Diff for /imach/src/imach.c between versions 1.23 and 1.129

version 1.23, 2002/02/22 18:08:30 version 1.129, 2007/08/31 13:49:27
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolate Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.129  2007/08/31 13:49:27  lievre
      Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.128  2006/06/30 13:02:05  brouard
   first survey ("cross") where individuals from different ages are    (Module): Clarifications on computing e.j
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.127  2006/04/28 18:11:50  brouard
   second wave of interviews ("longitudinal") which measure each change    (Module): Yes the sum of survivors was wrong since
   (if any) in individual health status.  Health expectancies are    imach-114 because nhstepm was no more computed in the age
   computed from the time spent in each health state according to a    loop. Now we define nhstepma in the age loop.
   model. More health states you consider, more time is necessary to reach the    (Module): In order to speed up (in case of numerous covariates) we
   Maximum Likelihood of the parameters involved in the model.  The    compute health expectancies (without variances) in a first step
   simplest model is the multinomial logistic model where pij is the    and then all the health expectancies with variances or standard
   probabibility to be observed in state j at the second wave    deviation (needs data from the Hessian matrices) which slows the
   conditional to be observed in state i at the first wave. Therefore    computation.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    In the future we should be able to stop the program is only health
   'age' is age and 'sex' is a covariate. If you want to have a more    expectancies and graph are needed without standard deviations.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.126  2006/04/28 17:23:28  brouard
   you to do it.  More covariates you add, slower the    (Module): Yes the sum of survivors was wrong since
   convergence.    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
   The advantage of this computer programme, compared to a simple    Version 0.98h
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.125  2006/04/04 15:20:31  lievre
   intermediate interview, the information is lost, but taken into    Errors in calculation of health expectancies. Age was not initialized.
   account using an interpolation or extrapolation.      Forecasting file added.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.124  2006/03/22 17:13:53  lievre
   conditional to the observed state i at age x. The delay 'h' can be    Parameters are printed with %lf instead of %f (more numbers after the comma).
   split into an exact number (nh*stepm) of unobserved intermediate    The log-likelihood is printed in the log file
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.123  2006/03/20 10:52:43  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    * imach.c (Module): <title> changed, corresponds to .htm file
   and the contribution of each individual to the likelihood is simply    name. <head> headers where missing.
   hPijx.  
     * imach.c (Module): Weights can have a decimal point as for
   Also this programme outputs the covariance matrix of the parameters but also    English (a comma might work with a correct LC_NUMERIC environment,
   of the life expectancies. It also computes the prevalence limits.    otherwise the weight is truncated).
      Modification of warning when the covariates values are not 0 or
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    1.
            Institut national d'études démographiques, Paris.    Version 0.98g
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.122  2006/03/20 09:45:41  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Weights can have a decimal point as for
   software can be distributed freely for non commercial use. Latest version    English (a comma might work with a correct LC_NUMERIC environment,
   can be accessed at http://euroreves.ined.fr/imach .    otherwise the weight is truncated).
   **********************************************************************/    Modification of warning when the covariates values are not 0 or
      1.
 #include <math.h>    Version 0.98g
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.121  2006/03/16 17:45:01  lievre
 #include <unistd.h>    * imach.c (Module): Comments concerning covariates added
   
 #define MAXLINE 256    * imach.c (Module): refinements in the computation of lli if
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"    status=-2 in order to have more reliable computation if stepm is
 #define FILENAMELENGTH 80    not 1 month. Version 0.98f
 /*#define DEBUG*/  
 #define windows    Revision 1.120  2006/03/16 15:10:38  lievre
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): refinements in the computation of lli if
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
 #define NINTERVMAX 8    computed as likelihood omitting the logarithm. Version O.98e
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.118  2006/03/14 18:20:07  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): varevsij Comments added explaining the second
 #define MAXN 20000    table of variances if popbased=1 .
 #define YEARM 12. /* Number of months per year */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define AGESUP 130    (Module): Function pstamp added
 #define AGEBASE 40    (Module): Version 0.98d
   
     Revision 1.117  2006/03/14 17:16:22  brouard
 int erreur; /* Error number */    (Module): varevsij Comments added explaining the second
 int nvar;    table of variances if popbased=1 .
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int npar=NPARMAX;    (Module): Function pstamp added
 int nlstate=2; /* Number of live states */    (Module): Version 0.98d
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.116  2006/03/06 10:29:27  brouard
 int popbased=0;    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.115  2006/02/27 12:17:45  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): One freematrix added in mlikeli! 0.98c
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.114  2006/02/26 12:57:58  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Some improvements in processing parameter
 double jmean; /* Mean space between 2 waves */    filename with strsep.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.113  2006/02/24 14:20:24  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    (Module): Memory leaks checks with valgrind and:
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    datafile was not closed, some imatrix were not freed and on matrix
 FILE *ficreseij;    allocation too.
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.112  2006/01/30 09:55:26  brouard
   char fileresv[FILENAMELENGTH];    (Module): Back to gnuplot.exe instead of wgnuplot.exe
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 #define NR_END 1    (Module): Comments can be added in data file. Missing date values
 #define FREE_ARG char*    can be a simple dot '.'.
 #define FTOL 1.0e-10  
     Revision 1.110  2006/01/25 00:51:50  brouard
 #define NRANSI    (Module): Lots of cleaning and bugs added (Gompertz)
 #define ITMAX 200  
     Revision 1.109  2006/01/24 19:37:15  brouard
 #define TOL 2.0e-4    (Module): Comments (lines starting with a #) are allowed in data.
   
 #define CGOLD 0.3819660    Revision 1.108  2006/01/19 18:05:42  lievre
 #define ZEPS 1.0e-10    Gnuplot problem appeared...
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    To be fixed
   
 #define GOLD 1.618034    Revision 1.107  2006/01/19 16:20:37  brouard
 #define GLIMIT 100.0    Test existence of gnuplot in imach path
 #define TINY 1.0e-20  
     Revision 1.106  2006/01/19 13:24:36  brouard
 static double maxarg1,maxarg2;    Some cleaning and links added in html output
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.105  2006/01/05 20:23:19  lievre
      *** empty log message ***
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 static double sqrarg;    (Module): If the status is missing at the last wave but we know
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    that the person is alive, then we can code his/her status as -2
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 int imx;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 int stepm;    the healthy state at last known wave). Version is 0.98
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.103  2005/09/30 15:54:49  lievre
 int m,nb;    (Module): sump fixed, loop imx fixed, and simplifications.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.102  2004/09/15 17:31:30  brouard
 double **pmmij, ***probs, ***mobaverage;    Add the possibility to read data file including tab characters.
 double dateintmean=0;  
     Revision 1.101  2004/09/15 10:38:38  brouard
 double *weight;    Fix on curr_time
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.100  2004/07/12 18:29:06  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Add version for Mac OS X. Just define UNIX in Makefile
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.99  2004/06/05 08:57:40  brouard
 double ftolhess; /* Tolerance for computing hessian */    *** empty log message ***
   
 /**************** split *************************/    Revision 1.98  2004/05/16 15:05:56  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    New version 0.97 . First attempt to estimate force of mortality
 {    directly from the data i.e. without the need of knowing the health
    char *s;                             /* pointer */    state at each age, but using a Gompertz model: log u =a + b*age .
    int  l1, l2;                         /* length counters */    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
    l1 = strlen( path );                 /* length of path */    cross-longitudinal survey is different from the mortality estimated
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    from other sources like vital statistic data.
 #ifdef windows  
    s = strrchr( path, '\\' );           /* find last / */    The same imach parameter file can be used but the option for mle should be -3.
 #else  
    s = strrchr( path, '/' );            /* find last / */    Agnès, who wrote this part of the code, tried to keep most of the
 #endif    former routines in order to include the new code within the former code.
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    The output is very simple: only an estimate of the intercept and of
       extern char       *getwd( );    the slope with 95% confident intervals.
   
       if ( getwd( dirc ) == NULL ) {    Current limitations:
 #else    A) Even if you enter covariates, i.e. with the
       extern char       *getcwd( );    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.97  2004/02/20 13:25:42  lievre
          return( GLOCK_ERROR_GETCWD );    Version 0.96d. Population forecasting command line is (temporarily)
       }    suppressed.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.96  2003/07/15 15:38:55  brouard
       s++;                              /* after this, the filename */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       l2 = strlen( s );                 /* length of filename */    rewritten within the same printf. Workaround: many printfs.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.95  2003/07/08 07:54:34  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    * imach.c (Repository):
       dirc[l1-l2] = 0;                  /* add zero */    (Repository): Using imachwizard code to output a more meaningful covariance
    }    matrix (cov(a12,c31) instead of numbers.
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.94  2003/06/27 13:00:02  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Just cleaning
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.93  2003/06/25 16:33:55  brouard
 #endif    (Module): On windows (cygwin) function asctime_r doesn't
    s = strrchr( name, '.' );            /* find last / */    exist so I changed back to asctime which exists.
    s++;    (Module): Version 0.96b
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.92  2003/06/25 16:30:45  brouard
    l2= strlen( s)+1;    (Module): On windows (cygwin) function asctime_r doesn't
    strncpy( finame, name, l1-l2);    exist so I changed back to asctime which exists.
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.91  2003/06/25 15:30:29  brouard
 }    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 /******************************************/    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 void replace(char *s, char*t)  
 {    Revision 1.90  2003/06/24 12:34:15  brouard
   int i;    (Module): Some bugs corrected for windows. Also, when
   int lg=20;    mle=-1 a template is output in file "or"mypar.txt with the design
   i=0;    of the covariance matrix to be input.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.89  2003/06/24 12:30:52  brouard
     (s[i] = t[i]);    (Module): Some bugs corrected for windows. Also, when
     if (t[i]== '\\') s[i]='/';    mle=-1 a template is output in file "or"mypar.txt with the design
   }    of the covariance matrix to be input.
 }  
     Revision 1.88  2003/06/23 17:54:56  brouard
 int nbocc(char *s, char occ)    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 {  
   int i,j=0;    Revision 1.87  2003/06/18 12:26:01  brouard
   int lg=20;    Version 0.96
   i=0;  
   lg=strlen(s);    Revision 1.86  2003/06/17 20:04:08  brouard
   for(i=0; i<= lg; i++) {    (Module): Change position of html and gnuplot routines and added
   if  (s[i] == occ ) j++;    routine fileappend.
   }  
   return j;    Revision 1.85  2003/06/17 13:12:43  brouard
 }    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 void cutv(char *u,char *v, char*t, char occ)    prior to the death. In this case, dh was negative and likelihood
 {    was wrong (infinity). We still send an "Error" but patch by
   int i,lg,j,p=0;    assuming that the date of death was just one stepm after the
   i=0;    interview.
   for(j=0; j<=strlen(t)-1; j++) {    (Repository): Because some people have very long ID (first column)
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    we changed int to long in num[] and we added a new lvector for
   }    memory allocation. But we also truncated to 8 characters (left
     truncation)
   lg=strlen(t);    (Repository): No more line truncation errors.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.84  2003/06/13 21:44:43  brouard
   }    * imach.c (Repository): Replace "freqsummary" at a correct
      u[p]='\0';    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
    for(j=0; j<= lg; j++) {    parcimony.
     if (j>=(p+1))(v[j-p-1] = t[j]);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   }  
 }    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 /********************** nrerror ********************/  
     Revision 1.82  2003/06/05 15:57:20  brouard
 void nrerror(char error_text[])    Add log in  imach.c and  fullversion number is now printed.
 {  
   fprintf(stderr,"ERREUR ...\n");  */
   fprintf(stderr,"%s\n",error_text);  /*
   exit(1);     Interpolated Markov Chain
 }  
 /*********************** vector *******************/    Short summary of the programme:
 double *vector(int nl, int nh)    
 {    This program computes Healthy Life Expectancies from
   double *v;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    first survey ("cross") where individuals from different ages are
   if (!v) nrerror("allocation failure in vector");    interviewed on their health status or degree of disability (in the
   return v-nl+NR_END;    case of a health survey which is our main interest) -2- at least a
 }    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /************************ free vector ******************/    computed from the time spent in each health state according to a
 void free_vector(double*v, int nl, int nh)    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
   free((FREE_ARG)(v+nl-NR_END));    simplest model is the multinomial logistic model where pij is the
 }    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /************************ivector *******************************/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int *ivector(long nl,long nh)    'age' is age and 'sex' is a covariate. If you want to have a more
 {    complex model than "constant and age", you should modify the program
   int *v;    where the markup *Covariates have to be included here again* invites
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    you to do it.  More covariates you add, slower the
   if (!v) nrerror("allocation failure in ivector");    convergence.
   return v-nl+NR_END;  
 }    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 /******************free ivector **************************/    identical for each individual. Also, if a individual missed an
 void free_ivector(int *v, long nl, long nh)    intermediate interview, the information is lost, but taken into
 {    account using an interpolation or extrapolation.  
   free((FREE_ARG)(v+nl-NR_END));  
 }    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 /******************* imatrix *******************************/    split into an exact number (nh*stepm) of unobserved intermediate
 int **imatrix(long nrl, long nrh, long ncl, long nch)    states. This elementary transition (by month, quarter,
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    semester or year) is modelled as a multinomial logistic.  The hPx
 {    matrix is simply the matrix product of nh*stepm elementary matrices
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    and the contribution of each individual to the likelihood is simply
   int **m;    hPijx.
    
   /* allocate pointers to rows */    Also this programme outputs the covariance matrix of the parameters but also
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    of the life expectancies. It also computes the period (stable) prevalence. 
   if (!m) nrerror("allocation failure 1 in matrix()");    
   m += NR_END;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   m -= nrl;             Institut national d'études démographiques, Paris.
      This software have been partly granted by Euro-REVES, a concerted action
      from the European Union.
   /* allocate rows and set pointers to them */    It is copyrighted identically to a GNU software product, ie programme and
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    software can be distributed freely for non commercial use. Latest version
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    can be accessed at http://euroreves.ined.fr/imach .
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
      or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    
      **********************************************************************/
   /* return pointer to array of pointers to rows */  /*
   return m;    main
 }    read parameterfile
     read datafile
 /****************** free_imatrix *************************/    concatwav
 void free_imatrix(m,nrl,nrh,ncl,nch)    freqsummary
       int **m;    if (mle >= 1)
       long nch,ncl,nrh,nrl;      mlikeli
      /* free an int matrix allocated by imatrix() */    print results files
 {    if mle==1 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));       computes hessian
   free((FREE_ARG) (m+nrl-NR_END));    read end of parameter file: agemin, agemax, bage, fage, estepm
 }        begin-prev-date,...
     open gnuplot file
 /******************* matrix *******************************/    open html file
 double **matrix(long nrl, long nrh, long ncl, long nch)    period (stable) prevalence
 {     for age prevalim()
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    h Pij x
   double **m;    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    health expectancies
   if (!m) nrerror("allocation failure 1 in matrix()");    Variance-covariance of DFLE
   m += NR_END;    prevalence()
   m -= nrl;     movingaverage()
     varevsij() 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    if popbased==1 varevsij(,popbased)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    total life expectancies
   m[nrl] += NR_END;    Variance of period (stable) prevalence
   m[nrl] -= ncl;   end
   */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  
 }  
    
 /*************************free matrix ************************/  #include <math.h>
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #include <stdio.h>
 {  #include <stdlib.h>
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #include <string.h>
   free((FREE_ARG)(m+nrl-NR_END));  #include <unistd.h>
 }  
   #include <limits.h>
 /******************* ma3x *******************************/  #include <sys/types.h>
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #include <sys/stat.h>
 {  #include <errno.h>
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  extern int errno;
   double ***m;  
   /* #include <sys/time.h> */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include <time.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  #include "timeval.h"
   m += NR_END;  
   m -= nrl;  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define MAXLINE 256
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define FILENAMELENGTH 132
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   for (j=ncl+1; j<=nch; j++)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     m[nrl][j]=m[nrl][j-1]+nlay;  
    #define NINTERVMAX 8
   for (i=nrl+1; i<=nrh; i++) {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
     for (j=ncl+1; j<=nch; j++)  #define NCOVMAX 8 /* Maximum number of covariates */
       m[i][j]=m[i][j-1]+nlay;  #define MAXN 20000
   }  #define YEARM 12. /* Number of months per year */
   return m;  #define AGESUP 130
 }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 /*************************free ma3x ************************/  #ifdef UNIX
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define ODIRSEPARATOR '\\'
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #else
   free((FREE_ARG)(m+nrl-NR_END));  #define DIRSEPARATOR '\\'
 }  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 /***************** f1dim *************************/  #endif
 extern int ncom;  
 extern double *pcom,*xicom;  /* $Id$ */
 extern double (*nrfunc)(double []);  /* $State$ */
    
 double f1dim(double x)  char version[]="Imach version 0.98i, June 2006, INED-EUROREVES-Institut de longevite ";
 {  char fullversion[]="$Revision$ $Date$"; 
   int j;  char strstart[80];
   double f;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   double *xt;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    int nvar;
   xt=vector(1,ncom);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int npar=NPARMAX;
   f=(*nrfunc)(xt);  int nlstate=2; /* Number of live states */
   free_vector(xt,1,ncom);  int ndeath=1; /* Number of dead states */
   return f;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 /*****************brent *************************/  int *wav; /* Number of waves for this individuual 0 is possible */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int maxwav; /* Maxim number of waves */
 {  int jmin, jmax; /* min, max spacing between 2 waves */
   int iter;  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   double a,b,d,etemp;  int gipmx, gsw; /* Global variables on the number of contributions 
   double fu,fv,fw,fx;                     to the likelihood and the sum of weights (done by funcone)*/
   double ftemp;  int mle, weightopt;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   double e=0.0;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   a=(ax < cx ? ax : cx);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   b=(ax > cx ? ax : cx);  double jmean; /* Mean space between 2 waves */
   x=w=v=bx;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   fw=fv=fx=(*f)(x);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   for (iter=1;iter<=ITMAX;iter++) {  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     xm=0.5*(a+b);  FILE *ficlog, *ficrespow;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int globpr; /* Global variable for printing or not */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  double fretone; /* Only one call to likelihood */
     printf(".");fflush(stdout);  long ipmx; /* Number of contributions */
 #ifdef DEBUG  double sw; /* Sum of weights */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char filerespow[FILENAMELENGTH];
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #endif  FILE *ficresilk;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       *xmin=x;  FILE *ficresprobmorprev;
       return fx;  FILE *fichtm, *fichtmcov; /* Html File */
     }  FILE *ficreseij;
     ftemp=fu;  char filerese[FILENAMELENGTH];
     if (fabs(e) > tol1) {  FILE *ficresstdeij;
       r=(x-w)*(fx-fv);  char fileresstde[FILENAMELENGTH];
       q=(x-v)*(fx-fw);  FILE *ficrescveij;
       p=(x-v)*q-(x-w)*r;  char filerescve[FILENAMELENGTH];
       q=2.0*(q-r);  FILE  *ficresvij;
       if (q > 0.0) p = -p;  char fileresv[FILENAMELENGTH];
       q=fabs(q);  FILE  *ficresvpl;
       etemp=e;  char fileresvpl[FILENAMELENGTH];
       e=d;  char title[MAXLINE];
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       else {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
         d=p/q;  char command[FILENAMELENGTH];
         u=x+d;  int  outcmd=0;
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       }  
     } else {  char filelog[FILENAMELENGTH]; /* Log file */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char filerest[FILENAMELENGTH];
     }  char fileregp[FILENAMELENGTH];
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char popfile[FILENAMELENGTH];
     fu=(*f)(u);  
     if (fu <= fx) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
         SHFT(fv,fw,fx,fu)  struct timezone tzp;
         } else {  extern int gettimeofday();
           if (u < x) a=u; else b=u;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
           if (fu <= fw || w == x) {  long time_value;
             v=w;  extern long time();
             w=u;  char strcurr[80], strfor[80];
             fv=fw;  
             fw=fu;  char *endptr;
           } else if (fu <= fv || v == x || v == w) {  long lval;
             v=u;  double dval;
             fv=fu;  
           }  #define NR_END 1
         }  #define FREE_ARG char*
   }  #define FTOL 1.0e-10
   nrerror("Too many iterations in brent");  
   *xmin=x;  #define NRANSI 
   return fx;  #define ITMAX 200 
 }  
   #define TOL 2.0e-4 
 /****************** mnbrak ***********************/  
   #define CGOLD 0.3819660 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define ZEPS 1.0e-10 
             double (*func)(double))  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   double ulim,u,r,q, dum;  #define GOLD 1.618034 
   double fu;  #define GLIMIT 100.0 
    #define TINY 1.0e-20 
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  static double maxarg1,maxarg2;
   if (*fb > *fa) {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     SHFT(dum,*ax,*bx,dum)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       SHFT(dum,*fb,*fa,dum)    
       }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   *cx=(*bx)+GOLD*(*bx-*ax);  #define rint(a) floor(a+0.5)
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  static double sqrarg;
     r=(*bx-*ax)*(*fb-*fc);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     q=(*bx-*cx)*(*fb-*fa);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int agegomp= AGEGOMP;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  int imx; 
     if ((*bx-u)*(u-*cx) > 0.0) {  int stepm=1;
       fu=(*func)(u);  /* Stepm, step in month: minimum step interpolation*/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  int estepm;
       if (fu < *fc) {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  int m,nb;
           }  long *num;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       u=ulim;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       fu=(*func)(u);  double **pmmij, ***probs;
     } else {  double *ageexmed,*agecens;
       u=(*cx)+GOLD*(*cx-*bx);  double dateintmean=0;
       fu=(*func)(u);  
     }  double *weight;
     SHFT(*ax,*bx,*cx,u)  int **s; /* Status */
       SHFT(*fa,*fb,*fc,fu)  double *agedc, **covar, idx;
       }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 }  double *lsurv, *lpop, *tpop;
   
 /*************** linmin ************************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 int ncom;  
 double *pcom,*xicom;  /**************** split *************************/
 double (*nrfunc)(double []);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
    {
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   double brent(double ax, double bx, double cx,    */ 
                double (*f)(double), double tol, double *xmin);    char  *ss;                            /* pointer */
   double f1dim(double x);    int   l1, l2;                         /* length counters */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));    l1 = strlen(path );                   /* length of path */
   int j;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double xx,xmin,bx,ax;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double fx,fb,fa;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
        strcpy( name, path );               /* we got the fullname name because no directory */
   ncom=n;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   pcom=vector(1,n);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   xicom=vector(1,n);      /* get current working directory */
   nrfunc=func;      /*    extern  char* getcwd ( char *buf , int len);*/
   for (j=1;j<=n;j++) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     pcom[j]=p[j];        return( GLOCK_ERROR_GETCWD );
     xicom[j]=xi[j];      }
   }      /* got dirc from getcwd*/
   ax=0.0;      printf(" DIRC = %s \n",dirc);
   xx=1.0;    } else {                              /* strip direcotry from path */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      ss++;                               /* after this, the filename */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      l2 = strlen( ss );                  /* length of filename */
 #ifdef DEBUG      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      strcpy( name, ss );         /* save file name */
 #endif      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   for (j=1;j<=n;j++) {      dirc[l1-l2] = 0;                    /* add zero */
     xi[j] *= xmin;      printf(" DIRC2 = %s \n",dirc);
     p[j] += xi[j];    }
   }    /* We add a separator at the end of dirc if not exists */
   free_vector(xicom,1,n);    l1 = strlen( dirc );                  /* length of directory */
   free_vector(pcom,1,n);    if( dirc[l1-1] != DIRSEPARATOR ){
 }      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
 /*************** powell ************************/      printf(" DIRC3 = %s \n",dirc);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    }
             double (*func)(double []))    ss = strrchr( name, '.' );            /* find last / */
 {    if (ss >0){
   void linmin(double p[], double xi[], int n, double *fret,      ss++;
               double (*func)(double []));      strcpy(ext,ss);                     /* save extension */
   int i,ibig,j;      l1= strlen( name);
   double del,t,*pt,*ptt,*xit;      l2= strlen(ss)+1;
   double fp,fptt;      strncpy( finame, name, l1-l2);
   double *xits;      finame[l1-l2]= 0;
   pt=vector(1,n);    }
   ptt=vector(1,n);  
   xit=vector(1,n);    return( 0 );                          /* we're done */
   xits=vector(1,n);  }
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  /******************************************/
     fp=(*fret);  
     ibig=0;  void replace_back_to_slash(char *s, char*t)
     del=0.0;  {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    int i;
     for (i=1;i<=n;i++)    int lg=0;
       printf(" %d %.12f",i, p[i]);    i=0;
     printf("\n");    lg=strlen(t);
     for (i=1;i<=n;i++) {    for(i=0; i<= lg; i++) {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      (s[i] = t[i]);
       fptt=(*fret);      if (t[i]== '\\') s[i]='/';
 #ifdef DEBUG    }
       printf("fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  int nbocc(char *s, char occ)
       linmin(p,xit,n,fret,func);  {
       if (fabs(fptt-(*fret)) > del) {    int i,j=0;
         del=fabs(fptt-(*fret));    int lg=20;
         ibig=i;    i=0;
       }    lg=strlen(s);
 #ifdef DEBUG    for(i=0; i<= lg; i++) {
       printf("%d %.12e",i,(*fret));    if  (s[i] == occ ) j++;
       for (j=1;j<=n;j++) {    }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    return j;
         printf(" x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++)  void cutv(char *u,char *v, char*t, char occ)
         printf(" p=%.12e",p[j]);  {
       printf("\n");    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
 #endif       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     }       gives u="abcedf" and v="ghi2j" */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    int i,lg,j,p=0;
 #ifdef DEBUG    i=0;
       int k[2],l;    for(j=0; j<=strlen(t)-1; j++) {
       k[0]=1;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       k[1]=-1;    }
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)    lg=strlen(t);
         printf(" %.12e",p[j]);    for(j=0; j<p; j++) {
       printf("\n");      (u[j] = t[j]);
       for(l=0;l<=1;l++) {    }
         for (j=1;j<=n;j++) {       u[p]='\0';
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);     for(j=0; j<= lg; j++) {
         }      if (j>=(p+1))(v[j-p-1] = t[j]);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    }
       }  }
 #endif  
   /********************** nrerror ********************/
   
       free_vector(xit,1,n);  void nrerror(char error_text[])
       free_vector(xits,1,n);  {
       free_vector(ptt,1,n);    fprintf(stderr,"ERREUR ...\n");
       free_vector(pt,1,n);    fprintf(stderr,"%s\n",error_text);
       return;    exit(EXIT_FAILURE);
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /*********************** vector *******************/
     for (j=1;j<=n;j++) {  double *vector(int nl, int nh)
       ptt[j]=2.0*p[j]-pt[j];  {
       xit[j]=p[j]-pt[j];    double *v;
       pt[j]=p[j];    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     }    if (!v) nrerror("allocation failure in vector");
     fptt=(*func)(ptt);    return v-nl+NR_END;
     if (fptt < fp) {  }
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  /************************ free vector ******************/
         linmin(p,xit,n,fret,func);  void free_vector(double*v, int nl, int nh)
         for (j=1;j<=n;j++) {  {
           xi[j][ibig]=xi[j][n];    free((FREE_ARG)(v+nl-NR_END));
           xi[j][n]=xit[j];  }
         }  
 #ifdef DEBUG  /************************ivector *******************************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int *ivector(long nl,long nh)
         for(j=1;j<=n;j++)  {
           printf(" %.12e",xit[j]);    int *v;
         printf("\n");    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 #endif    if (!v) nrerror("allocation failure in ivector");
       }    return v-nl+NR_END;
     }  }
   }  
 }  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
 /**** Prevalence limit ****************/  {
     free((FREE_ARG)(v+nl-NR_END));
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /************************lvector *******************************/
      matrix by transitions matrix until convergence is reached */  long *lvector(long nl,long nh)
   {
   int i, ii,j,k;    long *v;
   double min, max, maxmin, maxmax,sumnew=0.;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double **matprod2();    if (!v) nrerror("allocation failure in ivector");
   double **out, cov[NCOVMAX], **pmij();    return v-nl+NR_END;
   double **newm;  }
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /******************free lvector **************************/
   for (ii=1;ii<=nlstate+ndeath;ii++)  void free_lvector(long *v, long nl, long nh)
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free((FREE_ARG)(v+nl-NR_END));
     }  }
   
    cov[1]=1.;  /******************* imatrix *******************************/
    int **imatrix(long nrl, long nrh, long ncl, long nch) 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  { 
     newm=savm;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     /* Covariates have to be included here again */    int **m; 
      cov[2]=agefin;    
      /* allocate pointers to rows */ 
       for (k=1; k<=cptcovn;k++) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    if (!m) nrerror("allocation failure 1 in matrix()"); 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    m += NR_END; 
       }    m -= nrl; 
       for (k=1; k<=cptcovage;k++)    
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    
       for (k=1; k<=cptcovprod;k++)    /* allocate rows and set pointers to them */ 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    m[nrl] += NR_END; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    m[nrl] -= ncl; 
     
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
     savm=oldm;    /* return pointer to array of pointers to rows */ 
     oldm=newm;    return m; 
     maxmax=0.;  } 
     for(j=1;j<=nlstate;j++){  
       min=1.;  /****************** free_imatrix *************************/
       max=0.;  void free_imatrix(m,nrl,nrh,ncl,nch)
       for(i=1; i<=nlstate; i++) {        int **m;
         sumnew=0;        long nch,ncl,nrh,nrl; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];       /* free an int matrix allocated by imatrix() */ 
         prlim[i][j]= newm[i][j]/(1-sumnew);  { 
         max=FMAX(max,prlim[i][j]);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         min=FMIN(min,prlim[i][j]);    free((FREE_ARG) (m+nrl-NR_END)); 
       }  } 
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  /******************* matrix *******************************/
     }  double **matrix(long nrl, long nrh, long ncl, long nch)
     if(maxmax < ftolpl){  {
       return prlim;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     }    double **m;
   }  
 }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /*************** transition probabilities ***************/    m += NR_END;
     m -= nrl;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double s1, s2;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   /*double t34;*/    m[nrl] += NR_END;
   int i,j,j1, nc, ii, jj;    m[nrl] -= ncl;
   
     for(i=1; i<= nlstate; i++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for(j=1; j<i;j++){    return m;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         /*s2 += param[i][j][nc]*cov[nc];*/     */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  /*************************free matrix ************************/
       ps[i][j]=s2;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  {
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for(j=i+1; j<=nlstate+ndeath;j++){    free((FREE_ARG)(m+nrl-NR_END));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /******************* ma3x *******************************/
       }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       ps[i][j]=s2;  {
     }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   }    double ***m;
     /*ps[3][2]=1;*/  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for(i=1; i<= nlstate; i++){    if (!m) nrerror("allocation failure 1 in matrix()");
      s1=0;    m += NR_END;
     for(j=1; j<i; j++)    m -= nrl;
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       s1+=exp(ps[i][j]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     ps[i][i]=1./(s1+1.);    m[nrl] += NR_END;
     for(j=1; j<i; j++)    m[nrl] -= ncl;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     for(j=i+1; j<=nlstate+ndeath; j++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   } /* end i */    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    m[nrl][ncl] -= nll;
     for(jj=1; jj<= nlstate+ndeath; jj++){    for (j=ncl+1; j<=nch; j++) 
       ps[ii][jj]=0;      m[nrl][j]=m[nrl][j-1]+nlay;
       ps[ii][ii]=1;    
     }    for (i=nrl+1; i<=nrh; i++) {
   }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    }
     for(jj=1; jj<= nlstate+ndeath; jj++){    return m; 
      printf("%lf ",ps[ii][jj]);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
    }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     printf("\n ");    */
     }  }
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  /*************************free ma3x ************************/
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   goto end;*/  {
     return ps;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 /**************** Product of 2 matrices ******************/  }
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /*************** function subdirf ***********/
 {  char *subdirf(char fileres[])
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  {
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    /* Caution optionfilefiname is hidden */
   /* in, b, out are matrice of pointers which should have been initialized    strcpy(tmpout,optionfilefiname);
      before: only the contents of out is modified. The function returns    strcat(tmpout,"/"); /* Add to the right */
      a pointer to pointers identical to out */    strcat(tmpout,fileres);
   long i, j, k;    return tmpout;
   for(i=nrl; i<= nrh; i++)  }
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  /*************** function subdirf2 ***********/
         out[i][k] +=in[i][j]*b[j][k];  char *subdirf2(char fileres[], char *preop)
   {
   return out;    
 }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 /************* Higher Matrix Product ***************/    strcat(tmpout,preop);
     strcat(tmpout,fileres);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    return tmpout;
 {  }
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until  /*************** function subdirf3 ***********/
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  char *subdirf3(char fileres[], char *preop, char *preop2)
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  {
      (typically every 2 years instead of every month which is too big).    
      Model is determined by parameters x and covariates have to be    /* Caution optionfilefiname is hidden */
      included manually here.    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
      */    strcat(tmpout,preop);
     strcat(tmpout,preop2);
   int i, j, d, h, k;    strcat(tmpout,fileres);
   double **out, cov[NCOVMAX];    return tmpout;
   double **newm;  }
   
   /* Hstepm could be zero and should return the unit matrix */  /***************** f1dim *************************/
   for (i=1;i<=nlstate+ndeath;i++)  extern int ncom; 
     for (j=1;j<=nlstate+ndeath;j++){  extern double *pcom,*xicom;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  extern double (*nrfunc)(double []); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);   
     }  double f1dim(double x) 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  { 
   for(h=1; h <=nhstepm; h++){    int j; 
     for(d=1; d <=hstepm; d++){    double f;
       newm=savm;    double *xt; 
       /* Covariates have to be included here again */   
       cov[1]=1.;    xt=vector(1,ncom); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    f=(*nrfunc)(xt); 
       for (k=1; k<=cptcovage;k++)    free_vector(xt,1,ncom); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return f; 
       for (k=1; k<=cptcovprod;k++)  } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  { 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    int iter; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double a,b,d,etemp;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    double fu,fv,fw,fx;
       savm=oldm;    double ftemp;
       oldm=newm;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     }    double e=0.0; 
     for(i=1; i<=nlstate+ndeath; i++)   
       for(j=1;j<=nlstate+ndeath;j++) {    a=(ax < cx ? ax : cx); 
         po[i][j][h]=newm[i][j];    b=(ax > cx ? ax : cx); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    x=w=v=bx; 
          */    fw=fv=fx=(*f)(x); 
       }    for (iter=1;iter<=ITMAX;iter++) { 
   } /* end h */      xm=0.5*(a+b); 
   return po;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
 /*************** log-likelihood *************/  #ifdef DEBUG
 double func( double *x)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int i, ii, j, k, mi, d, kk;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  #endif
   double **out;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double sw; /* Sum of weights */        *xmin=x; 
   double lli; /* Individual log likelihood */        return fx; 
   long ipmx;      } 
   /*extern weight */      ftemp=fu;
   /* We are differentiating ll according to initial status */      if (fabs(e) > tol1) { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        r=(x-w)*(fx-fv); 
   /*for(i=1;i<imx;i++)        q=(x-v)*(fx-fw); 
     printf(" %d\n",s[4][i]);        p=(x-v)*q-(x-w)*r; 
   */        q=2.0*(q-r); 
   cov[1]=1.;        if (q > 0.0) p = -p; 
         q=fabs(q); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        etemp=e; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        e=d; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for(mi=1; mi<= wav[i]-1; mi++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (ii=1;ii<=nlstate+ndeath;ii++)        else { 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          d=p/q; 
       for(d=0; d<dh[mi][i]; d++){          u=x+d; 
         newm=savm;          if (u-a < tol2 || b-u < tol2) 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            d=SIGN(tol1,xm-x); 
         for (kk=1; kk<=cptcovage;kk++) {        } 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      } else { 
         }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
              } 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      fu=(*f)(u); 
         savm=oldm;      if (fu <= fx) { 
         oldm=newm;        if (u >= x) a=x; else b=x; 
                SHFT(v,w,x,u) 
                  SHFT(fv,fw,fx,fu) 
       } /* end mult */          } else { 
                  if (u < x) a=u; else b=u; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);            if (fu <= fw || w == x) { 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/              v=w; 
       ipmx +=1;              w=u; 
       sw += weight[i];              fv=fw; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;              fw=fu; 
     } /* end of wave */            } else if (fu <= fv || v == x || v == w) { 
   } /* end of individual */              v=u; 
               fv=fu; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            } 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          } 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    } 
   return -l;    nrerror("Too many iterations in brent"); 
 }    *xmin=x; 
     return fx; 
   } 
 /*********** Maximum Likelihood Estimation ***************/  
   /****************** mnbrak ***********************/
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   int i,j, iter;              double (*func)(double)) 
   double **xi,*delti;  { 
   double fret;    double ulim,u,r,q, dum;
   xi=matrix(1,npar,1,npar);    double fu; 
   for (i=1;i<=npar;i++)   
     for (j=1;j<=npar;j++)    *fa=(*func)(*ax); 
       xi[i][j]=(i==j ? 1.0 : 0.0);    *fb=(*func)(*bx); 
   printf("Powell\n");    if (*fb > *fa) { 
   powell(p,xi,npar,ftol,&iter,&fret,func);      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        } 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
 }    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
 /**** Computes Hessian and covariance matrix ***/      q=(*bx-*cx)*(*fb-*fa); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   double  **a,**y,*x,pd;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   double **hess;      if ((*bx-u)*(u-*cx) > 0.0) { 
   int i, j,jk;        fu=(*func)(u); 
   int *indx;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
   double hessii(double p[], double delta, int theta, double delti[]);        if (fu < *fc) { 
   double hessij(double p[], double delti[], int i, int j);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   void lubksb(double **a, int npar, int *indx, double b[]) ;            SHFT(*fb,*fc,fu,(*func)(u)) 
   void ludcmp(double **a, int npar, int *indx, double *d) ;            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   hess=matrix(1,npar,1,npar);        u=ulim; 
         fu=(*func)(u); 
   printf("\nCalculation of the hessian matrix. Wait...\n");      } else { 
   for (i=1;i<=npar;i++){        u=(*cx)+GOLD*(*cx-*bx); 
     printf("%d",i);fflush(stdout);        fu=(*func)(u); 
     hess[i][i]=hessii(p,ftolhess,i,delti);      } 
     /*printf(" %f ",p[i]);*/      SHFT(*ax,*bx,*cx,u) 
     /*printf(" %lf ",hess[i][i]);*/        SHFT(*fa,*fb,*fc,fu) 
   }        } 
    } 
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {  /*************** linmin ************************/
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  int ncom; 
         hess[i][j]=hessij(p,delti,i,j);  double *pcom,*xicom;
         hess[j][i]=hess[i][j];      double (*nrfunc)(double []); 
         /*printf(" %lf ",hess[i][j]);*/   
       }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     }  { 
   }    double brent(double ax, double bx, double cx, 
   printf("\n");                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                  double *fc, double (*func)(double)); 
   a=matrix(1,npar,1,npar);    int j; 
   y=matrix(1,npar,1,npar);    double xx,xmin,bx,ax; 
   x=vector(1,npar);    double fx,fb,fa;
   indx=ivector(1,npar);   
   for (i=1;i<=npar;i++)    ncom=n; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    pcom=vector(1,n); 
   ludcmp(a,npar,indx,&pd);    xicom=vector(1,n); 
     nrfunc=func; 
   for (j=1;j<=npar;j++) {    for (j=1;j<=n;j++) { 
     for (i=1;i<=npar;i++) x[i]=0;      pcom[j]=p[j]; 
     x[j]=1;      xicom[j]=xi[j]; 
     lubksb(a,npar,indx,x);    } 
     for (i=1;i<=npar;i++){    ax=0.0; 
       matcov[i][j]=x[i];    xx=1.0; 
     }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
   printf("\n#Hessian matrix#\n");    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (i=1;i<=npar;i++) {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (j=1;j<=npar;j++) {  #endif
       printf("%.3e ",hess[i][j]);    for (j=1;j<=n;j++) { 
     }      xi[j] *= xmin; 
     printf("\n");      p[j] += xi[j]; 
   }    } 
     free_vector(xicom,1,n); 
   /* Recompute Inverse */    free_vector(pcom,1,n); 
   for (i=1;i<=npar;i++)  } 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);  char *asc_diff_time(long time_sec, char ascdiff[])
   {
   /*  printf("\n#Hessian matrix recomputed#\n");    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   for (j=1;j<=npar;j++) {    sec_left = (time_sec) % (60*60*24);
     for (i=1;i<=npar;i++) x[i]=0;    hours = (sec_left) / (60*60) ;
     x[j]=1;    sec_left = (sec_left) %(60*60);
     lubksb(a,npar,indx,x);    minutes = (sec_left) /60;
     for (i=1;i<=npar;i++){    sec_left = (sec_left) % (60);
       y[i][j]=x[i];    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       printf("%.3e ",y[i][j]);    return ascdiff;
     }  }
     printf("\n");  
   }  /*************** powell ************************/
   */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
   free_matrix(a,1,npar,1,npar);  { 
   free_matrix(y,1,npar,1,npar);    void linmin(double p[], double xi[], int n, double *fret, 
   free_vector(x,1,npar);                double (*func)(double [])); 
   free_ivector(indx,1,npar);    int i,ibig,j; 
   free_matrix(hess,1,npar,1,npar);    double del,t,*pt,*ptt,*xit;
     double fp,fptt;
     double *xits;
 }    int niterf, itmp;
   
 /*************** hessian matrix ****************/    pt=vector(1,n); 
 double hessii( double x[], double delta, int theta, double delti[])    ptt=vector(1,n); 
 {    xit=vector(1,n); 
   int i;    xits=vector(1,n); 
   int l=1, lmax=20;    *fret=(*func)(p); 
   double k1,k2;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double p2[NPARMAX+1];    for (*iter=1;;++(*iter)) { 
   double res;      fp=(*fret); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      ibig=0; 
   double fx;      del=0.0; 
   int k=0,kmax=10;      last_time=curr_time;
   double l1;      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   fx=func(x);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   for (i=1;i<=npar;i++) p2[i]=x[i];  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   for(l=0 ; l <=lmax; l++){     for (i=1;i<=n;i++) {
     l1=pow(10,l);        printf(" %d %.12f",i, p[i]);
     delts=delt;        fprintf(ficlog," %d %.12lf",i, p[i]);
     for(k=1 ; k <kmax; k=k+1){        fprintf(ficrespow," %.12lf", p[i]);
       delt = delta*(l1*k);      }
       p2[theta]=x[theta] +delt;      printf("\n");
       k1=func(p2)-fx;      fprintf(ficlog,"\n");
       p2[theta]=x[theta]-delt;      fprintf(ficrespow,"\n");fflush(ficrespow);
       k2=func(p2)-fx;      if(*iter <=3){
       /*res= (k1-2.0*fx+k2)/delt/delt; */        tm = *localtime(&curr_time.tv_sec);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        strcpy(strcurr,asctime(&tm));
        /*       asctime_r(&tm,strcurr); */
 #ifdef DEBUG        forecast_time=curr_time; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        itmp = strlen(strcurr);
 #endif        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          strcurr[itmp-1]='\0';
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         k=kmax;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       }        for(niterf=10;niterf<=30;niterf+=10){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         k=kmax; l=lmax*10.;          tmf = *localtime(&forecast_time.tv_sec);
       }  /*      asctime_r(&tmf,strfor); */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          strcpy(strfor,asctime(&tmf));
         delts=delt;          itmp = strlen(strfor);
       }          if(strfor[itmp-1]=='\n')
     }          strfor[itmp-1]='\0';
   }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   delti[theta]=delts;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   return res;        }
        }
 }      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 double hessij( double x[], double delti[], int thetai,int thetaj)        fptt=(*fret); 
 {  #ifdef DEBUG
   int i;        printf("fret=%lf \n",*fret);
   int l=1, l1, lmax=20;        fprintf(ficlog,"fret=%lf \n",*fret);
   double k1,k2,k3,k4,res,fx;  #endif
   double p2[NPARMAX+1];        printf("%d",i);fflush(stdout);
   int k;        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
   fx=func(x);        if (fabs(fptt-(*fret)) > del) { 
   for (k=1; k<=2; k++) {          del=fabs(fptt-(*fret)); 
     for (i=1;i<=npar;i++) p2[i]=x[i];          ibig=i; 
     p2[thetai]=x[thetai]+delti[thetai]/k;        } 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  #ifdef DEBUG
     k1=func(p2)-fx;        printf("%d %.12e",i,(*fret));
          fprintf(ficlog,"%d %.12e",i,(*fret));
     p2[thetai]=x[thetai]+delti[thetai]/k;        for (j=1;j<=n;j++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     k2=func(p2)-fx;          printf(" x(%d)=%.12e",j,xit[j]);
            fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(j=1;j<=n;j++) {
     k3=func(p2)-fx;          printf(" p=%.12e",p[j]);
            fprintf(ficlog," p=%.12e",p[j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        printf("\n");
     k4=func(p2)-fx;        fprintf(ficlog,"\n");
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  #endif
 #ifdef DEBUG      } 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 #endif  #ifdef DEBUG
   }        int k[2],l;
   return res;        k[0]=1;
 }        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
 /************** Inverse of matrix **************/        fprintf(ficlog,"Max: %.12e",(*func)(p));
 void ludcmp(double **a, int n, int *indx, double *d)        for (j=1;j<=n;j++) {
 {          printf(" %.12e",p[j]);
   int i,imax,j,k;          fprintf(ficlog," %.12e",p[j]);
   double big,dum,sum,temp;        }
   double *vv;        printf("\n");
          fprintf(ficlog,"\n");
   vv=vector(1,n);        for(l=0;l<=1;l++) {
   *d=1.0;          for (j=1;j<=n;j++) {
   for (i=1;i<=n;i++) {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     big=0.0;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for (j=1;j<=n;j++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       if ((temp=fabs(a[i][j])) > big) big=temp;          }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     vv[i]=1.0/big;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }        }
   for (j=1;j<=n;j++) {  #endif
     for (i=1;i<j;i++) {  
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        free_vector(xit,1,n); 
       a[i][j]=sum;        free_vector(xits,1,n); 
     }        free_vector(ptt,1,n); 
     big=0.0;        free_vector(pt,1,n); 
     for (i=j;i<=n;i++) {        return; 
       sum=a[i][j];      } 
       for (k=1;k<j;k++)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         sum -= a[i][k]*a[k][j];      for (j=1;j<=n;j++) { 
       a[i][j]=sum;        ptt[j]=2.0*p[j]-pt[j]; 
       if ( (dum=vv[i]*fabs(sum)) >= big) {        xit[j]=p[j]-pt[j]; 
         big=dum;        pt[j]=p[j]; 
         imax=i;      } 
       }      fptt=(*func)(ptt); 
     }      if (fptt < fp) { 
     if (j != imax) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       for (k=1;k<=n;k++) {        if (t < 0.0) { 
         dum=a[imax][k];          linmin(p,xit,n,fret,func); 
         a[imax][k]=a[j][k];          for (j=1;j<=n;j++) { 
         a[j][k]=dum;            xi[j][ibig]=xi[j][n]; 
       }            xi[j][n]=xit[j]; 
       *d = -(*d);          }
       vv[imax]=vv[j];  #ifdef DEBUG
     }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     indx[j]=imax;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     if (a[j][j] == 0.0) a[j][j]=TINY;          for(j=1;j<=n;j++){
     if (j != n) {            printf(" %.12e",xit[j]);
       dum=1.0/(a[j][j]);            fprintf(ficlog," %.12e",xit[j]);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          }
     }          printf("\n");
   }          fprintf(ficlog,"\n");
   free_vector(vv,1,n);  /* Doesn't work */  #endif
 ;        }
 }      } 
     } 
 void lubksb(double **a, int n, int *indx, double b[])  } 
 {  
   int i,ii=0,ip,j;  /**** Prevalence limit (stable or period prevalence)  ****************/
   double sum;  
    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   for (i=1;i<=n;i++) {  {
     ip=indx[i];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     sum=b[ip];       matrix by transitions matrix until convergence is reached */
     b[ip]=b[i];  
     if (ii)    int i, ii,j,k;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    double min, max, maxmin, maxmax,sumnew=0.;
     else if (sum) ii=i;    double **matprod2();
     b[i]=sum;    double **out, cov[NCOVMAX], **pmij();
   }    double **newm;
   for (i=n;i>=1;i--) {    double agefin, delaymax=50 ; /* Max number of years to converge */
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    for (ii=1;ii<=nlstate+ndeath;ii++)
     b[i]=sum/a[i][i];      for (j=1;j<=nlstate+ndeath;j++){
   }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }      }
   
 /************ Frequencies ********************/     cov[1]=1.;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)   
 {  /* Some frequencies */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      newm=savm;
   double ***freq; /* Frequencies */      /* Covariates have to be included here again */
   double *pp;       cov[2]=agefin;
   double pos, k2, dateintsum=0,k2cpt=0;    
   FILE *ficresp;        for (k=1; k<=cptcovn;k++) {
   char fileresp[FILENAMELENGTH];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   pp=vector(1,nlstate);        }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   strcpy(fileresp,"p");        for (k=1; k<=cptcovprod;k++)
   strcat(fileresp,fileres);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     exit(0);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   j1=0;  
       savm=oldm;
   j=cptcoveff;      oldm=newm;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      maxmax=0.;
       for(j=1;j<=nlstate;j++){
   for(k1=1; k1<=j;k1++){        min=1.;
    for(i1=1; i1<=ncodemax[k1];i1++){        max=0.;
        j1++;        for(i=1; i<=nlstate; i++) {
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          sumnew=0;
          scanf("%d", i);*/          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         for (i=-1; i<=nlstate+ndeath; i++)            prlim[i][j]= newm[i][j]/(1-sumnew);
          for (jk=-1; jk<=nlstate+ndeath; jk++)            max=FMAX(max,prlim[i][j]);
            for(m=agemin; m <= agemax+3; m++)          min=FMIN(min,prlim[i][j]);
              freq[i][jk][m]=0;        }
         maxmin=max-min;
         dateintsum=0;        maxmax=FMAX(maxmax,maxmin);
         k2cpt=0;      }
        for (i=1; i<=imx; i++) {      if(maxmax < ftolpl){
          bool=1;        return prlim;
          if  (cptcovn>0) {      }
            for (z1=1; z1<=cptcoveff; z1++)    }
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  }
                bool=0;  
          }  /*************** transition probabilities ***************/ 
          if (bool==1) {  
            for(m=firstpass; m<=lastpass; m++){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
              k2=anint[m][i]+(mint[m][i]/12.);  {
              if ((k2>=dateprev1) && (k2<=dateprev2)) {    double s1, s2;
                if(agev[m][i]==0) agev[m][i]=agemax+1;    /*double t34;*/
                if(agev[m][i]==1) agev[m][i]=agemax+2;    int i,j,j1, nc, ii, jj;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      for(i=1; i<= nlstate; i++){
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        for(j=1; j<i;j++){
                  dateintsum=dateintsum+k2;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                  k2cpt++;            /*s2 += param[i][j][nc]*cov[nc];*/
                }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
              }          }
            }          ps[i][j]=s2;
          }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
        }        }
         if  (cptcovn>0) {        for(j=i+1; j<=nlstate+ndeath;j++){
          fprintf(ficresp, "\n#********** Variable ");          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
        fprintf(ficresp, "**********\n#");  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         }          }
        for(i=1; i<=nlstate;i++)          ps[i][j]=s2;
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        }
        fprintf(ficresp, "\n");      }
              /*ps[3][2]=1;*/
   for(i=(int)agemin; i <= (int)agemax+3; i++){      
     if(i==(int)agemax+3)      for(i=1; i<= nlstate; i++){
       printf("Total");        s1=0;
     else        for(j=1; j<i; j++)
       printf("Age %d", i);          s1+=exp(ps[i][j]);
     for(jk=1; jk <=nlstate ; jk++){        for(j=i+1; j<=nlstate+ndeath; j++)
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          s1+=exp(ps[i][j]);
         pp[jk] += freq[jk][m][i];        ps[i][i]=1./(s1+1.);
     }        for(j=1; j<i; j++)
     for(jk=1; jk <=nlstate ; jk++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(m=-1, pos=0; m <=0 ; m++)        for(j=i+1; j<=nlstate+ndeath; j++)
         pos += freq[jk][m][i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
       if(pp[jk]>=1.e-10)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      } /* end i */
       else      
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     }        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
      for(jk=1; jk <=nlstate ; jk++){          ps[ii][ii]=1;
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        }
         pp[jk] += freq[jk][m][i];      }
      }      
   
     for(jk=1,pos=0; jk <=nlstate ; jk++)  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       pos += pp[jk];  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     for(jk=1; jk <=nlstate ; jk++){  /*         printf("ddd %lf ",ps[ii][jj]); */
       if(pos>=1.e-5)  /*       } */
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  /*       printf("\n "); */
       else  /*        } */
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  /*        printf("\n ");printf("%lf ",cov[2]); */
       if( i <= (int) agemax){         /*
         if(pos>=1.e-5){        for(i=1; i<= npar; i++) printf("%f ",x[i]);
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        goto end;*/
           probs[i][jk][j1]= pp[jk]/pos;      return ps;
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  }
         }  
       else  /**************** Product of 2 matrices ******************/
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
       }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     }  {
     for(jk=-1; jk <=nlstate+ndeath; jk++)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       for(m=-1; m <=nlstate+ndeath; m++)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    /* in, b, out are matrice of pointers which should have been initialized 
     if(i <= (int) agemax)       before: only the contents of out is modified. The function returns
       fprintf(ficresp,"\n");       a pointer to pointers identical to out */
     printf("\n");    long i, j, k;
     }    for(i=nrl; i<= nrh; i++)
     }      for(k=ncolol; k<=ncoloh; k++)
  }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   dateintmean=dateintsum/k2cpt;          out[i][k] +=in[i][j]*b[j][k];
    
   fclose(ficresp);    return out;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  }
   free_vector(pp,1,nlstate);  
   
   /* End of Freq */  /************* Higher Matrix Product ***************/
 }  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 /************ Prevalence ********************/  {
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    /* Computes the transition matrix starting at age 'age' over 
 {  /* Some frequencies */       'nhstepm*hstepm*stepm' months (i.e. until
         age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;       nhstepm*hstepm matrices. 
   double ***freq; /* Frequencies */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double *pp;       (typically every 2 years instead of every month which is too big 
   double pos, k2;       for the memory).
        Model is determined by parameters x and covariates have to be 
   pp=vector(1,nlstate);       included manually here. 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
         */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;    int i, j, d, h, k;
      double **out, cov[NCOVMAX];
   j=cptcoveff;    double **newm;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
      /* Hstepm could be zero and should return the unit matrix */
  for(k1=1; k1<=j;k1++){    for (i=1;i<=nlstate+ndeath;i++)
     for(i1=1; i1<=ncodemax[k1];i1++){      for (j=1;j<=nlstate+ndeath;j++){
       j1++;        oldm[i][j]=(i==j ? 1.0 : 0.0);
          po[i][j][0]=(i==j ? 1.0 : 0.0);
       for (i=-1; i<=nlstate+ndeath; i++)        }
         for (jk=-1; jk<=nlstate+ndeath; jk++)      /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           for(m=agemin; m <= agemax+3; m++)    for(h=1; h <=nhstepm; h++){
             freq[i][jk][m]=0;      for(d=1; d <=hstepm; d++){
              newm=savm;
       for (i=1; i<=imx; i++) {        /* Covariates have to be included here again */
         bool=1;        cov[1]=1.;
         if  (cptcovn>0) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           for (z1=1; z1<=cptcoveff; z1++)        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for (k=1; k<=cptcovage;k++)
               bool=0;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         }        for (k=1; k<=cptcovprod;k++)
         if (bool==1) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
               if(agev[m][i]==0) agev[m][i]=agemax+1;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
               if(agev[m][i]==1) agev[m][i]=agemax+2;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];          savm=oldm;
             }        oldm=newm;
           }      }
         }      for(i=1; i<=nlstate+ndeath; i++)
       }        for(j=1;j<=nlstate+ndeath;j++) {
                po[i][j][h]=newm[i][j];
         for(i=(int)agemin; i <= (int)agemax+3; i++){          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
           for(jk=1; jk <=nlstate ; jk++){        }
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      /*printf("h=%d ",h);*/
               pp[jk] += freq[jk][m][i];    } /* end h */
           }  /*     printf("\n H=%d \n",h); */
           for(jk=1; jk <=nlstate ; jk++){    return po;
             for(m=-1, pos=0; m <=0 ; m++)  }
             pos += freq[jk][m][i];  
         }  
          /*************** log-likelihood *************/
          for(jk=1; jk <=nlstate ; jk++){  double func( double *x)
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  {
              pp[jk] += freq[jk][m][i];    int i, ii, j, k, mi, d, kk;
          }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
              double **out;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
          for(jk=1; jk <=nlstate ; jk++){              int s1, s2;
            if( i <= (int) agemax){    double bbh, survp;
              if(pos>=1.e-5){    long ipmx;
                probs[i][jk][j1]= pp[jk]/pos;    /*extern weight */
              }    /* We are differentiating ll according to initial status */
            }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
          }    /*for(i=1;i<imx;i++) 
                printf(" %d\n",s[4][i]);
         }    */
     }    cov[1]=1.;
   }  
      for(k=1; k<=nlstate; k++) ll[k]=0.;
    
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    if(mle==1){
   free_vector(pp,1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }  /* End of Freq */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 /************* Waves Concatenation ***************/            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          for(d=0; d<dh[mi][i]; d++){
      Death is a valid wave (if date is known).            newm=savm;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            for (kk=1; kk<=cptcovage;kk++) {
      and mw[mi+1][i]. dh depends on stepm.              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      */            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, mi, m;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            savm=oldm;
      double sum=0., jmean=0.;*/            oldm=newm;
           } /* end mult */
   int j, k=0,jk, ju, jl;        
   double sum=0.;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   jmin=1e+5;          /* But now since version 0.9 we anticipate for bias at large stepm.
   jmax=-1;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   jmean=0.;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   for(i=1; i<=imx; i++){           * the nearest (and in case of equal distance, to the lowest) interval but now
     mi=0;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     m=firstpass;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     while(s[m][i] <= nlstate){           * probability in order to take into account the bias as a fraction of the way
       if(s[m][i]>=1)           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         mw[++mi][i]=m;           * -stepm/2 to stepm/2 .
       if(m >=lastpass)           * For stepm=1 the results are the same as for previous versions of Imach.
         break;           * For stepm > 1 the results are less biased than in previous versions. 
       else           */
         m++;          s1=s[mw[mi][i]][i];
     }/* end while */          s2=s[mw[mi+1][i]][i];
     if (s[m][i] > nlstate){          bbh=(double)bh[mi][i]/(double)stepm; 
       mi++;     /* Death is another wave */          /* bias bh is positive if real duration
       /* if(mi==0)  never been interviewed correctly before death */           * is higher than the multiple of stepm and negative otherwise.
          /* Only death is a correct wave */           */
       mw[mi][i]=m;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     }          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known 
     wav[i]=mi;               then the contribution to the likelihood is the probability to 
     if(mi==0)               die between last step unit time and current  step unit time, 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);               which is also equal to probability to die before dh 
   }               minus probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
   for(i=1; i<=imx; i++){          as if date of death was unknown. Death was treated as any other
     for(mi=1; mi<wav[i];mi++){          health state: the date of the interview describes the actual state
       if (stepm <=0)          and not the date of a change in health state. The former idea was
         dh[mi][i]=1;          to consider that at each interview the state was recorded
       else{          (healthy, disable or death) and IMaCh was corrected; but when we
         if (s[mw[mi+1][i]][i] > nlstate) {          introduced the exact date of death then we should have modified
           if (agedc[i] < 2*AGESUP) {          the contribution of an exact death to the likelihood. This new
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          contribution is smaller and very dependent of the step unit
           if(j==0) j=1;  /* Survives at least one month after exam */          stepm. It is no more the probability to die between last interview
           k=k+1;          and month of death but the probability to survive from last
           if (j >= jmax) jmax=j;          interview up to one month before death multiplied by the
           if (j <= jmin) jmin=j;          probability to die within a month. Thanks to Chris
           sum=sum+j;          Jackson for correcting this bug.  Former versions increased
           /* if (j<10) printf("j=%d num=%d ",j,i); */          mortality artificially. The bad side is that we add another loop
           }          which slows down the processing. The difference can be up to 10%
         }          lower mortality.
         else{            */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            lli=log(out[s1][s2] - savm[s1][s2]);
           k=k+1;  
           if (j >= jmax) jmax=j;  
           else if (j <= jmin)jmin=j;          } else if  (s2==-2) {
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            for (j=1,survp=0. ; j<=nlstate; j++) 
           sum=sum+j;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            /*survp += out[s1][j]; */
         jk= j/stepm;            lli= log(survp);
         jl= j -jk*stepm;          }
         ju= j -(jk+1)*stepm;          
         if(jl <= -ju)          else if  (s2==-4) { 
           dh[mi][i]=jk;            for (j=3,survp=0. ; j<=nlstate; j++)  
         else              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           dh[mi][i]=jk+1;            lli= log(survp); 
         if(dh[mi][i]==0)          } 
           dh[mi][i]=1; /* At least one step */  
       }          else if  (s2==-5) { 
     }            for (j=1,survp=0. ; j<=2; j++)  
   }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   jmean=sum/k;            lli= log(survp); 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          } 
  }          
 /*********** Tricode ****************************/          else{
 void tricode(int *Tvar, int **nbcode, int imx)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   int Ndum[20],ij=1, k, j, i;          } 
   int cptcode=0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   cptcoveff=0;          /*if(lli ==000.0)*/
            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   for (k=0; k<19; k++) Ndum[k]=0;          ipmx +=1;
   for (k=1; k<=7; k++) ncodemax[k]=0;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        } /* end of wave */
     for (i=1; i<=imx; i++) {      } /* end of individual */
       ij=(int)(covar[Tvar[j]][i]);    }  else if(mle==2){
       Ndum[ij]++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if (ij > cptcode) cptcode=ij;        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
     for (i=0; i<=cptcode; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(Ndum[i]!=0) ncodemax[j]++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
     ij=1;          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1; i<=ncodemax[j]; i++) {            for (kk=1; kk<=cptcovage;kk++) {
       for (k=0; k<=19; k++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if (Ndum[k] != 0) {            }
           nbcode[Tvar[j]][ij]=k;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           ij++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         if (ij > ncodemax[j]) break;            oldm=newm;
       }            } /* end mult */
     }        
   }            s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
  for (k=0; k<19; k++) Ndum[k]=0;          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
  for (i=1; i<=ncovmodel-2; i++) {          ipmx +=1;
       ij=Tvar[i];          sw += weight[i];
       Ndum[ij]++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
       } /* end of individual */
  ij=1;    }  else if(mle==3){  /* exponential inter-extrapolation */
  for (i=1; i<=10; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    if((Ndum[i]!=0) && (i<=ncov)){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      Tvaraff[ij]=i;        for(mi=1; mi<= wav[i]-1; mi++){
      ij++;          for (ii=1;ii<=nlstate+ndeath;ii++)
    }            for (j=1;j<=nlstate+ndeath;j++){
  }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
     cptcoveff=ij-1;            }
 }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 /*********** Health Expectancies ****************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   /* Health expectancies */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, j, nhstepm, hstepm, h;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double age, agelim,hf;            savm=oldm;
   double ***p3mat;            oldm=newm;
            } /* end mult */
   fprintf(ficreseij,"# Health expectancies\n");        
   fprintf(ficreseij,"# Age");          s1=s[mw[mi][i]][i];
   for(i=1; i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
     for(j=1; j<=nlstate;j++)          bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(ficreseij," %1d-%1d",i,j);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   fprintf(ficreseij,"\n");          ipmx +=1;
           sw += weight[i];
   hstepm=1*YEARM; /*  Every j years of age (in month) */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        } /* end of wave */
       } /* end of individual */
   agelim=AGESUP;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     /* nhstepm age range expressed in number of stepm */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);        for(mi=1; mi<= wav[i]-1; mi++){
     /* Typically if 20 years = 20*12/6=40 stepm */          for (ii=1;ii<=nlstate+ndeath;ii++)
     if (stepm >= YEARM) hstepm=1;            for (j=1;j<=nlstate+ndeath;j++){
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          for(d=0; d<dh[mi][i]; d++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     for(i=1; i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<=nlstate;j++)            }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          
           eij[i][j][(int)age] +=p3mat[i][j][h];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                savm=oldm;
     hf=1;            oldm=newm;
     if (stepm >= YEARM) hf=stepm/YEARM;          } /* end mult */
     fprintf(ficreseij,"%.0f",age );        
     for(i=1; i<=nlstate;i++)          s1=s[mw[mi][i]][i];
       for(j=1; j<=nlstate;j++){          s2=s[mw[mi+1][i]][i];
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          if( s2 > nlstate){ 
       }            lli=log(out[s1][s2] - savm[s1][s2]);
     fprintf(ficreseij,"\n");          }else{
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   }          }
 }          ipmx +=1;
           sw += weight[i];
 /************ Variance ******************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 {        } /* end of wave */
   /* Variance of health expectancies */      } /* end of individual */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   double **newm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double **dnewm,**doldm;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i, j, nhstepm, hstepm, h;        for(mi=1; mi<= wav[i]-1; mi++){
   int k, cptcode;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double *xp;            for (j=1;j<=nlstate+ndeath;j++){
   double **gp, **gm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***gradg, ***trgradg;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***p3mat;            }
   double age,agelim;          for(d=0; d<dh[mi][i]; d++){
   int theta;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    fprintf(ficresvij,"# Covariances of life expectancies\n");            for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficresvij,"# Age");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(i=1; i<=nlstate;i++)            }
     for(j=1; j<=nlstate;j++)          
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficresvij,"\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   xp=vector(1,npar);            oldm=newm;
   dnewm=matrix(1,nlstate,1,npar);          } /* end mult */
   doldm=matrix(1,nlstate,1,nlstate);        
            s1=s[mw[mi][i]][i];
   hstepm=1*YEARM; /* Every year of age */          s2=s[mw[mi+1][i]][i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   agelim = AGESUP;          ipmx +=1;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          sw += weight[i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (stepm >= YEARM) hstepm=1;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        } /* end of wave */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } /* end of individual */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    } /* End of if */
     gp=matrix(0,nhstepm,1,nlstate);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     gm=matrix(0,nhstepm,1,nlstate);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for(theta=1; theta <=npar; theta++){    return -l;
       for(i=1; i<=npar; i++){ /* Computes gradient */  }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  /*************** log-likelihood *************/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    double funcone( double *x)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
     /* Same as likeli but slower because of a lot of printf and if */
       if (popbased==1) {    int i, ii, j, k, mi, d, kk;
         for(i=1; i<=nlstate;i++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           prlim[i][i]=probs[(int)age][i][ij];    double **out;
       }    double lli; /* Individual log likelihood */
          double llt;
       for(j=1; j<= nlstate; j++){    int s1, s2;
         for(h=0; h<=nhstepm; h++){    double bbh, survp;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    /*extern weight */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    /* We are differentiating ll according to initial status */
         }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       }    /*for(i=1;i<imx;i++) 
          printf(" %d\n",s[4][i]);
       for(i=1; i<=npar; i++) /* Computes gradient */    */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    cov[1]=1.;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
       if (popbased==1) {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(i=1; i<=nlstate;i++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           prlim[i][i]=probs[(int)age][i][ij];      for(mi=1; mi<= wav[i]-1; mi++){
       }        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<= nlstate; j++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(h=0; h<=nhstepm; h++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        for(d=0; d<dh[mi][i]; d++){
         }          newm=savm;
       }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
       for(j=1; j<= nlstate; j++)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(h=0; h<=nhstepm; h++){          }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     } /* End theta */          savm=oldm;
           oldm=newm;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        } /* end mult */
         
     for(h=0; h<=nhstepm; h++)        s1=s[mw[mi][i]][i];
       for(j=1; j<=nlstate;j++)        s2=s[mw[mi+1][i]][i];
         for(theta=1; theta <=npar; theta++)        bbh=(double)bh[mi][i]/(double)stepm; 
           trgradg[h][j][theta]=gradg[h][theta][j];        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
     for(i=1;i<=nlstate;i++)         */
       for(j=1;j<=nlstate;j++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         vareij[i][j][(int)age] =0.;          lli=log(out[s1][s2] - savm[s1][s2]);
     for(h=0;h<=nhstepm;h++){        } else if  (s2==-2) {
       for(k=0;k<=nhstepm;k++){          for (j=1,survp=0. ; j<=nlstate; j++) 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          lli= log(survp);
         for(i=1;i<=nlstate;i++)        }else if (mle==1){
           for(j=1;j<=nlstate;j++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             vareij[i][j][(int)age] += doldm[i][j];        } else if(mle==2){
       }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     }        } else if(mle==3){  /* exponential inter-extrapolation */
     h=1;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     if (stepm >= YEARM) h=stepm/YEARM;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     fprintf(ficresvij,"%.0f ",age );          lli=log(out[s1][s2]); /* Original formula */
     for(i=1; i<=nlstate;i++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       for(j=1; j<=nlstate;j++){          lli=log(out[s1][s2]); /* Original formula */
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);        } /* End of if */
       }        ipmx +=1;
     fprintf(ficresvij,"\n");        sw += weight[i];
     free_matrix(gp,0,nhstepm,1,nlstate);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_matrix(gm,0,nhstepm,1,nlstate);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        if(globpr){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   %11.6f %11.6f %11.6f ", \
   } /* End age */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                    2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   free_vector(xp,1,npar);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   free_matrix(doldm,1,nlstate,1,npar);            llt +=ll[k]*gipmx/gsw;
   free_matrix(dnewm,1,nlstate,1,nlstate);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
 }          fprintf(ficresilk," %10.6f\n", -llt);
         }
 /************ Variance of prevlim ******************/      } /* end of wave */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    } /* end of individual */
 {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* Variance of prevalence limit */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double **newm;    if(globpr==0){ /* First time we count the contributions and weights */
   double **dnewm,**doldm;      gipmx=ipmx;
   int i, j, nhstepm, hstepm;      gsw=sw;
   int k, cptcode;    }
   double *xp;    return -l;
   double *gp, *gm;  }
   double **gradg, **trgradg;  
   double age,agelim;  
   int theta;  /*************** function likelione ***********/
      void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  {
   fprintf(ficresvpl,"# Age");    /* This routine should help understanding what is done with 
   for(i=1; i<=nlstate;i++)       the selection of individuals/waves and
       fprintf(ficresvpl," %1d-%1d",i,i);       to check the exact contribution to the likelihood.
   fprintf(ficresvpl,"\n");       Plotting could be done.
      */
   xp=vector(1,npar);    int k;
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    if(*globpri !=0){ /* Just counts and sums, no printings */
        strcpy(fileresilk,"ilk"); 
   hstepm=1*YEARM; /* Every year of age */      strcat(fileresilk,fileres);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   agelim = AGESUP;        printf("Problem with resultfile: %s\n", fileresilk);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      }
     if (stepm >= YEARM) hstepm=1;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     gradg=matrix(1,npar,1,nlstate);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     gp=vector(1,nlstate);      for(k=1; k<=nlstate; k++) 
     gm=vector(1,nlstate);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     for(theta=1; theta <=npar; theta++){    }
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    *fretone=(*funcone)(p);
       }    if(*globpri !=0){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fclose(ficresilk);
       for(i=1;i<=nlstate;i++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         gp[i] = prlim[i][i];      fflush(fichtm); 
        } 
       for(i=1; i<=npar; i++) /* Computes gradient */    return;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  
         gm[i] = prlim[i][i];  /*********** Maximum Likelihood Estimation ***************/
   
       for(i=1;i<=nlstate;i++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  {
     } /* End theta */    int i,j, iter;
     double **xi;
     trgradg =matrix(1,nlstate,1,npar);    double fret;
     double fretone; /* Only one call to likelihood */
     for(j=1; j<=nlstate;j++)    /*  char filerespow[FILENAMELENGTH];*/
       for(theta=1; theta <=npar; theta++)    xi=matrix(1,npar,1,npar);
         trgradg[j][theta]=gradg[theta][j];    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
     for(i=1;i<=nlstate;i++)        xi[i][j]=(i==j ? 1.0 : 0.0);
       varpl[i][(int)age] =0.;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    strcpy(filerespow,"pow"); 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    strcat(filerespow,fileres);
     for(i=1;i<=nlstate;i++)    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     fprintf(ficresvpl,"%.0f ",age );    }
     for(i=1; i<=nlstate;i++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    for (i=1;i<=nlstate;i++)
     fprintf(ficresvpl,"\n");      for(j=1;j<=nlstate+ndeath;j++)
     free_vector(gp,1,nlstate);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     free_vector(gm,1,nlstate);    fprintf(ficrespow,"\n");
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    powell(p,xi,npar,ftol,&iter,&fret,func);
   } /* End age */  
     free_matrix(xi,1,npar,1,npar);
   free_vector(xp,1,npar);    fclose(ficrespow);
   free_matrix(doldm,1,nlstate,1,npar);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   free_matrix(dnewm,1,nlstate,1,nlstate);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 }  
   }
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)  /**** Computes Hessian and covariance matrix ***/
 {  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   int i, j;  {
   int k=0, cptcode;    double  **a,**y,*x,pd;
   double **dnewm,**doldm;    double **hess;
   double *xp;    int i, j,jk;
   double *gp, *gm;    int *indx;
   double **gradg, **trgradg;  
   double age,agelim, cov[NCOVMAX];    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   int theta;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   char fileresprob[FILENAMELENGTH];    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
   strcpy(fileresprob,"prob");    double gompertz(double p[]);
   strcat(fileresprob,fileres);    hess=matrix(1,npar,1,npar);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);    printf("\nCalculation of the hessian matrix. Wait...\n");
   }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    for (i=1;i<=npar;i++){
        printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
   xp=vector(1,npar);     
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      
        /*  printf(" %f ",p[i]);
   cov[1]=1;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   for (age=bage; age<=fage; age ++){    }
     cov[2]=age;    
     gradg=matrix(1,npar,1,9);    for (i=1;i<=npar;i++) {
     trgradg=matrix(1,9,1,npar);      for (j=1;j<=npar;j++)  {
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        if (j>i) { 
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          printf(".%d%d",i,j);fflush(stdout);
              fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     for(theta=1; theta <=npar; theta++){          hess[i][j]=hessij(p,delti,i,j,func,npar);
       for(i=1; i<=npar; i++)          
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          hess[j][i]=hess[i][j];    
                /*printf(" %lf ",hess[i][j]);*/
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        }
          }
       k=0;    }
       for(i=1; i<= (nlstate+ndeath); i++){    printf("\n");
         for(j=1; j<=(nlstate+ndeath);j++){    fprintf(ficlog,"\n");
            k=k+1;  
           gp[k]=pmmij[i][j];    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       }    
     a=matrix(1,npar,1,npar);
       for(i=1; i<=npar; i++)    y=matrix(1,npar,1,npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    x=vector(1,npar);
        indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       k=0;    ludcmp(a,npar,indx,&pd);
       for(i=1; i<=(nlstate+ndeath); i++){  
         for(j=1; j<=(nlstate+ndeath);j++){    for (j=1;j<=npar;j++) {
           k=k+1;      for (i=1;i<=npar;i++) x[i]=0;
           gm[k]=pmmij[i][j];      x[j]=1;
         }      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
              matcov[i][j]=x[i];
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      }
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      }
     }  
     printf("\n#Hessian matrix#\n");
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    fprintf(ficlog,"\n#Hessian matrix#\n");
       for(theta=1; theta <=npar; theta++)    for (i=1;i<=npar;i++) { 
       trgradg[j][theta]=gradg[theta][j];      for (j=1;j<=npar;j++) { 
          printf("%.3e ",hess[i][j]);
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);        fprintf(ficlog,"%.3e ",hess[i][j]);
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);      }
       printf("\n");
      pmij(pmmij,cov,ncovmodel,x,nlstate);      fprintf(ficlog,"\n");
     }
      k=0;  
      for(i=1; i<=(nlstate+ndeath); i++){    /* Recompute Inverse */
        for(j=1; j<=(nlstate+ndeath);j++){    for (i=1;i<=npar;i++)
          k=k+1;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
          gm[k]=pmmij[i][j];    ludcmp(a,npar,indx,&pd);
         }  
      }    /*  printf("\n#Hessian matrix recomputed#\n");
        
      /*printf("\n%d ",(int)age);    for (j=1;j<=npar;j++) {
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      for (i=1;i<=npar;i++) x[i]=0;
              x[j]=1;
       lubksb(a,npar,indx,x);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      for (i=1;i<=npar;i++){ 
      }*/        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
   fprintf(ficresprob,"\n%d ",(int)age);        fprintf(ficlog,"%.3e ",y[i][j]);
       }
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      printf("\n");
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      fprintf(ficlog,"\n");
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    }
   }    */
   
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    free_matrix(a,1,npar,1,npar);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    free_matrix(y,1,npar,1,npar);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    free_vector(x,1,npar);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    free_ivector(indx,1,npar);
 }    free_matrix(hess,1,npar,1,npar);
  free_vector(xp,1,npar);  
 fclose(ficresprob);  
  exit(0);  }
 }  
   /*************** hessian matrix ****************/
 /***********************************************/  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 /**************** Main Program *****************/  {
 /***********************************************/    int i;
     int l=1, lmax=20;
 int main(int argc, char *argv[])    double k1,k2;
 {    double p2[NPARMAX+1];
     double res;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   double agedeb, agefin,hf;    double fx;
   double agemin=1.e20, agemax=-1.e20;    int k=0,kmax=10;
     double l1;
   double fret;  
   double **xi,tmp,delta;    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   double dum; /* Dummy variable */    for(l=0 ; l <=lmax; l++){
   double ***p3mat;      l1=pow(10,l);
   int *indx;      delts=delt;
   char line[MAXLINE], linepar[MAXLINE];      for(k=1 ; k <kmax; k=k+1){
   char title[MAXLINE];        delt = delta*(l1*k);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];        p2[theta]=x[theta] +delt;
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        k1=func(p2)-fx;
          p2[theta]=x[theta]-delt;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
   char filerest[FILENAMELENGTH];        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   char fileregp[FILENAMELENGTH];        
   char popfile[FILENAMELENGTH];  #ifdef DEBUG
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int firstobs=1, lastobs=10;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int sdeb, sfin; /* Status at beginning and end */  #endif
   int c,  h , cpt,l;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   int ju,jl, mi;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          k=kmax;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        }
   int mobilav=0,popforecast=0;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   int hstepm, nhstepm;          k=kmax; l=lmax*10.;
   int *popage;/*boolprev=0 if date and zero if wave*/        }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
   double bage, fage, age, agelim, agebase;        }
   double ftolpl=FTOL;      }
   double **prlim;    }
   double *severity;    delti[theta]=delts;
   double ***param; /* Matrix of parameters */    return res; 
   double  *p;    
   double **matcov; /* Matrix of covariance */  }
   double ***delti3; /* Scale */  
   double *delti; /* Scale */  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   double ***eij, ***vareij;  {
   double **varpl; /* Variances of prevalence limits by age */    int i;
   double *epj, vepp;    int l=1, l1, lmax=20;
   double kk1, kk2;    double k1,k2,k3,k4,res,fx;
   double *popeffectif,*popcount;    double p2[NPARMAX+1];
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;    int k;
   double yp,yp1,yp2;  
     fx=func(x);
   char version[80]="Imach version 0.7, February 2002, INED-EUROREVES ";    for (k=1; k<=2; k++) {
   char *alph[]={"a","a","b","c","d","e"}, str[4];      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   char z[1]="c", occ;      k1=func(p2)-fx;
 #include <sys/time.h>    
 #include <time.h>      p2[thetai]=x[thetai]+delti[thetai]/k;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k2=func(p2)-fx;
   /* long total_usecs;    
   struct timeval start_time, end_time;      p2[thetai]=x[thetai]-delti[thetai]/k;
        p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      k3=func(p2)-fx;
     
       p2[thetai]=x[thetai]-delti[thetai]/k;
   printf("\n%s",version);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   if(argc <=1){      k4=func(p2)-fx;
     printf("\nEnter the parameter file name: ");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     scanf("%s",pathtot);  #ifdef DEBUG
   }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   else{      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     strcpy(pathtot,argv[1]);  #endif
   }    }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    return res;
   /*cygwin_split_path(pathtot,path,optionfile);  }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  { 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    int i,imax,j,k; 
   chdir(path);    double big,dum,sum,temp; 
   replace(pathc,path);    double *vv; 
    
 /*-------- arguments in the command line --------*/    vv=vector(1,n); 
     *d=1.0; 
   strcpy(fileres,"r");    for (i=1;i<=n;i++) { 
   strcat(fileres, optionfilefiname);      big=0.0; 
   strcat(fileres,".txt");    /* Other files have txt extension */      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
   /*---------arguments file --------*/      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    } 
     printf("Problem with optionfile %s\n",optionfile);    for (j=1;j<=n;j++) { 
     goto end;      for (i=1;i<j;i++) { 
   }        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   strcpy(filereso,"o");        a[i][j]=sum; 
   strcat(filereso,fileres);      } 
   if((ficparo=fopen(filereso,"w"))==NULL) {      big=0.0; 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      for (i=j;i<=n;i++) { 
   }        sum=a[i][j]; 
         for (k=1;k<j;k++) 
   /* Reads comments: lines beginning with '#' */          sum -= a[i][k]*a[k][j]; 
   while((c=getc(ficpar))=='#' && c!= EOF){        a[i][j]=sum; 
     ungetc(c,ficpar);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     fgets(line, MAXLINE, ficpar);          big=dum; 
     puts(line);          imax=i; 
     fputs(line,ficparo);        } 
   }      } 
   ungetc(c,ficpar);      if (j != imax) { 
         for (k=1;k<=n;k++) { 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          dum=a[imax][k]; 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);          a[imax][k]=a[j][k]; 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);          a[j][k]=dum; 
 while((c=getc(ficpar))=='#' && c!= EOF){        } 
     ungetc(c,ficpar);        *d = -(*d); 
     fgets(line, MAXLINE, ficpar);        vv[imax]=vv[j]; 
     puts(line);      } 
     fputs(line,ficparo);      indx[j]=imax; 
   }      if (a[j][j] == 0.0) a[j][j]=TINY; 
   ungetc(c,ficpar);      if (j != n) { 
          dum=1.0/(a[j][j]); 
            for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   covar=matrix(0,NCOVMAX,1,n);      } 
   cptcovn=0;    } 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    free_vector(vv,1,n);  /* Doesn't work */
   ;
   ncovmodel=2+cptcovn;  } 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
    void lubksb(double **a, int n, int *indx, double b[]) 
   /* Read guess parameters */  { 
   /* Reads comments: lines beginning with '#' */    int i,ii=0,ip,j; 
   while((c=getc(ficpar))=='#' && c!= EOF){    double sum; 
     ungetc(c,ficpar);   
     fgets(line, MAXLINE, ficpar);    for (i=1;i<=n;i++) { 
     puts(line);      ip=indx[i]; 
     fputs(line,ficparo);      sum=b[ip]; 
   }      b[ip]=b[i]; 
   ungetc(c,ficpar);      if (ii) 
          for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      else if (sum) ii=i; 
     for(i=1; i <=nlstate; i++)      b[i]=sum; 
     for(j=1; j <=nlstate+ndeath-1; j++){    } 
       fscanf(ficpar,"%1d%1d",&i1,&j1);    for (i=n;i>=1;i--) { 
       fprintf(ficparo,"%1d%1d",i1,j1);      sum=b[i]; 
       printf("%1d%1d",i,j);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for(k=1; k<=ncovmodel;k++){      b[i]=sum/a[i][i]; 
         fscanf(ficpar," %lf",&param[i][j][k]);    } 
         printf(" %lf",param[i][j][k]);  } 
         fprintf(ficparo," %lf",param[i][j][k]);  
       }  void pstamp(FILE *fichier)
       fscanf(ficpar,"\n");  {
       printf("\n");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
       fprintf(ficparo,"\n");  }
     }  
    /************ Frequencies ********************/
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
   p=param[1][1];    
      int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   /* Reads comments: lines beginning with '#' */    int first;
   while((c=getc(ficpar))=='#' && c!= EOF){    double ***freq; /* Frequencies */
     ungetc(c,ficpar);    double *pp, **prop;
     fgets(line, MAXLINE, ficpar);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     puts(line);    char fileresp[FILENAMELENGTH];
     fputs(line,ficparo);    
   }    pp=vector(1,nlstate);
   ungetc(c,ficpar);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    strcat(fileresp,fileres);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    if((ficresp=fopen(fileresp,"w"))==NULL) {
   for(i=1; i <=nlstate; i++){      printf("Problem with prevalence resultfile: %s\n", fileresp);
     for(j=1; j <=nlstate+ndeath-1; j++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       fscanf(ficpar,"%1d%1d",&i1,&j1);      exit(0);
       printf("%1d%1d",i,j);    }
       fprintf(ficparo,"%1d%1d",i1,j1);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       for(k=1; k<=ncovmodel;k++){    j1=0;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    
         printf(" %le",delti3[i][j][k]);    j=cptcoveff;
         fprintf(ficparo," %le",delti3[i][j][k]);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       }  
       fscanf(ficpar,"\n");    first=1;
       printf("\n");  
       fprintf(ficparo,"\n");    for(k1=1; k1<=j;k1++){
     }      for(i1=1; i1<=ncodemax[k1];i1++){
   }        j1++;
   delti=delti3[1][1];        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
            scanf("%d", i);*/
   /* Reads comments: lines beginning with '#' */        for (i=-5; i<=nlstate+ndeath; i++)  
   while((c=getc(ficpar))=='#' && c!= EOF){          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     ungetc(c,ficpar);            for(m=iagemin; m <= iagemax+3; m++)
     fgets(line, MAXLINE, ficpar);              freq[i][jk][m]=0;
     puts(line);  
     fputs(line,ficparo);      for (i=1; i<=nlstate; i++)  
   }        for(m=iagemin; m <= iagemax+3; m++)
   ungetc(c,ficpar);          prop[i][m]=0;
          
   matcov=matrix(1,npar,1,npar);        dateintsum=0;
   for(i=1; i <=npar; i++){        k2cpt=0;
     fscanf(ficpar,"%s",&str);        for (i=1; i<=imx; i++) {
     printf("%s",str);          bool=1;
     fprintf(ficparo,"%s",str);          if  (cptcovn>0) {
     for(j=1; j <=i; j++){            for (z1=1; z1<=cptcoveff; z1++) 
       fscanf(ficpar," %le",&matcov[i][j]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       printf(" %.5le",matcov[i][j]);                bool=0;
       fprintf(ficparo," %.5le",matcov[i][j]);          }
     }          if (bool==1){
     fscanf(ficpar,"\n");            for(m=firstpass; m<=lastpass; m++){
     printf("\n");              k2=anint[m][i]+(mint[m][i]/12.);
     fprintf(ficparo,"\n");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   for(i=1; i <=npar; i++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     for(j=i+1;j<=npar;j++)                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       matcov[i][j]=matcov[j][i];                if (m<lastpass) {
                      freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   printf("\n");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
                 
     /*-------- data file ----------*/                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     if((ficres =fopen(fileres,"w"))==NULL) {                  dateintsum=dateintsum+k2;
       printf("Problem with resultfile: %s\n", fileres);goto end;                  k2cpt++;
     }                }
     fprintf(ficres,"#%s\n",version);                /*}*/
                }
     if((fic=fopen(datafile,"r"))==NULL)    {          }
       printf("Problem with datafile: %s\n", datafile);goto end;        }
     }         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     n= lastobs;        pstamp(ficresp);
     severity = vector(1,maxwav);        if  (cptcovn>0) {
     outcome=imatrix(1,maxwav+1,1,n);          fprintf(ficresp, "\n#********** Variable "); 
     num=ivector(1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     moisnais=vector(1,n);          fprintf(ficresp, "**********\n#");
     annais=vector(1,n);        }
     moisdc=vector(1,n);        for(i=1; i<=nlstate;i++) 
     andc=vector(1,n);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     agedc=vector(1,n);        fprintf(ficresp, "\n");
     cod=ivector(1,n);        
     weight=vector(1,n);        for(i=iagemin; i <= iagemax+3; i++){
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          if(i==iagemax+3){
     mint=matrix(1,maxwav,1,n);            fprintf(ficlog,"Total");
     anint=matrix(1,maxwav,1,n);          }else{
     s=imatrix(1,maxwav+1,1,n);            if(first==1){
     adl=imatrix(1,maxwav+1,1,n);                  first=0;
     tab=ivector(1,NCOVMAX);              printf("See log file for details...\n");
     ncodemax=ivector(1,8);            }
             fprintf(ficlog,"Age %d", i);
     i=1;          }
     while (fgets(line, MAXLINE, fic) != NULL)    {          for(jk=1; jk <=nlstate ; jk++){
       if ((i >= firstobs) && (i <=lastobs)) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                      pp[jk] += freq[jk][m][i]; 
         for (j=maxwav;j>=1;j--){          }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          for(jk=1; jk <=nlstate ; jk++){
           strcpy(line,stra);            for(m=-1, pos=0; m <=0 ; m++)
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              pos += freq[jk][m][i];
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            if(pp[jk]>=1.e-10){
         }              if(first==1){
                      printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);              if(first==1)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            }
         for (j=ncov;j>=1;j--){          }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }          for(jk=1; jk <=nlstate ; jk++){
         num[i]=atol(stra);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                      pp[jk] += freq[jk][m][i];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          }       
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
         i=i+1;            posprop += prop[jk][i];
       }          }
     }          for(jk=1; jk <=nlstate ; jk++){
     /* printf("ii=%d", ij);            if(pos>=1.e-5){
        scanf("%d",i);*/              if(first==1)
   imx=i-1; /* Number of individuals */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   /* for (i=1; i<=imx; i++){            }else{
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;              if(first==1)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     }            }
             if( i <= iagemax){
     for (i=1; i<=imx; i++)              if(pos>=1.e-5){
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
   /* Calculation of the number of parameter from char model*/                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   Tvar=ivector(1,15);              }
   Tprod=ivector(1,15);              else
   Tvaraff=ivector(1,15);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   Tvard=imatrix(1,15,1,2);            }
   Tage=ivector(1,15);                }
              
   if (strlen(model) >1){          for(jk=-1; jk <=nlstate+ndeath; jk++)
     j=0, j1=0, k1=1, k2=1;            for(m=-1; m <=nlstate+ndeath; m++)
     j=nbocc(model,'+');              if(freq[jk][m][i] !=0 ) {
     j1=nbocc(model,'*');              if(first==1)
     cptcovn=j+1;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     cptcovprod=j1;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                  }
              if(i <= iagemax)
     strcpy(modelsav,model);            fprintf(ficresp,"\n");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          if(first==1)
       printf("Error. Non available option model=%s ",model);            printf("Others in log...\n");
       goto end;          fprintf(ficlog,"\n");
     }        }
          }
     for(i=(j+1); i>=1;i--){    }
       cutv(stra,strb,modelsav,'+');    dateintmean=dateintsum/k2cpt; 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);   
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    fclose(ficresp);
       /*scanf("%d",i);*/    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       if (strchr(strb,'*')) {    free_vector(pp,1,nlstate);
         cutv(strd,strc,strb,'*');    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         if (strcmp(strc,"age")==0) {    /* End of Freq */
           cptcovprod--;  }
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre);  /************ Prevalence ********************/
           cptcovage++;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
             Tage[cptcovage]=i;  {  
             /*printf("stre=%s ", stre);*/    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         }       in each health status at the date of interview (if between dateprev1 and dateprev2).
         else if (strcmp(strd,"age")==0) {       We still use firstpass and lastpass as another selection.
           cptcovprod--;    */
           cutv(strb,stre,strc,'V');   
           Tvar[i]=atoi(stre);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
           cptcovage++;    double ***freq; /* Frequencies */
           Tage[cptcovage]=i;    double *pp, **prop;
         }    double pos,posprop; 
         else {    double  y2; /* in fractional years */
           cutv(strb,stre,strc,'V');    int iagemin, iagemax;
           Tvar[i]=ncov+k1;  
           cutv(strb,strc,strd,'V');    iagemin= (int) agemin;
           Tprod[k1]=i;    iagemax= (int) agemax;
           Tvard[k1][1]=atoi(strc);    /*pp=vector(1,nlstate);*/
           Tvard[k1][2]=atoi(stre);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
           Tvar[cptcovn+k2]=Tvard[k1][1];    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    j1=0;
           for (k=1; k<=lastobs;k++)    
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    j=cptcoveff;
           k1++;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           k2=k2+2;    
         }    for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
       else {        j1++;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        
        /*  scanf("%d",i);*/        for (i=1; i<=nlstate; i++)  
       cutv(strd,strc,strb,'V');          for(m=iagemin; m <= iagemax+3; m++)
       Tvar[i]=atoi(strc);            prop[i][m]=0.0;
       }       
       strcpy(modelsav,stra);          for (i=1; i<=imx; i++) { /* Each individual */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          bool=1;
         scanf("%d",i);*/          if  (cptcovn>0) {
     }            for (z1=1; z1<=cptcoveff; z1++) 
 }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                  bool=0;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          } 
   printf("cptcovprod=%d ", cptcovprod);          if (bool==1) { 
   scanf("%d ",i);*/            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     fclose(fic);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     /*  if(mle==1){*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     if (weightopt != 1) { /* Maximisation without weights*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for(i=1;i<=n;i++) weight[i]=1.0;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     /*-calculation of age at interview from date of interview and age at death -*/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     agev=matrix(1,maxwav,1,imx);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
    for (i=1; i<=imx; i++)                } 
      for(m=2; (m<= maxwav); m++)              }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            } /* end selection of waves */
          anint[m][i]=9999;          }
          s[m][i]=-1;        }
        }        for(i=iagemin; i <= iagemax+3; i++){  
              
     for (i=1; i<=imx; i++)  {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            posprop += prop[jk][i]; 
       for(m=1; (m<= maxwav); m++){          } 
         if(s[m][i] >0){  
           if (s[m][i] == nlstate+1) {          for(jk=1; jk <=nlstate ; jk++){     
             if(agedc[i]>0)            if( i <=  iagemax){ 
               if(moisdc[i]!=99 && andc[i]!=9999)              if(posprop>=1.e-5){ 
               agev[m][i]=agedc[i];                probs[i][jk][j1]= prop[jk][i]/posprop;
             else {              } else
               if (andc[i]!=9999){                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            } 
               agev[m][i]=-1;          }/* end jk */ 
               }        }/* end i */ 
             }      } /* end i1 */
           }    } /* end k1 */
           else if(s[m][i] !=9){ /* Should no more exist */    
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
             if(mint[m][i]==99 || anint[m][i]==9999)    /*free_vector(pp,1,nlstate);*/
               agev[m][i]=1;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             else if(agev[m][i] <agemin){  }  /* End of prevalence */
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  /************* Waves Concatenation ***************/
             }  
             else if(agev[m][i] >agemax){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
               agemax=agev[m][i];  {
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             }       Death is a valid wave (if date is known).
             /*agev[m][i]=anint[m][i]-annais[i];*/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             /*   agev[m][i] = age[i]+2*m;*/       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           }       and mw[mi+1][i]. dh depends on stepm.
           else { /* =9 */       */
             agev[m][i]=1;  
             s[m][i]=-1;    int i, mi, m;
           }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         }       double sum=0., jmean=0.;*/
         else /*= 0 Unknown */    int first;
           agev[m][i]=1;    int j, k=0,jk, ju, jl;
       }    double sum=0.;
        first=0;
     }    jmin=1e+5;
     for (i=1; i<=imx; i++)  {    jmax=-1;
       for(m=1; (m<= maxwav); m++){    jmean=0.;
         if (s[m][i] > (nlstate+ndeath)) {    for(i=1; i<=imx; i++){
           printf("Error: Wrong value in nlstate or ndeath\n");        mi=0;
           goto end;      m=firstpass;
         }      while(s[m][i] <= nlstate){
       }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     }          mw[++mi][i]=m;
         if(m >=lastpass)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          break;
         else
     free_vector(severity,1,maxwav);          m++;
     free_imatrix(outcome,1,maxwav+1,1,n);      }/* end while */
     free_vector(moisnais,1,n);      if (s[m][i] > nlstate){
     free_vector(annais,1,n);        mi++;     /* Death is another wave */
     /* free_matrix(mint,1,maxwav,1,n);        /* if(mi==0)  never been interviewed correctly before death */
        free_matrix(anint,1,maxwav,1,n);*/           /* Only death is a correct wave */
     free_vector(moisdc,1,n);        mw[mi][i]=m;
     free_vector(andc,1,n);      }
   
          wav[i]=mi;
     wav=ivector(1,imx);      if(mi==0){
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        nbwarn++;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        if(first==0){
              printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     /* Concatenates waves */          first=1;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        }
         if(first==1){
           fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       Tcode=ivector(1,100);        }
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      } /* end mi==0 */
       ncodemax[1]=1;    } /* End individuals */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
          for(i=1; i<=imx; i++){
    codtab=imatrix(1,100,1,10);      for(mi=1; mi<wav[i];mi++){
    h=0;        if (stepm <=0)
    m=pow(2,cptcoveff);          dh[mi][i]=1;
          else{
    for(k=1;k<=cptcoveff; k++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
      for(i=1; i <=(m/pow(2,k));i++){            if (agedc[i] < 2*AGESUP) {
        for(j=1; j <= ncodemax[k]; j++){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              if(j==0) j=1;  /* Survives at least one month after exam */
            h++;              else if(j<0){
            if (h>m) h=1;codtab[h][k]=j;                nberr++;
          }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        }                j=1; /* Temporary Dangerous patch */
      }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
    }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
    /*for(i=1; i <=m ;i++){              k=k+1;
      for(k=1; k <=cptcovn; k++){              if (j >= jmax){
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);                jmax=j;
      }                ijmax=i;
      printf("\n");              }
    }              if (j <= jmin){
    scanf("%d",i);*/                jmin=j;
                    ijmin=i;
    /* Calculates basic frequencies. Computes observed prevalence at single age              }
        and prints on file fileres'p'. */              sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                  /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          else{
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
                  k=k+1;
     /* For Powell, parameters are in a vector p[] starting at p[1]            if (j >= jmax) {
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */              jmax=j;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              ijmax=i;
             }
     if(mle==1){            else if (j <= jmin){
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              jmin=j;
     }              ijmin=i;
                }
     /*--------- results files --------------*/            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
              if(j<0){
               nberr++;
    jk=1;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    fprintf(ficres,"# Parameters\n");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    printf("# Parameters\n");            }
    for(i=1,jk=1; i <=nlstate; i++){            sum=sum+j;
      for(k=1; k <=(nlstate+ndeath); k++){          }
        if (k != i)          jk= j/stepm;
          {          jl= j -jk*stepm;
            printf("%d%d ",i,k);          ju= j -(jk+1)*stepm;
            fprintf(ficres,"%1d%1d ",i,k);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
            for(j=1; j <=ncovmodel; j++){            if(jl==0){
              printf("%f ",p[jk]);              dh[mi][i]=jk;
              fprintf(ficres,"%f ",p[jk]);              bh[mi][i]=0;
              jk++;            }else{ /* We want a negative bias in order to only have interpolation ie
            }                    * at the price of an extra matrix product in likelihood */
            printf("\n");              dh[mi][i]=jk+1;
            fprintf(ficres,"\n");              bh[mi][i]=ju;
          }            }
      }          }else{
    }            if(jl <= -ju){
  if(mle==1){              dh[mi][i]=jk;
     /* Computing hessian and covariance matrix */              bh[mi][i]=jl;       /* bias is positive if real duration
     ftolhess=ftol; /* Usually correct */                                   * is higher than the multiple of stepm and negative otherwise.
     hesscov(matcov, p, npar, delti, ftolhess, func);                                   */
  }            }
     fprintf(ficres,"# Scales\n");            else{
     printf("# Scales\n");              dh[mi][i]=jk+1;
      for(i=1,jk=1; i <=nlstate; i++){              bh[mi][i]=ju;
       for(j=1; j <=nlstate+ndeath; j++){            }
         if (j!=i) {            if(dh[mi][i]==0){
           fprintf(ficres,"%1d%1d",i,j);              dh[mi][i]=1; /* At least one step */
           printf("%1d%1d",i,j);              bh[mi][i]=ju; /* At least one step */
           for(k=1; k<=ncovmodel;k++){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             printf(" %.5e",delti[jk]);            }
             fprintf(ficres," %.5e",delti[jk]);          } /* end if mle */
             jk++;        }
           }      } /* end wave */
           printf("\n");    }
           fprintf(ficres,"\n");    jmean=sum/k;
         }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
      }   }
      
     k=1;  /*********** Tricode ****************************/
     fprintf(ficres,"# Covariance\n");  void tricode(int *Tvar, int **nbcode, int imx)
     printf("# Covariance\n");  {
     for(i=1;i<=npar;i++){    
       /*  if (k>nlstate) k=1;    int Ndum[20],ij=1, k, j, i, maxncov=19;
       i1=(i-1)/(ncovmodel*nlstate)+1;    int cptcode=0;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    cptcoveff=0; 
       printf("%s%d%d",alph[k],i1,tab[i]);*/   
       fprintf(ficres,"%3d",i);    for (k=0; k<maxncov; k++) Ndum[k]=0;
       printf("%3d",i);    for (k=1; k<=7; k++) ncodemax[k]=0;
       for(j=1; j<=i;j++){  
         fprintf(ficres," %.5e",matcov[i][j]);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         printf(" %.5e",matcov[i][j]);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       }                                 modality*/ 
       fprintf(ficres,"\n");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       printf("\n");        Ndum[ij]++; /*store the modality */
       k++;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                             Tvar[j]. If V=sex and male is 0 and 
     while((c=getc(ficpar))=='#' && c!= EOF){                                         female is 1, then  cptcode=1.*/
       ungetc(c,ficpar);      }
       fgets(line, MAXLINE, ficpar);  
       puts(line);      for (i=0; i<=cptcode; i++) {
       fputs(line,ficparo);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     }      }
     ungetc(c,ficpar);  
        ij=1; 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      for (i=1; i<=ncodemax[j]; i++) {
            for (k=0; k<= maxncov; k++) {
     if (fage <= 2) {          if (Ndum[k] != 0) {
       bage = agemin;            nbcode[Tvar[j]][ij]=k; 
       fage = agemax;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     }            
                ij++;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          if (ij > ncodemax[j]) break; 
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        }  
        } 
     while((c=getc(ficpar))=='#' && c!= EOF){    }  
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);   for (k=0; k< maxncov; k++) Ndum[k]=0;
     puts(line);  
     fputs(line,ficparo);   for (i=1; i<=ncovmodel-2; i++) { 
   }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   ungetc(c,ficpar);     ij=Tvar[i];
       Ndum[ij]++;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);   }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);   ij=1;
         for (i=1; i<= maxncov; i++) {
   while((c=getc(ficpar))=='#' && c!= EOF){     if((Ndum[i]!=0) && (i<=ncovcol)){
     ungetc(c,ficpar);       Tvaraff[ij]=i; /*For printing */
     fgets(line, MAXLINE, ficpar);       ij++;
     puts(line);     }
     fputs(line,ficparo);   }
   }   
   ungetc(c,ficpar);   cptcoveff=ij-1; /*Number of simple covariates*/
    }
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  /*********** Health Expectancies ****************/
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   fscanf(ficpar,"pop_based=%d\n",&popbased);  
    fprintf(ficparo,"pop_based=%d\n",popbased);    {
    fprintf(ficres,"pop_based=%d\n",popbased);      /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   while((c=getc(ficpar))=='#' && c!= EOF){    int nhstepma, nstepma; /* Decreasing with age */
     ungetc(c,ficpar);    double age, agelim, hf;
     fgets(line, MAXLINE, ficpar);    double ***p3mat;
     puts(line);    double eip;
     fputs(line,ficparo);  
   }    pstamp(ficreseij);
   ungetc(c,ficpar);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);    fprintf(ficreseij,"# Age");
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);    for(i=1; i<=nlstate;i++){
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);      }
       fprintf(ficreseij," e%1d. ",i);
        }
     /*------------ gnuplot -------------*/    fprintf(ficreseij,"\n");
     /*chdir(pathcd);*/  
     strcpy(optionfilegnuplot,optionfilefiname);    
     strcat(optionfilegnuplot,".plt");    if(estepm < stepm){
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      printf ("Problem %d lower than %d\n",estepm, stepm);
       printf("Problem with file %s",optionfilegnuplot);goto end;    }
     }    else  hstepm=estepm;   
 #ifdef windows    /* We compute the life expectancy from trapezoids spaced every estepm months
     fprintf(ficgp,"cd \"%s\" \n",pathc);     * This is mainly to measure the difference between two models: for example
 #endif     * if stepm=24 months pijx are given only every 2 years and by summing them
 m=pow(2,cptcoveff);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
  /* 1eme*/     * to the curvature of the survival function. If, for the same date, we 
   for (cpt=1; cpt<= nlstate ; cpt ++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
    for (k1=1; k1<= m ; k1 ++) {     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
 #ifdef windows     * curvature will be obtained if estepm is as small as stepm. */
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);  
 #endif    /* For example we decided to compute the life expectancy with the smallest unit */
 #ifdef unix    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);       nhstepm is the number of hstepm from age to agelim 
 #endif       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
 for (i=1; i<= nlstate ; i ++) {       and note for a fixed period like estepm months */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   else fprintf(ficgp," \%%*lf (\%%*lf)");       survival function given by stepm (the optimization length). Unfortunately it
 }       means that if the survival funtion is printed only each two years of age and if
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for (i=1; i<= nlstate ; i ++) {       results. So we changed our mind and took the option of the best precision.
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    agelim=AGESUP;
      for (i=1; i<= nlstate ; i ++) {    /* If stepm=6 months */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   else fprintf(ficgp," \%%*lf (\%%*lf)");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 }        
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  /* nhstepm age range expressed in number of stepm */
 #ifdef unix    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 fprintf(ficgp,"\nset ter gif small size 400,300");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 #endif    /* if (stepm >= YEARM) hstepm=1;*/
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }  
   /*2 eme*/    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   for (k1=1; k1<= m ; k1 ++) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);      /* if (stepm >= YEARM) hstepm=1;*/
          nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;      /* If stepm=6 months */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       for (j=1; j<= nlstate+1 ; j ++) {         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      
   else fprintf(ficgp," \%%*lf (\%%*lf)");      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 }        
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      printf("%d|",(int)age);fflush(stdout);
       for (j=1; j<= nlstate+1 ; j ++) {      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      
         else fprintf(ficgp," \%%*lf (\%%*lf)");      /* Computing expectancies */
 }        for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"\" t\"\" w l 0,");        for(j=1; j<=nlstate;j++)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       for (j=1; j<= nlstate+1 ; j ++) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            
   else fprintf(ficgp," \%%*lf (\%%*lf)");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          }
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }      fprintf(ficreseij,"%3.0f",age );
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      for(i=1; i<=nlstate;i++){
   }        eip=0;
          for(j=1; j<=nlstate;j++){
   /*3eme*/          eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   for (k1=1; k1<= m ; k1 ++) {        }
     for (cpt=1; cpt<= nlstate ; cpt ++) {        fprintf(ficreseij,"%9.4f", eip );
       k=2+nlstate*(cpt-1);      }
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);      fprintf(ficreseij,"\n");
       for (i=1; i< nlstate ; i ++) {      
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    }
       }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    printf("\n");
     }    fprintf(ficlog,"\n");
   }    
    }
   /* CV preval stat */  
   for (k1=1; k1<= m ; k1 ++) {  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;  {
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    /* Covariances of health expectancies eij and of total life expectancies according
       for (i=1; i< nlstate ; i ++)     to initial status i, ei. .
         fprintf(ficgp,"+$%d",k+i+1);    */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
          int nhstepma, nstepma; /* Decreasing with age */
       l=3+(nlstate+ndeath)*cpt;    double age, agelim, hf;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    double ***p3matp, ***p3matm, ***varhe;
       for (i=1; i< nlstate ; i ++) {    double **dnewm,**doldm;
         l=3+(nlstate+ndeath)*cpt;    double *xp, *xm;
         fprintf(ficgp,"+$%d",l+i+1);    double **gp, **gm;
       }    double ***gradg, ***trgradg;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      int theta;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }    double eip, vip;
   }    
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   /* proba elementaires */    xp=vector(1,npar);
    for(i=1,jk=1; i <=nlstate; i++){    xm=vector(1,npar);
     for(k=1; k <=(nlstate+ndeath); k++){    dnewm=matrix(1,nlstate*nlstate,1,npar);
       if (k != i) {    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         for(j=1; j <=ncovmodel; j++){    
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    pstamp(ficresstdeij);
           /*fprintf(ficgp,"%s",alph[1]);*/    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    fprintf(ficresstdeij,"# Age");
           jk++;    for(i=1; i<=nlstate;i++){
           fprintf(ficgp,"\n");      for(j=1; j<=nlstate;j++)
         }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       }      fprintf(ficresstdeij," e%1d. ",i);
     }    }
     }    fprintf(ficresstdeij,"\n");
   
   for(jk=1; jk <=m; jk++) {    pstamp(ficrescveij);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
    i=1;    fprintf(ficrescveij,"# Age");
    for(k2=1; k2<=nlstate; k2++) {    for(i=1; i<=nlstate;i++)
      k3=i;      for(j=1; j<=nlstate;j++){
      for(k=1; k<=(nlstate+ndeath); k++) {        cptj= (j-1)*nlstate+i;
        if (k != k2){        for(i2=1; i2<=nlstate;i2++)
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          for(j2=1; j2<=nlstate;j2++){
 ij=1;            cptj2= (j2-1)*nlstate+i2;
         for(j=3; j <=ncovmodel; j++) {            if(cptj2 <= cptj)
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          }
             ij++;      }
           }    fprintf(ficrescveij,"\n");
           else    
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    if(estepm < stepm){
         }      printf ("Problem %d lower than %d\n",estepm, stepm);
           fprintf(ficgp,")/(1");    }
            else  hstepm=estepm;   
         for(k1=1; k1 <=nlstate; k1++){      /* We compute the life expectancy from trapezoids spaced every estepm months
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);     * This is mainly to measure the difference between two models: for example
 ij=1;     * if stepm=24 months pijx are given only every 2 years and by summing them
           for(j=3; j <=ncovmodel; j++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     * progression in between and thus overestimating or underestimating according
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);     * to the curvature of the survival function. If, for the same date, we 
             ij++;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           }     * to compare the new estimate of Life expectancy with the same linear 
           else     * hypothesis. A more precise result, taking into account a more precise
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     * curvature will be obtained if estepm is as small as stepm. */
           }  
           fprintf(ficgp,")");    /* For example we decided to compute the life expectancy with the smallest unit */
         }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);       nhstepm is the number of hstepm from age to agelim 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");       nstepm is the number of stepm from age to agelin. 
         i=i+ncovmodel;       Look at hpijx to understand the reason of that which relies in memory size
        }       and note for a fixed period like estepm months */
      }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
    }       survival function given by stepm (the optimization length). Unfortunately it
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);       means that if the survival funtion is printed only each two years of age and if
   }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           results. So we changed our mind and took the option of the best precision.
   fclose(ficgp);    */
   /* end gnuplot */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      
 chdir(path);    /* If stepm=6 months */
        /* nhstepm age range expressed in number of stepm */
     free_ivector(wav,1,imx);    agelim=AGESUP;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_ivector(num,1,n);    /* if (stepm >= YEARM) hstepm=1;*/
     free_vector(agedc,1,n);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    
     fclose(ficparo);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fclose(ficres);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /*  }*/    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
        trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
    /*________fin mle=1_________*/    gp=matrix(0,nhstepm,1,nlstate*nlstate);
        gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
      for (age=bage; age<=fage; age ++){ 
     /* No more information from the sample is required now */      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   /* Reads comments: lines beginning with '#' */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   while((c=getc(ficpar))=='#' && c!= EOF){      /* if (stepm >= YEARM) hstepm=1;*/
     ungetc(c,ficpar);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     fgets(line, MAXLINE, ficpar);  
     puts(line);      /* If stepm=6 months */
     fputs(line,ficparo);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   ungetc(c,ficpar);      
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);      /* Computing  Variances of health expectancies */
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 /*--------- index.htm --------*/         decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
   strcpy(optionfilehtm,optionfile);        for(i=1; i<=npar; i++){ 
   strcat(optionfilehtm,".htm");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     printf("Problem with %s \n",optionfilehtm);goto end;        }
   }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">    
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>        for(j=1; j<= nlstate; j++){
 Total number of observations=%d <br>          for(i=1; i<=nlstate; i++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>            for(h=0; h<=nhstepm-1; h++){
 <hr  size=\"2\" color=\"#EC5E5E\">              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 <li>Outputs files<br><br>\n              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            }
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>          }
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>        }
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>       
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>        for(ij=1; ij<= nlstate*nlstate; ij++)
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>          for(h=0; h<=nhstepm-1; h++){
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>          }
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>      }/* End theta */
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>      
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);      
       for(h=0; h<=nhstepm-1; h++)
  fprintf(fichtm," <li>Graphs</li><p>");        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
  m=cptcoveff;            trgradg[h][j][theta]=gradg[h][theta][j];
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      
   
  j1=0;       for(ij=1;ij<=nlstate*nlstate;ij++)
  for(k1=1; k1<=m;k1++){        for(ji=1;ji<=nlstate*nlstate;ji++)
    for(i1=1; i1<=ncodemax[k1];i1++){          varhe[ij][ji][(int)age] =0.;
        j1++;  
        if (cptcovn > 0) {       printf("%d|",(int)age);fflush(stdout);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
          for (cpt=1; cpt<=cptcoveff;cpt++)       for(h=0;h<=nhstepm-1;h++){
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);        for(k=0;k<=nhstepm-1;k++){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
        }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          for(ij=1;ij<=nlstate*nlstate;ij++)
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                for(ji=1;ji<=nlstate*nlstate;ji++)
        for(cpt=1; cpt<nlstate;cpt++){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        }
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      }
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {      /* Computing expectancies */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 interval) in state (%d): v%s%d%d.gif <br>      for(i=1; i<=nlstate;i++)
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          for(j=1; j<=nlstate;j++)
      }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
      for(cpt=1; cpt<=nlstate;cpt++) {            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          }
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      fprintf(ficresstdeij,"%3.0f",age );
 fprintf(fichtm,"\n</body>");      for(i=1; i<=nlstate;i++){
    }        eip=0.;
  }        vip=0.;
 fclose(fichtm);        for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
   /*--------------- Prevalence limit --------------*/          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
              vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   strcpy(filerespl,"pl");          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   strcat(filerespl,fileres);        }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      }
   }      fprintf(ficresstdeij,"\n");
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");      fprintf(ficrescveij,"%3.0f",age );
   fprintf(ficrespl,"#Age ");      for(i=1; i<=nlstate;i++)
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        for(j=1; j<=nlstate;j++){
   fprintf(ficrespl,"\n");          cptj= (j-1)*nlstate+i;
            for(i2=1; i2<=nlstate;i2++)
   prlim=matrix(1,nlstate,1,nlstate);            for(j2=1; j2<=nlstate;j2++){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              cptj2= (j2-1)*nlstate+i2;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              if(cptj2 <= cptj)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        }
   k=0;      fprintf(ficrescveij,"\n");
   agebase=agemin;     
   agelim=agemax;    }
   ftolpl=1.e-10;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   i1=cptcoveff;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   if (cptcovn < 1){i1=1;}    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         k=k+1;    printf("\n");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    fprintf(ficlog,"\n");
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)    free_vector(xm,1,npar);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_vector(xp,1,npar);
         fprintf(ficrespl,"******\n");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
            free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         for (age=agebase; age<=agelim; age++){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  }
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)  /************ Variance ******************/
           fprintf(ficrespl," %.5f", prlim[i][i]);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
           fprintf(ficrespl,"\n");  {
         }    /* Variance of health expectancies */
       }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     }    /* double **newm;*/
   fclose(ficrespl);    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
   /*------------- h Pij x at various ages ------------*/    int i, j, nhstepm, hstepm, h, nstepm ;
      int k, cptcode;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    double *xp;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    double **gp, **gm;  /* for var eij */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    double ***gradg, ***trgradg; /*for var eij */
   }    double **gradgp, **trgradgp; /* for var p point j */
   printf("Computing pij: result on file '%s' \n", filerespij);    double *gpp, *gmp; /* for var p point j */
      double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double ***p3mat;
   /*if (stepm<=24) stepsize=2;*/    double age,agelim, hf;
     double ***mobaverage;
   agelim=AGESUP;    int theta;
   hstepm=stepsize*YEARM; /* Every year of age */    char digit[4];
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    char digitp[25];
    
   k=0;    char fileresprobmorprev[FILENAMELENGTH];
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if(popbased==1){
       k=k+1;      if(mobilav!=0)
         fprintf(ficrespij,"\n#****** ");        strcpy(digitp,"-populbased-mobilav-");
         for(j=1;j<=cptcoveff;j++)      else strcpy(digitp,"-populbased-nomobil-");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
         fprintf(ficrespij,"******\n");    else 
              strcpy(digitp,"-stablbased-");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    if (mobilav!=0) {
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           oldm=oldms;savm=savms;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          printf(" Error in movingaverage mobilav=%d\n",mobilav);
           fprintf(ficrespij,"# Age");      }
           for(i=1; i<=nlstate;i++)    }
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);    strcpy(fileresprobmorprev,"prmorprev"); 
           fprintf(ficrespij,"\n");    sprintf(digit,"%-d",ij);
           for (h=0; h<=nhstepm; h++){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    strcat(fileresprobmorprev,digit); /* Tvar to be done */
             for(i=1; i<=nlstate;i++)    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
               for(j=1; j<=nlstate+ndeath;j++)    strcat(fileresprobmorprev,fileres);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
             fprintf(ficrespij,"\n");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           fprintf(ficrespij,"\n");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         }   
     }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }    pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fclose(ficrespij);      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
   if(stepm == 1) {        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   /*---------- Forecasting ------------------*/    }  
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
   /*printf("calage= %f", calagedate);*/    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcpy(fileresf,"f");    pstamp(ficresvij);
   strcat(fileresf,fileres);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   if((ficresf=fopen(fileresf,"w"))==NULL) {    if(popbased==1)
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   }    else
   printf("Computing forecasting: result on file '%s' \n", fileresf);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
   free_matrix(mint,1,maxwav,1,n);    for(i=1; i<=nlstate;i++)
   free_matrix(anint,1,maxwav,1,n);      for(j=1; j<=nlstate;j++)
   free_matrix(agev,1,maxwav,1,imx);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   /* Mobile average */    fprintf(ficresvij,"\n");
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   if (mobilav==1) {    doldm=matrix(1,nlstate,1,nlstate);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           mobaverage[(int)agedeb][i][cptcod]=0.;    gpp=vector(nlstate+1,nlstate+ndeath);
        gmp=vector(nlstate+1,nlstate+ndeath);
     for (agedeb=bage+4; agedeb<=fage; agedeb++){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       for (i=1; i<=nlstate;i++){    
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    if(estepm < stepm){
           for (cpt=0;cpt<=4;cpt++){      printf ("Problem %d lower than %d\n",estepm, stepm);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    }
           }    else  hstepm=estepm;   
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    /* For example we decided to compute the life expectancy with the smallest unit */
         }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
     }         nstepm is the number of stepm from age to agelin. 
   }       Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   stepsize=(int) (stepm+YEARM-1)/YEARM;       survival function given by stepm (the optimization length). Unfortunately it
   if (stepm<=12) stepsize=1;       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   agelim=AGESUP;       results. So we changed our mind and took the option of the best precision.
   /*hstepm=stepsize*YEARM; *//* Every year of age */    */
   hstepm=1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */    agelim = AGESUP;
   yp1=modf(dateintmean,&yp);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   anprojmean=yp;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   yp2=modf((yp1*12),&yp);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   mprojmean=yp;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   yp1=modf((yp2*30.5),&yp);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   jprojmean=yp;      gp=matrix(0,nhstepm,1,nlstate);
   if(jprojmean==0) jprojmean=1;      gm=matrix(0,nhstepm,1,nlstate);
   if(mprojmean==0) jprojmean=1;  
   
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   if (popforecast==1) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     if((ficpop=fopen(popfile,"r"))==NULL)    {        }
       printf("Problem with population file : %s\n",popfile);goto end;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);        if (popbased==1) {
     popcount=vector(0,AGESUP);          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
     i=1;                prlim[i][i]=probs[(int)age][i][ij];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)          }else{ /* mobilav */ 
       {            for(i=1; i<=nlstate;i++)
         i=i+1;              prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
     imx=i;        }
        
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        for(j=1; j<= nlstate; j++){
   }          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   for(cptcov=1;cptcov<=i1;cptcov++){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          }
       k=k+1;        }
       fprintf(ficresf,"\n#******");        /* This for computing probability of death (h=1 means
       for(j=1;j<=cptcoveff;j++) {           computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           as a weighted average of prlim.
       }        */
       fprintf(ficresf,"******\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficresf,"# StartingAge FinalAge");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       if (popforecast==1)  fprintf(ficresf," [Population]");        }    
            /* end probability of death */
       for (cpt=0; cpt<4;cpt++) {  
         fprintf(ficresf,"\n");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   
         nhstepm = nhstepm/hstepm;        if (popbased==1) {
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              prlim[i][i]=probs[(int)age][i][ij];
         oldm=oldms;savm=savms;          }else{ /* mobilav */ 
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              for(i=1; i<=nlstate;i++)
                      prlim[i][i]=mobaverage[(int)age][i][ij];
         for (h=0; h<=nhstepm; h++){          }
           if (h==(int) (calagedate+YEARM*cpt)) {        }
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);  
           }        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(j=1; j<=nlstate+ndeath;j++) {          for(h=0; h<=nhstepm; h++){
             kk1=0.;kk2=0;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
             for(i=1; i<=nlstate;i++) {                      gm[h][j] += prlim[i][i]*p3mat[i][j][h];
               if (mobilav==1)          }
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        }
               else {        /* This for computing probability of death (h=1 means
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];           computed over hstepm matrices product = hstepm*stepm months) 
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/           as a weighted average of prlim.
               }        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];          for(i=1,gmp[j]=0.; i<= nlstate; i++)
             }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                  }    
             if (h==(int)(calagedate+12*cpt)){        /* end probability of death */
               fprintf(ficresf," %.3f", kk1);  
                      for(j=1; j<= nlstate; j++) /* vareij */
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);          for(h=0; h<=nhstepm; h++){
             }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }          }
         }  
         /*      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);*/        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       }        }
     }  
   }      } /* End theta */
   /*  if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   if (popforecast==1) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);      for(h=0; h<=nhstepm; h++) /* veij */
     free_vector(popcount,0,AGESUP);        for(j=1; j<=nlstate;j++)
   }          for(theta=1; theta <=npar; theta++)
   free_imatrix(s,1,maxwav+1,1,n);            trgradg[h][j][theta]=gradg[h][theta][j];
   free_vector(weight,1,n);*/  
   fclose(ficresf);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   }/* End forecasting */        for(theta=1; theta <=npar; theta++)
   else{          trgradgp[j][theta]=gradgp[theta][j];
     erreur=108;    
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);  
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
   /*---------- Health expectancies and variances ------------*/        for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   strcpy(filerest,"t");  
   strcat(filerest,fileres);      for(h=0;h<=nhstepm;h++){
   if((ficrest=fopen(filerest,"w"))==NULL) {        for(k=0;k<=nhstepm;k++){
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   strcpy(filerese,"e");        }
   strcat(filerese,fileres);      }
   if((ficreseij=fopen(filerese,"w"))==NULL) {    
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      /* pptj */
   }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
  strcpy(fileresv,"v");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   strcat(fileresv,fileres);          varppt[j][i]=doldmp[j][i];
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      /* end ppptj */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      /*  x centered again */
   }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
   k=0;      if (popbased==1) {
   for(cptcov=1;cptcov<=i1;cptcov++){        if(mobilav ==0){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for(i=1; i<=nlstate;i++)
       k=k+1;            prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficrest,"\n#****** ");        }else{ /* mobilav */ 
       for(j=1;j<=cptcoveff;j++)          for(i=1; i<=nlstate;i++)
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            prlim[i][i]=mobaverage[(int)age][i][ij];
       fprintf(ficrest,"******\n");        }
       }
       fprintf(ficreseij,"\n#****** ");               
       for(j=1;j<=cptcoveff;j++)      /* This for computing probability of death (h=1 means
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       fprintf(ficreseij,"******\n");         as a weighted average of prlim.
       */
       fprintf(ficresvij,"\n#****** ");      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for(j=1;j<=cptcoveff;j++)        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       fprintf(ficresvij,"******\n");      }    
       /* end probability of death */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       oldm=oldms;savm=savms;        for(i=1; i<=nlstate;i++){
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
              }
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      } 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      fprintf(ficresprobmorprev,"\n");
       fprintf(ficrest,"\n");  
              fprintf(ficresvij,"%.0f ",age );
       hf=1;      for(i=1; i<=nlstate;i++)
       if (stepm >= YEARM) hf=stepm/YEARM;        for(j=1; j<=nlstate;j++){
       epj=vector(1,nlstate+1);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       for(age=bage; age <=fage ;age++){        }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fprintf(ficresvij,"\n");
         if (popbased==1) {      free_matrix(gp,0,nhstepm,1,nlstate);
           for(i=1; i<=nlstate;i++)      free_matrix(gm,0,nhstepm,1,nlstate);
             prlim[i][i]=probs[(int)age][i][k];      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrest," %.0f",age);    } /* End age */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    free_vector(gpp,nlstate+1,nlstate+ndeath);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    free_vector(gmp,nlstate+1,nlstate+ndeath);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           epj[nlstate+1] +=epj[j];    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
         }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         for(i=1, vepp=0.;i <=nlstate;i++)    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           for(j=1;j <=nlstate;j++)  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
             vepp += vareij[i][j][(int)age];  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         for(j=1;j <=nlstate;j++){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         fprintf(ficrest,"\n");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   }  */
          /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
            fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
  fclose(ficreseij);    free_matrix(doldm,1,nlstate,1,nlstate);
  fclose(ficresvij);    free_matrix(dnewm,1,nlstate,1,npar);
   fclose(ficrest);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fclose(ficpar);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   free_vector(epj,1,nlstate+1);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /*  scanf("%d ",i); */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
   /*------- Variance limit prevalence------*/      fflush(ficgp);
     fflush(fichtm); 
 strcpy(fileresvpl,"vpl");  }  /* end varevsij */
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  /************ Variance of prevlim ******************/
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     exit(0);  {
   }    /* Variance of prevalence limit */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
  k=0;    double **dnewm,**doldm;
  for(cptcov=1;cptcov<=i1;cptcov++){    int i, j, nhstepm, hstepm;
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int k, cptcode;
      k=k+1;    double *xp;
      fprintf(ficresvpl,"\n#****** ");    double *gp, *gm;
      for(j=1;j<=cptcoveff;j++)    double **gradg, **trgradg;
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double age,agelim;
      fprintf(ficresvpl,"******\n");    int theta;
          
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    pstamp(ficresvpl);
      oldm=oldms;savm=savms;    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fprintf(ficresvpl,"# Age");
    }    for(i=1; i<=nlstate;i++)
  }        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   fclose(ficresvpl);  
     xp=vector(1,npar);
   /*---------- End : free ----------------*/    dnewm=matrix(1,nlstate,1,npar);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    doldm=matrix(1,nlstate,1,nlstate);
      
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    hstepm=1*YEARM; /* Every year of age */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
      agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      if (stepm >= YEARM) hstepm=1;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      gradg=matrix(1,npar,1,nlstate);
        gp=vector(1,nlstate);
   free_matrix(matcov,1,npar,1,npar);      gm=vector(1,nlstate);
   free_vector(delti,1,npar);  
        for(theta=1; theta <=npar; theta++){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if(erreur >0)        }
     printf("End of Imach with error %d\n",erreur);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   else   printf("End of Imach\n");        for(i=1;i<=nlstate;i++)
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          gp[i] = prlim[i][i];
        
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        for(i=1; i<=npar; i++) /* Computes gradient */
   /*printf("Total time was %d uSec.\n", total_usecs);*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   /*------ End -----------*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
  end:  
 #ifdef windows        for(i=1;i<=nlstate;i++)
   /* chdir(pathcd);*/          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 #endif      } /* End theta */
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/      trgradg =matrix(1,nlstate,1,npar);
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      for(j=1; j<=nlstate;j++)
  strcpy(plotcmd,GNUPLOTPROGRAM);        for(theta=1; theta <=npar; theta++)
  strcat(plotcmd," ");          trgradg[j][theta]=gradg[theta][j];
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
 #ifdef windows      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   while (z[0] != 'q') {      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     chdir(path);      for(i=1;i<=nlstate;i++)
     printf("\nType e to edit output files, c to start again, and q for exiting: ");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");      fprintf(ficresvpl,"%.0f ",age );
     else if (z[0] == 'e') {      for(i=1; i<=nlstate;i++)
       chdir(path);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       system(optionfilehtm);      fprintf(ficresvpl,"\n");
     }      free_vector(gp,1,nlstate);
     else if (z[0] == 'q') exit(0);      free_vector(gm,1,nlstate);
   }      free_matrix(gradg,1,npar,1,nlstate);
 #endif      free_matrix(trgradg,1,nlstate,1,npar);
 }    } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.23  
changed lines
  Added in v.1.129


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>