+delti[thetai]/k;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      k2=func(p2)-fx;
       /*scanf("%d",i);*/    
       if (strchr(strb,'*')) {      p2[thetai]=x[thetai]-delti[thetai]/k;
         cutv(strd,strc,strb,'*');      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         if (strcmp(strc,"age")==0) {      k3=func(p2)-fx;
           cptcovprod--;    
           cutv(strb,stre,strd,'V');      p2[thetai]=x[thetai]-delti[thetai]/k;
           Tvar[i]=atoi(stre);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           cptcovage++;      k4=func(p2)-fx;
             Tage[cptcovage]=i;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
             /*printf("stre=%s ", stre);*/  #ifdef DEBUG
         }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         else if (strcmp(strd,"age")==0) {      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           cptcovprod--;  #endif
           cutv(strb,stre,strc,'V');    }
           Tvar[i]=atoi(stre);    return res;
           cptcovage++;  }
           Tage[cptcovage]=i;  
         }  /************** Inverse of matrix **************/
         else {  void ludcmp(double **a, int n, int *indx, double *d) 
           cutv(strb,stre,strc,'V');  { 
           Tvar[i]=ncov+k1;    int i,imax,j,k; 
           cutv(strb,strc,strd,'V');    double big,dum,sum,temp; 
           Tprod[k1]=i;    double *vv; 
           Tvard[k1][1]=atoi(strc);   
           Tvard[k1][2]=atoi(stre);    vv=vector(1,n); 
           Tvar[cptcovn+k2]=Tvard[k1][1];    *d=1.0; 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    for (i=1;i<=n;i++) { 
           for (k=1; k<=lastobs;k++)      big=0.0; 
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      for (j=1;j<=n;j++) 
           k1++;        if ((temp=fabs(a[i][j])) > big) big=temp; 
           k2=k2+2;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         }      vv[i]=1.0/big; 
       }    } 
       else {    for (j=1;j<=n;j++) { 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      for (i=1;i<j;i++) { 
        /*  scanf("%d",i);*/        sum=a[i][j]; 
       cutv(strd,strc,strb,'V');        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       Tvar[i]=atoi(strc);        a[i][j]=sum; 
       }      } 
       strcpy(modelsav,stra);        big=0.0; 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      for (i=j;i<=n;i++) { 
         scanf("%d",i);*/        sum=a[i][j]; 
     }        for (k=1;k<j;k++) 
 }          sum -= a[i][k]*a[k][j]; 
          a[i][j]=sum; 
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   printf("cptcovprod=%d ", cptcovprod);          big=dum; 
   scanf("%d ",i);*/          imax=i; 
     fclose(fic);        } 
       } 
     /*  if(mle==1){*/      if (j != imax) { 
     if (weightopt != 1) { /* Maximisation without weights*/        for (k=1;k<=n;k++) { 
       for(i=1;i<=n;i++) weight[i]=1.0;          dum=a[imax][k]; 
     }          a[imax][k]=a[j][k]; 
     /*-calculation of age at interview from date of interview and age at death -*/          a[j][k]=dum; 
     agev=matrix(1,maxwav,1,imx);        } 
         *d = -(*d); 
    for (i=1; i<=imx; i++)        vv[imax]=vv[j]; 
      for(m=2; (m<= maxwav); m++)      } 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      indx[j]=imax; 
          anint[m][i]=9999;      if (a[j][j] == 0.0) a[j][j]=TINY; 
          s[m][i]=-1;      if (j != n) { 
        }        dum=1.0/(a[j][j]); 
            for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     for (i=1; i<=imx; i++)  {      } 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    } 
       for(m=1; (m<= maxwav); m++){    free_vector(vv,1,n);  /* Doesn't work */
         if(s[m][i] >0){  ;
           if (s[m][i] == nlstate+1) {  } 
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)  void lubksb(double **a, int n, int *indx, double b[]) 
               agev[m][i]=agedc[i];  { 
             else {    int i,ii=0,ip,j; 
               if (andc[i]!=9999){    double sum; 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);   
               agev[m][i]=-1;    for (i=1;i<=n;i++) { 
               }      ip=indx[i]; 
             }      sum=b[ip]; 
           }      b[ip]=b[i]; 
           else if(s[m][i] !=9){ /* Should no more exist */      if (ii) 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
             if(mint[m][i]==99 || anint[m][i]==9999)      else if (sum) ii=i; 
               agev[m][i]=1;      b[i]=sum; 
             else if(agev[m][i] <agemin){    } 
               agemin=agev[m][i];    for (i=n;i>=1;i--) { 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      sum=b[i]; 
             }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
             else if(agev[m][i] >agemax){      b[i]=sum/a[i][i]; 
               agemax=agev[m][i];    } 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  } 
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/  void pstamp(FILE *fichier)
             /*   agev[m][i] = age[i]+2*m;*/  {
           }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           else { /* =9 */  }
             agev[m][i]=1;  
             s[m][i]=-1;  /************ Frequencies ********************/
           }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         }  {  /* Some frequencies */
         else /*= 0 Unknown */    
           agev[m][i]=1;    int i, m, jk, k1,i1, j1, bool, z1,j;
       }    int first;
        double ***freq; /* Frequencies */
     }    double *pp, **prop;
     for (i=1; i<=imx; i++)  {    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       for(m=1; (m<= maxwav); m++){    char fileresp[FILENAMELENGTH];
         if (s[m][i] > (nlstate+ndeath)) {    
           printf("Error: Wrong value in nlstate or ndeath\n");      pp=vector(1,nlstate);
           goto end;    prop=matrix(1,nlstate,iagemin,iagemax+3);
         }    strcpy(fileresp,"p");
       }    strcat(fileresp,fileres);
     }    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
     free_vector(severity,1,maxwav);    }
     free_imatrix(outcome,1,maxwav+1,1,n);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     free_vector(moisnais,1,n);    j1=0;
     free_vector(annais,1,n);    
     /* free_matrix(mint,1,maxwav,1,n);    j=cptcoveff;
        free_matrix(anint,1,maxwav,1,n);*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);    first=1;
   
        /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
     wav=ivector(1,imx);    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    /*    j1++;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  */
        for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
     /* Concatenates waves */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
           for (jk=-5; jk<=nlstate+ndeath; jk++)  
       Tcode=ivector(1,100);            for(m=iagemin; m <= iagemax+3; m++)
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);              freq[i][jk][m]=0;
       ncodemax[1]=1;        
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        for (i=1; i<=nlstate; i++)  
                for(m=iagemin; m <= iagemax+3; m++)
    codtab=imatrix(1,100,1,10);            prop[i][m]=0;
    h=0;        
    m=pow(2,cptcoveff);        dateintsum=0;
          k2cpt=0;
    for(k=1;k<=cptcoveff; k++){        for (i=1; i<=imx; i++) {
      for(i=1; i <=(m/pow(2,k));i++){          bool=1;
        for(j=1; j <= ncodemax[k]; j++){          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            for (z1=1; z1<=cptcoveff; z1++)       
            h++;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
            if (h>m) h=1;codtab[h][k]=j;                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
          }                bool=0;
        }                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
      }                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
    }                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
                 /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
               } 
    /*for(i=1; i <=m ;i++){          }
      for(k=1; k <=cptcovn; k++){   
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);          if (bool==1){
      }            for(m=firstpass; m<=lastpass; m++){
      printf("\n");              k2=anint[m][i]+(mint[m][i]/12.);
    }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
    scanf("%d",i);*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                    if(agev[m][i]==1) agev[m][i]=iagemax+2;
    /* Calculates basic frequencies. Computes observed prevalence at single age                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
        and prints on file fileres'p'. */                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                      freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                    }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  dateintsum=dateintsum+k2;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  k2cpt++;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                }
                      /*}*/
     /* For Powell, parameters are in a vector p[] starting at p[1]            }
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        } /* end i */
          
     if(mle==1){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        pstamp(ficresp);
     }        if  (cptcovn>0) {
              fprintf(ficresp, "\n#********** Variable "); 
     /*--------- results files --------------*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);          fprintf(ficresp, "**********\n#");
            fprintf(ficlog, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    jk=1;          fprintf(ficlog, "**********\n#");
    fprintf(ficres,"# Parameters\n");        }
    printf("# Parameters\n");        for(i=1; i<=nlstate;i++) 
    for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
      for(k=1; k <=(nlstate+ndeath); k++){        fprintf(ficresp, "\n");
        if (k != i)        
          {        for(i=iagemin; i <= iagemax+3; i++){
            printf("%d%d ",i,k);          if(i==iagemax+3){
            fprintf(ficres,"%1d%1d ",i,k);            fprintf(ficlog,"Total");
            for(j=1; j <=ncovmodel; j++){          }else{
              printf("%f ",p[jk]);            if(first==1){
              fprintf(ficres,"%f ",p[jk]);              first=0;
              jk++;              printf("See log file for details...\n");
            }            }
            printf("\n");            fprintf(ficlog,"Age %d", i);
            fprintf(ficres,"\n");          }
          }          for(jk=1; jk <=nlstate ; jk++){
      }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
    }              pp[jk] += freq[jk][m][i]; 
  if(mle==1){          }
     /* Computing hessian and covariance matrix */          for(jk=1; jk <=nlstate ; jk++){
     ftolhess=ftol; /* Usually correct */            for(m=-1, pos=0; m <=0 ; m++)
     hesscov(matcov, p, npar, delti, ftolhess, func);              pos += freq[jk][m][i];
  }            if(pp[jk]>=1.e-10){
     fprintf(ficres,"# Scales\n");              if(first==1){
     printf("# Scales\n");                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
      for(i=1,jk=1; i <=nlstate; i++){              }
       for(j=1; j <=nlstate+ndeath; j++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         if (j!=i) {            }else{
           fprintf(ficres,"%1d%1d",i,j);              if(first==1)
           printf("%1d%1d",i,j);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           for(k=1; k<=ncovmodel;k++){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             printf(" %.5e",delti[jk]);            }
             fprintf(ficres," %.5e",delti[jk]);          }
             jk++;  
           }          for(jk=1; jk <=nlstate ; jk++){
           printf("\n");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           fprintf(ficres,"\n");              pp[jk] += freq[jk][m][i];
         }          }       
       }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
      }            pos += pp[jk];
                posprop += prop[jk][i];
     k=1;          }
     fprintf(ficres,"# Covariance\n");          for(jk=1; jk <=nlstate ; jk++){
     printf("# Covariance\n");            if(pos>=1.e-5){
     for(i=1;i<=npar;i++){              if(first==1)
       /*  if (k>nlstate) k=1;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       i1=(i-1)/(ncovmodel*nlstate)+1;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            }else{
       printf("%s%d%d",alph[k],i1,tab[i]);*/              if(first==1)
       fprintf(ficres,"%3d",i);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       printf("%3d",i);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for(j=1; j<=i;j++){            }
         fprintf(ficres," %.5e",matcov[i][j]);            if( i <= iagemax){
         printf(" %.5e",matcov[i][j]);              if(pos>=1.e-5){
       }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       fprintf(ficres,"\n");                /*probs[i][jk][j1]= pp[jk]/pos;*/
       printf("\n");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       k++;              }
     }              else
                    fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     while((c=getc(ficpar))=='#' && c!= EOF){            }
       ungetc(c,ficpar);          }
       fgets(line, MAXLINE, ficpar);          
       puts(line);          for(jk=-1; jk <=nlstate+ndeath; jk++)
       fputs(line,ficparo);            for(m=-1; m <=nlstate+ndeath; m++)
     }              if(freq[jk][m][i] !=0 ) {
     ungetc(c,ficpar);              if(first==1)
                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                  }
     if (fage <= 2) {          if(i <= iagemax)
       bage = agemin;            fprintf(ficresp,"\n");
       fage = agemax;          if(first==1)
     }            printf("Others in log...\n");
              fprintf(ficlog,"\n");
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        /*}*/
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    }
      dateintmean=dateintsum/k2cpt; 
     while((c=getc(ficpar))=='#' && c!= EOF){   
     ungetc(c,ficpar);    fclose(ficresp);
     fgets(line, MAXLINE, ficpar);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     puts(line);    free_vector(pp,1,nlstate);
     fputs(line,ficparo);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   }    /* End of Freq */
   ungetc(c,ficpar);  }
    
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);  /************ Prevalence ********************/
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  {  
          /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   while((c=getc(ficpar))=='#' && c!= EOF){       in each health status at the date of interview (if between dateprev1 and dateprev2).
     ungetc(c,ficpar);       We still use firstpass and lastpass as another selection.
     fgets(line, MAXLINE, ficpar);    */
     puts(line);   
     fputs(line,ficparo);    int i, m, jk, k1, i1, j1, bool, z1,j;
   }    double ***freq; /* Frequencies */
   ungetc(c,ficpar);    double *pp, **prop;
      double pos,posprop; 
     double  y2; /* in fractional years */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    int iagemin, iagemax;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    int first; /** to stop verbosity which is redirected to log file */
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);    iagemin= (int) agemin;
    fprintf(ficparo,"pop_based=%d\n",popbased);      iagemax= (int) agemax;
    fprintf(ficres,"pop_based=%d\n",popbased);      /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
   while((c=getc(ficpar))=='#' && c!= EOF){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     ungetc(c,ficpar);    j1=0;
     fgets(line, MAXLINE, ficpar);    
     puts(line);    /*j=cptcoveff;*/
     fputs(line,ficparo);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   }    
   ungetc(c,ficpar);    first=1;
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);      /*for(i1=1; i1<=ncodemax[k1];i1++){
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);        j1++;*/
         
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
                prop[i][m]=0.0;
     /*------------ gnuplot -------------*/       
     /*chdir(pathcd);*/        for (i=1; i<=imx; i++) { /* Each individual */
     strcpy(optionfilegnuplot,optionfilefiname);          bool=1;
     strcat(optionfilegnuplot,".plt");          if  (cptcovn>0) {
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            for (z1=1; z1<=cptcoveff; z1++) 
       printf("Problem with file %s",optionfilegnuplot);goto end;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     }                bool=0;
 #ifdef windows          } 
     fprintf(ficgp,"cd \"%s\" \n",pathc);          if (bool==1) { 
 #endif            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 m=pow(2,cptcoveff);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
  /* 1eme*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   for (cpt=1; cpt<= nlstate ; cpt ++) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
    for (k1=1; k1<= m ; k1 ++) {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
 #ifdef windows                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 #endif                  prop[s[m][i]][iagemax+3] += weight[i]; 
 #ifdef unix                } 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);              }
 #endif            } /* end selection of waves */
           }
 for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(i=iagemin; i <= iagemax+3; i++){  
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 }            posprop += prop[jk][i]; 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          } 
     for (i=1; i<= nlstate ; i ++) {          
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for(jk=1; jk <=nlstate ; jk++){     
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if( i <=  iagemax){ 
 }              if(posprop>=1.e-5){ 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                probs[i][jk][j1]= prop[jk][i]/posprop;
      for (i=1; i<= nlstate ; i ++) {              } else{
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                if(first==1){
   else fprintf(ficgp," \%%*lf (\%%*lf)");                  first=0;
 }                    printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                }
 #ifdef unix              }
 fprintf(ficgp,"\nset ter gif small size 400,300");            } 
 #endif          }/* end jk */ 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        }/* end i */ 
    }      /*} *//* end i1 */
   }    } /* end j1 */
   /*2 eme*/    
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   for (k1=1; k1<= m ; k1 ++) {    /*free_vector(pp,1,nlstate);*/
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      }  /* End of prevalence */
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;  /************* Waves Concatenation ***************/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  {
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 }         Death is a valid wave (if date is known).
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);       and mw[mi+1][i]. dh depends on stepm.
       for (j=1; j<= nlstate+1 ; j ++) {       */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");    int i, mi, m;
 }      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       fprintf(ficgp,"\" t\"\" w l 0,");       double sum=0., jmean=0.;*/
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    int first;
       for (j=1; j<= nlstate+1 ; j ++) {    int j, k=0,jk, ju, jl;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double sum=0.;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    first=0;
 }      jmin=1e+5;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    jmax=-1;
       else fprintf(ficgp,"\" t\"\" w l 0,");    jmean=0.;
     }    for(i=1; i<=imx; i++){
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      mi=0;
   }      m=firstpass;
        while(s[m][i] <= nlstate){
   /*3eme*/        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
   for (k1=1; k1<= m ; k1 ++) {        if(m >=lastpass)
     for (cpt=1; cpt<= nlstate ; cpt ++) {          break;
       k=2+nlstate*(cpt-1);        else
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);          m++;
       for (i=1; i< nlstate ; i ++) {      }/* end while */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);      if (s[m][i] > nlstate){
       }        mi++;     /* Death is another wave */
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        /* if(mi==0)  never been interviewed correctly before death */
     }           /* Only death is a correct wave */
   }        mw[mi][i]=m;
        }
   /* CV preval stat */  
   for (k1=1; k1<= m ; k1 ++) {      wav[i]=mi;
     for (cpt=1; cpt<nlstate ; cpt ++) {      if(mi==0){
       k=3;        nbwarn++;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);        if(first==0){
       for (i=1; i< nlstate ; i ++)          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         fprintf(ficgp,"+$%d",k+i+1);          first=1;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        }
              if(first==1){
       l=3+(nlstate+ndeath)*cpt;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        }
       for (i=1; i< nlstate ; i ++) {      } /* end mi==0 */
         l=3+(nlstate+ndeath)*cpt;    } /* End individuals */
         fprintf(ficgp,"+$%d",l+i+1);  
       }    for(i=1; i<=imx; i++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        for(mi=1; mi<wav[i];mi++){
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        if (stepm <=0)
     }          dh[mi][i]=1;
   }          else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   /* proba elementaires */            if (agedc[i] < 2*AGESUP) {
    for(i=1,jk=1; i <=nlstate; i++){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     for(k=1; k <=(nlstate+ndeath); k++){              if(j==0) j=1;  /* Survives at least one month after exam */
       if (k != i) {              else if(j<0){
         for(j=1; j <=ncovmodel; j++){                nberr++;
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           /*fprintf(ficgp,"%s",alph[1]);*/                j=1; /* Temporary Dangerous patch */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           jk++;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficgp,"\n");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         }              }
       }              k=k+1;
     }              if (j >= jmax){
     }                jmax=j;
                 ijmax=i;
   for(jk=1; jk <=m; jk++) {              }
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);              if (j <= jmin){
    i=1;                jmin=j;
    for(k2=1; k2<=nlstate; k2++) {                ijmin=i;
      k3=i;              }
      for(k=1; k<=(nlstate+ndeath); k++) {              sum=sum+j;
        if (k != k2){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 ij=1;            }
         for(j=3; j <=ncovmodel; j++) {          }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          else{
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             ij++;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
           }  
           else            k=k+1;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            if (j >= jmax) {
         }              jmax=j;
           fprintf(ficgp,")/(1");              ijmax=i;
                    }
         for(k1=1; k1 <=nlstate; k1++){              else if (j <= jmin){
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              jmin=j;
 ij=1;              ijmin=i;
           for(j=3; j <=ncovmodel; j++){            }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             ij++;            if(j<0){
           }              nberr++;
           else              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }            }
           fprintf(ficgp,")");            sum=sum+j;
         }          }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);          jk= j/stepm;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          jl= j -jk*stepm;
         i=i+ncovmodel;          ju= j -(jk+1)*stepm;
        }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
      }            if(jl==0){
    }              dh[mi][i]=jk;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);              bh[mi][i]=0;
   }            }else{ /* We want a negative bias in order to only have interpolation ie
                        * to avoid the price of an extra matrix product in likelihood */
   fclose(ficgp);              dh[mi][i]=jk+1;
   /* end gnuplot */              bh[mi][i]=ju;
                }
 chdir(path);          }else{
                if(jl <= -ju){
     free_ivector(wav,1,imx);              dh[mi][i]=jk;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);              bh[mi][i]=jl;       /* bias is positive if real duration
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                                     * is higher than the multiple of stepm and negative otherwise.
     free_ivector(num,1,n);                                   */
     free_vector(agedc,1,n);            }
     /*free_matrix(covar,1,NCOVMAX,1,n);*/            else{
     fclose(ficparo);              dh[mi][i]=jk+1;
     fclose(ficres);              bh[mi][i]=ju;
     /*  }*/            }
                if(dh[mi][i]==0){
    /*________fin mle=1_________*/              dh[mi][i]=1; /* At least one step */
                  bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
              }
     /* No more information from the sample is required now */          } /* end if mle */
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){      } /* end wave */
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    jmean=sum/k;
     puts(line);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fputs(line,ficparo);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   }   }
   ungetc(c,ficpar);  
    /*********** Tricode ****************************/
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);  {
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
 /*--------- index.htm --------*/    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
     /* Boring subroutine which should only output nbcode[Tvar[j]][k]
   strcpy(optionfilehtm,optionfile);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   strcat(optionfilehtm,".htm");    /* nbcode[Tvar[j]][1]= 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    */
     printf("Problem with %s \n",optionfilehtm);goto end;  
   }    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     int modmaxcovj=0; /* Modality max of covariates j */
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">    int cptcode=0; /* Modality max of covariates j */
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>    int modmincovj=0; /* Modality min of covariates j */
 Total number of observations=%d <br>  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>  
 <hr  size=\"2\" color=\"#EC5E5E\">    cptcoveff=0; 
 <li>Outputs files<br><br>\n   
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    for (k=-1; k < maxncov; k++) Ndum[k]=0;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>  
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    /* Loop on covariates without age and products */
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>                                 modality of this covariate Vj*/ 
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>                                      * If product of Vn*Vm, still boolean *:
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
         /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
  fprintf(fichtm," <li>Graphs</li><p>");                                        modality of the nth covariate of individual i. */
         if (ij > modmaxcovj)
  m=cptcoveff;          modmaxcovj=ij; 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        else if (ij < modmincovj) 
           modmincovj=ij; 
  j1=0;        if ((ij < -1) && (ij > NCOVMAX)){
  for(k1=1; k1<=m;k1++){          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
    for(i1=1; i1<=ncodemax[k1];i1++){          exit(1);
        j1++;        }else
        if (cptcovn > 0) {        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
          for (cpt=1; cpt<=cptcoveff;cpt++)        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);        /* getting the maximum value of the modality of the covariate
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
        }           female is 1, then modmaxcovj=1.*/
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
        for(cpt=1; cpt<nlstate;cpt++){      cptcode=modmaxcovj;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);     /*for (i=0; i<=cptcode; i++) {*/
        }      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
     for(cpt=1; cpt<=nlstate;cpt++) {        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
 interval) in state (%d): v%s%d%d.gif <br>          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          }
      }        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
      for(cpt=1; cpt<=nlstate;cpt++) {           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      } /* Ndum[-1] number of undefined modalities */
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);  
      }      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
 health expectancies in states (1) and (2): e%s%d.gif<br>      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);         modmincovj=3; modmaxcovj = 7;
 fprintf(fichtm,"\n</body>");         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
    }         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
  }         variables V1_1 and V1_2.
 fclose(fichtm);         nbcode[Tvar[j]][ij]=k;
          nbcode[Tvar[j]][1]=0;
   /*--------------- Prevalence limit --------------*/         nbcode[Tvar[j]][2]=1;
           nbcode[Tvar[j]][3]=2;
   strcpy(filerespl,"pl");      */
   strcat(filerespl,fileres);      ij=1; /* ij is similar to i but can jumps over null modalities */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
   }          /*recode from 0 */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   fprintf(ficrespl,"#Prevalence limit\n");            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   fprintf(ficrespl,"#Age ");                                       k is a modality. If we have model=V1+V1*sex 
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   fprintf(ficrespl,"\n");            ij++;
            }
   prlim=matrix(1,nlstate,1,nlstate);          if (ij > ncodemax[j]) break; 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }  /* end of loop on */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      } /* end of loop on modality */ 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
   k=0;    
   agebase=agemin;    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
   agelim=agemax;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   ftolpl=1.e-10;     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   i1=cptcoveff;     Ndum[ij]++; 
   if (cptcovn < 1){i1=1;}   } 
   
   for(cptcov=1;cptcov<=i1;cptcov++){   ij=1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
         k=k+1;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/     if((Ndum[i]!=0) && (i<=ncovcol)){
         fprintf(ficrespl,"\n#******");       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
         for(j=1;j<=cptcoveff;j++)       Tvaraff[ij]=i; /*For printing (unclear) */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       ij++;
         fprintf(ficrespl,"******\n");     }else
                 Tvaraff[ij]=0;
         for (age=agebase; age<=agelim; age++){   }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   ij--;
           fprintf(ficrespl,"%.0f",age );   cptcoveff=ij; /*Number of total covariates*/
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);  }
           fprintf(ficrespl,"\n");  
         }  
       }  /*********** Health Expectancies ****************/
     }  
   fclose(ficrespl);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   /*------------- h Pij x at various ages ------------*/  {
      /* Health expectancies, no variances */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    int nhstepma, nstepma; /* Decreasing with age */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    double age, agelim, hf;
   }    double ***p3mat;
   printf("Computing pij: result on file '%s' \n", filerespij);    double eip;
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;    pstamp(ficreseij);
   /*if (stepm<=24) stepsize=2;*/    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
   agelim=AGESUP;    for(i=1; i<=nlstate;i++){
   hstepm=stepsize*YEARM; /* Every year of age */      for(j=1; j<=nlstate;j++){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        fprintf(ficreseij," e%1d%1d ",i,j);
        }
   k=0;      fprintf(ficreseij," e%1d. ",i);
   for(cptcov=1;cptcov<=i1;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficreseij,"\n");
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");    
         for(j=1;j<=cptcoveff;j++)    if(estepm < stepm){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficrespij,"******\n");    }
            else  hstepm=estepm;   
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    /* We compute the life expectancy from trapezoids spaced every estepm months
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     * This is mainly to measure the difference between two models: for example
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */     * if stepm=24 months pijx are given only every 2 years and by summing them
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * we are calculating an estimate of the Life Expectancy assuming a linear 
           oldm=oldms;savm=savms;     * progression in between and thus overestimating or underestimating according
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * to the curvature of the survival function. If, for the same date, we 
           fprintf(ficrespij,"# Age");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           for(i=1; i<=nlstate;i++)     * to compare the new estimate of Life expectancy with the same linear 
             for(j=1; j<=nlstate+ndeath;j++)     * hypothesis. A more precise result, taking into account a more precise
               fprintf(ficrespij," %1d-%1d",i,j);     * curvature will be obtained if estepm is as small as stepm. */
           fprintf(ficrespij,"\n");  
           for (h=0; h<=nhstepm; h++){    /* For example we decided to compute the life expectancy with the smallest unit */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             for(i=1; i<=nlstate;i++)       nhstepm is the number of hstepm from age to agelim 
               for(j=1; j<=nlstate+ndeath;j++)       nstepm is the number of stepm from age to agelin. 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);       Look at hpijx to understand the reason of that which relies in memory size
             fprintf(ficrespij,"\n");       and note for a fixed period like estepm months */
           }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       survival function given by stepm (the optimization length). Unfortunately it
           fprintf(ficrespij,"\n");       means that if the survival funtion is printed only each two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     }       results. So we changed our mind and took the option of the best precision.
   }    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/  
     agelim=AGESUP;
   fclose(ficrespij);    /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
   if(stepm == 1) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   /*---------- Forecasting ------------------*/      
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   /*printf("calage= %f", calagedate);*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      /* if (stepm >= YEARM) hstepm=1;*/
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
   strcpy(fileresf,"f");    for (age=bage; age<=fage; age ++){ 
   strcat(fileresf,fileres);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   if((ficresf=fopen(fileresf,"w"))==NULL) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;      /* if (stepm >= YEARM) hstepm=1;*/
   }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
       /* If stepm=6 months */
   free_matrix(mint,1,maxwav,1,n);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   free_matrix(anint,1,maxwav,1,n);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   free_matrix(agev,1,maxwav,1,imx);      
   /* Mobile average */      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
   if (mobilav==1) {      printf("%d|",(int)age);fflush(stdout);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)      
       for (i=1; i<=nlstate;i++)      /* Computing expectancies */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      for(i=1; i<=nlstate;i++)
           mobaverage[(int)agedeb][i][cptcod]=0.;        for(j=1; j<=nlstate;j++)
              for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     for (agedeb=bage+4; agedeb<=fage; agedeb++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       for (i=1; i<=nlstate;i++){            
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          }
           }  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      fprintf(ficreseij,"%3.0f",age );
         }      for(i=1; i<=nlstate;i++){
       }        eip=0;
     }          for(j=1; j<=nlstate;j++){
   }          eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   stepsize=(int) (stepm+YEARM-1)/YEARM;        }
   if (stepm<=12) stepsize=1;        fprintf(ficreseij,"%9.4f", eip );
       }
   agelim=AGESUP;      fprintf(ficreseij,"\n");
   /*hstepm=stepsize*YEARM; *//* Every year of age */      
   hstepm=1;    }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   yp1=modf(dateintmean,&yp);    printf("\n");
   anprojmean=yp;    fprintf(ficlog,"\n");
   yp2=modf((yp1*12),&yp);    
   mprojmean=yp;  }
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;  {
     /* Covariances of health expectancies eij and of total life expectancies according
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);     to initial status i, ei. .
     */
   if (popforecast==1) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     if((ficpop=fopen(popfile,"r"))==NULL)    {    int nhstepma, nstepma; /* Decreasing with age */
       printf("Problem with population file : %s\n",popfile);goto end;    double age, agelim, hf;
     }    double ***p3matp, ***p3matm, ***varhe;
     popage=ivector(0,AGESUP);    double **dnewm,**doldm;
     popeffectif=vector(0,AGESUP);    double *xp, *xm;
     popcount=vector(0,AGESUP);    double **gp, **gm;
     double ***gradg, ***trgradg;
     i=1;      int theta;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)  
       {    double eip, vip;
         i=i+1;  
       }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     imx=i;    xp=vector(1,npar);
        xm=vector(1,npar);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    dnewm=matrix(1,nlstate*nlstate,1,npar);
   }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
   for(cptcov=1;cptcov<=i1;cptcov++){    pstamp(ficresstdeij);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       k=k+1;    fprintf(ficresstdeij,"# Age");
       fprintf(ficresf,"\n#******");    for(i=1; i<=nlstate;i++){
       for(j=1;j<=cptcoveff;j++) {      for(j=1; j<=nlstate;j++)
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       }      fprintf(ficresstdeij," e%1d. ",i);
       fprintf(ficresf,"******\n");    }
       fprintf(ficresf,"# StartingAge FinalAge");    fprintf(ficresstdeij,"\n");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
       if (popforecast==1)  fprintf(ficresf," [Population]");    pstamp(ficrescveij);
        fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       for (cpt=0; cpt<4;cpt++) {    fprintf(ficrescveij,"# Age");
         fprintf(ficresf,"\n");    for(i=1; i<=nlstate;i++)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */        for(i2=1; i2<=nlstate;i2++)
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(j2=1; j2<=nlstate;j2++){
         nhstepm = nhstepm/hstepm;            cptj2= (j2-1)*nlstate+i2;
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/            if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
         oldm=oldms;savm=savms;      }
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficrescveij,"\n");
            
         for (h=0; h<=nhstepm; h++){    if(estepm < stepm){
           if (h==(int) (calagedate+YEARM*cpt)) {      printf ("Problem %d lower than %d\n",estepm, stepm);
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);    }
           }    else  hstepm=estepm;   
           for(j=1; j<=nlstate+ndeath;j++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
             kk1=0.;kk2=0;     * This is mainly to measure the difference between two models: for example
             for(i=1; i<=nlstate;i++) {             * if stepm=24 months pijx are given only every 2 years and by summing them
               if (mobilav==1)     * we are calculating an estimate of the Life Expectancy assuming a linear 
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];     * progression in between and thus overestimating or underestimating according
               else {     * to the curvature of the survival function. If, for the same date, we 
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/     * to compare the new estimate of Life expectancy with the same linear 
               }     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];  
             }    /* For example we decided to compute the life expectancy with the smallest unit */
              /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             if (h==(int)(calagedate+12*cpt)){       nhstepm is the number of hstepm from age to agelim 
               fprintf(ficresf," %.3f", kk1);       nstepm is the number of stepm from age to agelin. 
                     Look at hpijx to understand the reason of that which relies in memory size
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);       and note for a fixed period like estepm months */
             }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           }       survival function given by stepm (the optimization length). Unfortunately it
         }       means that if the survival funtion is printed only each two years of age and if
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
       }    */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }  
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* If stepm=6 months */
   if (popforecast==1) {    /* nhstepm age range expressed in number of stepm */
     free_ivector(popage,0,AGESUP);    agelim=AGESUP;
     free_vector(popeffectif,0,AGESUP);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     free_vector(popcount,0,AGESUP);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   }    /* if (stepm >= YEARM) hstepm=1;*/
   free_imatrix(s,1,maxwav+1,1,n);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   free_vector(weight,1,n);    
   fclose(ficresf);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }/* End forecasting */    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   else{    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     erreur=108;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
   /*---------- Health expectancies and variances ------------*/    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   strcpy(filerest,"t");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   strcat(filerest,fileres);      /* if (stepm >= YEARM) hstepm=1;*/
   if((ficrest=fopen(filerest,"w"))==NULL) {      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
   }      /* If stepm=6 months */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
   strcpy(filerese,"e");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {      /* Computing  Variances of health expectancies */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   }         decrease memory allocation */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
  strcpy(fileresv,"v");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   strcat(fileresv,fileres);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    
         for(j=1; j<= nlstate; j++){
   k=0;          for(i=1; i<=nlstate; i++){
   for(cptcov=1;cptcov<=i1;cptcov++){            for(h=0; h<=nhstepm-1; h++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       k=k+1;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       fprintf(ficrest,"\n#****** ");            }
       for(j=1;j<=cptcoveff;j++)          }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       fprintf(ficrest,"******\n");       
         for(ij=1; ij<= nlstate*nlstate; ij++)
       fprintf(ficreseij,"\n#****** ");          for(h=0; h<=nhstepm-1; h++){
       for(j=1;j<=cptcoveff;j++)            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          }
       fprintf(ficreseij,"******\n");      }/* End theta */
       
       fprintf(ficresvij,"\n#****** ");      
       for(j=1;j<=cptcoveff;j++)      for(h=0; h<=nhstepm-1; h++)
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        for(j=1; j<=nlstate*nlstate;j++)
       fprintf(ficresvij,"******\n");          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);         for(ij=1;ij<=nlstate*nlstate;ij++)
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        for(ji=1;ji<=nlstate*nlstate;ji++)
       oldm=oldms;savm=savms;          varhe[ij][ji][(int)age] =0.;
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
             printf("%d|",(int)age);fflush(stdout);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);       for(h=0;h<=nhstepm-1;h++){
       fprintf(ficrest,"\n");        for(k=0;k<=nhstepm-1;k++){
                  matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       hf=1;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       if (stepm >= YEARM) hf=stepm/YEARM;          for(ij=1;ij<=nlstate*nlstate;ij++)
       epj=vector(1,nlstate+1);            for(ji=1;ji<=nlstate*nlstate;ji++)
       for(age=bage; age <=fage ;age++){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        }
         if (popbased==1) {      }
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];      /* Computing expectancies */
         }      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
              for(i=1; i<=nlstate;i++)
         fprintf(ficrest," %.0f",age);        for(j=1; j<=nlstate;j++)
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];            
           }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           epj[nlstate+1] +=epj[j];  
         }          }
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)      fprintf(ficresstdeij,"%3.0f",age );
             vepp += vareij[i][j][(int)age];      for(i=1; i<=nlstate;i++){
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));        eip=0.;
         for(j=1;j <=nlstate;j++){        vip=0.;
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));        for(j=1; j<=nlstate;j++){
         }          eip += eij[i][j][(int)age];
         fprintf(ficrest,"\n");          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
       }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   }        }
                fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
              }
       fprintf(ficresstdeij,"\n");
   
  fclose(ficreseij);      fprintf(ficrescveij,"%3.0f",age );
  fclose(ficresvij);      for(i=1; i<=nlstate;i++)
   fclose(ficrest);        for(j=1; j<=nlstate;j++){
   fclose(ficpar);          cptj= (j-1)*nlstate+i;
   free_vector(epj,1,nlstate+1);          for(i2=1; i2<=nlstate;i2++)
   /*  scanf("%d ",i); */            for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
   /*------- Variance limit prevalence------*/                if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 strcpy(fileresvpl,"vpl");            }
   strcat(fileresvpl,fileres);        }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      fprintf(ficrescveij,"\n");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);     
     exit(0);    }
   }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
  k=0;    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
  for(cptcov=1;cptcov<=i1;cptcov++){    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      k=k+1;    printf("\n");
      fprintf(ficresvpl,"\n#****** ");    fprintf(ficlog,"\n");
      for(j=1;j<=cptcoveff;j++)  
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_vector(xm,1,npar);
      fprintf(ficresvpl,"******\n");    free_vector(xp,1,npar);
          free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      oldm=oldms;savm=savms;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  }
    }  
  }  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   fclose(ficresvpl);  {
     /* Variance of health expectancies */
   /*---------- End : free ----------------*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    /* double **newm;*/
      double **dnewm,**doldm;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double **dnewmp,**doldmp;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    int i, j, nhstepm, hstepm, h, nstepm ;
      int k, cptcode;
      double *xp;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    double **gp, **gm;  /* for var eij */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    double ***gradg, ***trgradg; /*for var eij */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    double **gradgp, **trgradgp; /* for var p point j */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    double *gpp, *gmp; /* for var p point j */
      double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   free_matrix(matcov,1,npar,1,npar);    double ***p3mat;
   free_vector(delti,1,npar);    double age,agelim, hf;
      double ***mobaverage;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    int theta;
     char digit[4];
   if(erreur >0)    char digitp[25];
     printf("End of Imach with error %d\n",erreur);  
   else   printf("End of Imach\n");    char fileresprobmorprev[FILENAMELENGTH];
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
      if(popbased==1){
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      if(mobilav!=0)
   /*printf("Total time was %d uSec.\n", total_usecs);*/        strcpy(digitp,"-populbased-mobilav-");
   /*------ End -----------*/      else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
  end:      strcpy(digitp,"-stablbased-");
 #ifdef windows  
   /* chdir(pathcd);*/    if (mobilav!=0) {
 #endif      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  /*system("wgnuplot graph.plt");*/      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
  /*system("../gp37mgw/wgnuplot graph.plt");*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  /*system("cd ../gp37mgw");*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      }
  strcpy(plotcmd,GNUPLOTPROGRAM);    }
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);    strcpy(fileresprobmorprev,"prmorprev"); 
  system(plotcmd);    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 #ifdef windows    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   while (z[0] != 'q') {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     chdir(path);    strcat(fileresprobmorprev,fileres);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     scanf("%s",z);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     if (z[0] == 'c') system("./imach");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     else if (z[0] == 'e') {    }
       chdir(path);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       system(optionfilehtm);   
     }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     else if (z[0] == 'q') exit(0);    pstamp(ficresprobmorprev);
   }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 #endif    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence from each state (1 to %d) to period (stable) prevalence in state %d <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",nlstate, cpt, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: %s, err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successul, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef OSX
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.22  
changed lines
  Added in v.1.155


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>