Diff for /imach/src/imach.c between versions 1.22 and 1.98

version 1.22, 2002/02/22 17:54:20 version 1.98, 2004/05/16 15:05:56
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolate Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.98  2004/05/16 15:05:56  brouard
      New version 0.97 . First attempt to estimate force of mortality
   This program computes Healthy Life Expectancies from    directly from the data i.e. without the need of knowing the health
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    state at each age, but using a Gompertz model: log u =a + b*age .
   first survey ("cross") where individuals from different ages are    This is the basic analysis of mortality and should be done before any
   interviewed on their health status or degree of disability (in the    other analysis, in order to test if the mortality estimated from the
   case of a health survey which is our main interest) -2- at least a    cross-longitudinal survey is different from the mortality estimated
   second wave of interviews ("longitudinal") which measure each change    from other sources like vital statistic data.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    The same imach parameter file can be used but the option for mle should be -3.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Agnès, who wrote this part of the code, tried to keep most of the
   simplest model is the multinomial logistic model where pij is the    former routines in order to include the new code within the former code.
   probabibility to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    The output is very simple: only an estimate of the intercept and of
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the slope with 95% confident intervals.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Current limitations:
   where the markup *Covariates have to be included here again* invites    A) Even if you enter covariates, i.e. with the
   you to do it.  More covariates you add, slower the    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   convergence.    B) There is no computation of Life Expectancy nor Life Table.
   
   The advantage of this computer programme, compared to a simple    Revision 1.97  2004/02/20 13:25:42  lievre
   multinomial logistic model, is clear when the delay between waves is not    Version 0.96d. Population forecasting command line is (temporarily)
   identical for each individual. Also, if a individual missed an    suppressed.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   hPijx is the probability to be observed in state i at age x+h    rewritten within the same printf. Workaround: many printfs.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.95  2003/07/08 07:54:34  brouard
   states. This elementary transition (by month or quarter trimester,    * imach.c (Repository):
   semester or year) is model as a multinomial logistic.  The hPx    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix (cov(a12,c31) instead of numbers.
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.93  2003/06/25 16:33:55  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    exist so I changed back to asctime which exists.
            Institut national d'études démographiques, Paris.    (Module): Version 0.96b
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.92  2003/06/25 16:30:45  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): On windows (cygwin) function asctime_r doesn't
   software can be distributed freely for non commercial use. Latest version    exist so I changed back to asctime which exists.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.91  2003/06/25 15:30:29  brouard
      * imach.c (Repository): Duplicated warning errors corrected.
 #include <math.h>    (Repository): Elapsed time after each iteration is now output. It
 #include <stdio.h>    helps to forecast when convergence will be reached. Elapsed time
 #include <stdlib.h>    is stamped in powell.  We created a new html file for the graphs
 #include <unistd.h>    concerning matrix of covariance. It has extension -cov.htm.
   
 #define MAXLINE 256    Revision 1.90  2003/06/24 12:34:15  brouard
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"    (Module): Some bugs corrected for windows. Also, when
 #define FILENAMELENGTH 80    mle=-1 a template is output in file "or"mypar.txt with the design
 /*#define DEBUG*/    of the covariance matrix to be input.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.89  2003/06/24 12:30:52  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    of the covariance matrix to be input.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.88  2003/06/23 17:54:56  brouard
 #define NINTERVMAX 8    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.87  2003/06/18 12:26:01  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Version 0.96
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.86  2003/06/17 20:04:08  brouard
 #define AGESUP 130    (Module): Change position of html and gnuplot routines and added
 #define AGEBASE 40    routine fileappend.
   
     Revision 1.85  2003/06/17 13:12:43  brouard
 int erreur; /* Error number */    * imach.c (Repository): Check when date of death was earlier that
 int nvar;    current date of interview. It may happen when the death was just
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    prior to the death. In this case, dh was negative and likelihood
 int npar=NPARMAX;    was wrong (infinity). We still send an "Error" but patch by
 int nlstate=2; /* Number of live states */    assuming that the date of death was just one stepm after the
 int ndeath=1; /* Number of dead states */    interview.
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Repository): Because some people have very long ID (first column)
 int popbased=0;    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 int *wav; /* Number of waves for this individuual 0 is possible */    truncation)
 int maxwav; /* Maxim number of waves */    (Repository): No more line truncation errors.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.84  2003/06/13 21:44:43  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    * imach.c (Repository): Replace "freqsummary" at a correct
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    place. It differs from routine "prevalence" which may be called
 double jmean; /* Mean space between 2 waves */    many times. Probs is memory consuming and must be used with
 double **oldm, **newm, **savm; /* Working pointers to matrices */    parcimony.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;  
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    Revision 1.83  2003/06/10 13:39:11  lievre
 FILE *ficreseij;    *** empty log message ***
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.82  2003/06/05 15:57:20  brouard
   char fileresv[FILENAMELENGTH];    Add log in  imach.c and  fullversion number is now printed.
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];  */
   /*
 #define NR_END 1     Interpolated Markov Chain
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Short summary of the programme:
     
 #define NRANSI    This program computes Healthy Life Expectancies from
 #define ITMAX 200    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 #define TOL 2.0e-4    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 #define CGOLD 0.3819660    second wave of interviews ("longitudinal") which measure each change
 #define ZEPS 1.0e-10    (if any) in individual health status.  Health expectancies are
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 #define GOLD 1.618034    Maximum Likelihood of the parameters involved in the model.  The
 #define GLIMIT 100.0    simplest model is the multinomial logistic model where pij is the
 #define TINY 1.0e-20    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 static double maxarg1,maxarg2;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    'age' is age and 'sex' is a covariate. If you want to have a more
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    complex model than "constant and age", you should modify the program
      where the markup *Covariates have to be included here again* invites
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    you to do it.  More covariates you add, slower the
 #define rint(a) floor(a+0.5)    convergence.
   
 static double sqrarg;    The advantage of this computer programme, compared to a simple
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    multinomial logistic model, is clear when the delay between waves is not
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 int imx;    account using an interpolation or extrapolation.  
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 int m,nb;    split into an exact number (nh*stepm) of unobserved intermediate
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    states. This elementary transition (by month, quarter,
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    semester or year) is modelled as a multinomial logistic.  The hPx
 double **pmmij, ***probs, ***mobaverage;    matrix is simply the matrix product of nh*stepm elementary matrices
 double dateintmean=0;    and the contribution of each individual to the likelihood is simply
     hPijx.
 double *weight;  
 int **s; /* Status */    Also this programme outputs the covariance matrix of the parameters but also
 double *agedc, **covar, idx;    of the life expectancies. It also computes the stable prevalence. 
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */             Institut national d'études démographiques, Paris.
 double ftolhess; /* Tolerance for computing hessian */    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 /**************** split *************************/    It is copyrighted identically to a GNU software product, ie programme and
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    software can be distributed freely for non commercial use. Latest version
 {    can be accessed at http://euroreves.ined.fr/imach .
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    l1 = strlen( path );                 /* length of path */    
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    **********************************************************************/
 #ifdef windows  /*
    s = strrchr( path, '\\' );           /* find last / */    main
 #else    read parameterfile
    s = strrchr( path, '/' );            /* find last / */    read datafile
 #endif    concatwav
    if ( s == NULL ) {                   /* no directory, so use current */    freqsummary
 #if     defined(__bsd__)                /* get current working directory */    if (mle >= 1)
       extern char       *getwd( );      mlikeli
     print results files
       if ( getwd( dirc ) == NULL ) {    if mle==1 
 #else       computes hessian
       extern char       *getcwd( );    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    open gnuplot file
 #endif    open html file
          return( GLOCK_ERROR_GETCWD );    stable prevalence
       }     for age prevalim()
       strcpy( name, path );             /* we've got it */    h Pij x
    } else {                             /* strip direcotry from path */    variance of p varprob
       s++;                              /* after this, the filename */    forecasting if prevfcast==1 prevforecast call prevalence()
       l2 = strlen( s );                 /* length of filename */    health expectancies
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Variance-covariance of DFLE
       strcpy( name, s );                /* save file name */    prevalence()
       strncpy( dirc, path, l1 - l2 );   /* now the directory */     movingaverage()
       dirc[l1-l2] = 0;                  /* add zero */    varevsij() 
    }    if popbased==1 varevsij(,popbased)
    l1 = strlen( dirc );                 /* length of directory */    total life expectancies
 #ifdef windows    Variance of stable prevalence
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }   end
 #else  */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif  
    s = strrchr( name, '.' );            /* find last / */  
    s++;   
    strcpy(ext,s);                       /* save extension */  #include <math.h>
    l1= strlen( name);  #include <stdio.h>
    l2= strlen( s)+1;  #include <stdlib.h>
    strncpy( finame, name, l1-l2);  #include <unistd.h>
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */  #include <sys/time.h>
 }  #include <time.h>
   #include "timeval.h"
   
 /******************************************/  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 void replace(char *s, char*t)  
 {  #define MAXLINE 256
   int i;  #define GNUPLOTPROGRAM "gnuplot"
   int lg=20;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   i=0;  #define FILENAMELENGTH 132
   lg=strlen(t);  /*#define DEBUG*/
   for(i=0; i<= lg; i++) {  /*#define windows*/
     (s[i] = t[i]);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     if (t[i]== '\\') s[i]='/';  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   }  
 }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 int nbocc(char *s, char occ)  
 {  #define NINTERVMAX 8
   int i,j=0;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   int lg=20;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   i=0;  #define NCOVMAX 8 /* Maximum number of covariates */
   lg=strlen(s);  #define MAXN 20000
   for(i=0; i<= lg; i++) {  #define YEARM 12. /* Number of months per year */
   if  (s[i] == occ ) j++;  #define AGESUP 130
   }  #define AGEBASE 40
   return j;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 }  #ifdef unix
   #define DIRSEPARATOR '/'
 void cutv(char *u,char *v, char*t, char occ)  #define ODIRSEPARATOR '\\'
 {  #else
   int i,lg,j,p=0;  #define DIRSEPARATOR '\\'
   i=0;  #define ODIRSEPARATOR '/'
   for(j=0; j<=strlen(t)-1; j++) {  #endif
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  /* $Id$ */
   /* $State$ */
   lg=strlen(t);  
   for(j=0; j<p; j++) {  char version[]="Imach version 0.70, May 2004, INED-EUROREVES ";
     (u[j] = t[j]);  char fullversion[]="$Revision$ $Date$"; 
   }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
      u[p]='\0';  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    for(j=0; j<= lg; j++) {  int npar=NPARMAX;
     if (j>=(p+1))(v[j-p-1] = t[j]);  int nlstate=2; /* Number of live states */
   }  int ndeath=1; /* Number of dead states */
 }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 /********************** nrerror ********************/  
   int *wav; /* Number of waves for this individuual 0 is possible */
 void nrerror(char error_text[])  int maxwav; /* Maxim number of waves */
 {  int jmin, jmax; /* min, max spacing between 2 waves */
   fprintf(stderr,"ERREUR ...\n");  int gipmx, gsw; /* Global variables on the number of contributions 
   fprintf(stderr,"%s\n",error_text);                     to the likelihood and the sum of weights (done by funcone)*/
   exit(1);  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 /*********************** vector *******************/  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 double *vector(int nl, int nh)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double *v;  double jmean; /* Mean space between 2 waves */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  double **oldm, **newm, **savm; /* Working pointers to matrices */
   if (!v) nrerror("allocation failure in vector");  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   return v-nl+NR_END;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 /************************ free vector ******************/  double fretone; /* Only one call to likelihood */
 void free_vector(double*v, int nl, int nh)  long ipmx; /* Number of contributions */
 {  double sw; /* Sum of weights */
   free((FREE_ARG)(v+nl-NR_END));  char filerespow[FILENAMELENGTH];
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 /************************ivector *******************************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 int *ivector(long nl,long nh)  FILE *ficresprobmorprev;
 {  FILE *fichtm, *fichtmcov; /* Html File */
   int *v;  FILE *ficreseij;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char filerese[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in ivector");  FILE  *ficresvij;
   return v-nl+NR_END;  char fileresv[FILENAMELENGTH];
 }  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 /******************free ivector **************************/  char title[MAXLINE];
 void free_ivector(int *v, long nl, long nh)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 }  char command[FILENAMELENGTH];
   int  outcmd=0;
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  char filelog[FILENAMELENGTH]; /* Log file */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char filerest[FILENAMELENGTH];
   int **m;  char fileregp[FILENAMELENGTH];
    char popfile[FILENAMELENGTH];
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m -= nrl;  struct timezone tzp;
    extern int gettimeofday();
    struct tm tmg, tm, tmf, *gmtime(), *localtime();
   /* allocate rows and set pointers to them */  long time_value;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  extern long time();
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char strcurr[80], strfor[80];
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define NR_END 1
    #define FREE_ARG char*
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define FTOL 1.0e-10
    
   /* return pointer to array of pointers to rows */  #define NRANSI 
   return m;  #define ITMAX 200 
 }  
   #define TOL 2.0e-4 
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define CGOLD 0.3819660 
       int **m;  #define ZEPS 1.0e-10 
       long nch,ncl,nrh,nrl;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
      /* free an int matrix allocated by imatrix() */  
 {  #define GOLD 1.618034 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define GLIMIT 100.0 
   free((FREE_ARG) (m+nrl-NR_END));  #define TINY 1.0e-20 
 }  
   static double maxarg1,maxarg2;
 /******************* matrix *******************************/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 {    
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double **m;  #define rint(a) floor(a+0.5)
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  static double sqrarg;
   if (!m) nrerror("allocation failure 1 in matrix()");  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m += NR_END;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   m -= nrl;  int agegomp= AGEGOMP;
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int imx; 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int stepm=1;
   m[nrl] += NR_END;  /* Stepm, step in month: minimum step interpolation*/
   m[nrl] -= ncl;  
   int estepm;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   return m;  
 }  int m,nb;
   long *num;
 /*************************free matrix ************************/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 {  double **pmmij, ***probs;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double *ageexmed,*agecens;
   free((FREE_ARG)(m+nrl-NR_END));  double dateintmean=0;
 }  
   double *weight;
 /******************* ma3x *******************************/  int **s; /* Status */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double *agedc, **covar, idx;
 {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /**************** split *************************/
   m += NR_END;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   m -= nrl;  {
     char  *ss;                            /* pointer */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    int   l1, l2;                         /* length counters */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    l1 = strlen(path );                   /* length of path */
   m[nrl] -= ncl;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    if ( ss == NULL ) {                   /* no directory, so use current */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      /* get current working directory */
   m[nrl][ncl] += NR_END;      /*    extern  char* getcwd ( char *buf , int len);*/
   m[nrl][ncl] -= nll;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   for (j=ncl+1; j<=nch; j++)        return( GLOCK_ERROR_GETCWD );
     m[nrl][j]=m[nrl][j-1]+nlay;      }
        strcpy( name, path );               /* we've got it */
   for (i=nrl+1; i<=nrh; i++) {    } else {                              /* strip direcotry from path */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      ss++;                               /* after this, the filename */
     for (j=ncl+1; j<=nch; j++)      l2 = strlen( ss );                  /* length of filename */
       m[i][j]=m[i][j-1]+nlay;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   }      strcpy( name, ss );         /* save file name */
   return m;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = 0;                    /* add zero */
     }
 /*************************free ma3x ************************/    l1 = strlen( dirc );                  /* length of directory */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    /*#ifdef windows
 {    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #else
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   free((FREE_ARG)(m+nrl-NR_END));  #endif
 }    */
     ss = strrchr( name, '.' );            /* find last / */
 /***************** f1dim *************************/    ss++;
 extern int ncom;    strcpy(ext,ss);                       /* save extension */
 extern double *pcom,*xicom;    l1= strlen( name);
 extern double (*nrfunc)(double []);    l2= strlen(ss)+1;
      strncpy( finame, name, l1-l2);
 double f1dim(double x)    finame[l1-l2]= 0;
 {    return( 0 );                          /* we're done */
   int j;  }
   double f;  
   double *xt;  
    /******************************************/
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  void replace_back_to_slash(char *s, char*t)
   f=(*nrfunc)(xt);  {
   free_vector(xt,1,ncom);    int i;
   return f;    int lg=0;
 }    i=0;
     lg=strlen(t);
 /*****************brent *************************/    for(i=0; i<= lg; i++) {
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      (s[i] = t[i]);
 {      if (t[i]== '\\') s[i]='/';
   int iter;    }
   double a,b,d,etemp;  }
   double fu,fv,fw,fx;  
   double ftemp;  int nbocc(char *s, char occ)
   double p,q,r,tol1,tol2,u,v,w,x,xm;  {
   double e=0.0;    int i,j=0;
      int lg=20;
   a=(ax < cx ? ax : cx);    i=0;
   b=(ax > cx ? ax : cx);    lg=strlen(s);
   x=w=v=bx;    for(i=0; i<= lg; i++) {
   fw=fv=fx=(*f)(x);    if  (s[i] == occ ) j++;
   for (iter=1;iter<=ITMAX;iter++) {    }
     xm=0.5*(a+b);    return j;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  void cutv(char *u,char *v, char*t, char occ)
 #ifdef DEBUG  {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    /* cuts string t into u and v where u is ended by char occ excluding it
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 #endif       gives u="abcedf" and v="ghi2j" */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    int i,lg,j,p=0;
       *xmin=x;    i=0;
       return fx;    for(j=0; j<=strlen(t)-1; j++) {
     }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     ftemp=fu;    }
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);    lg=strlen(t);
       q=(x-v)*(fx-fw);    for(j=0; j<p; j++) {
       p=(x-v)*q-(x-w)*r;      (u[j] = t[j]);
       q=2.0*(q-r);    }
       if (q > 0.0) p = -p;       u[p]='\0';
       q=fabs(q);  
       etemp=e;     for(j=0; j<= lg; j++) {
       e=d;      if (j>=(p+1))(v[j-p-1] = t[j]);
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    }
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
       else {  
         d=p/q;  /********************** nrerror ********************/
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  void nrerror(char error_text[])
           d=SIGN(tol1,xm-x);  {
       }    fprintf(stderr,"ERREUR ...\n");
     } else {    fprintf(stderr,"%s\n",error_text);
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    exit(EXIT_FAILURE);
     }  }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  /*********************** vector *******************/
     fu=(*f)(u);  double *vector(int nl, int nh)
     if (fu <= fx) {  {
       if (u >= x) a=x; else b=x;    double *v;
       SHFT(v,w,x,u)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         SHFT(fv,fw,fx,fu)    if (!v) nrerror("allocation failure in vector");
         } else {    return v-nl+NR_END;
           if (u < x) a=u; else b=u;  }
           if (fu <= fw || w == x) {  
             v=w;  /************************ free vector ******************/
             w=u;  void free_vector(double*v, int nl, int nh)
             fv=fw;  {
             fw=fu;    free((FREE_ARG)(v+nl-NR_END));
           } else if (fu <= fv || v == x || v == w) {  }
             v=u;  
             fv=fu;  /************************ivector *******************************/
           }  int *ivector(long nl,long nh)
         }  {
   }    int *v;
   nrerror("Too many iterations in brent");    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   *xmin=x;    if (!v) nrerror("allocation failure in ivector");
   return fx;    return v-nl+NR_END;
 }  }
   
 /****************** mnbrak ***********************/  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  {
             double (*func)(double))    free((FREE_ARG)(v+nl-NR_END));
 {  }
   double ulim,u,r,q, dum;  
   double fu;  /************************lvector *******************************/
    long *lvector(long nl,long nh)
   *fa=(*func)(*ax);  {
   *fb=(*func)(*bx);    long *v;
   if (*fb > *fa) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     SHFT(dum,*ax,*bx,dum)    if (!v) nrerror("allocation failure in ivector");
       SHFT(dum,*fb,*fa,dum)    return v-nl+NR_END;
       }  }
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  /******************free lvector **************************/
   while (*fb > *fc) {  void free_lvector(long *v, long nl, long nh)
     r=(*bx-*ax)*(*fb-*fc);  {
     q=(*bx-*cx)*(*fb-*fa);    free((FREE_ARG)(v+nl-NR_END));
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  /******************* imatrix *******************************/
     if ((*bx-u)*(u-*cx) > 0.0) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       fu=(*func)(u);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     } else if ((*cx-u)*(u-ulim) > 0.0) {  { 
       fu=(*func)(u);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       if (fu < *fc) {    int **m; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    
           SHFT(*fb,*fc,fu,(*func)(u))    /* allocate pointers to rows */ 
           }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
       u=ulim;    m += NR_END; 
       fu=(*func)(u);    m -= nrl; 
     } else {    
       u=(*cx)+GOLD*(*cx-*bx);    
       fu=(*func)(u);    /* allocate rows and set pointers to them */ 
     }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     SHFT(*ax,*bx,*cx,u)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       SHFT(*fa,*fb,*fc,fu)    m[nrl] += NR_END; 
       }    m[nrl] -= ncl; 
 }    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 /*************** linmin ************************/    
     /* return pointer to array of pointers to rows */ 
 int ncom;    return m; 
 double *pcom,*xicom;  } 
 double (*nrfunc)(double []);  
    /****************** free_imatrix *************************/
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  void free_imatrix(m,nrl,nrh,ncl,nch)
 {        int **m;
   double brent(double ax, double bx, double cx,        long nch,ncl,nrh,nrl; 
                double (*f)(double), double tol, double *xmin);       /* free an int matrix allocated by imatrix() */ 
   double f1dim(double x);  { 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
               double *fc, double (*func)(double));    free((FREE_ARG) (m+nrl-NR_END)); 
   int j;  } 
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  /******************* matrix *******************************/
    double **matrix(long nrl, long nrh, long ncl, long nch)
   ncom=n;  {
   pcom=vector(1,n);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   xicom=vector(1,n);    double **m;
   nrfunc=func;  
   for (j=1;j<=n;j++) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     pcom[j]=p[j];    if (!m) nrerror("allocation failure 1 in matrix()");
     xicom[j]=xi[j];    m += NR_END;
   }    m -= nrl;
   ax=0.0;  
   xx=1.0;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    m[nrl] += NR_END;
 #ifdef DEBUG    m[nrl] -= ncl;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (j=1;j<=n;j++) {    return m;
     xi[j] *= xmin;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     p[j] += xi[j];     */
   }  }
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  /*************************free matrix ************************/
 }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
 /*************** powell ************************/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    free((FREE_ARG)(m+nrl-NR_END));
             double (*func)(double []))  }
 {  
   void linmin(double p[], double xi[], int n, double *fret,  /******************* ma3x *******************************/
               double (*func)(double []));  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   int i,ibig,j;  {
   double del,t,*pt,*ptt,*xit;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double fp,fptt;    double ***m;
   double *xits;  
   pt=vector(1,n);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   ptt=vector(1,n);    if (!m) nrerror("allocation failure 1 in matrix()");
   xit=vector(1,n);    m += NR_END;
   xits=vector(1,n);    m -= nrl;
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for (*iter=1;;++(*iter)) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     fp=(*fret);    m[nrl] += NR_END;
     ibig=0;    m[nrl] -= ncl;
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     printf("\n");    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     for (i=1;i<=n;i++) {    m[nrl][ncl] += NR_END;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m[nrl][ncl] -= nll;
       fptt=(*fret);    for (j=ncl+1; j<=nch; j++) 
 #ifdef DEBUG      m[nrl][j]=m[nrl][j-1]+nlay;
       printf("fret=%lf \n",*fret);    
 #endif    for (i=nrl+1; i<=nrh; i++) {
       printf("%d",i);fflush(stdout);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       linmin(p,xit,n,fret,func);      for (j=ncl+1; j<=nch; j++) 
       if (fabs(fptt-(*fret)) > del) {        m[i][j]=m[i][j-1]+nlay;
         del=fabs(fptt-(*fret));    }
         ibig=i;    return m; 
       }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 #ifdef DEBUG             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       printf("%d %.12e",i,(*fret));    */
       for (j=1;j<=n;j++) {  }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  /*************************free ma3x ************************/
       }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       for(j=1;j<=n;j++)  {
         printf(" p=%.12e",p[j]);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       printf("\n");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #endif    free((FREE_ARG)(m+nrl-NR_END));
     }  }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /*************** function subdirf ***********/
       int k[2],l;  char *subdirf(char fileres[])
       k[0]=1;  {
       k[1]=-1;    /* Caution optionfilefiname is hidden */
       printf("Max: %.12e",(*func)(p));    strcpy(tmpout,optionfilefiname);
       for (j=1;j<=n;j++)    strcat(tmpout,"/"); /* Add to the right */
         printf(" %.12e",p[j]);    strcat(tmpout,fileres);
       printf("\n");    return tmpout;
       for(l=0;l<=1;l++) {  }
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /*************** function subdirf2 ***********/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  char *subdirf2(char fileres[], char *preop)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    
       }    /* Caution optionfilefiname is hidden */
 #endif    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
     strcat(tmpout,preop);
       free_vector(xit,1,n);    strcat(tmpout,fileres);
       free_vector(xits,1,n);    return tmpout;
       free_vector(ptt,1,n);  }
       free_vector(pt,1,n);  
       return;  /*************** function subdirf3 ***********/
     }  char *subdirf3(char fileres[], char *preop, char *preop2)
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  {
     for (j=1;j<=n;j++) {    
       ptt[j]=2.0*p[j]-pt[j];    /* Caution optionfilefiname is hidden */
       xit[j]=p[j]-pt[j];    strcpy(tmpout,optionfilefiname);
       pt[j]=p[j];    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
     fptt=(*func)(ptt);    strcat(tmpout,preop2);
     if (fptt < fp) {    strcat(tmpout,fileres);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    return tmpout;
       if (t < 0.0) {  }
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  /***************** f1dim *************************/
           xi[j][ibig]=xi[j][n];  extern int ncom; 
           xi[j][n]=xit[j];  extern double *pcom,*xicom;
         }  extern double (*nrfunc)(double []); 
 #ifdef DEBUG   
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  double f1dim(double x) 
         for(j=1;j<=n;j++)  { 
           printf(" %.12e",xit[j]);    int j; 
         printf("\n");    double f;
 #endif    double *xt; 
       }   
     }    xt=vector(1,ncom); 
   }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 }    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
 /**** Prevalence limit ****************/    return f; 
   } 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  /*****************brent *************************/
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
      matrix by transitions matrix until convergence is reached */  { 
     int iter; 
   int i, ii,j,k;    double a,b,d,etemp;
   double min, max, maxmin, maxmax,sumnew=0.;    double fu,fv,fw,fx;
   double **matprod2();    double ftemp;
   double **out, cov[NCOVMAX], **pmij();    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   double **newm;    double e=0.0; 
   double agefin, delaymax=50 ; /* Max number of years to converge */   
     a=(ax < cx ? ax : cx); 
   for (ii=1;ii<=nlstate+ndeath;ii++)    b=(ax > cx ? ax : cx); 
     for (j=1;j<=nlstate+ndeath;j++){    x=w=v=bx; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    fw=fv=fx=(*f)(x); 
     }    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
    cov[1]=1.;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
        /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      printf(".");fflush(stdout);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      fprintf(ficlog,".");fflush(ficlog);
     newm=savm;  #ifdef DEBUG
     /* Covariates have to be included here again */      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      cov[2]=agefin;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       for (k=1; k<=cptcovn;k++) {  #endif
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/        *xmin=x; 
       }        return fx; 
       for (k=1; k<=cptcovage;k++)      } 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      ftemp=fu;
       for (k=1; k<=cptcovprod;k++)      if (fabs(e) > tol1) { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        p=(x-v)*q-(x-w)*r; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        q=fabs(q); 
         etemp=e; 
     savm=oldm;        e=d; 
     oldm=newm;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     maxmax=0.;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(j=1;j<=nlstate;j++){        else { 
       min=1.;          d=p/q; 
       max=0.;          u=x+d; 
       for(i=1; i<=nlstate; i++) {          if (u-a < tol2 || b-u < tol2) 
         sumnew=0;            d=SIGN(tol1,xm-x); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        } 
         prlim[i][j]= newm[i][j]/(1-sumnew);      } else { 
         max=FMAX(max,prlim[i][j]);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         min=FMIN(min,prlim[i][j]);      } 
       }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       maxmin=max-min;      fu=(*f)(u); 
       maxmax=FMAX(maxmax,maxmin);      if (fu <= fx) { 
     }        if (u >= x) a=x; else b=x; 
     if(maxmax < ftolpl){        SHFT(v,w,x,u) 
       return prlim;          SHFT(fv,fw,fx,fu) 
     }          } else { 
   }            if (u < x) a=u; else b=u; 
 }            if (fu <= fw || w == x) { 
               v=w; 
 /*************** transition probabilities ***************/              w=u; 
               fv=fw; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )              fw=fu; 
 {            } else if (fu <= fv || v == x || v == w) { 
   double s1, s2;              v=u; 
   /*double t34;*/              fv=fu; 
   int i,j,j1, nc, ii, jj;            } 
           } 
     for(i=1; i<= nlstate; i++){    } 
     for(j=1; j<i;j++){    nrerror("Too many iterations in brent"); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    *xmin=x; 
         /*s2 += param[i][j][nc]*cov[nc];*/    return fx; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  } 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  /****************** mnbrak ***********************/
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     }              double (*func)(double)) 
     for(j=i+1; j<=nlstate+ndeath;j++){  { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double ulim,u,r,q, dum;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double fu; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/   
       }    *fa=(*func)(*ax); 
       ps[i][j]=s2;    *fb=(*func)(*bx); 
     }    if (*fb > *fa) { 
   }      SHFT(dum,*ax,*bx,dum) 
     /*ps[3][2]=1;*/        SHFT(dum,*fb,*fa,dum) 
         } 
   for(i=1; i<= nlstate; i++){    *cx=(*bx)+GOLD*(*bx-*ax); 
      s1=0;    *fc=(*func)(*cx); 
     for(j=1; j<i; j++)    while (*fb > *fc) { 
       s1+=exp(ps[i][j]);      r=(*bx-*ax)*(*fb-*fc); 
     for(j=i+1; j<=nlstate+ndeath; j++)      q=(*bx-*cx)*(*fb-*fa); 
       s1+=exp(ps[i][j]);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     ps[i][i]=1./(s1+1.);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     for(j=1; j<i; j++)      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      if ((*bx-u)*(u-*cx) > 0.0) { 
     for(j=i+1; j<=nlstate+ndeath; j++)        fu=(*func)(u); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        fu=(*func)(u); 
   } /* end i */        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){            SHFT(*fb,*fc,fu,(*func)(u)) 
     for(jj=1; jj<= nlstate+ndeath; jj++){            } 
       ps[ii][jj]=0;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       ps[ii][ii]=1;        u=ulim; 
     }        fu=(*func)(u); 
   }      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      } 
     for(jj=1; jj<= nlstate+ndeath; jj++){      SHFT(*ax,*bx,*cx,u) 
      printf("%lf ",ps[ii][jj]);        SHFT(*fa,*fb,*fc,fu) 
    }        } 
     printf("\n ");  } 
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  /*************** linmin ************************/
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  int ncom; 
   goto end;*/  double *pcom,*xicom;
     return ps;  double (*nrfunc)(double []); 
 }   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 /**************** Product of 2 matrices ******************/  { 
     double brent(double ax, double bx, double cx, 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)                 double (*f)(double), double tol, double *xmin); 
 {    double f1dim(double x); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */                double *fc, double (*func)(double)); 
   /* in, b, out are matrice of pointers which should have been initialized    int j; 
      before: only the contents of out is modified. The function returns    double xx,xmin,bx,ax; 
      a pointer to pointers identical to out */    double fx,fb,fa;
   long i, j, k;   
   for(i=nrl; i<= nrh; i++)    ncom=n; 
     for(k=ncolol; k<=ncoloh; k++)    pcom=vector(1,n); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    xicom=vector(1,n); 
         out[i][k] +=in[i][j]*b[j][k];    nrfunc=func; 
     for (j=1;j<=n;j++) { 
   return out;      pcom[j]=p[j]; 
 }      xicom[j]=xi[j]; 
     } 
     ax=0.0; 
 /************* Higher Matrix Product ***************/    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 {  #ifdef DEBUG
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      duration (i.e. until    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  #endif
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    for (j=1;j<=n;j++) { 
      (typically every 2 years instead of every month which is too big).      xi[j] *= xmin; 
      Model is determined by parameters x and covariates have to be      p[j] += xi[j]; 
      included manually here.    } 
     free_vector(xicom,1,n); 
      */    free_vector(pcom,1,n); 
   } 
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  char *asc_diff_time(long time_sec, char ascdiff[])
   double **newm;  {
     long sec_left, days, hours, minutes;
   /* Hstepm could be zero and should return the unit matrix */    days = (time_sec) / (60*60*24);
   for (i=1;i<=nlstate+ndeath;i++)    sec_left = (time_sec) % (60*60*24);
     for (j=1;j<=nlstate+ndeath;j++){    hours = (sec_left) / (60*60) ;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    sec_left = (sec_left) %(60*60);
       po[i][j][0]=(i==j ? 1.0 : 0.0);    minutes = (sec_left) /60;
     }    sec_left = (sec_left) % (60);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   for(h=1; h <=nhstepm; h++){    return ascdiff;
     for(d=1; d <=hstepm; d++){  }
       newm=savm;  
       /* Covariates have to be included here again */  /*************** powell ************************/
       cov[1]=1.;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;              double (*func)(double [])) 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  { 
       for (k=1; k<=cptcovage;k++)    void linmin(double p[], double xi[], int n, double *fret, 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                double (*func)(double [])); 
       for (k=1; k<=cptcovprod;k++)    int i,ibig,j; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double del,t,*pt,*ptt,*xit;
     double fp,fptt;
     double *xits;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    int niterf, itmp;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    pt=vector(1,n); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    ptt=vector(1,n); 
       savm=oldm;    xit=vector(1,n); 
       oldm=newm;    xits=vector(1,n); 
     }    *fret=(*func)(p); 
     for(i=1; i<=nlstate+ndeath; i++)    for (j=1;j<=n;j++) pt[j]=p[j]; 
       for(j=1;j<=nlstate+ndeath;j++) {    for (*iter=1;;++(*iter)) { 
         po[i][j][h]=newm[i][j];      fp=(*fret); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      ibig=0; 
          */      del=0.0; 
       }      last_time=curr_time;
   } /* end h */      (void) gettimeofday(&curr_time,&tzp);
   return po;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 }      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       */
 /*************** log-likelihood *************/     for (i=1;i<=n;i++) {
 double func( double *x)        printf(" %d %.12f",i, p[i]);
 {        fprintf(ficlog," %d %.12lf",i, p[i]);
   int i, ii, j, k, mi, d, kk;        fprintf(ficrespow," %.12lf", p[i]);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      }
   double **out;      printf("\n");
   double sw; /* Sum of weights */      fprintf(ficlog,"\n");
   double lli; /* Individual log likelihood */      fprintf(ficrespow,"\n");fflush(ficrespow);
   long ipmx;      if(*iter <=3){
   /*extern weight */        tm = *localtime(&curr_time.tv_sec);
   /* We are differentiating ll according to initial status */        strcpy(strcurr,asctime(&tmf));
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /*       asctime_r(&tm,strcurr); */
   /*for(i=1;i<imx;i++)        forecast_time=curr_time;
     printf(" %d\n",s[4][i]);        itmp = strlen(strcurr);
   */        if(strcurr[itmp-1]=='\n')
   cov[1]=1.;          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for(k=1; k<=nlstate; k++) ll[k]=0.;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for(niterf=10;niterf<=30;niterf+=10){
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     for(mi=1; mi<= wav[i]-1; mi++){          tmf = *localtime(&forecast_time.tv_sec);
       for (ii=1;ii<=nlstate+ndeath;ii++)  /*      asctime_r(&tmf,strfor); */
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          strcpy(strfor,asctime(&tmf));
       for(d=0; d<dh[mi][i]; d++){          itmp = strlen(strfor);
         newm=savm;          if(strfor[itmp-1]=='\n')
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          strfor[itmp-1]='\0';
         for (kk=1; kk<=cptcovage;kk++) {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }        }
              }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      for (i=1;i<=n;i++) { 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         savm=oldm;        fptt=(*fret); 
         oldm=newm;  #ifdef DEBUG
                printf("fret=%lf \n",*fret);
                fprintf(ficlog,"fret=%lf \n",*fret);
       } /* end mult */  #endif
              printf("%d",i);fflush(stdout);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        fprintf(ficlog,"%d",i);fflush(ficlog);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        linmin(p,xit,n,fret,func); 
       ipmx +=1;        if (fabs(fptt-(*fret)) > del) { 
       sw += weight[i];          del=fabs(fptt-(*fret)); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          ibig=i; 
     } /* end of wave */        } 
   } /* end of individual */  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        fprintf(ficlog,"%d %.12e",i,(*fret));
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        for (j=1;j<=n;j++) {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   return -l;          printf(" x(%d)=%.12e",j,xit[j]);
 }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
         for(j=1;j<=n;j++) {
 /*********** Maximum Likelihood Estimation ***************/          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        }
 {        printf("\n");
   int i,j, iter;        fprintf(ficlog,"\n");
   double **xi,*delti;  #endif
   double fret;      } 
   xi=matrix(1,npar,1,npar);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   for (i=1;i<=npar;i++)  #ifdef DEBUG
     for (j=1;j<=npar;j++)        int k[2],l;
       xi[i][j]=(i==j ? 1.0 : 0.0);        k[0]=1;
   printf("Powell\n");        k[1]=-1;
   powell(p,xi,npar,ftol,&iter,&fret,func);        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        for (j=1;j<=n;j++) {
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
 }        }
         printf("\n");
 /**** Computes Hessian and covariance matrix ***/        fprintf(ficlog,"\n");
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        for(l=0;l<=1;l++) {
 {          for (j=1;j<=n;j++) {
   double  **a,**y,*x,pd;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   double **hess;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int i, j,jk;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int *indx;          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double hessii(double p[], double delta, int theta, double delti[]);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double hessij(double p[], double delti[], int i, int j);        }
   void lubksb(double **a, int npar, int *indx, double b[]) ;  #endif
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   
   hess=matrix(1,npar,1,npar);        free_vector(xit,1,n); 
         free_vector(xits,1,n); 
   printf("\nCalculation of the hessian matrix. Wait...\n");        free_vector(ptt,1,n); 
   for (i=1;i<=npar;i++){        free_vector(pt,1,n); 
     printf("%d",i);fflush(stdout);        return; 
     hess[i][i]=hessii(p,ftolhess,i,delti);      } 
     /*printf(" %f ",p[i]);*/      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     /*printf(" %lf ",hess[i][i]);*/      for (j=1;j<=n;j++) { 
   }        ptt[j]=2.0*p[j]-pt[j]; 
          xit[j]=p[j]-pt[j]; 
   for (i=1;i<=npar;i++) {        pt[j]=p[j]; 
     for (j=1;j<=npar;j++)  {      } 
       if (j>i) {      fptt=(*func)(ptt); 
         printf(".%d%d",i,j);fflush(stdout);      if (fptt < fp) { 
         hess[i][j]=hessij(p,delti,i,j);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         hess[j][i]=hess[i][j];            if (t < 0.0) { 
         /*printf(" %lf ",hess[i][j]);*/          linmin(p,xit,n,fret,func); 
       }          for (j=1;j<=n;j++) { 
     }            xi[j][ibig]=xi[j][n]; 
   }            xi[j][n]=xit[j]; 
   printf("\n");          }
   #ifdef DEBUG
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   a=matrix(1,npar,1,npar);          for(j=1;j<=n;j++){
   y=matrix(1,npar,1,npar);            printf(" %.12e",xit[j]);
   x=vector(1,npar);            fprintf(ficlog," %.12e",xit[j]);
   indx=ivector(1,npar);          }
   for (i=1;i<=npar;i++)          printf("\n");
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          fprintf(ficlog,"\n");
   ludcmp(a,npar,indx,&pd);  #endif
         }
   for (j=1;j<=npar;j++) {      } 
     for (i=1;i<=npar;i++) x[i]=0;    } 
     x[j]=1;  } 
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  /**** Prevalence limit (stable prevalence)  ****************/
       matcov[i][j]=x[i];  
     }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   }  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   printf("\n#Hessian matrix#\n");       matrix by transitions matrix until convergence is reached */
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {    int i, ii,j,k;
       printf("%.3e ",hess[i][j]);    double min, max, maxmin, maxmax,sumnew=0.;
     }    double **matprod2();
     printf("\n");    double **out, cov[NCOVMAX], **pmij();
   }    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)    for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      for (j=1;j<=nlstate+ndeath;j++){
   ludcmp(a,npar,indx,&pd);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
   /*  printf("\n#Hessian matrix recomputed#\n");  
      cov[1]=1.;
   for (j=1;j<=npar;j++) {   
     for (i=1;i<=npar;i++) x[i]=0;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     x[j]=1;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     lubksb(a,npar,indx,x);      newm=savm;
     for (i=1;i<=npar;i++){      /* Covariates have to be included here again */
       y[i][j]=x[i];       cov[2]=agefin;
       printf("%.3e ",y[i][j]);    
     }        for (k=1; k<=cptcovn;k++) {
     printf("\n");          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   */        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   free_matrix(a,1,npar,1,npar);        for (k=1; k<=cptcovprod;k++)
   free_matrix(y,1,npar,1,npar);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   free_matrix(hess,1,npar,1,npar);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 }  
       savm=oldm;
 /*************** hessian matrix ****************/      oldm=newm;
 double hessii( double x[], double delta, int theta, double delti[])      maxmax=0.;
 {      for(j=1;j<=nlstate;j++){
   int i;        min=1.;
   int l=1, lmax=20;        max=0.;
   double k1,k2;        for(i=1; i<=nlstate; i++) {
   double p2[NPARMAX+1];          sumnew=0;
   double res;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          prlim[i][j]= newm[i][j]/(1-sumnew);
   double fx;          max=FMAX(max,prlim[i][j]);
   int k=0,kmax=10;          min=FMIN(min,prlim[i][j]);
   double l1;        }
         maxmin=max-min;
   fx=func(x);        maxmax=FMAX(maxmax,maxmin);
   for (i=1;i<=npar;i++) p2[i]=x[i];      }
   for(l=0 ; l <=lmax; l++){      if(maxmax < ftolpl){
     l1=pow(10,l);        return prlim;
     delts=delt;      }
     for(k=1 ; k <kmax; k=k+1){    }
       delt = delta*(l1*k);  }
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;  /*************** transition probabilities ***************/ 
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       /*res= (k1-2.0*fx+k2)/delt/delt; */  {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double s1, s2;
          /*double t34;*/
 #ifdef DEBUG    int i,j,j1, nc, ii, jj;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif      for(i=1; i<= nlstate; i++){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      for(j=1; j<i;j++){
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         k=kmax;          /*s2 += param[i][j][nc]*cov[nc];*/
       }          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         k=kmax; l=lmax*10.;        }
       }        ps[i][j]=s2;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
         delts=delt;      }
       }      for(j=i+1; j<=nlstate+ndeath;j++){
     }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   }          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   delti[theta]=delts;          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   return res;        }
          ps[i][j]=s2;
 }      }
     }
 double hessij( double x[], double delti[], int thetai,int thetaj)      /*ps[3][2]=1;*/
 {  
   int i;    for(i=1; i<= nlstate; i++){
   int l=1, l1, lmax=20;       s1=0;
   double k1,k2,k3,k4,res,fx;      for(j=1; j<i; j++)
   double p2[NPARMAX+1];        s1+=exp(ps[i][j]);
   int k;      for(j=i+1; j<=nlstate+ndeath; j++)
         s1+=exp(ps[i][j]);
   fx=func(x);      ps[i][i]=1./(s1+1.);
   for (k=1; k<=2; k++) {      for(j=1; j<i; j++)
     for (i=1;i<=npar;i++) p2[i]=x[i];        ps[i][j]= exp(ps[i][j])*ps[i][i];
     p2[thetai]=x[thetai]+delti[thetai]/k;      for(j=i+1; j<=nlstate+ndeath; j++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        ps[i][j]= exp(ps[i][j])*ps[i][i];
     k1=func(p2)-fx;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
      } /* end i */
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     k2=func(p2)-fx;      for(jj=1; jj<= nlstate+ndeath; jj++){
          ps[ii][jj]=0;
     p2[thetai]=x[thetai]-delti[thetai]/k;        ps[ii][ii]=1;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      }
     k3=func(p2)-fx;    }
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
     k4=func(p2)-fx;      for(jj=1; jj<= nlstate+ndeath; jj++){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */       printf("%lf ",ps[ii][jj]);
 #ifdef DEBUG     }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      printf("\n ");
 #endif      }
   }      printf("\n ");printf("%lf ",cov[2]);*/
   return res;  /*
 }    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     goto end;*/
 /************** Inverse of matrix **************/      return ps;
 void ludcmp(double **a, int n, int *indx, double *d)  }
 {  
   int i,imax,j,k;  /**************** Product of 2 matrices ******************/
   double big,dum,sum,temp;  
   double *vv;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
    {
   vv=vector(1,n);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   *d=1.0;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   for (i=1;i<=n;i++) {    /* in, b, out are matrice of pointers which should have been initialized 
     big=0.0;       before: only the contents of out is modified. The function returns
     for (j=1;j<=n;j++)       a pointer to pointers identical to out */
       if ((temp=fabs(a[i][j])) > big) big=temp;    long i, j, k;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    for(i=nrl; i<= nrh; i++)
     vv[i]=1.0/big;      for(k=ncolol; k<=ncoloh; k++)
   }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   for (j=1;j<=n;j++) {          out[i][k] +=in[i][j]*b[j][k];
     for (i=1;i<j;i++) {  
       sum=a[i][j];    return out;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  }
       a[i][j]=sum;  
     }  
     big=0.0;  /************* Higher Matrix Product ***************/
     for (i=j;i<=n;i++) {  
       sum=a[i][j];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       for (k=1;k<j;k++)  {
         sum -= a[i][k]*a[k][j];    /* Computes the transition matrix starting at age 'age' over 
       a[i][j]=sum;       'nhstepm*hstepm*stepm' months (i.e. until
       if ( (dum=vv[i]*fabs(sum)) >= big) {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         big=dum;       nhstepm*hstepm matrices. 
         imax=i;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       }       (typically every 2 years instead of every month which is too big 
     }       for the memory).
     if (j != imax) {       Model is determined by parameters x and covariates have to be 
       for (k=1;k<=n;k++) {       included manually here. 
         dum=a[imax][k];  
         a[imax][k]=a[j][k];       */
         a[j][k]=dum;  
       }    int i, j, d, h, k;
       *d = -(*d);    double **out, cov[NCOVMAX];
       vv[imax]=vv[j];    double **newm;
     }  
     indx[j]=imax;    /* Hstepm could be zero and should return the unit matrix */
     if (a[j][j] == 0.0) a[j][j]=TINY;    for (i=1;i<=nlstate+ndeath;i++)
     if (j != n) {      for (j=1;j<=nlstate+ndeath;j++){
       dum=1.0/(a[j][j]);        oldm[i][j]=(i==j ? 1.0 : 0.0);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        po[i][j][0]=(i==j ? 1.0 : 0.0);
     }      }
   }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   free_vector(vv,1,n);  /* Doesn't work */    for(h=1; h <=nhstepm; h++){
 ;      for(d=1; d <=hstepm; d++){
 }        newm=savm;
         /* Covariates have to be included here again */
 void lubksb(double **a, int n, int *indx, double b[])        cov[1]=1.;
 {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   int i,ii=0,ip,j;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double sum;        for (k=1; k<=cptcovage;k++)
            cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for (i=1;i<=n;i++) {        for (k=1; k<=cptcovprod;k++)
     ip=indx[i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     sum=b[ip];  
     b[ip]=b[i];  
     if (ii)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     else if (sum) ii=i;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     b[i]=sum;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   }        savm=oldm;
   for (i=n;i>=1;i--) {        oldm=newm;
     sum=b[i];      }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      for(i=1; i<=nlstate+ndeath; i++)
     b[i]=sum/a[i][i];        for(j=1;j<=nlstate+ndeath;j++) {
   }          po[i][j][h]=newm[i][j];
 }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
            */
 /************ Frequencies ********************/        }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)    } /* end h */
 {  /* Some frequencies */    return po;
    }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */  
   double *pp;  /*************** log-likelihood *************/
   double pos, k2, dateintsum=0,k2cpt=0;  double func( double *x)
   FILE *ficresp;  {
   char fileresp[FILENAMELENGTH];    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
   pp=vector(1,nlstate);    double **out;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double sw; /* Sum of weights */
   strcpy(fileresp,"p");    double lli; /* Individual log likelihood */
   strcat(fileresp,fileres);    int s1, s2;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double bbh, survp;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    long ipmx;
     exit(0);    /*extern weight */
   }    /* We are differentiating ll according to initial status */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   j1=0;    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   j=cptcoveff;    */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    cov[1]=1.;
   
   for(k1=1; k1<=j;k1++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
    for(i1=1; i1<=ncodemax[k1];i1++){  
        j1++;    if(mle==1){
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          scanf("%d", i);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (i=-1; i<=nlstate+ndeath; i++)          for(mi=1; mi<= wav[i]-1; mi++){
          for (jk=-1; jk<=nlstate+ndeath; jk++)            for (ii=1;ii<=nlstate+ndeath;ii++)
            for(m=agemin; m <= agemax+3; m++)            for (j=1;j<=nlstate+ndeath;j++){
              freq[i][jk][m]=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
         dateintsum=0;            }
         k2cpt=0;          for(d=0; d<dh[mi][i]; d++){
        for (i=1; i<=imx; i++) {            newm=savm;
          bool=1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          if  (cptcovn>0) {            for (kk=1; kk<=cptcovage;kk++) {
            for (z1=1; z1<=cptcoveff; z1++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            }
                bool=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          if (bool==1) {            savm=oldm;
            for(m=firstpass; m<=lastpass; m++){            oldm=newm;
              k2=anint[m][i]+(mint[m][i]/12.);          } /* end mult */
              if ((k2>=dateprev1) && (k2<=dateprev2)) {        
                if(agev[m][i]==0) agev[m][i]=agemax+1;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                if(agev[m][i]==1) agev[m][i]=agemax+2;          /* But now since version 0.9 we anticipate for bias and large stepm.
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           * (in months) between two waves is not a multiple of stepm, we rounded to 
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {           * the nearest (and in case of equal distance, to the lowest) interval but now
                  dateintsum=dateintsum+k2;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
                  k2cpt++;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
                }           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
              }           * -stepm/2 to stepm/2 .
            }           * For stepm=1 the results are the same as for previous versions of Imach.
          }           * For stepm > 1 the results are less biased than in previous versions. 
        }           */
         if  (cptcovn>0) {          s1=s[mw[mi][i]][i];
          fprintf(ficresp, "\n#********** Variable ");          s2=s[mw[mi+1][i]][i];
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          bbh=(double)bh[mi][i]/(double)stepm; 
        fprintf(ficresp, "**********\n#");          /* bias is positive if real duration
         }           * is higher than the multiple of stepm and negative otherwise.
        for(i=1; i<=nlstate;i++)           */
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
        fprintf(ficresp, "\n");          if( s2 > nlstate){ 
                    /* i.e. if s2 is a death state and if the date of death is known then the contribution
   for(i=(int)agemin; i <= (int)agemax+3; i++){               to the likelihood is the probability to die between last step unit time and current 
     if(i==(int)agemax+3)               step unit time, which is also the differences between probability to die before dh 
       printf("Total");               and probability to die before dh-stepm . 
     else               In version up to 0.92 likelihood was computed
       printf("Age %d", i);          as if date of death was unknown. Death was treated as any other
     for(jk=1; jk <=nlstate ; jk++){          health state: the date of the interview describes the actual state
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          and not the date of a change in health state. The former idea was
         pp[jk] += freq[jk][m][i];          to consider that at each interview the state was recorded
     }          (healthy, disable or death) and IMaCh was corrected; but when we
     for(jk=1; jk <=nlstate ; jk++){          introduced the exact date of death then we should have modified
       for(m=-1, pos=0; m <=0 ; m++)          the contribution of an exact death to the likelihood. This new
         pos += freq[jk][m][i];          contribution is smaller and very dependent of the step unit
       if(pp[jk]>=1.e-10)          stepm. It is no more the probability to die between last interview
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          and month of death but the probability to survive from last
       else          interview up to one month before death multiplied by the
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          probability to die within a month. Thanks to Chris
     }          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
      for(jk=1; jk <=nlstate ; jk++){          which slows down the processing. The difference can be up to 10%
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          lower mortality.
         pp[jk] += freq[jk][m][i];            */
      }            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
     for(jk=1,pos=0; jk <=nlstate ; jk++)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       pos += pp[jk];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     for(jk=1; jk <=nlstate ; jk++){          } 
       if(pos>=1.e-5)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          /*if(lli ==000.0)*/
       else          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          ipmx +=1;
       if( i <= (int) agemax){          sw += weight[i];
         if(pos>=1.e-5){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        } /* end of wave */
           probs[i][jk][j1]= pp[jk]/pos;      } /* end of individual */
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    }  else if(mle==2){
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       else        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
     for(jk=-1; jk <=nlstate+ndeath; jk++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(m=-1; m <=nlstate+ndeath; m++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            }
     if(i <= (int) agemax)          for(d=0; d<=dh[mi][i]; d++){
       fprintf(ficresp,"\n");            newm=savm;
     printf("\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
     }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  }            }
   dateintmean=dateintsum/k2cpt;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fclose(ficresp);            savm=oldm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            oldm=newm;
   free_vector(pp,1,nlstate);          } /* end mult */
         
   /* End of Freq */          s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 /************ Prevalence ********************/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          ipmx +=1;
 {  /* Some frequencies */          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        } /* end of wave */
   double ***freq; /* Frequencies */      } /* end of individual */
   double *pp;    }  else if(mle==3){  /* exponential inter-extrapolation */
   double pos, k2;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   pp=vector(1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   j1=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   j=cptcoveff;          for(d=0; d<dh[mi][i]; d++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  for(k1=1; k1<=j;k1++){            for (kk=1; kk<=cptcovage;kk++) {
     for(i1=1; i1<=ncodemax[k1];i1++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       j1++;            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (i=-1; i<=nlstate+ndeath; i++)                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (jk=-1; jk<=nlstate+ndeath; jk++)              savm=oldm;
           for(m=agemin; m <= agemax+3; m++)            oldm=newm;
             freq[i][jk][m]=0;          } /* end mult */
              
       for (i=1; i<=imx; i++) {          s1=s[mw[mi][i]][i];
         bool=1;          s2=s[mw[mi+1][i]][i];
         if  (cptcovn>0) {          bbh=(double)bh[mi][i]/(double)stepm; 
           for (z1=1; z1<=cptcoveff; z1++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          ipmx +=1;
               bool=0;          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if (bool==1) {        } /* end of wave */
           for(m=firstpass; m<=lastpass; m++){      } /* end of individual */
             k2=anint[m][i]+(mint[m][i]/12.);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for(mi=1; mi<= wav[i]-1; mi++){
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];              for (j=1;j<=nlstate+ndeath;j++){
             }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
       }          for(d=0; d<dh[mi][i]; d++){
                  newm=savm;
         for(i=(int)agemin; i <= (int)agemax+3; i++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               pp[jk] += freq[jk][m][i];            }
           }          
           for(jk=1; jk <=nlstate ; jk++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             for(m=-1, pos=0; m <=0 ; m++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             pos += freq[jk][m][i];            savm=oldm;
         }            oldm=newm;
                  } /* end mult */
          for(jk=1; jk <=nlstate ; jk++){        
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          s1=s[mw[mi][i]][i];
              pp[jk] += freq[jk][m][i];          s2=s[mw[mi+1][i]][i];
          }          if( s2 > nlstate){ 
                      lli=log(out[s1][s2] - savm[s1][s2]);
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
          for(jk=1; jk <=nlstate ; jk++){                    }
            if( i <= (int) agemax){          ipmx +=1;
              if(pos>=1.e-5){          sw += weight[i];
                probs[i][jk][j1]= pp[jk]/pos;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
            }        } /* end of wave */
          }      } /* end of individual */
              }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(pp,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
 }  /* End of Freq */          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 /************* Waves Concatenation ***************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          
      Death is a valid wave (if date is known).            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            savm=oldm;
      and mw[mi+1][i]. dh depends on stepm.            oldm=newm;
      */          } /* end mult */
         
   int i, mi, m;          s1=s[mw[mi][i]][i];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          s2=s[mw[mi+1][i]][i];
      double sum=0., jmean=0.;*/          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
   int j, k=0,jk, ju, jl;          sw += weight[i];
   double sum=0.;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   jmin=1e+5;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   jmax=-1;        } /* end of wave */
   jmean=0.;      } /* end of individual */
   for(i=1; i<=imx; i++){    } /* End of if */
     mi=0;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     m=firstpass;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     while(s[m][i] <= nlstate){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       if(s[m][i]>=1)    return -l;
         mw[++mi][i]=m;  }
       if(m >=lastpass)  
         break;  /*************** log-likelihood *************/
       else  double funcone( double *x)
         m++;  {
     }/* end while */    /* Same as likeli but slower because of a lot of printf and if */
     if (s[m][i] > nlstate){    int i, ii, j, k, mi, d, kk;
       mi++;     /* Death is another wave */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       /* if(mi==0)  never been interviewed correctly before death */    double **out;
          /* Only death is a correct wave */    double lli; /* Individual log likelihood */
       mw[mi][i]=m;    double llt;
     }    int s1, s2;
     double bbh, survp;
     wav[i]=mi;    /*extern weight */
     if(mi==0)    /* We are differentiating ll according to initial status */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   for(i=1; i<=imx; i++){    */
     for(mi=1; mi<wav[i];mi++){    cov[1]=1.;
       if (stepm <=0)  
         dh[mi][i]=1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if (agedc[i] < 2*AGESUP) {      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      for(mi=1; mi<= wav[i]-1; mi++){
           if(j==0) j=1;  /* Survives at least one month after exam */        for (ii=1;ii<=nlstate+ndeath;ii++)
           k=k+1;          for (j=1;j<=nlstate+ndeath;j++){
           if (j >= jmax) jmax=j;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if (j <= jmin) jmin=j;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           sum=sum+j;          }
           /* if (j<10) printf("j=%d num=%d ",j,i); */        for(d=0; d<dh[mi][i]; d++){
           }          newm=savm;
         }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         else{          for (kk=1; kk<=cptcovage;kk++) {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           k=k+1;          }
           if (j >= jmax) jmax=j;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           else if (j <= jmin)jmin=j;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          savm=oldm;
           sum=sum+j;          oldm=newm;
         }        } /* end mult */
         jk= j/stepm;        
         jl= j -jk*stepm;        s1=s[mw[mi][i]][i];
         ju= j -(jk+1)*stepm;        s2=s[mw[mi+1][i]][i];
         if(jl <= -ju)        bbh=(double)bh[mi][i]/(double)stepm; 
           dh[mi][i]=jk;        /* bias is positive if real duration
         else         * is higher than the multiple of stepm and negative otherwise.
           dh[mi][i]=jk+1;         */
         if(dh[mi][i]==0)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           dh[mi][i]=1; /* At least one step */          lli=log(out[s1][s2] - savm[s1][s2]);
       }        } else if (mle==1){
     }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }        } else if(mle==2){
   jmean=sum/k;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        } else if(mle==3){  /* exponential inter-extrapolation */
  }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 /*********** Tricode ****************************/        } else if (mle==4){  /* mle=4 no inter-extrapolation */
 void tricode(int *Tvar, int **nbcode, int imx)          lli=log(out[s1][s2]); /* Original formula */
 {        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   int Ndum[20],ij=1, k, j, i;          lli=log(out[s1][s2]); /* Original formula */
   int cptcode=0;        } /* End of if */
   cptcoveff=0;        ipmx +=1;
          sw += weight[i];
   for (k=0; k<19; k++) Ndum[k]=0;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (k=1; k<=7; k++) ncodemax[k]=0;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     for (i=1; i<=imx; i++) {   %10.6f %10.6f %10.6f ", \
       ij=(int)(covar[Tvar[j]][i]);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       Ndum[ij]++;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       if (ij > cptcode) cptcode=ij;            llt +=ll[k]*gipmx/gsw;
     }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
     for (i=0; i<=cptcode; i++) {          fprintf(ficresilk," %10.6f\n", -llt);
       if(Ndum[i]!=0) ncodemax[j]++;        }
     }      } /* end of wave */
     ij=1;    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for (i=1; i<=ncodemax[j]; i++) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for (k=0; k<=19; k++) {    if(globpr==0){ /* First time we count the contributions and weights */
         if (Ndum[k] != 0) {      gipmx=ipmx;
           nbcode[Tvar[j]][ij]=k;      gsw=sw;
           ij++;    }
         }    return -l;
         if (ij > ncodemax[j]) break;  }
       }    
     }  
   }    /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
  for (k=0; k<19; k++) Ndum[k]=0;  {
     /* This routine should help understanding what is done with 
  for (i=1; i<=ncovmodel-2; i++) {       the selection of individuals/waves and
       ij=Tvar[i];       to check the exact contribution to the likelihood.
       Ndum[ij]++;       Plotting could be done.
     }     */
     int k;
  ij=1;  
  for (i=1; i<=10; i++) {    if(*globpri !=0){ /* Just counts and sums, no printings */
    if((Ndum[i]!=0) && (i<=ncov)){      strcpy(fileresilk,"ilk"); 
      Tvaraff[ij]=i;      strcat(fileresilk,fileres);
      ij++;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
    }        printf("Problem with resultfile: %s\n", fileresilk);
  }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
        }
     cptcoveff=ij-1;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 /*********** Health Expectancies ****************/      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 {    }
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h;    *fretone=(*funcone)(p);
   double age, agelim,hf;    if(*globpri !=0){
   double ***p3mat;      fclose(ficresilk);
        fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   fprintf(ficreseij,"# Health expectancies\n");      fflush(fichtm); 
   fprintf(ficreseij,"# Age");    } 
   for(i=1; i<=nlstate;i++)    return;
     for(j=1; j<=nlstate;j++)  }
       fprintf(ficreseij," %1d-%1d",i,j);  
   fprintf(ficreseij,"\n");  
   /*********** Maximum Likelihood Estimation ***************/
   hstepm=1*YEARM; /*  Every j years of age (in month) */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
   agelim=AGESUP;    int i,j, iter;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double **xi;
     /* nhstepm age range expressed in number of stepm */    double fret;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    double fretone; /* Only one call to likelihood */
     /* Typically if 20 years = 20*12/6=40 stepm */    /*  char filerespow[FILENAMELENGTH];*/
     if (stepm >= YEARM) hstepm=1;    xi=matrix(1,npar,1,npar);
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    for (i=1;i<=npar;i++)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=1;j<=npar;j++)
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        xi[i][j]=(i==j ? 1.0 : 0.0);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
     for(i=1; i<=nlstate;i++)      printf("Problem with resultfile: %s\n", filerespow);
       for(j=1; j<=nlstate;j++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    }
           eij[i][j][(int)age] +=p3mat[i][j][h];    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         }    for (i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate+ndeath;j++)
     hf=1;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     if (stepm >= YEARM) hf=stepm/YEARM;    fprintf(ficrespow,"\n");
     fprintf(ficreseij,"%.0f",age );  
     for(i=1; i<=nlstate;i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
       for(j=1; j<=nlstate;j++){  
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    fclose(ficrespow);
       }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficreseij,"\n");    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   }  
 }  }
   
 /************ Variance ******************/  /**** Computes Hessian and covariance matrix ***/
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 {  {
   /* Variance of health expectancies */    double  **a,**y,*x,pd;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double **hess;
   double **newm;    int i, j,jk;
   double **dnewm,**doldm;    int *indx;
   int i, j, nhstepm, hstepm, h;  
   int k, cptcode;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   double *xp;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   double **gp, **gm;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   double ***gradg, ***trgradg;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   double ***p3mat;    double gompertz(double p[]);
   double age,agelim;    hess=matrix(1,npar,1,npar);
   int theta;  
     printf("\nCalculation of the hessian matrix. Wait...\n");
    fprintf(ficresvij,"# Covariances of life expectancies\n");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   fprintf(ficresvij,"# Age");    for (i=1;i<=npar;i++){
   for(i=1; i<=nlstate;i++)      printf("%d",i);fflush(stdout);
     for(j=1; j<=nlstate;j++)      fprintf(ficlog,"%d",i);fflush(ficlog);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);     
   fprintf(ficresvij,"\n");       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
   xp=vector(1,npar);      /*  printf(" %f ",p[i]);
   dnewm=matrix(1,nlstate,1,npar);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   doldm=matrix(1,nlstate,1,nlstate);    }
      
   hstepm=1*YEARM; /* Every year of age */    for (i=1;i<=npar;i++) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for (j=1;j<=npar;j++)  {
   agelim = AGESUP;        if (j>i) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          printf(".%d%d",i,j);fflush(stdout);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     if (stepm >= YEARM) hstepm=1;          hess[i][j]=hessij(p,delti,i,j,func,npar);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          hess[j][i]=hess[i][j];    
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          /*printf(" %lf ",hess[i][j]);*/
     gp=matrix(0,nhstepm,1,nlstate);        }
     gm=matrix(0,nhstepm,1,nlstate);      }
     }
     for(theta=1; theta <=npar; theta++){    printf("\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */    fprintf(ficlog,"\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    
     a=matrix(1,npar,1,npar);
       if (popbased==1) {    y=matrix(1,npar,1,npar);
         for(i=1; i<=nlstate;i++)    x=vector(1,npar);
           prlim[i][i]=probs[(int)age][i][ij];    indx=ivector(1,npar);
       }    for (i=1;i<=npar;i++)
            for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       for(j=1; j<= nlstate; j++){    ludcmp(a,npar,indx,&pd);
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    for (j=1;j<=npar;j++) {
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      for (i=1;i<=npar;i++) x[i]=0;
         }      x[j]=1;
       }      lubksb(a,npar,indx,x);
          for (i=1;i<=npar;i++){ 
       for(i=1; i<=npar; i++) /* Computes gradient */        matcov[i][j]=x[i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
     printf("\n#Hessian matrix#\n");
       if (popbased==1) {    fprintf(ficlog,"\n#Hessian matrix#\n");
         for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++) { 
           prlim[i][i]=probs[(int)age][i][ij];      for (j=1;j<=npar;j++) { 
       }        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
       for(j=1; j<= nlstate; j++){      }
         for(h=0; h<=nhstepm; h++){      printf("\n");
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      fprintf(ficlog,"\n");
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    }
         }  
       }    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
       for(j=1; j<= nlstate; j++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         for(h=0; h<=nhstepm; h++){    ludcmp(a,npar,indx,&pd);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }    /*  printf("\n#Hessian matrix recomputed#\n");
     } /* End theta */  
     for (j=1;j<=npar;j++) {
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
     for(h=0; h<=nhstepm; h++)      lubksb(a,npar,indx,x);
       for(j=1; j<=nlstate;j++)      for (i=1;i<=npar;i++){ 
         for(theta=1; theta <=npar; theta++)        y[i][j]=x[i];
           trgradg[h][j][theta]=gradg[h][theta][j];        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
     for(i=1;i<=nlstate;i++)      }
       for(j=1;j<=nlstate;j++)      printf("\n");
         vareij[i][j][(int)age] =0.;      fprintf(ficlog,"\n");
     for(h=0;h<=nhstepm;h++){    }
       for(k=0;k<=nhstepm;k++){    */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    free_matrix(a,1,npar,1,npar);
         for(i=1;i<=nlstate;i++)    free_matrix(y,1,npar,1,npar);
           for(j=1;j<=nlstate;j++)    free_vector(x,1,npar);
             vareij[i][j][(int)age] += doldm[i][j];    free_ivector(indx,1,npar);
       }    free_matrix(hess,1,npar,1,npar);
     }  
     h=1;  
     if (stepm >= YEARM) h=stepm/YEARM;  }
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  /*************** hessian matrix ****************/
       for(j=1; j<=nlstate;j++){  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);  {
       }    int i;
     fprintf(ficresvij,"\n");    int l=1, lmax=20;
     free_matrix(gp,0,nhstepm,1,nlstate);    double k1,k2;
     free_matrix(gm,0,nhstepm,1,nlstate);    double p2[NPARMAX+1];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    double res;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double fx;
   } /* End age */    int k=0,kmax=10;
      double l1;
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);    fx=func(x);
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
 }      l1=pow(10,l);
       delts=delt;
 /************ Variance of prevlim ******************/      for(k=1 ; k <kmax; k=k+1){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        delt = delta*(l1*k);
 {        p2[theta]=x[theta] +delt;
   /* Variance of prevalence limit */        k1=func(p2)-fx;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        p2[theta]=x[theta]-delt;
   double **newm;        k2=func(p2)-fx;
   double **dnewm,**doldm;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   int i, j, nhstepm, hstepm;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   int k, cptcode;        
   double *xp;  #ifdef DEBUG
   double *gp, *gm;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double **gradg, **trgradg;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double age,agelim;  #endif
   int theta;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
            if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          k=kmax;
   fprintf(ficresvpl,"# Age");        }
   for(i=1; i<=nlstate;i++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       fprintf(ficresvpl," %1d-%1d",i,i);          k=kmax; l=lmax*10.;
   fprintf(ficresvpl,"\n");        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   xp=vector(1,npar);          delts=delt;
   dnewm=matrix(1,nlstate,1,npar);        }
   doldm=matrix(1,nlstate,1,nlstate);      }
      }
   hstepm=1*YEARM; /* Every year of age */    delti[theta]=delts;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    return res; 
   agelim = AGESUP;    
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  {
     gradg=matrix(1,npar,1,nlstate);    int i;
     gp=vector(1,nlstate);    int l=1, l1, lmax=20;
     gm=vector(1,nlstate);    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
     for(theta=1; theta <=npar; theta++){    int k;
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fx=func(x);
       }    for (k=1; k<=2; k++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=1;i<=npar;i++) p2[i]=x[i];
       for(i=1;i<=nlstate;i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
         gp[i] = prlim[i][i];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
          k1=func(p2)-fx;
       for(i=1; i<=npar; i++) /* Computes gradient */    
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      p2[thetai]=x[thetai]+delti[thetai]/k;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(i=1;i<=nlstate;i++)      k2=func(p2)-fx;
         gm[i] = prlim[i][i];    
       p2[thetai]=x[thetai]-delti[thetai]/k;
       for(i=1;i<=nlstate;i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      k3=func(p2)-fx;
     } /* End theta */    
       p2[thetai]=x[thetai]-delti[thetai]/k;
     trgradg =matrix(1,nlstate,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
     for(j=1; j<=nlstate;j++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       for(theta=1; theta <=npar; theta++)  #ifdef DEBUG
         trgradg[j][theta]=gradg[theta][j];      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(i=1;i<=nlstate;i++)  #endif
       varpl[i][(int)age] =0.;    }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    return res;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  }
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
     fprintf(ficresvpl,"%.0f ",age );  { 
     for(i=1; i<=nlstate;i++)    int i,imax,j,k; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double big,dum,sum,temp; 
     fprintf(ficresvpl,"\n");    double *vv; 
     free_vector(gp,1,nlstate);   
     free_vector(gm,1,nlstate);    vv=vector(1,n); 
     free_matrix(gradg,1,npar,1,nlstate);    *d=1.0; 
     free_matrix(trgradg,1,nlstate,1,npar);    for (i=1;i<=n;i++) { 
   } /* End age */      big=0.0; 
       for (j=1;j<=n;j++) 
   free_vector(xp,1,npar);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   free_matrix(doldm,1,nlstate,1,npar);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   free_matrix(dnewm,1,nlstate,1,nlstate);      vv[i]=1.0/big; 
     } 
 }    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
 /************ Variance of one-step probabilities  ******************/        sum=a[i][j]; 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 {        a[i][j]=sum; 
   int i, j;      } 
   int k=0, cptcode;      big=0.0; 
   double **dnewm,**doldm;      for (i=j;i<=n;i++) { 
   double *xp;        sum=a[i][j]; 
   double *gp, *gm;        for (k=1;k<j;k++) 
   double **gradg, **trgradg;          sum -= a[i][k]*a[k][j]; 
   double age,agelim, cov[NCOVMAX];        a[i][j]=sum; 
   int theta;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   char fileresprob[FILENAMELENGTH];          big=dum; 
           imax=i; 
   strcpy(fileresprob,"prob");        } 
   strcat(fileresprob,fileres);      } 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      if (j != imax) { 
     printf("Problem with resultfile: %s\n", fileresprob);        for (k=1;k<=n;k++) { 
   }          dum=a[imax][k]; 
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);          a[imax][k]=a[j][k]; 
            a[j][k]=dum; 
         } 
   xp=vector(1,npar);        *d = -(*d); 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        vv[imax]=vv[j]; 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      } 
        indx[j]=imax; 
   cov[1]=1;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   for (age=bage; age<=fage; age ++){      if (j != n) { 
     cov[2]=age;        dum=1.0/(a[j][j]); 
     gradg=matrix(1,npar,1,9);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     trgradg=matrix(1,9,1,npar);      } 
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    } 
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    free_vector(vv,1,n);  /* Doesn't work */
      ;
     for(theta=1; theta <=npar; theta++){  } 
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  void lubksb(double **a, int n, int *indx, double b[]) 
        { 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    int i,ii=0,ip,j; 
        double sum; 
       k=0;   
       for(i=1; i<= (nlstate+ndeath); i++){    for (i=1;i<=n;i++) { 
         for(j=1; j<=(nlstate+ndeath);j++){      ip=indx[i]; 
            k=k+1;      sum=b[ip]; 
           gp[k]=pmmij[i][j];      b[ip]=b[i]; 
         }      if (ii) 
       }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
       for(i=1; i<=npar; i++)      b[i]=sum; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    } 
        for (i=n;i>=1;i--) { 
       sum=b[i]; 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       k=0;      b[i]=sum/a[i][i]; 
       for(i=1; i<=(nlstate+ndeath); i++){    } 
         for(j=1; j<=(nlstate+ndeath);j++){  } 
           k=k+1;  
           gm[k]=pmmij[i][j];  /************ Frequencies ********************/
         }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
       }  {  /* Some frequencies */
          
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      int first;
     }    double ***freq; /* Frequencies */
     double *pp, **prop;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       for(theta=1; theta <=npar; theta++)    FILE *ficresp;
       trgradg[j][theta]=gradg[theta][j];    char fileresp[FILENAMELENGTH];
      
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    pp=vector(1,nlstate);
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
      pmij(pmmij,cov,ncovmodel,x,nlstate);    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
      k=0;      printf("Problem with prevalence resultfile: %s\n", fileresp);
      for(i=1; i<=(nlstate+ndeath); i++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
        for(j=1; j<=(nlstate+ndeath);j++){      exit(0);
          k=k+1;    }
          gm[k]=pmmij[i][j];    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
         }    j1=0;
      }    
          j=cptcoveff;
      /*printf("\n%d ",(int)age);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
            first=1;
   
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    for(k1=1; k1<=j;k1++){
      }*/      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   fprintf(ficresprob,"\n%d ",(int)age);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        for (i=-1; i<=nlstate+ndeath; i++)  
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);            for(m=iagemin; m <= iagemax+3; m++)
   }              freq[i][jk][m]=0;
   
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=1; i<=nlstate; i++)  
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        for(m=iagemin; m <= iagemax+3; m++)
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          prop[i][m]=0;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        
 }        dateintsum=0;
  free_vector(xp,1,npar);        k2cpt=0;
 fclose(ficresprob);        for (i=1; i<=imx; i++) {
  exit(0);          bool=1;
 }          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
 /***********************************************/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 /**************** Main Program *****************/                bool=0;
 /***********************************************/          }
           if (bool==1){
 int main(int argc, char *argv[])            for(m=firstpass; m<=lastpass; m++){
 {              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   double agedeb, agefin,hf;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   double agemin=1.e20, agemax=-1.e20;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
   double fret;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   double **xi,tmp,delta;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
   double dum; /* Dummy variable */                
   double ***p3mat;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   int *indx;                  dateintsum=dateintsum+k2;
   char line[MAXLINE], linepar[MAXLINE];                  k2cpt++;
   char title[MAXLINE];                }
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];                /*}*/
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            }
            }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];;        }
          
   char filerest[FILENAMELENGTH];        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   char fileregp[FILENAMELENGTH];  
   char popfile[FILENAMELENGTH];        if  (cptcovn>0) {
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          fprintf(ficresp, "\n#********** Variable "); 
   int firstobs=1, lastobs=10;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int sdeb, sfin; /* Status at beginning and end */          fprintf(ficresp, "**********\n#");
   int c,  h , cpt,l;        }
   int ju,jl, mi;        for(i=1; i<=nlstate;i++) 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        fprintf(ficresp, "\n");
   int mobilav=0,popforecast=0;        
   int hstepm, nhstepm;        for(i=iagemin; i <= iagemax+3; i++){
   int *popage;/*boolprev=0 if date and zero if wave*/          if(i==iagemax+3){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;            fprintf(ficlog,"Total");
           }else{
   double bage, fage, age, agelim, agebase;            if(first==1){
   double ftolpl=FTOL;              first=0;
   double **prlim;              printf("See log file for details...\n");
   double *severity;            }
   double ***param; /* Matrix of parameters */            fprintf(ficlog,"Age %d", i);
   double  *p;          }
   double **matcov; /* Matrix of covariance */          for(jk=1; jk <=nlstate ; jk++){
   double ***delti3; /* Scale */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   double *delti; /* Scale */              pp[jk] += freq[jk][m][i]; 
   double ***eij, ***vareij;          }
   double **varpl; /* Variances of prevalence limits by age */          for(jk=1; jk <=nlstate ; jk++){
   double *epj, vepp;            for(m=-1, pos=0; m <=0 ; m++)
   double kk1, kk2;              pos += freq[jk][m][i];
   double *popeffectif,*popcount;            if(pp[jk]>=1.e-10){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;              if(first==1){
   double yp,yp1,yp2;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
   char version[80]="Imach version 0.7, February 2002, INED-EUROREVES ";              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   char *alph[]={"a","a","b","c","d","e"}, str[4];            }else{
               if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   char z[1]="c", occ;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 #include <sys/time.h>            }
 #include <time.h>          }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
            for(jk=1; jk <=nlstate ; jk++){
   /* long total_usecs;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   struct timeval start_time, end_time;              pp[jk] += freq[jk][m][i];
            }       
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
             posprop += prop[jk][i];
   printf("\n%s",version);          }
   if(argc <=1){          for(jk=1; jk <=nlstate ; jk++){
     printf("\nEnter the parameter file name: ");            if(pos>=1.e-5){
     scanf("%s",pathtot);              if(first==1)
   }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   else{              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     strcpy(pathtot,argv[1]);            }else{
   }              if(first==1)
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   /*cygwin_split_path(pathtot,path,optionfile);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            }
   /* cutv(path,optionfile,pathtot,'\\');*/            if( i <= iagemax){
               if(pos>=1.e-5){
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   chdir(path);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   replace(pathc,path);              }
               else
 /*-------- arguments in the command line --------*/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
   strcpy(fileres,"r");          }
   strcat(fileres, optionfilefiname);          
   strcat(fileres,".txt");    /* Other files have txt extension */          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
   /*---------arguments file --------*/              if(freq[jk][m][i] !=0 ) {
               if(first==1)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     printf("Problem with optionfile %s\n",optionfile);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     goto end;              }
   }          if(i <= iagemax)
             fprintf(ficresp,"\n");
   strcpy(filereso,"o");          if(first==1)
   strcat(filereso,fileres);            printf("Others in log...\n");
   if((ficparo=fopen(filereso,"w"))==NULL) {          fprintf(ficlog,"\n");
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        }
   }      }
     }
   /* Reads comments: lines beginning with '#' */    dateintmean=dateintsum/k2cpt; 
   while((c=getc(ficpar))=='#' && c!= EOF){   
     ungetc(c,ficpar);    fclose(ficresp);
     fgets(line, MAXLINE, ficpar);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     puts(line);    free_vector(pp,1,nlstate);
     fputs(line,ficparo);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   }    /* End of Freq */
   ungetc(c,ficpar);  }
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  /************ Prevalence ********************/
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);  {  
 while((c=getc(ficpar))=='#' && c!= EOF){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     ungetc(c,ficpar);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     fgets(line, MAXLINE, ficpar);       We still use firstpass and lastpass as another selection.
     puts(line);    */
     fputs(line,ficparo);   
   }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   ungetc(c,ficpar);    double ***freq; /* Frequencies */
      double *pp, **prop;
        double pos,posprop; 
   covar=matrix(0,NCOVMAX,1,n);    double  y2; /* in fractional years */
   cptcovn=0;    int iagemin, iagemax;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
     iagemin= (int) agemin;
   ncovmodel=2+cptcovn;    iagemax= (int) agemax;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /*pp=vector(1,nlstate);*/
      prop=matrix(1,nlstate,iagemin,iagemax+3); 
   /* Read guess parameters */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   /* Reads comments: lines beginning with '#' */    j1=0;
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    j=cptcoveff;
     fgets(line, MAXLINE, ficpar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     puts(line);    
     fputs(line,ficparo);    for(k1=1; k1<=j;k1++){
   }      for(i1=1; i1<=ncodemax[k1];i1++){
   ungetc(c,ficpar);        j1++;
          
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for (i=1; i<=nlstate; i++)  
     for(i=1; i <=nlstate; i++)          for(m=iagemin; m <= iagemax+3; m++)
     for(j=1; j <=nlstate+ndeath-1; j++){            prop[i][m]=0.0;
       fscanf(ficpar,"%1d%1d",&i1,&j1);       
       fprintf(ficparo,"%1d%1d",i1,j1);        for (i=1; i<=imx; i++) { /* Each individual */
       printf("%1d%1d",i,j);          bool=1;
       for(k=1; k<=ncovmodel;k++){          if  (cptcovn>0) {
         fscanf(ficpar," %lf",&param[i][j][k]);            for (z1=1; z1<=cptcoveff; z1++) 
         printf(" %lf",param[i][j][k]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         fprintf(ficparo," %lf",param[i][j][k]);                bool=0;
       }          } 
       fscanf(ficpar,"\n");          if (bool==1) { 
       printf("\n");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       fprintf(ficparo,"\n");              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   p=param[1][1];                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                    /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   /* Reads comments: lines beginning with '#' */                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   while((c=getc(ficpar))=='#' && c!= EOF){                  prop[s[m][i]][iagemax+3] += weight[i]; 
     ungetc(c,ficpar);                } 
     fgets(line, MAXLINE, ficpar);              }
     puts(line);            } /* end selection of waves */
     fputs(line,ficparo);          }
   }        }
   ungetc(c,ficpar);        for(i=iagemin; i <= iagemax+3; i++){  
           
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */            posprop += prop[jk][i]; 
   for(i=1; i <=nlstate; i++){          } 
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for(jk=1; jk <=nlstate ; jk++){     
       printf("%1d%1d",i,j);            if( i <=  iagemax){ 
       fprintf(ficparo,"%1d%1d",i1,j1);              if(posprop>=1.e-5){ 
       for(k=1; k<=ncovmodel;k++){                probs[i][jk][j1]= prop[jk][i]/posprop;
         fscanf(ficpar,"%le",&delti3[i][j][k]);              } 
         printf(" %le",delti3[i][j][k]);            } 
         fprintf(ficparo," %le",delti3[i][j][k]);          }/* end jk */ 
       }        }/* end i */ 
       fscanf(ficpar,"\n");      } /* end i1 */
       printf("\n");    } /* end k1 */
       fprintf(ficparo,"\n");    
     }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   }    /*free_vector(pp,1,nlstate);*/
   delti=delti3[1][1];    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
    }  /* End of prevalence */
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  /************* Waves Concatenation ***************/
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     puts(line);  {
     fputs(line,ficparo);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   }       Death is a valid wave (if date is known).
   ungetc(c,ficpar);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   matcov=matrix(1,npar,1,npar);       and mw[mi+1][i]. dh depends on stepm.
   for(i=1; i <=npar; i++){       */
     fscanf(ficpar,"%s",&str);  
     printf("%s",str);    int i, mi, m;
     fprintf(ficparo,"%s",str);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     for(j=1; j <=i; j++){       double sum=0., jmean=0.;*/
       fscanf(ficpar," %le",&matcov[i][j]);    int first;
       printf(" %.5le",matcov[i][j]);    int j, k=0,jk, ju, jl;
       fprintf(ficparo," %.5le",matcov[i][j]);    double sum=0.;
     }    first=0;
     fscanf(ficpar,"\n");    jmin=1e+5;
     printf("\n");    jmax=-1;
     fprintf(ficparo,"\n");    jmean=0.;
   }    for(i=1; i<=imx; i++){
   for(i=1; i <=npar; i++)      mi=0;
     for(j=i+1;j<=npar;j++)      m=firstpass;
       matcov[i][j]=matcov[j][i];      while(s[m][i] <= nlstate){
            if(s[m][i]>=1)
   printf("\n");          mw[++mi][i]=m;
         if(m >=lastpass)
           break;
     /*-------- data file ----------*/        else
     if((ficres =fopen(fileres,"w"))==NULL) {          m++;
       printf("Problem with resultfile: %s\n", fileres);goto end;      }/* end while */
     }      if (s[m][i] > nlstate){
     fprintf(ficres,"#%s\n",version);        mi++;     /* Death is another wave */
            /* if(mi==0)  never been interviewed correctly before death */
     if((fic=fopen(datafile,"r"))==NULL)    {           /* Only death is a correct wave */
       printf("Problem with datafile: %s\n", datafile);goto end;        mw[mi][i]=m;
     }      }
   
     n= lastobs;      wav[i]=mi;
     severity = vector(1,maxwav);      if(mi==0){
     outcome=imatrix(1,maxwav+1,1,n);        nbwarn++;
     num=ivector(1,n);        if(first==0){
     moisnais=vector(1,n);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     annais=vector(1,n);          first=1;
     moisdc=vector(1,n);        }
     andc=vector(1,n);        if(first==1){
     agedc=vector(1,n);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     cod=ivector(1,n);        }
     weight=vector(1,n);      } /* end mi==0 */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    } /* End individuals */
     mint=matrix(1,maxwav,1,n);  
     anint=matrix(1,maxwav,1,n);    for(i=1; i<=imx; i++){
     s=imatrix(1,maxwav+1,1,n);      for(mi=1; mi<wav[i];mi++){
     adl=imatrix(1,maxwav+1,1,n);            if (stepm <=0)
     tab=ivector(1,NCOVMAX);          dh[mi][i]=1;
     ncodemax=ivector(1,8);        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     i=1;            if (agedc[i] < 2*AGESUP) {
     while (fgets(line, MAXLINE, fic) != NULL)    {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       if ((i >= firstobs) && (i <=lastobs)) {              if(j==0) j=1;  /* Survives at least one month after exam */
                      else if(j<0){
         for (j=maxwav;j>=1;j--){                nberr++;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           strcpy(line,stra);                j=1; /* Temporary Dangerous patch */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                      }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              k=k+1;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              if (j >= jmax) jmax=j;
               if (j <= jmin) jmin=j;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);              sum=sum+j;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            }
         for (j=ncov;j>=1;j--){          }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          else{
         }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         num[i]=atol(stra);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                    k=k+1;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            if (j >= jmax) jmax=j;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            else if (j <= jmin)jmin=j;
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         i=i+1;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       }            if(j<0){
     }              nberr++;
     /* printf("ii=%d", ij);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        scanf("%d",i);*/              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   imx=i-1; /* Number of individuals */            }
             sum=sum+j;
   /* for (i=1; i<=imx; i++){          }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          jk= j/stepm;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          jl= j -jk*stepm;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          ju= j -(jk+1)*stepm;
     }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
     for (i=1; i<=imx; i++)              dh[mi][i]=jk;
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
   /* Calculation of the number of parameter from char model*/                    * at the price of an extra matrix product in likelihood */
   Tvar=ivector(1,15);              dh[mi][i]=jk+1;
   Tprod=ivector(1,15);              bh[mi][i]=ju;
   Tvaraff=ivector(1,15);            }
   Tvard=imatrix(1,15,1,2);          }else{
   Tage=ivector(1,15);                  if(jl <= -ju){
                  dh[mi][i]=jk;
   if (strlen(model) >1){              bh[mi][i]=jl;       /* bias is positive if real duration
     j=0, j1=0, k1=1, k2=1;                                   * is higher than the multiple of stepm and negative otherwise.
     j=nbocc(model,'+');                                   */
     j1=nbocc(model,'*');            }
     cptcovn=j+1;            else{
     cptcovprod=j1;              dh[mi][i]=jk+1;
                  bh[mi][i]=ju;
                }
     strcpy(modelsav,model);            if(dh[mi][i]==0){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              dh[mi][i]=1; /* At least one step */
       printf("Error. Non available option model=%s ",model);              bh[mi][i]=ju; /* At least one step */
       goto end;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     }            }
              } /* end if mle */
     for(i=(j+1); i>=1;i--){        }
       cutv(stra,strb,modelsav,'+');      } /* end wave */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    jmean=sum/k;
       /*scanf("%d",i);*/    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       if (strchr(strb,'*')) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
         cutv(strd,strc,strb,'*');   }
         if (strcmp(strc,"age")==0) {  
           cptcovprod--;  /*********** Tricode ****************************/
           cutv(strb,stre,strd,'V');  void tricode(int *Tvar, int **nbcode, int imx)
           Tvar[i]=atoi(stre);  {
           cptcovage++;    
             Tage[cptcovage]=i;    int Ndum[20],ij=1, k, j, i, maxncov=19;
             /*printf("stre=%s ", stre);*/    int cptcode=0;
         }    cptcoveff=0; 
         else if (strcmp(strd,"age")==0) {   
           cptcovprod--;    for (k=0; k<maxncov; k++) Ndum[k]=0;
           cutv(strb,stre,strc,'V');    for (k=1; k<=7; k++) ncodemax[k]=0;
           Tvar[i]=atoi(stre);  
           cptcovage++;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
           Tage[cptcovage]=i;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
         }                                 modality*/ 
         else {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           cutv(strb,stre,strc,'V');        Ndum[ij]++; /*store the modality */
           Tvar[i]=ncov+k1;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           cutv(strb,strc,strd,'V');        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
           Tprod[k1]=i;                                         Tvar[j]. If V=sex and male is 0 and 
           Tvard[k1][1]=atoi(strc);                                         female is 1, then  cptcode=1.*/
           Tvard[k1][2]=atoi(stre);      }
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      for (i=0; i<=cptcode; i++) {
           for (k=1; k<=lastobs;k++)        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      }
           k1++;  
           k2=k2+2;      ij=1; 
         }      for (i=1; i<=ncodemax[j]; i++) {
       }        for (k=0; k<= maxncov; k++) {
       else {          if (Ndum[k] != 0) {
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            nbcode[Tvar[j]][ij]=k; 
        /*  scanf("%d",i);*/            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       cutv(strd,strc,strb,'V');            
       Tvar[i]=atoi(strc);            ij++;
       }          }
       strcpy(modelsav,stra);            if (ij > ncodemax[j]) break; 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        }  
         scanf("%d",i);*/      } 
     }    }  
 }  
     for (k=0; k< maxncov; k++) Ndum[k]=0;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);   for (i=1; i<=ncovmodel-2; i++) { 
   scanf("%d ",i);*/     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     fclose(fic);     ij=Tvar[i];
      Ndum[ij]++;
     /*  if(mle==1){*/   }
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;   ij=1;
     }   for (i=1; i<= maxncov; i++) {
     /*-calculation of age at interview from date of interview and age at death -*/     if((Ndum[i]!=0) && (i<=ncovcol)){
     agev=matrix(1,maxwav,1,imx);       Tvaraff[ij]=i; /*For printing */
        ij++;
    for (i=1; i<=imx; i++)     }
      for(m=2; (m<= maxwav); m++)   }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){   
          anint[m][i]=9999;   cptcoveff=ij-1; /*Number of simple covariates*/
          s[m][i]=-1;  }
        }  
      /*********** Health Expectancies ****************/
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){  {
           if (s[m][i] == nlstate+1) {    /* Health expectancies */
             if(agedc[i]>0)    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
               if(moisdc[i]!=99 && andc[i]!=9999)    double age, agelim, hf;
               agev[m][i]=agedc[i];    double ***p3mat,***varhe;
             else {    double **dnewm,**doldm;
               if (andc[i]!=9999){    double *xp;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    double **gp, **gm;
               agev[m][i]=-1;    double ***gradg, ***trgradg;
               }    int theta;
             }  
           }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           else if(s[m][i] !=9){ /* Should no more exist */    xp=vector(1,npar);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    dnewm=matrix(1,nlstate*nlstate,1,npar);
             if(mint[m][i]==99 || anint[m][i]==9999)    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
               agev[m][i]=1;    
             else if(agev[m][i] <agemin){    fprintf(ficreseij,"# Health expectancies\n");
               agemin=agev[m][i];    fprintf(ficreseij,"# Age");
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    for(i=1; i<=nlstate;i++)
             }      for(j=1; j<=nlstate;j++)
             else if(agev[m][i] >agemax){        fprintf(ficreseij," %1d-%1d (SE)",i,j);
               agemax=agev[m][i];    fprintf(ficreseij,"\n");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }    if(estepm < stepm){
             /*agev[m][i]=anint[m][i]-annais[i];*/      printf ("Problem %d lower than %d\n",estepm, stepm);
             /*   agev[m][i] = age[i]+2*m;*/    }
           }    else  hstepm=estepm;   
           else { /* =9 */    /* We compute the life expectancy from trapezoids spaced every estepm months
             agev[m][i]=1;     * This is mainly to measure the difference between two models: for example
             s[m][i]=-1;     * if stepm=24 months pijx are given only every 2 years and by summing them
           }     * we are calculating an estimate of the Life Expectancy assuming a linear 
         }     * progression in between and thus overestimating or underestimating according
         else /*= 0 Unknown */     * to the curvature of the survival function. If, for the same date, we 
           agev[m][i]=1;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       }     * to compare the new estimate of Life expectancy with the same linear 
         * hypothesis. A more precise result, taking into account a more precise
     }     * curvature will be obtained if estepm is as small as stepm. */
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){    /* For example we decided to compute the life expectancy with the smallest unit */
         if (s[m][i] > (nlstate+ndeath)) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           printf("Error: Wrong value in nlstate or ndeath\n");         nhstepm is the number of hstepm from age to agelim 
           goto end;       nstepm is the number of stepm from age to agelin. 
         }       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like estepm months */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     free_vector(severity,1,maxwav);       results. So we changed our mind and took the option of the best precision.
     free_imatrix(outcome,1,maxwav+1,1,n);    */
     free_vector(moisnais,1,n);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);    agelim=AGESUP;
        free_matrix(anint,1,maxwav,1,n);*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     free_vector(moisdc,1,n);      /* nhstepm age range expressed in number of stepm */
     free_vector(andc,1,n);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
          /* if (stepm >= YEARM) hstepm=1;*/
     wav=ivector(1,imx);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
          gp=matrix(0,nhstepm,1,nlstate*nlstate);
     /* Concatenates waves */      gm=matrix(0,nhstepm,1,nlstate*nlstate);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       Tcode=ivector(1,100);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        
    codtab=imatrix(1,100,1,10);      /* Computing  Variances of health expectancies */
    h=0;  
    m=pow(2,cptcoveff);       for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ 
    for(k=1;k<=cptcoveff; k++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      for(i=1; i <=(m/pow(2,k));i++){        }
        for(j=1; j <= ncodemax[k]; j++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    
            h++;        cptj=0;
            if (h>m) h=1;codtab[h][k]=j;        for(j=1; j<= nlstate; j++){
          }          for(i=1; i<=nlstate; i++){
        }            cptj=cptj+1;
      }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
    }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
           }
    /*for(i=1; i <=m ;i++){        }
      for(k=1; k <=cptcovn; k++){       
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);       
      }        for(i=1; i<=npar; i++) 
      printf("\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
    }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    scanf("%d",i);*/        
            cptj=0;
    /* Calculates basic frequencies. Computes observed prevalence at single age        for(j=1; j<= nlstate; j++){
        and prints on file fileres'p'. */          for(i=1;i<=nlstate;i++){
             cptj=cptj+1;
                for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(j=1; j<= nlstate*nlstate; j++)
                for(h=0; h<=nhstepm-1; h++){
     /* For Powell, parameters are in a vector p[] starting at p[1]            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */       } 
      
     if(mle==1){  /* End theta */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      
     /*--------- results files --------------*/       for(h=0; h<=nhstepm-1; h++)
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);        for(j=1; j<=nlstate*nlstate;j++)
            for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
    jk=1;       
    fprintf(ficres,"# Parameters\n");  
    printf("# Parameters\n");       for(i=1;i<=nlstate*nlstate;i++)
    for(i=1,jk=1; i <=nlstate; i++){        for(j=1;j<=nlstate*nlstate;j++)
      for(k=1; k <=(nlstate+ndeath); k++){          varhe[i][j][(int)age] =0.;
        if (k != i)  
          {       printf("%d|",(int)age);fflush(stdout);
            printf("%d%d ",i,k);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
            fprintf(ficres,"%1d%1d ",i,k);       for(h=0;h<=nhstepm-1;h++){
            for(j=1; j <=ncovmodel; j++){        for(k=0;k<=nhstepm-1;k++){
              printf("%f ",p[jk]);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
              fprintf(ficres,"%f ",p[jk]);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
              jk++;          for(i=1;i<=nlstate*nlstate;i++)
            }            for(j=1;j<=nlstate*nlstate;j++)
            printf("\n");              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
            fprintf(ficres,"\n");        }
          }      }
      }      /* Computing expectancies */
    }      for(i=1; i<=nlstate;i++)
  if(mle==1){        for(j=1; j<=nlstate;j++)
     /* Computing hessian and covariance matrix */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     ftolhess=ftol; /* Usually correct */            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     hesscov(matcov, p, npar, delti, ftolhess, func);            
  }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fprintf(ficres,"# Scales\n");  
     printf("# Scales\n");          }
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){      fprintf(ficreseij,"%3.0f",age );
         if (j!=i) {      cptj=0;
           fprintf(ficres,"%1d%1d",i,j);      for(i=1; i<=nlstate;i++)
           printf("%1d%1d",i,j);        for(j=1; j<=nlstate;j++){
           for(k=1; k<=ncovmodel;k++){          cptj++;
             printf(" %.5e",delti[jk]);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
             fprintf(ficres," %.5e",delti[jk]);        }
             jk++;      fprintf(ficreseij,"\n");
           }     
           printf("\n");      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           fprintf(ficres,"\n");      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
      }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }
     k=1;    printf("\n");
     fprintf(ficres,"# Covariance\n");    fprintf(ficlog,"\n");
     printf("# Covariance\n");  
     for(i=1;i<=npar;i++){    free_vector(xp,1,npar);
       /*  if (k>nlstate) k=1;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       i1=(i-1)/(ncovmodel*nlstate)+1;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       printf("%s%d%d",alph[k],i1,tab[i]);*/  }
       fprintf(ficres,"%3d",i);  
       printf("%3d",i);  /************ Variance ******************/
       for(j=1; j<=i;j++){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
         fprintf(ficres," %.5e",matcov[i][j]);  {
         printf(" %.5e",matcov[i][j]);    /* Variance of health expectancies */
       }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       fprintf(ficres,"\n");    /* double **newm;*/
       printf("\n");    double **dnewm,**doldm;
       k++;    double **dnewmp,**doldmp;
     }    int i, j, nhstepm, hstepm, h, nstepm ;
        int k, cptcode;
     while((c=getc(ficpar))=='#' && c!= EOF){    double *xp;
       ungetc(c,ficpar);    double **gp, **gm;  /* for var eij */
       fgets(line, MAXLINE, ficpar);    double ***gradg, ***trgradg; /*for var eij */
       puts(line);    double **gradgp, **trgradgp; /* for var p point j */
       fputs(line,ficparo);    double *gpp, *gmp; /* for var p point j */
     }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     ungetc(c,ficpar);    double ***p3mat;
      double age,agelim, hf;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    double ***mobaverage;
        int theta;
     if (fage <= 2) {    char digit[4];
       bage = agemin;    char digitp[25];
       fage = agemax;  
     }    char fileresprobmorprev[FILENAMELENGTH];
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    if(popbased==1){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      if(mobilav!=0)
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        strcpy(digitp,"-populbased-mobilav-");
        else strcpy(digitp,"-populbased-nomobil-");
     while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    else 
     fgets(line, MAXLINE, ficpar);      strcpy(digitp,"-stablbased-");
     puts(line);  
     fputs(line,ficparo);    if (mobilav!=0) {
   }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   ungetc(c,ficpar);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      }
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    }
        
   while((c=getc(ficpar))=='#' && c!= EOF){    strcpy(fileresprobmorprev,"prmorprev"); 
     ungetc(c,ficpar);    sprintf(digit,"%-d",ij);
     fgets(line, MAXLINE, ficpar);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     puts(line);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     fputs(line,ficparo);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   }    strcat(fileresprobmorprev,fileres);
   ungetc(c,ficpar);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fscanf(ficpar,"pop_based=%d\n",&popbased);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
    fprintf(ficparo,"pop_based=%d\n",popbased);      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
    fprintf(ficres,"pop_based=%d\n",popbased);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     fgets(line, MAXLINE, ficpar);    }  
     puts(line);    fprintf(ficresprobmorprev,"\n");
     fputs(line,ficparo);    fprintf(ficgp,"\n# Routine varevsij");
   }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   ungetc(c,ficpar);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);  /*   } */
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);  
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
     /*------------ gnuplot -------------*/        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     /*chdir(pathcd);*/    fprintf(ficresvij,"\n");
     strcpy(optionfilegnuplot,optionfilefiname);  
     strcat(optionfilegnuplot,".plt");    xp=vector(1,npar);
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    dnewm=matrix(1,nlstate,1,npar);
       printf("Problem with file %s",optionfilegnuplot);goto end;    doldm=matrix(1,nlstate,1,nlstate);
     }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 #ifdef windows    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 m=pow(2,cptcoveff);    gpp=vector(nlstate+1,nlstate+ndeath);
      gmp=vector(nlstate+1,nlstate+ndeath);
  /* 1eme*/    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   for (cpt=1; cpt<= nlstate ; cpt ++) {    
    for (k1=1; k1<= m ; k1 ++) {    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
 #ifdef windows    }
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    else  hstepm=estepm;   
 #endif    /* For example we decided to compute the life expectancy with the smallest unit */
 #ifdef unix    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);       nhstepm is the number of hstepm from age to agelim 
 #endif       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
 for (i=1; i<= nlstate ; i ++) {       and note for a fixed period like k years */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   else fprintf(ficgp," \%%*lf (\%%*lf)");       survival function given by stepm (the optimization length). Unfortunately it
 }       means that if the survival funtion is printed every two years of age and if
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for (i=1; i<= nlstate ; i ++) {       results. So we changed our mind and took the option of the best precision.
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 }    agelim = AGESUP;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      for (i=1; i<= nlstate ; i ++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      gp=matrix(0,nhstepm,1,nlstate);
 #ifdef unix      gm=matrix(0,nhstepm,1,nlstate);
 fprintf(ficgp,"\nset ter gif small size 400,300");  
 #endif  
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      for(theta=1; theta <=npar; theta++){
    }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /*2 eme*/        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   for (k1=1; k1<= m ; k1 ++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  
            if (popbased==1) {
     for (i=1; i<= nlstate+1 ; i ++) {          if(mobilav ==0){
       k=2*i;            for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              prlim[i][i]=probs[(int)age][i][ij];
       for (j=1; j<= nlstate+1 ; j ++) {          }else{ /* mobilav */ 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(i=1; i<=nlstate;i++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");              prlim[i][i]=mobaverage[(int)age][i][ij];
 }            }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<= nlstate; j++){
       for (j=1; j<= nlstate+1 ; j ++) {          for(h=0; h<=nhstepm; h++){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         else fprintf(ficgp," \%%*lf (\%%*lf)");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 }            }
       fprintf(ficgp,"\" t\"\" w l 0,");        }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        /* This for computing probability of death (h=1 means
       for (j=1; j<= nlstate+1 ; j ++) {           computed over hstepm matrices product = hstepm*stepm months) 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");           as a weighted average of prlim.
   else fprintf(ficgp," \%%*lf (\%%*lf)");        */
 }          for(j=nlstate+1;j<=nlstate+ndeath;j++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       else fprintf(ficgp,"\" t\"\" w l 0,");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     }        }    
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        /* end probability of death */
   }  
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   /*3eme*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   for (k1=1; k1<= m ; k1 ++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for (cpt=1; cpt<= nlstate ; cpt ++) {   
       k=2+nlstate*(cpt-1);        if (popbased==1) {
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);          if(mobilav ==0){
       for (i=1; i< nlstate ; i ++) {            for(i=1; i<=nlstate;i++)
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);              prlim[i][i]=probs[(int)age][i][ij];
       }          }else{ /* mobilav */ 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=mobaverage[(int)age][i][ij];
   }          }
          }
   /* CV preval stat */  
   for (k1=1; k1<= m ; k1 ++) {        for(j=1; j<= nlstate; j++){
     for (cpt=1; cpt<nlstate ; cpt ++) {          for(h=0; h<=nhstepm; h++){
       k=3;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       for (i=1; i< nlstate ; i ++)          }
         fprintf(ficgp,"+$%d",k+i+1);        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        /* This for computing probability of death (h=1 means
                 computed over hstepm matrices product = hstepm*stepm months) 
       l=3+(nlstate+ndeath)*cpt;           as a weighted average of prlim.
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        */
       for (i=1; i< nlstate ; i ++) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         l=3+(nlstate+ndeath)*cpt;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         fprintf(ficgp,"+$%d",l+i+1);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       }        }    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          /* end probability of death */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }        for(j=1; j<= nlstate; j++) /* vareij */
   }            for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   /* proba elementaires */          }
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       if (k != i) {          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         for(j=1; j <=ncovmodel; j++){        }
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/  
           /*fprintf(ficgp,"%s",alph[1]);*/      } /* End theta */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           fprintf(ficgp,"\n");  
         }      for(h=0; h<=nhstepm; h++) /* veij */
       }        for(j=1; j<=nlstate;j++)
     }          for(theta=1; theta <=npar; theta++)
     }            trgradg[h][j][theta]=gradg[h][theta][j];
   
   for(jk=1; jk <=m; jk++) {      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);        for(theta=1; theta <=npar; theta++)
    i=1;          trgradgp[j][theta]=gradgp[theta][j];
    for(k2=1; k2<=nlstate; k2++) {    
      k3=i;  
      for(k=1; k<=(nlstate+ndeath); k++) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        if (k != k2){      for(i=1;i<=nlstate;i++)
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        for(j=1;j<=nlstate;j++)
 ij=1;          vareij[i][j][(int)age] =0.;
         for(j=3; j <=ncovmodel; j++) {  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      for(h=0;h<=nhstepm;h++){
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(k=0;k<=nhstepm;k++){
             ij++;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           else          for(i=1;i<=nlstate;i++)
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            for(j=1;j<=nlstate;j++)
         }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           fprintf(ficgp,")/(1");        }
              }
         for(k1=1; k1 <=nlstate; k1++){      
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      /* pptj */
 ij=1;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           for(j=3; j <=ncovmodel; j++){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
             ij++;          varppt[j][i]=doldmp[j][i];
           }      /* end ppptj */
           else      /*  x centered again */
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           fprintf(ficgp,")");   
         }      if (popbased==1) {
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        if(mobilav ==0){
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          for(i=1; i<=nlstate;i++)
         i=i+ncovmodel;            prlim[i][i]=probs[(int)age][i][ij];
        }        }else{ /* mobilav */ 
      }          for(i=1; i<=nlstate;i++)
    }            prlim[i][i]=mobaverage[(int)age][i][ij];
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        }
   }      }
                   
   fclose(ficgp);      /* This for computing probability of death (h=1 means
   /* end gnuplot */         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
 chdir(path);      */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
     free_ivector(wav,1,imx);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        }    
     free_ivector(num,1,n);      /* end probability of death */
     free_vector(agedc,1,n);  
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     fclose(ficparo);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fclose(ficres);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     /*  }*/        for(i=1; i<=nlstate;i++){
              fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
    /*________fin mle=1_________*/        }
          } 
       fprintf(ficresprobmorprev,"\n");
    
     /* No more information from the sample is required now */      fprintf(ficresvij,"%.0f ",age );
   /* Reads comments: lines beginning with '#' */      for(i=1; i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<=nlstate;j++){
     ungetc(c,ficpar);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      fprintf(ficresvij,"\n");
     fputs(line,ficparo);      free_matrix(gp,0,nhstepm,1,nlstate);
   }      free_matrix(gm,0,nhstepm,1,nlstate);
   ungetc(c,ficpar);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    } /* End age */
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    free_vector(gpp,nlstate+1,nlstate+ndeath);
 /*--------- index.htm --------*/    free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   strcpy(optionfilehtm,optionfile);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   strcat(optionfilehtm,".htm");    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     printf("Problem with %s \n",optionfilehtm);goto end;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 Total number of observations=%d <br>    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
 <hr  size=\"2\" color=\"#EC5E5E\">    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 <li>Outputs files<br><br>\n    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>  */
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>  
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    free_vector(xp,1,npar);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    free_matrix(doldm,1,nlstate,1,nlstate);
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    free_matrix(dnewm,1,nlstate,1,npar);
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  fprintf(fichtm," <li>Graphs</li><p>");    fclose(ficresprobmorprev);
     fflush(ficgp);
  m=cptcoveff;    fflush(fichtm); 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  }  /* end varevsij */
   
  j1=0;  /************ Variance of prevlim ******************/
  for(k1=1; k1<=m;k1++){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
    for(i1=1; i1<=ncodemax[k1];i1++){  {
        j1++;    /* Variance of prevalence limit */
        if (cptcovn > 0) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    double **newm;
          for (cpt=1; cpt<=cptcoveff;cpt++)    double **dnewm,**doldm;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);    int i, j, nhstepm, hstepm;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    int k, cptcode;
        }    double *xp;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    double *gp, *gm;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        double **gradg, **trgradg;
        for(cpt=1; cpt<nlstate;cpt++){    double age,agelim;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    int theta;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);     
        }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(ficresvpl,"# Age");
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    for(i=1; i<=nlstate;i++)
 interval) in state (%d): v%s%d%d.gif <br>        fprintf(ficresvpl," %1d-%1d",i,i);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      fprintf(ficresvpl,"\n");
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {    xp=vector(1,npar);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    dnewm=matrix(1,nlstate,1,npar);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    doldm=matrix(1,nlstate,1,nlstate);
      }    
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    hstepm=1*YEARM; /* Every year of age */
 health expectancies in states (1) and (2): e%s%d.gif<br>    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    agelim = AGESUP;
 fprintf(fichtm,"\n</body>");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
  }      if (stepm >= YEARM) hstepm=1;
 fclose(fichtm);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
   /*--------------- Prevalence limit --------------*/      gp=vector(1,nlstate);
        gm=vector(1,nlstate);
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);      for(theta=1; theta <=npar; theta++){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        for(i=1; i<=npar; i++){ /* Computes gradient */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fprintf(ficrespl,"#Prevalence limit\n");        for(i=1;i<=nlstate;i++)
   fprintf(ficrespl,"#Age ");          gp[i] = prlim[i][i];
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      
   fprintf(ficrespl,"\n");        for(i=1; i<=npar; i++) /* Computes gradient */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   prlim=matrix(1,nlstate,1,nlstate);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1;i<=nlstate;i++)
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          gm[i] = prlim[i][i];
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1;i<=nlstate;i++)
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   k=0;      } /* End theta */
   agebase=agemin;  
   agelim=agemax;      trgradg =matrix(1,nlstate,1,npar);
   ftolpl=1.e-10;  
   i1=cptcoveff;      for(j=1; j<=nlstate;j++)
   if (cptcovn < 1){i1=1;}        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(i=1;i<=nlstate;i++)
         k=k+1;        varpl[i][(int)age] =0.;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         fprintf(ficrespl,"\n#******");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         for(j=1;j<=cptcoveff;j++)      for(i=1;i<=nlstate;i++)
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
         fprintf(ficrespl,"******\n");  
              fprintf(ficresvpl,"%.0f ",age );
         for (age=agebase; age<=agelim; age++){      for(i=1; i<=nlstate;i++)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
           fprintf(ficrespl,"%.0f",age );      fprintf(ficresvpl,"\n");
           for(i=1; i<=nlstate;i++)      free_vector(gp,1,nlstate);
           fprintf(ficrespl," %.5f", prlim[i][i]);      free_vector(gm,1,nlstate);
           fprintf(ficrespl,"\n");      free_matrix(gradg,1,npar,1,nlstate);
         }      free_matrix(trgradg,1,nlstate,1,npar);
       }    } /* End age */
     }  
   fclose(ficrespl);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
   /*------------- h Pij x at various ages ------------*/    free_matrix(dnewm,1,nlstate,1,nlstate);
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  /************ Variance of one-step probabilities  ******************/
   }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   printf("Computing pij: result on file '%s' \n", filerespij);  {
      int i, j=0,  i1, k1, l1, t, tj;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int k2, l2, j1,  z1;
   /*if (stepm<=24) stepsize=2;*/    int k=0,l, cptcode;
     int first=1, first1;
   agelim=AGESUP;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   hstepm=stepsize*YEARM; /* Every year of age */    double **dnewm,**doldm;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    double *xp;
      double *gp, *gm;
   k=0;    double **gradg, **trgradg;
   for(cptcov=1;cptcov<=i1;cptcov++){    double **mu;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double age,agelim, cov[NCOVMAX];
       k=k+1;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
         fprintf(ficrespij,"\n#****** ");    int theta;
         for(j=1;j<=cptcoveff;j++)    char fileresprob[FILENAMELENGTH];
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    char fileresprobcov[FILENAMELENGTH];
         fprintf(ficrespij,"******\n");    char fileresprobcor[FILENAMELENGTH];
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    double ***varpij;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    strcpy(fileresprob,"prob"); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcat(fileresprob,fileres);
           oldm=oldms;savm=savms;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        printf("Problem with resultfile: %s\n", fileresprob);
           fprintf(ficrespij,"# Age");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
           for(i=1; i<=nlstate;i++)    }
             for(j=1; j<=nlstate+ndeath;j++)    strcpy(fileresprobcov,"probcov"); 
               fprintf(ficrespij," %1d-%1d",i,j);    strcat(fileresprobcov,fileres);
           fprintf(ficrespij,"\n");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           for (h=0; h<=nhstepm; h++){      printf("Problem with resultfile: %s\n", fileresprobcov);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
             for(i=1; i<=nlstate;i++)    }
               for(j=1; j<=nlstate+ndeath;j++)    strcpy(fileresprobcor,"probcor"); 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    strcat(fileresprobcor,fileres);
             fprintf(ficrespij,"\n");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
           }      printf("Problem with resultfile: %s\n", fileresprobcor);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           fprintf(ficrespij,"\n");    }
         }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   fclose(ficrespij);    
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   if(stepm == 1) {    fprintf(ficresprob,"# Age");
   /*---------- Forecasting ------------------*/    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   /*printf("calage= %f", calagedate);*/    fprintf(ficresprobcov,"# Age");
    
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
   strcpy(fileresf,"f");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   strcat(fileresf,fileres);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   if((ficresf=fopen(fileresf,"w"))==NULL) {        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;      }  
   }   /* fprintf(ficresprob,"\n");
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
   free_matrix(mint,1,maxwav,1,n);   */
   free_matrix(anint,1,maxwav,1,n);   xp=vector(1,npar);
   free_matrix(agev,1,maxwav,1,imx);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   /* Mobile average */    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
   if (mobilav==1) {    fprintf(ficgp,"\n# Routine varprob");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)    fprintf(fichtm,"\n");
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
           mobaverage[(int)agedeb][i][cptcod]=0.;    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
        file %s<br>\n",optionfilehtmcov);
     for (agedeb=bage+4; agedeb<=fage; agedeb++){    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       for (i=1; i<=nlstate;i++){  and drawn. It helps understanding how is the covariance between two incidences.\
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           for (cpt=0;cpt<=4;cpt++){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
           }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  standard deviations wide on each axis. <br>\
         }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     }    To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   }  
     cov[1]=1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    tj=cptcoveff;
   if (stepm<=12) stepsize=1;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
   agelim=AGESUP;    for(t=1; t<=tj;t++){
   /*hstepm=stepsize*YEARM; *//* Every year of age */      for(i1=1; i1<=ncodemax[t];i1++){ 
   hstepm=1;        j1++;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */        if  (cptcovn>0) {
   yp1=modf(dateintmean,&yp);          fprintf(ficresprob, "\n#********** Variable "); 
   anprojmean=yp;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   yp2=modf((yp1*12),&yp);          fprintf(ficresprob, "**********\n#\n");
   mprojmean=yp;          fprintf(ficresprobcov, "\n#********** Variable "); 
   yp1=modf((yp2*30.5),&yp);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   jprojmean=yp;          fprintf(ficresprobcov, "**********\n#\n");
   if(jprojmean==0) jprojmean=1;          
   if(mprojmean==0) jprojmean=1;          fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          fprintf(ficgp, "**********\n#\n");
           
   if (popforecast==1) {          
     if((ficpop=fopen(popfile,"r"))==NULL)    {          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       printf("Problem with population file : %s\n",popfile);goto end;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     popage=ivector(0,AGESUP);          
     popeffectif=vector(0,AGESUP);          fprintf(ficresprobcor, "\n#********** Variable ");    
     popcount=vector(0,AGESUP);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
     i=1;          }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)        
       {        for (age=bage; age<=fage; age ++){ 
         i=i+1;          cov[2]=age;
       }          for (k=1; k<=cptcovn;k++) {
     imx=i;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
              }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }          for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for(cptcov=1;cptcov<=i1;cptcov++){          
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       k=k+1;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       fprintf(ficresf,"\n#******");          gp=vector(1,(nlstate)*(nlstate+ndeath));
       for(j=1;j<=cptcoveff;j++) {          gm=vector(1,(nlstate)*(nlstate+ndeath));
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      
       }          for(theta=1; theta <=npar; theta++){
       fprintf(ficresf,"******\n");            for(i=1; i<=npar; i++)
       fprintf(ficresf,"# StartingAge FinalAge");              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);            
       if (popforecast==1)  fprintf(ficresf," [Population]");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                
       for (cpt=0; cpt<4;cpt++) {            k=0;
         fprintf(ficresf,"\n");            for(i=1; i<= (nlstate); i++){
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */                gp[k]=pmmij[i][j];
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              }
         nhstepm = nhstepm/hstepm;            }
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/            
             for(i=1; i<=npar; i++)
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         oldm=oldms;savm=savms;      
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              pmij(pmmij,cov,ncovmodel,xp,nlstate);
                    k=0;
         for (h=0; h<=nhstepm; h++){            for(i=1; i<=(nlstate); i++){
           if (h==(int) (calagedate+YEARM*cpt)) {              for(j=1; j<=(nlstate+ndeath);j++){
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);                k=k+1;
           }                gm[k]=pmmij[i][j];
           for(j=1; j<=nlstate+ndeath;j++) {              }
             kk1=0.;kk2=0;            }
             for(i=1; i<=nlstate;i++) {               
               if (mobilav==1)            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
               else {          }
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
               }            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];          
             }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                    matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
             if (h==(int)(calagedate+12*cpt)){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
               fprintf(ficresf," %.3f", kk1);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
             }  
           }          pmij(pmmij,cov,ncovmodel,x,nlstate);
         }          
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          k=0;
       }          for(i=1; i<=(nlstate); i++){
       }            for(j=1; j<=(nlstate+ndeath);j++){
     }              k=k+1;
   }              mu[k][(int) age]=pmmij[i][j];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
   if (popforecast==1) {          }
     free_ivector(popage,0,AGESUP);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     free_vector(popeffectif,0,AGESUP);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     free_vector(popcount,0,AGESUP);              varpij[i][j][(int)age] = doldm[i][j];
   }  
   free_imatrix(s,1,maxwav+1,1,n);          /*printf("\n%d ",(int)age);
   free_vector(weight,1,n);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   fclose(ficresf);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   }/* End forecasting */            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   else{            }*/
     erreur=108;  
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);          fprintf(ficresprob,"\n%d ",(int)age);
   }          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   /*---------- Health expectancies and variances ------------*/  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   strcpy(filerest,"t");            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   strcat(filerest,fileres);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   if((ficrest=fopen(filerest,"w"))==NULL) {            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   }          }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
   strcpy(filerese,"e");              i=i++;
   strcat(filerese,fileres);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   if((ficreseij=fopen(filerese,"w"))==NULL) {              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              for (j=1; j<=i;j++){
   }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
  strcpy(fileresv,"v");            }
   strcat(fileresv,fileres);          }/* end of loop for state */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        } /* end of loop for age */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }        /* Confidence intervalle of pij  */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        /*
           fprintf(ficgp,"\nset noparametric;unset label");
   k=0;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       k=k+1;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       fprintf(ficrest,"\n#****** ");          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       for(j=1;j<=cptcoveff;j++)          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        */
       fprintf(ficrest,"******\n");  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       fprintf(ficreseij,"\n#****** ");        first1=1;
       for(j=1;j<=cptcoveff;j++)        for (k2=1; k2<=(nlstate);k2++){
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       fprintf(ficreseij,"******\n");            if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
       fprintf(ficresvij,"\n#****** ");            for (k1=1; k1<=(nlstate);k1++){
       for(j=1;j<=cptcoveff;j++)              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);                if(l1==k1) continue;
       fprintf(ficresvij,"******\n");                i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                for (age=bage; age<=fage; age ++){ 
       oldm=oldms;savm=savms;                  if ((int)age %5==0){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);                      v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       oldm=oldms;savm=savms;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                    mu1=mu[i][(int) age]/stepm*YEARM ;
                          mu2=mu[j][(int) age]/stepm*YEARM;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                    c12=cv12/sqrt(v1*v2);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                    /* Computing eigen value of matrix of covariance */
       fprintf(ficrest,"\n");                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                            lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       hf=1;                    /* Eigen vectors */
       if (stepm >= YEARM) hf=stepm/YEARM;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       epj=vector(1,nlstate+1);                    /*v21=sqrt(1.-v11*v11); *//* error */
       for(age=bage; age <=fage ;age++){                    v21=(lc1-v1)/cv12*v11;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    v12=-v21;
         if (popbased==1) {                    v22=v11;
           for(i=1; i<=nlstate;i++)                    tnalp=v21/v11;
             prlim[i][i]=probs[(int)age][i][k];                    if(first1==1){
         }                      first1=0;
                              printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         fprintf(ficrest," %.0f",age);                    }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                    /*printf(fignu*/
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           epj[nlstate+1] +=epj[j];                    if(first==1){
         }                      first=0;
         for(i=1, vepp=0.;i <=nlstate;i++)                      fprintf(ficgp,"\nset parametric;unset label");
           for(j=1;j <=nlstate;j++)                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
             vepp += vareij[i][j][(int)age];                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         for(j=1;j <=nlstate;j++){   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
         }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
         fprintf(ficrest,"\n");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                              fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                              fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
  fclose(ficreseij);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
  fclose(ficresvij);                    }else{
   fclose(ficrest);                      first=0;
   fclose(ficpar);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   free_vector(epj,1,nlstate+1);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   /*  scanf("%d ",i); */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /*------- Variance limit prevalence------*/                                mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 strcpy(fileresvpl,"vpl");                    }/* if first */
   strcat(fileresvpl,fileres);                  } /* age mod 5 */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                } /* end loop age */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     exit(0);                first=1;
   }              } /*l12 */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);            } /* k12 */
           } /*l1 */
  k=0;        }/* k1 */
  for(cptcov=1;cptcov<=i1;cptcov++){      } /* loop covariates */
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
      k=k+1;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
      fprintf(ficresvpl,"\n#****** ");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      for(j=1;j<=cptcoveff;j++)    free_vector(xp,1,npar);
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fclose(ficresprob);
      fprintf(ficresvpl,"******\n");    fclose(ficresprobcov);
          fclose(ficresprobcor);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    fflush(ficgp);
      oldm=oldms;savm=savms;    fflush(fichtmcov);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  }
    }  
  }  
   /******************* Printing html file ***********/
   fclose(ficresvpl);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
   /*---------- End : free ----------------*/                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                    int popforecast, int estepm ,\
                      double jprev1, double mprev1,double anprev1, \
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    double jprev2, double mprev2,double anprev2){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    int jj1, k1, i1, cpt;
    
       fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);     fprintf(fichtm,"\
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
               stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   free_matrix(matcov,1,npar,1,npar);     fprintf(fichtm,"\
   free_vector(delti,1,npar);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
               subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
   if(erreur >0)     <a href=\"%s\">%s</a> <br>\n</li>",
     printf("End of Imach with error %d\n",erreur);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   m=cptcoveff;
   /*printf("Total time was %d uSec.\n", total_usecs);*/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   /*------ End -----------*/  
    jj1=0;
    for(k1=1; k1<=m;k1++){
  end:     for(i1=1; i1<=ncodemax[k1];i1++){
 #ifdef windows       jj1++;
   /* chdir(pathcd);*/       if (cptcovn > 0) {
 #endif         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  /*system("wgnuplot graph.plt");*/         for (cpt=1; cpt<=cptcoveff;cpt++) 
  /*system("../gp37mgw/wgnuplot graph.plt");*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
  /*system("cd ../gp37mgw");*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/       }
  strcpy(plotcmd,GNUPLOTPROGRAM);       /* Pij */
  strcat(plotcmd," ");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
  strcat(plotcmd,optionfilegnuplot);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
  system(plotcmd);       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 #ifdef windows   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   while (z[0] != 'q') {  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     chdir(path);         /* Stable prevalence in each health state */
     printf("\nType e to edit output files, c to start again, and q for exiting: ");         for(cpt=1; cpt<nlstate;cpt++){
     scanf("%s",z);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
     if (z[0] == 'c') system("./imach");  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     else if (z[0] == 'e') {         }
       chdir(path);       for(cpt=1; cpt<=nlstate;cpt++) {
       system(optionfilehtm);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
     }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     else if (z[0] == 'q') exit(0);       }
   }     } /* end i1 */
 #endif   }/* End k1 */
 }   fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.22  
changed lines
  Added in v.1.98


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>