Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.240

version 1.41.2.2, 2003/06/13 07:45:28 version 1.240, 2016/08/29 07:53:18
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.240  2016/08/29 07:53:18  brouard
      Summary: Better
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.239  2016/08/26 15:51:03  brouard
   first survey ("cross") where individuals from different ages are    Summary: Improvement in Powell output in order to copy and paste
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Author:
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.238  2016/08/26 14:23:35  brouard
   computed from the time spent in each health state according to a    Summary: Starting tests of 0.99
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.237  2016/08/26 09:20:19  brouard
   simplest model is the multinomial logistic model where pij is the    Summary: to valgrind
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.236  2016/08/25 10:50:18  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    *** empty log message ***
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.235  2016/08/25 06:59:23  brouard
   where the markup *Covariates have to be included here again* invites    *** empty log message ***
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.234  2016/08/23 16:51:20  brouard
     *** empty log message ***
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.233  2016/08/23 07:40:50  brouard
   identical for each individual. Also, if a individual missed an    Summary: not working
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.232  2016/08/22 14:20:21  brouard
     Summary: not working
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.231  2016/08/22 07:17:15  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    Summary: not working
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.230  2016/08/22 06:55:53  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    Summary: Not working
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.229  2016/07/23 09:45:53  brouard
     Summary: Completing for func too
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.228  2016/07/22 17:45:30  brouard
      Summary: Fixing some arrays, still debugging
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.226  2016/07/12 18:42:34  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Summary: temp
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.225  2016/07/12 08:40:03  brouard
   software can be distributed freely for non commercial use. Latest version    Summary: saving but not running
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.224  2016/07/01 13:16:01  brouard
      Summary: Fixes
 #include <math.h>  
 #include <stdio.h>    Revision 1.223  2016/02/19 09:23:35  brouard
 #include <stdlib.h>    Summary: temporary
 #include <unistd.h>  
     Revision 1.222  2016/02/17 08:14:50  brouard
 #define MAXLINE 256    Summary: Probably last 0.98 stable version 0.98r6
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.221  2016/02/15 23:35:36  brouard
 #define FILENAMELENGTH 80    Summary: minor bug
 /*#define DEBUG*/  
     Revision 1.219  2016/02/15 00:48:12  brouard
 /*#define windows*/    *** empty log message ***
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.218  2016/02/12 11:29:23  brouard
     Summary: 0.99 Back projections
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.217  2015/12/23 17:18:31  brouard
     Summary: Experimental backcast
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.216  2015/12/18 17:32:11  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Summary: 0.98r4 Warning and status=-2
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Version 0.98r4 is now:
 #define YEARM 12. /* Number of months per year */     - displaying an error when status is -1, date of interview unknown and date of death known;
 #define AGESUP 130     - permitting a status -2 when the vital status is unknown at a known date of right truncation.
 #define AGEBASE 40    Older changes concerning s=-2, dating from 2005 have been supersed.
   
     Revision 1.215  2015/12/16 08:52:24  brouard
 int erreur; /* Error number */    Summary: 0.98r4 working
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.214  2015/12/16 06:57:54  brouard
 int npar=NPARMAX;    Summary: temporary not working
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.213  2015/12/11 18:22:17  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Summary: 0.98r4
 int popbased=0;  
     Revision 1.212  2015/11/21 12:47:24  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Summary: minor typo
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.211  2015/11/21 12:41:11  brouard
 int mle, weightopt;    Summary: 0.98r3 with some graph of projected cross-sectional
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Author: Nicolas Brouard
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.210  2015/11/18 17:41:20  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Summary: Start working on projected prevalences
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop;    Revision 1.209  2015/11/17 22:12:03  brouard
 FILE *ficreseij;    Summary: Adding ftolpl parameter
   char filerese[FILENAMELENGTH];    Author: N Brouard
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    We had difficulties to get smoothed confidence intervals. It was due
  FILE  *ficresvpl;    to the period prevalence which wasn't computed accurately. The inner
   char fileresvpl[FILENAMELENGTH];    parameter ftolpl is now an outer parameter of the .imach parameter
     file after estepm. If ftolpl is small 1.e-4 and estepm too,
 #define NR_END 1    computation are long.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.208  2015/11/17 14:31:57  brouard
     Summary: temporary
 #define NRANSI  
 #define ITMAX 200    Revision 1.207  2015/10/27 17:36:57  brouard
     *** empty log message ***
 #define TOL 2.0e-4  
     Revision 1.206  2015/10/24 07:14:11  brouard
 #define CGOLD 0.3819660    *** empty log message ***
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.205  2015/10/23 15:50:53  brouard
     Summary: 0.98r3 some clarification for graphs on likelihood contributions
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.204  2015/10/01 16:20:26  brouard
 #define TINY 1.0e-20    Summary: Some new graphs of contribution to likelihood
   
 static double maxarg1,maxarg2;    Revision 1.203  2015/09/30 17:45:14  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Summary: looking at better estimation of the hessian
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Also a better criteria for convergence to the period prevalence And
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    therefore adding the number of years needed to converge. (The
 #define rint(a) floor(a+0.5)    prevalence in any alive state shold sum to one
   
 static double sqrarg;    Revision 1.202  2015/09/22 19:45:16  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Summary: Adding some overall graph on contribution to likelihood. Might change
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.201  2015/09/15 17:34:58  brouard
 int imx;    Summary: 0.98r0
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    - Some new graphs like suvival functions
     - Some bugs fixed like model=1+age+V2.
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.200  2015/09/09 16:53:55  brouard
     Summary: Big bug thanks to Flavia
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Even model=1+age+V2. did not work anymore
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.199  2015/09/07 14:09:23  brouard
 double dateintmean=0;    Summary: 0.98q6 changing default small png format for graph to vectorized svg.
   
 double *weight;    Revision 1.198  2015/09/03 07:14:39  brouard
 int **s; /* Status */    Summary: 0.98q5 Flavia
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.197  2015/09/01 18:24:39  brouard
     *** empty log message ***
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.196  2015/08/18 23:17:52  brouard
     Summary: 0.98q5
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.195  2015/08/18 16:28:39  brouard
 {    Summary: Adding a hack for testing purpose
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    After reading the title, ftol and model lines, if the comment line has
     a q, starting with #q, the answer at the end of the run is quit. It
    l1 = strlen( path );                 /* length of path */    permits to run test files in batch with ctest. The former workaround was
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    $ echo q | imach foo.imach
 #ifdef windows  
    s = strrchr( path, '\\' );           /* find last / */    Revision 1.194  2015/08/18 13:32:00  brouard
 #else    Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
    s = strrchr( path, '/' );            /* find last / */  
 #endif    Revision 1.193  2015/08/04 07:17:42  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    Summary: 0.98q4
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.192  2015/07/16 16:49:02  brouard
     Summary: Fixing some outputs
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.191  2015/07/14 10:00:33  brouard
       extern char       *getcwd( );    Summary: Some fixes
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.190  2015/05/05 08:51:13  brouard
 #endif    Summary: Adding digits in output parameters (7 digits instead of 6)
          return( GLOCK_ERROR_GETCWD );  
       }    Fix 1+age+.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.189  2015/04/30 14:45:16  brouard
       s++;                              /* after this, the filename */    Summary: 0.98q2
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.188  2015/04/30 08:27:53  brouard
       strcpy( name, s );                /* save file name */    *** empty log message ***
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.187  2015/04/29 09:11:15  brouard
    }    *** empty log message ***
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.186  2015/04/23 12:01:52  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Summary: V1*age is working now, version 0.98q1
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Some codes had been disabled in order to simplify and Vn*age was
 #endif    working in the optimization phase, ie, giving correct MLE parameters,
    s = strrchr( name, '.' );            /* find last / */    but, as usual, outputs were not correct and program core dumped.
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.185  2015/03/11 13:26:42  brouard
    l1= strlen( name);    Summary: Inclusion of compile and links command line for Intel Compiler
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.184  2015/03/11 11:52:39  brouard
    finame[l1-l2]= 0;    Summary: Back from Windows 8. Intel Compiler
    return( 0 );                         /* we're done */  
 }    Revision 1.183  2015/03/10 20:34:32  brouard
     Summary: 0.98q0, trying with directest, mnbrak fixed
   
 /******************************************/    We use directest instead of original Powell test; probably no
     incidence on the results, but better justifications;
 void replace(char *s, char*t)    We fixed Numerical Recipes mnbrak routine which was wrong and gave
 {    wrong results.
   int i;  
   int lg=20;    Revision 1.182  2015/02/12 08:19:57  brouard
   i=0;    Summary: Trying to keep directest which seems simpler and more general
   lg=strlen(t);    Author: Nicolas Brouard
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.181  2015/02/11 23:22:24  brouard
     if (t[i]== '\\') s[i]='/';    Summary: Comments on Powell added
   }  
 }    Author:
   
 int nbocc(char *s, char occ)    Revision 1.180  2015/02/11 17:33:45  brouard
 {    Summary: Finishing move from main to function (hpijx and prevalence_limit)
   int i,j=0;  
   int lg=20;    Revision 1.179  2015/01/04 09:57:06  brouard
   i=0;    Summary: back to OS/X
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.178  2015/01/04 09:35:48  brouard
   if  (s[i] == occ ) j++;    *** empty log message ***
   }  
   return j;    Revision 1.177  2015/01/03 18:40:56  brouard
 }    Summary: Still testing ilc32 on OSX
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.176  2015/01/03 16:45:04  brouard
 {    *** empty log message ***
   int i,lg,j,p=0;  
   i=0;    Revision 1.175  2015/01/03 16:33:42  brouard
   for(j=0; j<=strlen(t)-1; j++) {    *** empty log message ***
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.174  2015/01/03 16:15:49  brouard
     Summary: Still in cross-compilation
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.173  2015/01/03 12:06:26  brouard
     (u[j] = t[j]);    Summary: trying to detect cross-compilation
   }  
      u[p]='\0';    Revision 1.172  2014/12/27 12:07:47  brouard
     Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.171  2014/12/23 13:26:59  brouard
   }    Summary: Back from Visual C
 }  
     Still problem with utsname.h on Windows
 /********************** nrerror ********************/  
     Revision 1.170  2014/12/23 11:17:12  brouard
 void nrerror(char error_text[])    Summary: Cleaning some \%% back to %%
 {  
   fprintf(stderr,"ERREUR ...\n");    The escape was mandatory for a specific compiler (which one?), but too many warnings.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.169  2014/12/22 23:08:31  brouard
 }    Summary: 0.98p
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 {  
   double *v;    Revision 1.168  2014/12/22 15:17:42  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Summary: update
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.167  2014/12/22 13:50:56  brouard
 }    Summary: Testing uname and compiler version and if compiled 32 or 64
   
 /************************ free vector ******************/    Testing on Linux 64
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.166  2014/12/22 11:40:47  brouard
   free((FREE_ARG)(v+nl-NR_END));    *** empty log message ***
 }  
     Revision 1.165  2014/12/16 11:20:36  brouard
 /************************ivector *******************************/    Summary: After compiling on Visual C
 int *ivector(long nl,long nh)  
 {    * imach.c (Module): Merging 1.61 to 1.162
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.164  2014/12/16 10:52:11  brouard
   if (!v) nrerror("allocation failure in ivector");    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   return v-nl+NR_END;  
 }    * imach.c (Module): Merging 1.61 to 1.162
   
 /******************free ivector **************************/    Revision 1.163  2014/12/16 10:30:11  brouard
 void free_ivector(int *v, long nl, long nh)    * imach.c (Module): Merging 1.61 to 1.162
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.162  2014/09/25 11:43:39  brouard
 }    Summary: temporary backup 0.99!
   
 /******************* imatrix *******************************/    Revision 1.1  2014/09/16 11:06:58  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Summary: With some code (wrong) for nlopt
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Author:
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.161  2014/09/15 20:41:41  brouard
      Summary: Problem with macro SQR on Intel compiler
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.160  2014/09/02 09:24:05  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    *** empty log message ***
   m += NR_END;  
   m -= nrl;    Revision 1.159  2014/09/01 10:34:10  brouard
      Summary: WIN32
      Author: Brouard
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Revision 1.158  2014/08/27 17:11:51  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    *** empty log message ***
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.157  2014/08/27 16:26:55  brouard
      Summary: Preparing windows Visual studio version
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Author: Brouard
    
   /* return pointer to array of pointers to rows */    In order to compile on Visual studio, time.h is now correct and time_t
   return m;    and tm struct should be used. difftime should be used but sometimes I
 }    just make the differences in raw time format (time(&now).
     Trying to suppress #ifdef LINUX
 /****************** free_imatrix *************************/    Add xdg-open for __linux in order to open default browser.
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;    Revision 1.156  2014/08/25 20:10:10  brouard
       long nch,ncl,nrh,nrl;    *** empty log message ***
      /* free an int matrix allocated by imatrix() */  
 {    Revision 1.155  2014/08/25 18:32:34  brouard
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Summary: New compile, minor changes
   free((FREE_ARG) (m+nrl-NR_END));    Author: Brouard
 }  
     Revision 1.154  2014/06/20 17:32:08  brouard
 /******************* matrix *******************************/    Summary: Outputs now all graphs of convergence to period prevalence
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.153  2014/06/20 16:45:46  brouard
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Summary: If 3 live state, convergence to period prevalence on same graph
   double **m;    Author: Brouard
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.152  2014/06/18 17:54:09  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    Summary: open browser, use gnuplot on same dir than imach if not found in the path
   m += NR_END;  
   m -= nrl;    Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.150  2014/06/18 16:42:35  brouard
   m[nrl] += NR_END;    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   m[nrl] -= ncl;    Author: brouard
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.149  2014/06/18 15:51:14  brouard
   return m;    Summary: Some fixes in parameter files errors
 }    Author: Nicolas Brouard
   
 /*************************free matrix ************************/    Revision 1.148  2014/06/17 17:38:48  brouard
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Summary: Nothing new
 {    Author: Brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Just a new packaging for OS/X version 0.98nS
 }  
     Revision 1.147  2014/06/16 10:33:11  brouard
 /******************* ma3x *******************************/    *** empty log message ***
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    Revision 1.146  2014/06/16 10:20:28  brouard
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Summary: Merge
   double ***m;    Author: Brouard
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Merge, before building revised version.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.145  2014/06/10 21:23:15  brouard
   m -= nrl;    Summary: Debugging with valgrind
     Author: Nicolas Brouard
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Lot of changes in order to output the results with some covariates
   m[nrl] += NR_END;    After the Edimburgh REVES conference 2014, it seems mandatory to
   m[nrl] -= ncl;    improve the code.
     No more memory valgrind error but a lot has to be done in order to
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    optimal. nbcode should be improved. Documentation has been added in
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    the source code.
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    Revision 1.143  2014/01/26 09:45:38  brouard
   for (j=ncl+1; j<=nch; j++)    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
     m[nrl][j]=m[nrl][j-1]+nlay;  
      * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   for (i=nrl+1; i<=nrh; i++) {    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)    Revision 1.142  2014/01/26 03:57:36  brouard
       m[i][j]=m[i][j-1]+nlay;    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   }  
   return m;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 }  
     Revision 1.141  2014/01/26 02:42:01  brouard
 /*************************free ma3x ************************/    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {    Revision 1.140  2011/09/02 10:37:54  brouard
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    Summary: times.h is ok with mingw32 now.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.139  2010/06/14 07:50:17  brouard
 }    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 /***************** f1dim *************************/  
 extern int ncom;    Revision 1.138  2010/04/30 18:19:40  brouard
 extern double *pcom,*xicom;    *** empty log message ***
 extern double (*nrfunc)(double []);  
      Revision 1.137  2010/04/29 18:11:38  brouard
 double f1dim(double x)    (Module): Checking covariates for more complex models
 {    than V1+V2. A lot of change to be done. Unstable.
   int j;  
   double f;    Revision 1.136  2010/04/26 20:30:53  brouard
   double *xt;    (Module): merging some libgsl code. Fixing computation
      of likelione (using inter/intrapolation if mle = 0) in order to
   xt=vector(1,ncom);    get same likelihood as if mle=1.
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    Some cleaning of code and comments added.
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);    Revision 1.135  2009/10/29 15:33:14  brouard
   return f;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 }  
     Revision 1.134  2009/10/29 13:18:53  brouard
 /*****************brent *************************/    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    Revision 1.133  2009/07/06 10:21:25  brouard
   int iter;    just nforces
   double a,b,d,etemp;  
   double fu,fv,fw,fx;    Revision 1.132  2009/07/06 08:22:05  brouard
   double ftemp;    Many tings
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;    Revision 1.131  2009/06/20 16:22:47  brouard
      Some dimensions resccaled
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);    Revision 1.130  2009/05/26 06:44:34  brouard
   x=w=v=bx;    (Module): Max Covariate is now set to 20 instead of 8. A
   fw=fv=fx=(*f)(x);    lot of cleaning with variables initialized to 0. Trying to make
   for (iter=1;iter<=ITMAX;iter++) {    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    Revision 1.129  2007/08/31 13:49:27  lievre
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
     printf(".");fflush(stdout);  
 #ifdef DEBUG    Revision 1.128  2006/06/30 13:02:05  brouard
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    (Module): Clarifications on computing e.j
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    Revision 1.127  2006/04/28 18:11:50  brouard
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    (Module): Yes the sum of survivors was wrong since
       *xmin=x;    imach-114 because nhstepm was no more computed in the age
       return fx;    loop. Now we define nhstepma in the age loop.
     }    (Module): In order to speed up (in case of numerous covariates) we
     ftemp=fu;    compute health expectancies (without variances) in a first step
     if (fabs(e) > tol1) {    and then all the health expectancies with variances or standard
       r=(x-w)*(fx-fv);    deviation (needs data from the Hessian matrices) which slows the
       q=(x-v)*(fx-fw);    computation.
       p=(x-v)*q-(x-w)*r;    In the future we should be able to stop the program is only health
       q=2.0*(q-r);    expectancies and graph are needed without standard deviations.
       if (q > 0.0) p = -p;  
       q=fabs(q);    Revision 1.126  2006/04/28 17:23:28  brouard
       etemp=e;    (Module): Yes the sum of survivors was wrong since
       e=d;    imach-114 because nhstepm was no more computed in the age
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    loop. Now we define nhstepma in the age loop.
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    Version 0.98h
       else {  
         d=p/q;    Revision 1.125  2006/04/04 15:20:31  lievre
         u=x+d;    Errors in calculation of health expectancies. Age was not initialized.
         if (u-a < tol2 || b-u < tol2)    Forecasting file added.
           d=SIGN(tol1,xm-x);  
       }    Revision 1.124  2006/03/22 17:13:53  lievre
     } else {    Parameters are printed with %lf instead of %f (more numbers after the comma).
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    The log-likelihood is printed in the log file
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    Revision 1.123  2006/03/20 10:52:43  brouard
     fu=(*f)(u);    * imach.c (Module): <title> changed, corresponds to .htm file
     if (fu <= fx) {    name. <head> headers where missing.
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)    * imach.c (Module): Weights can have a decimal point as for
         SHFT(fv,fw,fx,fu)    English (a comma might work with a correct LC_NUMERIC environment,
         } else {    otherwise the weight is truncated).
           if (u < x) a=u; else b=u;    Modification of warning when the covariates values are not 0 or
           if (fu <= fw || w == x) {    1.
             v=w;    Version 0.98g
             w=u;  
             fv=fw;    Revision 1.122  2006/03/20 09:45:41  brouard
             fw=fu;    (Module): Weights can have a decimal point as for
           } else if (fu <= fv || v == x || v == w) {    English (a comma might work with a correct LC_NUMERIC environment,
             v=u;    otherwise the weight is truncated).
             fv=fu;    Modification of warning when the covariates values are not 0 or
           }    1.
         }    Version 0.98g
   }  
   nrerror("Too many iterations in brent");    Revision 1.121  2006/03/16 17:45:01  lievre
   *xmin=x;    * imach.c (Module): Comments concerning covariates added
   return fx;  
 }    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 /****************** mnbrak ***********************/    not 1 month. Version 0.98f
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    Revision 1.120  2006/03/16 15:10:38  lievre
             double (*func)(double))    (Module): refinements in the computation of lli if
 {    status=-2 in order to have more reliable computation if stepm is
   double ulim,u,r,q, dum;    not 1 month. Version 0.98f
   double fu;  
      Revision 1.119  2006/03/15 17:42:26  brouard
   *fa=(*func)(*ax);    (Module): Bug if status = -2, the loglikelihood was
   *fb=(*func)(*bx);    computed as likelihood omitting the logarithm. Version O.98e
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)    Revision 1.118  2006/03/14 18:20:07  brouard
       SHFT(dum,*fb,*fa,dum)    (Module): varevsij Comments added explaining the second
       }    table of variances if popbased=1 .
   *cx=(*bx)+GOLD*(*bx-*ax);    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   *fc=(*func)(*cx);    (Module): Function pstamp added
   while (*fb > *fc) {    (Module): Version 0.98d
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    Revision 1.117  2006/03/14 17:16:22  brouard
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    (Module): varevsij Comments added explaining the second
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    table of variances if popbased=1 .
     ulim=(*bx)+GLIMIT*(*cx-*bx);    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     if ((*bx-u)*(u-*cx) > 0.0) {    (Module): Function pstamp added
       fu=(*func)(u);    (Module): Version 0.98d
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    Revision 1.116  2006/03/06 10:29:27  brouard
       if (fu < *fc) {    (Module): Variance-covariance wrong links and
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    varian-covariance of ej. is needed (Saito).
           SHFT(*fb,*fc,fu,(*func)(u))  
           }    Revision 1.115  2006/02/27 12:17:45  brouard
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    (Module): One freematrix added in mlikeli! 0.98c
       u=ulim;  
       fu=(*func)(u);    Revision 1.114  2006/02/26 12:57:58  brouard
     } else {    (Module): Some improvements in processing parameter
       u=(*cx)+GOLD*(*cx-*bx);    filename with strsep.
       fu=(*func)(u);  
     }    Revision 1.113  2006/02/24 14:20:24  brouard
     SHFT(*ax,*bx,*cx,u)    (Module): Memory leaks checks with valgrind and:
       SHFT(*fa,*fb,*fc,fu)    datafile was not closed, some imatrix were not freed and on matrix
       }    allocation too.
 }  
     Revision 1.112  2006/01/30 09:55:26  brouard
 /*************** linmin ************************/    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 int ncom;    Revision 1.111  2006/01/25 20:38:18  brouard
 double *pcom,*xicom;    (Module): Lots of cleaning and bugs added (Gompertz)
 double (*nrfunc)(double []);    (Module): Comments can be added in data file. Missing date values
      can be a simple dot '.'.
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {    Revision 1.110  2006/01/25 00:51:50  brouard
   double brent(double ax, double bx, double cx,    (Module): Lots of cleaning and bugs added (Gompertz)
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);    Revision 1.109  2006/01/24 19:37:15  brouard
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    (Module): Comments (lines starting with a #) are allowed in data.
               double *fc, double (*func)(double));  
   int j;    Revision 1.108  2006/01/19 18:05:42  lievre
   double xx,xmin,bx,ax;    Gnuplot problem appeared...
   double fx,fb,fa;    To be fixed
    
   ncom=n;    Revision 1.107  2006/01/19 16:20:37  brouard
   pcom=vector(1,n);    Test existence of gnuplot in imach path
   xicom=vector(1,n);  
   nrfunc=func;    Revision 1.106  2006/01/19 13:24:36  brouard
   for (j=1;j<=n;j++) {    Some cleaning and links added in html output
     pcom[j]=p[j];  
     xicom[j]=xi[j];    Revision 1.105  2006/01/05 20:23:19  lievre
   }    *** empty log message ***
   ax=0.0;  
   xx=1.0;    Revision 1.104  2005/09/30 16:11:43  lievre
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    (Module): sump fixed, loop imx fixed, and simplifications.
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    (Module): If the status is missing at the last wave but we know
 #ifdef DEBUG    that the person is alive, then we can code his/her status as -2
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    (instead of missing=-1 in earlier versions) and his/her
 #endif    contributions to the likelihood is 1 - Prob of dying from last
   for (j=1;j<=n;j++) {    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     xi[j] *= xmin;    the healthy state at last known wave). Version is 0.98
     p[j] += xi[j];  
   }    Revision 1.103  2005/09/30 15:54:49  lievre
   free_vector(xicom,1,n);    (Module): sump fixed, loop imx fixed, and simplifications.
   free_vector(pcom,1,n);  
 }    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    Revision 1.101  2004/09/15 10:38:38  brouard
             double (*func)(double []))    Fix on curr_time
 {  
   void linmin(double p[], double xi[], int n, double *fret,    Revision 1.100  2004/07/12 18:29:06  brouard
               double (*func)(double []));    Add version for Mac OS X. Just define UNIX in Makefile
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;    Revision 1.99  2004/06/05 08:57:40  brouard
   double fp,fptt;    *** empty log message ***
   double *xits;  
   pt=vector(1,n);    Revision 1.98  2004/05/16 15:05:56  brouard
   ptt=vector(1,n);    New version 0.97 . First attempt to estimate force of mortality
   xit=vector(1,n);    directly from the data i.e. without the need of knowing the health
   xits=vector(1,n);    state at each age, but using a Gompertz model: log u =a + b*age .
   *fret=(*func)(p);    This is the basic analysis of mortality and should be done before any
   for (j=1;j<=n;j++) pt[j]=p[j];    other analysis, in order to test if the mortality estimated from the
   for (*iter=1;;++(*iter)) {    cross-longitudinal survey is different from the mortality estimated
     fp=(*fret);    from other sources like vital statistic data.
     ibig=0;  
     del=0.0;    The same imach parameter file can be used but the option for mle should be -3.
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)    Agnès, who wrote this part of the code, tried to keep most of the
       printf(" %d %.12f",i, p[i]);    former routines in order to include the new code within the former code.
     printf("\n");  
     for (i=1;i<=n;i++) {    The output is very simple: only an estimate of the intercept and of
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    the slope with 95% confident intervals.
       fptt=(*fret);  
 #ifdef DEBUG    Current limitations:
       printf("fret=%lf \n",*fret);    A) Even if you enter covariates, i.e. with the
 #endif    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
       printf("%d",i);fflush(stdout);    B) There is no computation of Life Expectancy nor Life Table.
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {    Revision 1.97  2004/02/20 13:25:42  lievre
         del=fabs(fptt-(*fret));    Version 0.96d. Population forecasting command line is (temporarily)
         ibig=i;    suppressed.
       }  
 #ifdef DEBUG    Revision 1.96  2003/07/15 15:38:55  brouard
       printf("%d %.12e",i,(*fret));    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       for (j=1;j<=n;j++) {    rewritten within the same printf. Workaround: many printfs.
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);    Revision 1.95  2003/07/08 07:54:34  brouard
       }    * imach.c (Repository):
       for(j=1;j<=n;j++)    (Repository): Using imachwizard code to output a more meaningful covariance
         printf(" p=%.12e",p[j]);    matrix (cov(a12,c31) instead of numbers.
       printf("\n");  
 #endif    Revision 1.94  2003/06/27 13:00:02  brouard
     }    Just cleaning
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG    Revision 1.93  2003/06/25 16:33:55  brouard
       int k[2],l;    (Module): On windows (cygwin) function asctime_r doesn't
       k[0]=1;    exist so I changed back to asctime which exists.
       k[1]=-1;    (Module): Version 0.96b
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)    Revision 1.92  2003/06/25 16:30:45  brouard
         printf(" %.12e",p[j]);    (Module): On windows (cygwin) function asctime_r doesn't
       printf("\n");    exist so I changed back to asctime which exists.
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {    Revision 1.91  2003/06/25 15:30:29  brouard
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    * imach.c (Repository): Duplicated warning errors corrected.
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    (Repository): Elapsed time after each iteration is now output. It
         }    helps to forecast when convergence will be reached. Elapsed time
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    is stamped in powell.  We created a new html file for the graphs
       }    concerning matrix of covariance. It has extension -cov.htm.
 #endif  
     Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
       free_vector(xit,1,n);    mle=-1 a template is output in file "or"mypar.txt with the design
       free_vector(xits,1,n);    of the covariance matrix to be input.
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);    Revision 1.89  2003/06/24 12:30:52  brouard
       return;    (Module): Some bugs corrected for windows. Also, when
     }    mle=-1 a template is output in file "or"mypar.txt with the design
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    of the covariance matrix to be input.
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];    Revision 1.88  2003/06/23 17:54:56  brouard
       xit[j]=p[j]-pt[j];    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
       pt[j]=p[j];  
     }    Revision 1.87  2003/06/18 12:26:01  brouard
     fptt=(*func)(ptt);    Version 0.96
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    Revision 1.86  2003/06/17 20:04:08  brouard
       if (t < 0.0) {    (Module): Change position of html and gnuplot routines and added
         linmin(p,xit,n,fret,func);    routine fileappend.
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];    Revision 1.85  2003/06/17 13:12:43  brouard
           xi[j][n]=xit[j];    * imach.c (Repository): Check when date of death was earlier that
         }    current date of interview. It may happen when the death was just
 #ifdef DEBUG    prior to the death. In this case, dh was negative and likelihood
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    was wrong (infinity). We still send an "Error" but patch by
         for(j=1;j<=n;j++)    assuming that the date of death was just one stepm after the
           printf(" %.12e",xit[j]);    interview.
         printf("\n");    (Repository): Because some people have very long ID (first column)
 #endif    we changed int to long in num[] and we added a new lvector for
       }    memory allocation. But we also truncated to 8 characters (left
     }    truncation)
   }    (Repository): No more line truncation errors.
 }  
     Revision 1.84  2003/06/13 21:44:43  brouard
 /**** Prevalence limit ****************/    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    many times. Probs is memory consuming and must be used with
 {    parcimony.
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
      matrix by transitions matrix until convergence is reached */  
     Revision 1.83  2003/06/10 13:39:11  lievre
   int i, ii,j,k;    *** empty log message ***
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();    Revision 1.82  2003/06/05 15:57:20  brouard
   double **out, cov[NCOVMAX], **pmij();    Add log in  imach.c and  fullversion number is now printed.
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  */
   /*
   for (ii=1;ii<=nlstate+ndeath;ii++)     Interpolated Markov Chain
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    Short summary of the programme:
     }    
     This program computes Healthy Life Expectancies or State-specific
    cov[1]=1.;    (if states aren't health statuses) Expectancies from
      cross-longitudinal data. Cross-longitudinal data consist in: 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    -1- a first survey ("cross") where individuals from different ages
     newm=savm;    are interviewed on their health status or degree of disability (in
     /* Covariates have to be included here again */    the case of a health survey which is our main interest)
      cov[2]=agefin;  
      -2- at least a second wave of interviews ("longitudinal") which
       for (k=1; k<=cptcovn;k++) {    measure each change (if any) in individual health status.  Health
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    expectancies are computed from the time spent in each health state
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    according to a model. More health states you consider, more time is
       }    necessary to reach the Maximum Likelihood of the parameters involved
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    in the model.  The simplest model is the multinomial logistic model
       for (k=1; k<=cptcovprod;k++)    where pij is the probability to be observed in state j at the second
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    wave conditional to be observed in state i at the first
     wave. Therefore the model is: log(pij/pii)= aij + bij*age+ cij*sex +
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    etc , where 'age' is age and 'sex' is a covariate. If you want to
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    have a more complex model than "constant and age", you should modify
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    the program where the markup *Covariates have to be included here
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    again* invites you to do it.  More covariates you add, slower the
     convergence.
     savm=oldm;  
     oldm=newm;    The advantage of this computer programme, compared to a simple
     maxmax=0.;    multinomial logistic model, is clear when the delay between waves is not
     for(j=1;j<=nlstate;j++){    identical for each individual. Also, if a individual missed an
       min=1.;    intermediate interview, the information is lost, but taken into
       max=0.;    account using an interpolation or extrapolation.  
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;    hPijx is the probability to be observed in state i at age x+h
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    conditional to the observed state i at age x. The delay 'h' can be
         prlim[i][j]= newm[i][j]/(1-sumnew);    split into an exact number (nh*stepm) of unobserved intermediate
         max=FMAX(max,prlim[i][j]);    states. This elementary transition (by month, quarter,
         min=FMIN(min,prlim[i][j]);    semester or year) is modelled as a multinomial logistic.  The hPx
       }    matrix is simply the matrix product of nh*stepm elementary matrices
       maxmin=max-min;    and the contribution of each individual to the likelihood is simply
       maxmax=FMAX(maxmax,maxmin);    hPijx.
     }  
     if(maxmax < ftolpl){    Also this programme outputs the covariance matrix of the parameters but also
       return prlim;    of the life expectancies. It also computes the period (stable) prevalence.
     }  
   }  Back prevalence and projections:
 }  
    - back_prevalence_limit(double *p, double **bprlim, double ageminpar,
 /*************** transition probabilities ***************/     double agemaxpar, double ftolpl, int *ncvyearp, double
      dateprev1,double dateprev2, int firstpass, int lastpass, int
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )     mobilavproj)
 {  
   double s1, s2;      Computes the back prevalence limit for any combination of
   /*double t34;*/      covariate values k at any age between ageminpar and agemaxpar and
   int i,j,j1, nc, ii, jj;      returns it in **bprlim. In the loops,
   
     for(i=1; i<= nlstate; i++){     - **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm,
     for(j=1; j<i;j++){         **savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/     - hBijx Back Probability to be in state i at age x-h being in j at x
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];     Computes for any combination of covariates k and any age between bage and fage 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }                          oldm=oldms;savm=savms;
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/     - hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
     }       Computes the transition matrix starting at age 'age' over
     for(j=i+1; j<=nlstate+ndeath;j++){       'nhstepm*hstepm*stepm' months (i.e. until
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];       nhstepm*hstepm matrices. 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }       Returns p3mat[i][j][h] after calling
       ps[i][j]=s2;       p3mat[i][j][h]=matprod2(newm,
     }       bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm,
   }       dsavm,ij),\ 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
     /*ps[3][2]=1;*/       oldm);
   
   for(i=1; i<= nlstate; i++){  Important routines
      s1=0;  
     for(j=1; j<i; j++)  - func (or funcone), computes logit (pij) distinguishing
       s1+=exp(ps[i][j]);    o fixed variables (single or product dummies or quantitative);
     for(j=i+1; j<=nlstate+ndeath; j++)    o varying variables by:
       s1+=exp(ps[i][j]);     (1) wave (single, product dummies, quantitative), 
     ps[i][i]=1./(s1+1.);     (2) by age (can be month) age (done), age*age (done), age*Vn where Vn can be:
     for(j=1; j<i; j++)         % fixed dummy (treated) or quantitative (not done because time-consuming);
       ps[i][j]= exp(ps[i][j])*ps[i][i];         % varying dummy (not done) or quantitative (not done);
     for(j=i+1; j<=nlstate+ndeath; j++)  - Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities)
       ps[i][j]= exp(ps[i][j])*ps[i][i];    and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually.
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  - printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables
   } /* end i */    o There are 2*cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if
       race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless.
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;    
       ps[ii][ii]=1;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
     }             Institut national d'études démographiques, Paris.
   }    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    software can be distributed freely for non commercial use. Latest version
     for(jj=1; jj<= nlstate+ndeath; jj++){    can be accessed at http://euroreves.ined.fr/imach .
      printf("%lf ",ps[ii][jj]);  
    }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     printf("\n ");    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     }    
     printf("\n ");printf("%lf ",cov[2]);*/    **********************************************************************/
 /*  /*
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    main
   goto end;*/    read parameterfile
     return ps;    read datafile
 }    concatwav
     freqsummary
 /**************** Product of 2 matrices ******************/    if (mle >= 1)
       mlikeli
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    print results files
 {    if mle==1 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times       computes hessian
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    read end of parameter file: agemin, agemax, bage, fage, estepm
   /* in, b, out are matrice of pointers which should have been initialized        begin-prev-date,...
      before: only the contents of out is modified. The function returns    open gnuplot file
      a pointer to pointers identical to out */    open html file
   long i, j, k;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   for(i=nrl; i<= nrh; i++)     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     for(k=ncolol; k<=ncoloh; k++)                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      freexexit2 possible for memory heap.
         out[i][k] +=in[i][j]*b[j][k];  
     h Pij x                         | pij_nom  ficrestpij
   return out;     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
 }         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
          1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   
 /************* Higher Matrix Product ***************/         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
          1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
 {     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    forecasting if prevfcast==1 prevforecast call prevalence()
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    health expectancies
      (typically every 2 years instead of every month which is too big).    Variance-covariance of DFLE
      Model is determined by parameters x and covariates have to be    prevalence()
      included manually here.     movingaverage()
     varevsij() 
      */    if popbased==1 varevsij(,popbased)
     total life expectancies
   int i, j, d, h, k;    Variance of period (stable) prevalence
   double **out, cov[NCOVMAX];   end
   double **newm;  */
   
   /* Hstepm could be zero and should return the unit matrix */  /* #define DEBUG */
   for (i=1;i<=nlstate+ndeath;i++)  /* #define DEBUGBRENT */
     for (j=1;j<=nlstate+ndeath;j++){  /* #define DEBUGLINMIN */
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /* #define DEBUGHESS */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  #define DEBUGHESSIJ
     }  /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan) *\/ */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #define POWELL /* Instead of NLOPT */
   for(h=1; h <=nhstepm; h++){  #define POWELLNOF3INFF1TEST /* Skip test */
     for(d=1; d <=hstepm; d++){  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
       newm=savm;  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
       /* Covariates have to be included here again */  
       cov[1]=1.;  #include <math.h>
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  #include <stdio.h>
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #include <stdlib.h>
       for (k=1; k<=cptcovage;k++)  #include <string.h>
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #include <ctype.h>
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #ifdef _WIN32
   #include <io.h>
   #include <windows.h>
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  #include <tchar.h>
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  #else
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  #include <unistd.h>
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  #endif
       savm=oldm;  
       oldm=newm;  #include <limits.h>
     }  #include <sys/types.h>
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  #if defined(__GNUC__)
         po[i][j][h]=newm[i][j];  #include <sys/utsname.h> /* Doesn't work on Windows */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  #endif
          */  
       }  #include <sys/stat.h>
   } /* end h */  #include <errno.h>
   return po;  /* extern int errno; */
 }  
   /* #ifdef LINUX */
   /* #include <time.h> */
 /*************** log-likelihood *************/  /* #include "timeval.h" */
 double func( double *x)  /* #else */
 {  /* #include <sys/time.h> */
   int i, ii, j, k, mi, d, kk;  /* #endif */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  #include <time.h>
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  #ifdef GSL
   int s1, s2;  #include <gsl/gsl_errno.h>
   long ipmx;  #include <gsl/gsl_multimin.h>
   /*extern weight */  #endif
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)  #ifdef NLOPT
     printf(" %d\n",s[4][i]);  #include <nlopt.h>
   */  typedef struct {
   cov[1]=1.;    double (* function)(double [] );
   } myfunc_data ;
   for(k=1; k<=nlstate; k++) ll[k]=0.;  #endif
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  /* #include <libintl.h> */
     for(mi=1; mi<= wav[i]-1; mi++){  /* #define _(String) gettext (String) */
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++){  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
           savm[ii][j]=(ii==j ? 1.0 : 0.0);  #define GNUPLOTPROGRAM "gnuplot"
         }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       for(d=0; d<dh[mi][i]; d++){  #define FILENAMELENGTH 132
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
         for (kk=1; kk<=cptcovage;kk++) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
          #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #define NINTERVMAX 8
         savm=oldm;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
         oldm=newm;  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
          #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
          #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
       } /* end mult */  /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
        #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
       s1=s[mw[mi][i]][i];  #define MAXN 20000
       s2=s[mw[mi+1][i]][i];  #define YEARM 12. /**< Number of months per year */
       if( s2 > nlstate){  /* #define AGESUP 130 */
         /* i.e. if s2 is a death state and if the date of death is known then the contribution  #define AGESUP 150
            to the likelihood is the probability to die between last step unit time and current  #define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */
            step unit time, which is also the differences between probability to die before dh  #define AGEBASE 40
            and probability to die before dh-stepm .  #define AGEOVERFLOW 1.e20
            In version up to 0.92 likelihood was computed  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
            as if date of death was unknown. Death was treated as any other  #ifdef _WIN32
            health state: the date of the interview describes the actual state  #define DIRSEPARATOR '\\'
            and not the date of a change in health state. The former idea was  #define CHARSEPARATOR "\\"
            to consider that at each interview the state was recorded  #define ODIRSEPARATOR '/'
            (healthy, disable or death) and IMaCh was corrected; but when we  #else
            introduced the exact date of death then we should have modified  #define DIRSEPARATOR '/'
            the contribution of an exact death to the likelihood. This new  #define CHARSEPARATOR "/"
            contribution is smaller and very dependent of the step unit  #define ODIRSEPARATOR '\\'
            stepm. It is no more the probability to die between last interview  #endif
            and month of death but the probability to survive from last  
            interview up to one month before death multiplied by the  /* $Id$ */
            probability to die within a month. Thanks to Chris  /* $State$ */
            Jackson for correcting this bug.  Former versions increased  #include "version.h"
            mortality artificially. The bad side is that we add another loop  char version[]=__IMACH_VERSION__;
            which slows down the processing. The difference can be up to 10%  char copyright[]="February 2016,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2018";
            lower mortality.  char fullversion[]="$Revision$ $Date$"; 
         */  char strstart[80];
         lli=log(out[s1][s2] - savm[s1][s2]);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       }else{  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       }  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       ipmx +=1;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       sw += weight[i];  int cptcovs=0; /**< cptcovs number of simple covariates in the model V2+V1 =2 */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  int cptcovsnq=0; /**< cptcovsnq number of simple covariates in the model but non quantitative V2+V1 =2 */
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
     } /* end of wave */  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   } /* end of individual */  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  int nsd=0; /**< Total number of single dummy variables (output) */
   /*exit(0);*/  int nsq=0; /**< Total number of single quantitative variables (output) */
   return -l;  int ncoveff=0; /* Total number of effective fixed dummy covariates in the model */
 }  int nqfveff=0; /**< nqfveff Number of Quantitative Fixed Variables Effective */
   int ntveff=0; /**< ntveff number of effective time varying variables */
   int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */
 /*********** Maximum Likelihood Estimation ***************/  int cptcov=0; /* Working variable */
   int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
   int i,j, iter;  int ndeath=1; /* Number of dead states */
   double **xi,*delti;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   double fret;  int  nqv=0, ntv=0, nqtv=0;    /* Total number of quantitative variables, time variable (dummy), quantitative and time variable */ 
   xi=matrix(1,npar,1,npar);  int popbased=0;
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  int *wav; /* Number of waves for this individuual 0 is possible */
       xi[i][j]=(i==j ? 1.0 : 0.0);  int maxwav=0; /* Maxim number of waves */
   printf("Powell\n");  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   powell(p,xi,npar,ftol,&iter,&fret,func);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   int gipmx=0, gsw=0; /* Global variables on the number of contributions 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));                     to the likelihood and the sum of weights (done by funcone)*/
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  int mle=1, weightopt=0;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 /**** Computes Hessian and covariance matrix ***/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  int countcallfunc=0;  /* Count the number of calls to func */
 {  int selected(int kvar); /* Is covariate kvar selected for printing results */
   double  **a,**y,*x,pd;  
   double **hess;  double jmean=1; /* Mean space between 2 waves */
   int i, j,jk;  double **matprod2(); /* test */
   int *indx;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   double hessii(double p[], double delta, int theta, double delti[]);  double   **ddnewms, **ddoldms, **ddsavms; /* for freeing later */
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*FILE *fic ; */ /* Used in readdata only */
   void ludcmp(double **a, int npar, int *indx, double *d) ;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficresplb,*ficrespij, *ficrespijb, *ficrest,*ficresf, *ficresfb,*ficrespop;
   FILE *ficlog, *ficrespow;
   hess=matrix(1,npar,1,npar);  int globpr=0; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
   printf("\nCalculation of the hessian matrix. Wait...\n");  long ipmx=0; /* Number of contributions */
   for (i=1;i<=npar;i++){  double sw; /* Sum of weights */
     printf("%d",i);fflush(stdout);  char filerespow[FILENAMELENGTH];
     hess[i][i]=hessii(p,ftolhess,i,delti);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     /*printf(" %f ",p[i]);*/  FILE *ficresilk;
     /*printf(" %lf ",hess[i][i]);*/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   }  FILE *ficresprobmorprev;
    FILE *fichtm, *fichtmcov; /* Html File */
   for (i=1;i<=npar;i++) {  FILE *ficreseij;
     for (j=1;j<=npar;j++)  {  char filerese[FILENAMELENGTH];
       if (j>i) {  FILE *ficresstdeij;
         printf(".%d%d",i,j);fflush(stdout);  char fileresstde[FILENAMELENGTH];
         hess[i][j]=hessij(p,delti,i,j);  FILE *ficrescveij;
         hess[j][i]=hess[i][j];      char filerescve[FILENAMELENGTH];
         /*printf(" %lf ",hess[i][j]);*/  FILE  *ficresvij;
       }  char fileresv[FILENAMELENGTH];
     }  FILE  *ficresvpl;
   }  char fileresvpl[FILENAMELENGTH];
   printf("\n");  char title[MAXLINE];
   char model[MAXLINE]; /**< The model line */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH],  fileresplb[FILENAMELENGTH];
    char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   a=matrix(1,npar,1,npar);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   y=matrix(1,npar,1,npar);  char command[FILENAMELENGTH];
   x=vector(1,npar);  int  outcmd=0;
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filerespijb[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  char fileresu[FILENAMELENGTH]; /* fileres without r in front */
   ludcmp(a,npar,indx,&pd);  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
   for (j=1;j<=npar;j++) {  char fileregp[FILENAMELENGTH];
     for (i=1;i<=npar;i++) x[i]=0;  char popfile[FILENAMELENGTH];
     x[j]=1;  
     lubksb(a,npar,indx,x);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
     }  /* struct timezone tzp; */
   }  /* extern int gettimeofday(); */
   struct tm tml, *gmtime(), *localtime();
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {  extern time_t time();
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);  struct tm start_time, end_time, curr_time, last_time, forecast_time;
     }  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
     printf("\n");  struct tm tm;
   }  
   char strcurr[80], strfor[80];
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  char *endptr;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  long lval;
   ludcmp(a,npar,indx,&pd);  double dval;
   
   /*  printf("\n#Hessian matrix recomputed#\n");  #define NR_END 1
   #define FREE_ARG char*
   for (j=1;j<=npar;j++) {  #define FTOL 1.0e-10
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  #define NRANSI 
     lubksb(a,npar,indx,x);  #define ITMAX 200
     for (i=1;i<=npar;i++){  #define ITPOWMAX 20 /* This is now multiplied by the number of parameters */ 
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  #define TOL 2.0e-4 
     }  
     printf("\n");  #define CGOLD 0.3819660 
   }  #define ZEPS 1.0e-10 
   */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
   free_matrix(a,1,npar,1,npar);  #define GOLD 1.618034 
   free_matrix(y,1,npar,1,npar);  #define GLIMIT 100.0 
   free_vector(x,1,npar);  #define TINY 1.0e-20 
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 }    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 /*************** hessian matrix ****************/  #define rint(a) floor(a+0.5)
 double hessii( double x[], double delta, int theta, double delti[])  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
 {  #define mytinydouble 1.0e-16
   int i;  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   int l=1, lmax=20;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   double k1,k2;  /* static double dsqrarg; */
   double p2[NPARMAX+1];  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
   double res;  static double sqrarg;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   double fx;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int k=0,kmax=10;  int agegomp= AGEGOMP;
   double l1;  
   int imx; 
   fx=func(x);  int stepm=1;
   for (i=1;i<=npar;i++) p2[i]=x[i];  /* Stepm, step in month: minimum step interpolation*/
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  int estepm;
     delts=delt;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);  int m,nb;
       p2[theta]=x[theta] +delt;  long *num;
       k1=func(p2)-fx;  int firstpass=0, lastpass=4,*cod, *cens;
       p2[theta]=x[theta]-delt;  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
       k2=func(p2)-fx;                     covariate for which somebody answered excluding 
       /*res= (k1-2.0*fx+k2)/delt/delt; */                     undefined. Usually 2: 0 and 1. */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
                                     covariate for which somebody answered including 
 #ifdef DEBUG                               undefined. Usually 3: -1, 0 and 1. */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 #endif  double **pmmij, ***probs; /* Global pointer */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  double ***mobaverage, ***mobaverages; /* New global variable */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  double *ageexmed,*agecens;
         k=kmax;  double dateintmean=0;
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  double *weight;
         k=kmax; l=lmax*10.;  int **s; /* Status */
       }  double *agedc;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
         delts=delt;                    * covar=matrix(0,NCOVMAX,1,n); 
       }                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
     }  double **coqvar; /* Fixed quantitative covariate iqv */
   }  double ***cotvar; /* Time varying covariate itv */
   delti[theta]=delts;  double ***cotqvar; /* Time varying quantitative covariate itqv */
   return res;  double  idx; 
    int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
 }  /*           V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   /*k          1  2   3   4     5    6    7     8    9 */
 double hessij( double x[], double delti[], int thetai,int thetaj)  /*Tvar[k]=   5  4   3   6     5    2    7     1    1 */
 {  /* Tndvar[k]    1   2   3               4          5 */
   int i;  /*TDvar         4   3   6               7          1 */ /* For outputs only; combination of dummies fixed or varying */
   int l=1, l1, lmax=20;  /* Tns[k]    1  2   2              4               5 */ /* Number of single cova */
   double k1,k2,k3,k4,res,fx;  /* TvarsD[k]    1   2                              3 */ /* Number of single dummy cova */
   double p2[NPARMAX+1];  /* TvarsDind    2   3                              9 */ /* position K of single dummy cova */
   int k;  /* TvarsQ[k] 1                     2                 */ /* Number of single quantitative cova */
   /* TvarsQind 1                     6                 */ /* position K of single quantitative cova */
   fx=func(x);  /* Tprod[i]=k           4               7            */
   for (k=1; k<=2; k++) {  /* Tage[i]=k                  5               8      */
     for (i=1;i<=npar;i++) p2[i]=x[i];  /* */
     p2[thetai]=x[thetai]+delti[thetai]/k;  /* Type                    */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /* V         1  2  3  4  5 */
     k1=func(p2)-fx;  /*           F  F  V  V  V */
    /*           D  Q  D  D  Q */
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*                         */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  int *TvarsD;
     k2=func(p2)-fx;  int *TvarsDind;
    int *TvarsQ;
     p2[thetai]=x[thetai]-delti[thetai]/k;  int *TvarsQind;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;  #define MAXRESULTLINES 10
    int nresult=0;
     p2[thetai]=x[thetai]-delti[thetai]/k;  int TKresult[MAXRESULTLINES];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  int Tresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */
     k4=func(p2)-fx;  int Tinvresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  int Tvresult[MAXRESULTLINES][NCOVMAX]; /* For dummy variable , variable # (output) */
 #ifdef DEBUG  double Tqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  double Tqinvresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */
 #endif  int Tvqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , variable # (output) */
   }  
   return res;  /* int *TDvar; /\**< TDvar[1]=4,  TDvarF[2]=3, TDvar[3]=6  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
 }  int *TvarF; /**< TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarFind; /**< TvarFind[1]=6,  TvarFind[2]=7, Tvarind[3]=9  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
 /************** Inverse of matrix **************/  int *TvarV; /**< TvarV[1]=Tvar[1]=5, TvarV[2]=Tvar[2]=4  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
 void ludcmp(double **a, int n, int *indx, double *d)  int *TvarVind; /**< TvarVind[1]=1, TvarVind[2]=2  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
 {  int *TvarA; /**< TvarA[1]=Tvar[5]=5, TvarA[2]=Tvar[8]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int i,imax,j,k;  int *TvarAind; /**< TvarindA[1]=5, TvarAind[2]=8  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   double big,dum,sum,temp;  int *TvarFD; /**< TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   double *vv;  int *TvarFDind; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
    int *TvarFQ; /* TvarFQ[1]=V2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   vv=vector(1,n);  int *TvarFQind; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   *d=1.0;  int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   for (i=1;i<=n;i++) {  int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
     big=0.0;  int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
     for (j=1;j<=n;j++)  int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  int *Tvarsel; /**< Selected covariates for output */
     vv[i]=1.0/big;  double *Tvalsel; /**< Selected modality value of covariate for output */
   }  int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product */
   for (j=1;j<=n;j++) {  int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ 
     for (i=1;i<j;i++) {  int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ 
       sum=a[i][j];  int *DummyV; /** Dummy[v] 0=dummy (0 1), 1 quantitative */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  int *FixedV; /** FixedV[v] 0 fixed, 1 varying */
       a[i][j]=sum;  int *Tage;
     }  int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */ 
     big=0.0;  int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
     for (i=j;i<=n;i++) {  int *TmodelInvind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ 
       sum=a[i][j];  int *TmodelInvQind; /** Tmodelqind[1]=1 for V5(quantitative varying) position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1  */
       for (k=1;k<j;k++)  int *Ndum; /** Freq of modality (tricode */
         sum -= a[i][k]*a[k][j];  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
       a[i][j]=sum;  int **Tvard;
       if ( (dum=vv[i]*fabs(sum)) >= big) {  int *Tprod;/**< Gives the k position of the k1 product */
         big=dum;  /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3  */
         imax=i;  int *Tposprod; /**< Gives the k1 product from the k position */
       }     /* if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2) */
     }     /* Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5(V3*V2)]=2 (2nd product without age) */
     if (j != imax) {  int cptcovprod, *Tvaraff, *invalidvarcomb;
       for (k=1;k<=n;k++) {  double *lsurv, *lpop, *tpop;
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  #define FD 1; /* Fixed dummy covariate */
         a[j][k]=dum;  #define FQ 2; /* Fixed quantitative covariate */
       }  #define FP 3; /* Fixed product covariate */
       *d = -(*d);  #define FPDD 7; /* Fixed product dummy*dummy covariate */
       vv[imax]=vv[j];  #define FPDQ 8; /* Fixed product dummy*quantitative covariate */
     }  #define FPQQ 9; /* Fixed product quantitative*quantitative covariate */
     indx[j]=imax;  #define VD 10; /* Varying dummy covariate */
     if (a[j][j] == 0.0) a[j][j]=TINY;  #define VQ 11; /* Varying quantitative covariate */
     if (j != n) {  #define VP 12; /* Varying product covariate */
       dum=1.0/(a[j][j]);  #define VPDD 13; /* Varying product dummy*dummy covariate */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  #define VPDQ 14; /* Varying product dummy*quantitative covariate */
     }  #define VPQQ 15; /* Varying product quantitative*quantitative covariate */
   }  #define APFD 16; /* Age product * fixed dummy covariate */
   free_vector(vv,1,n);  /* Doesn't work */  #define APFQ 17; /* Age product * fixed quantitative covariate */
 ;  #define APVD 18; /* Age product * varying dummy covariate */
 }  #define APVQ 19; /* Age product * varying quantitative covariate */
   
 void lubksb(double **a, int n, int *indx, double b[])  #define FTYPE 1; /* Fixed covariate */
 {  #define VTYPE 2; /* Varying covariate (loop in wave) */
   int i,ii=0,ip,j;  #define ATYPE 2; /* Age product covariate (loop in dh within wave)*/
   double sum;  
    struct kmodel{
   for (i=1;i<=n;i++) {          int maintype; /* main type */
     ip=indx[i];          int subtype; /* subtype */
     sum=b[ip];  };
     b[ip]=b[i];  struct kmodel modell[NCOVMAX];
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     else if (sum) ii=i;  double ftolhess; /**< Tolerance for computing hessian */
     b[i]=sum;  
   }  /**************** split *************************/
   for (i=n;i>=1;i--) {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     sum=b[i];  {
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     b[i]=sum/a[i][i];       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   }    */ 
 }    char  *ss;                            /* pointer */
     int   l1=0, l2=0;                             /* length counters */
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    l1 = strlen(path );                   /* length of path */
 {  /* Some frequencies */    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double ***freq; /* Frequencies */      strcpy( name, path );               /* we got the fullname name because no directory */
   double *pp;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double pos, k2, dateintsum=0,k2cpt=0;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   FILE *ficresp;      /* get current working directory */
   char fileresp[FILENAMELENGTH];      /*    extern  char* getcwd ( char *buf , int len);*/
    #ifdef WIN32
   pp=vector(1,nlstate);      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  #else
   strcpy(fileresp,"p");          if (getcwd(dirc, FILENAME_MAX) == NULL) {
   strcat(fileresp,fileres);  #endif
   if((ficresp=fopen(fileresp,"w"))==NULL) {        return( GLOCK_ERROR_GETCWD );
     printf("Problem with prevalence resultfile: %s\n", fileresp);      }
     exit(0);      /* got dirc from getcwd*/
   }      printf(" DIRC = %s \n",dirc);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    } else {                              /* strip directory from path */
   j1=0;      ss++;                               /* after this, the filename */
        l2 = strlen( ss );                  /* length of filename */
   j=cptcoveff;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      strcpy( name, ss );         /* save file name */
        strncpy( dirc, path, l1 - l2 );     /* now the directory */
   for(k1=1; k1<=j;k1++){      dirc[l1-l2] = '\0';                 /* add zero */
     for(i1=1; i1<=ncodemax[k1];i1++){      printf(" DIRC2 = %s \n",dirc);
       j1++;    }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    /* We add a separator at the end of dirc if not exists */
         scanf("%d", i);*/    l1 = strlen( dirc );                  /* length of directory */
       for (i=-1; i<=nlstate+ndeath; i++)      if( dirc[l1-1] != DIRSEPARATOR ){
         for (jk=-1; jk<=nlstate+ndeath; jk++)        dirc[l1] =  DIRSEPARATOR;
           for(m=agemin; m <= agemax+3; m++)      dirc[l1+1] = 0; 
             freq[i][jk][m]=0;      printf(" DIRC3 = %s \n",dirc);
          }
       dateintsum=0;    ss = strrchr( name, '.' );            /* find last / */
       k2cpt=0;    if (ss >0){
       for (i=1; i<=imx; i++) {      ss++;
         bool=1;      strcpy(ext,ss);                     /* save extension */
         if  (cptcovn>0) {      l1= strlen( name);
           for (z1=1; z1<=cptcoveff; z1++)      l2= strlen(ss)+1;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      strncpy( finame, name, l1-l2);
               bool=0;      finame[l1-l2]= 0;
         }    }
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){    return( 0 );                          /* we're done */
             k2=anint[m][i]+(mint[m][i]/12.);  }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;  /******************************************/
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  void replace_back_to_slash(char *s, char*t)
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  {
               }    int i;
                  int lg=0;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    i=0;
                 dateintsum=dateintsum+k2;    lg=strlen(t);
                 k2cpt++;    for(i=0; i<= lg; i++) {
               }      (s[i] = t[i]);
             }      if (t[i]== '\\') s[i]='/';
           }    }
         }  }
       }  
          char *trimbb(char *out, char *in)
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     char *s;
       if  (cptcovn>0) {    s=out;
         fprintf(ficresp, "\n#********** Variable ");    while (*in != '\0'){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         fprintf(ficresp, "**********\n#");        in++;
       }      }
       for(i=1; i<=nlstate;i++)      *out++ = *in++;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    }
       fprintf(ficresp, "\n");    *out='\0';
          return s;
       for(i=(int)agemin; i <= (int)agemax+3; i++){  }
         if(i==(int)agemax+3)  
           printf("Total");  /* char *substrchaine(char *out, char *in, char *chain) */
         else  /* { */
           printf("Age %d", i);  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
         for(jk=1; jk <=nlstate ; jk++){  /*   char *s, *t; */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /*   t=in;s=out; */
             pp[jk] += freq[jk][m][i];  /*   while ((*in != *chain) && (*in != '\0')){ */
         }  /*     *out++ = *in++; */
         for(jk=1; jk <=nlstate ; jk++){  /*   } */
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  /*   /\* *in matches *chain *\/ */
           if(pp[jk]>=1.e-10)  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
           else  /*   } */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  /*   in--; chain--; */
         }  /*   while ( (*in != '\0')){ */
   /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
         for(jk=1; jk <=nlstate ; jk++){  /*     *out++ = *in++; */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
             pp[jk] += freq[jk][m][i];  /*   } */
         }  /*   *out='\0'; */
   /*   out=s; */
         for(jk=1,pos=0; jk <=nlstate ; jk++)  /*   return out; */
           pos += pp[jk];  /* } */
         for(jk=1; jk <=nlstate ; jk++){  char *substrchaine(char *out, char *in, char *chain)
           if(pos>=1.e-5)  {
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    /* Substract chain 'chain' from 'in', return and output 'out' */
           else    /* in="V1+V1*age+age*age+V2", chain="age*age" */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
           if( i <= (int) agemax){    char *strloc;
             if(pos>=1.e-5){  
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    strcpy (out, in); 
               probs[i][jk][j1]= pp[jk]/pos;    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
             }    if(strloc != NULL){ 
             else      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
           }      /* strcpy (strloc, strloc +strlen(chain));*/
         }    }
            printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
         for(jk=-1; jk <=nlstate+ndeath; jk++)    return out;
           for(m=-1; m <=nlstate+ndeath; m++)  }
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
         if(i <= (int) agemax)  
           fprintf(ficresp,"\n");  char *cutl(char *blocc, char *alocc, char *in, char occ)
         printf("\n");  {
       }    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
     }       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   }       gives blocc="abcdef" and alocc="ghi2j".
   dateintmean=dateintsum/k2cpt;       If occ is not found blocc is null and alocc is equal to in. Returns blocc
      */
   fclose(ficresp);    char *s, *t;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    t=in;s=in;
   free_vector(pp,1,nlstate);    while ((*in != occ) && (*in != '\0')){
        *alocc++ = *in++;
   /* End of Freq */    }
 }    if( *in == occ){
       *(alocc)='\0';
 /************ Prevalence ********************/      s=++in;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    }
 {  /* Some frequencies */   
      if (s == t) {/* occ not found */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      *(alocc-(in-s))='\0';
   double ***freq; /* Frequencies */      in=s;
   double *pp;    }
   double pos, k2;    while ( *in != '\0'){
       *blocc++ = *in++;
   pp=vector(1,nlstate);    }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
      *blocc='\0';
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    return t;
   j1=0;  }
    char *cutv(char *blocc, char *alocc, char *in, char occ)
   j=cptcoveff;  {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
         and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  for(k1=1; k1<=j;k1++){       gives blocc="abcdef2ghi" and alocc="j".
     for(i1=1; i1<=ncodemax[k1];i1++){       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       j1++;    */
      char *s, *t;
       for (i=-1; i<=nlstate+ndeath; i++)      t=in;s=in;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      while (*in != '\0'){
           for(m=agemin; m <= agemax+3; m++)      while( *in == occ){
             freq[i][jk][m]=0;        *blocc++ = *in++;
              s=in;
       for (i=1; i<=imx; i++) {      }
         bool=1;      *blocc++ = *in++;
         if  (cptcovn>0) {    }
           for (z1=1; z1<=cptcoveff; z1++)    if (s == t) /* occ not found */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      *(blocc-(in-s))='\0';
               bool=0;    else
         }      *(blocc-(in-s)-1)='\0';
         if (bool==1) {    in=s;
           for(m=firstpass; m<=lastpass; m++){    while ( *in != '\0'){
             k2=anint[m][i]+(mint[m][i]/12.);      *alocc++ = *in++;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    }
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;    *alocc='\0';
               if (m<lastpass)    return s;
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  }
               else  
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  int nbocc(char *s, char occ)
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  {
             }    int i,j=0;
           }    int lg=20;
         }    i=0;
       }    lg=strlen(s);
         for(i=(int)agemin; i <= (int)agemax+3; i++){    for(i=0; i<= lg; i++) {
           for(jk=1; jk <=nlstate ; jk++){      if  (s[i] == occ ) j++;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    }
               pp[jk] += freq[jk][m][i];    return j;
           }  }
           for(jk=1; jk <=nlstate ; jk++){  
             for(m=-1, pos=0; m <=0 ; m++)  /* void cutv(char *u,char *v, char*t, char occ) */
             pos += freq[jk][m][i];  /* { */
         }  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
          /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
          for(jk=1; jk <=nlstate ; jk++){  /*      gives u="abcdef2ghi" and v="j" *\/ */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*   int i,lg,j,p=0; */
              pp[jk] += freq[jk][m][i];  /*   i=0; */
          }  /*   lg=strlen(t); */
            /*   for(j=0; j<=lg-1; j++) { */
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /*   } */
          for(jk=1; jk <=nlstate ; jk++){            
            if( i <= (int) agemax){  /*   for(j=0; j<p; j++) { */
              if(pos>=1.e-5){  /*     (u[j] = t[j]); */
                probs[i][jk][j1]= pp[jk]/pos;  /*   } */
              }  /*      u[p]='\0'; */
            }  
          }  /*    for(j=0; j<= lg; j++) { */
            /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
         }  /*   } */
     }  /* } */
   }  
   #ifdef _WIN32
    char * strsep(char **pp, const char *delim)
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  {
   free_vector(pp,1,nlstate);    char *p, *q;
             
 }  /* End of Freq */    if ((p = *pp) == NULL)
       return 0;
 /************* Waves Concatenation ***************/    if ((q = strpbrk (p, delim)) != NULL)
     {
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      *pp = q + 1;
 {      *q = '\0';
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    }
      Death is a valid wave (if date is known).    else
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      *pp = 0;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    return p;
      and mw[mi+1][i]. dh depends on stepm.  }
      */  #endif
   
   int i, mi, m;  /********************** nrerror ********************/
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/  void nrerror(char error_text[])
   {
   int j, k=0,jk, ju, jl;    fprintf(stderr,"ERREUR ...\n");
   double sum=0.;    fprintf(stderr,"%s\n",error_text);
   jmin=1e+5;    exit(EXIT_FAILURE);
   jmax=-1;  }
   jmean=0.;  /*********************** vector *******************/
   for(i=1; i<=imx; i++){  double *vector(int nl, int nh)
     mi=0;  {
     m=firstpass;    double *v;
     while(s[m][i] <= nlstate){    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       if(s[m][i]>=1)    if (!v) nrerror("allocation failure in vector");
         mw[++mi][i]=m;    return v-nl+NR_END;
       if(m >=lastpass)  }
         break;  
       else  /************************ free vector ******************/
         m++;  void free_vector(double*v, int nl, int nh)
     }/* end while */  {
     if (s[m][i] > nlstate){    free((FREE_ARG)(v+nl-NR_END));
       mi++;     /* Death is another wave */  }
       /* if(mi==0)  never been interviewed correctly before death */  
          /* Only death is a correct wave */  /************************ivector *******************************/
       mw[mi][i]=m;  int *ivector(long nl,long nh)
     }  {
     int *v;
     wav[i]=mi;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if(mi==0)    if (!v) nrerror("allocation failure in ivector");
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    return v-nl+NR_END;
   }  }
   
   for(i=1; i<=imx; i++){  /******************free ivector **************************/
     for(mi=1; mi<wav[i];mi++){  void free_ivector(int *v, long nl, long nh)
       if (stepm <=0)  {
         dh[mi][i]=1;    free((FREE_ARG)(v+nl-NR_END));
       else{  }
         if (s[mw[mi+1][i]][i] > nlstate) {  
           if (agedc[i] < 2*AGESUP) {  /************************lvector *******************************/
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  long *lvector(long nl,long nh)
           if(j==0) j=1;  /* Survives at least one month after exam */  {
           k=k+1;    long *v;
           if (j >= jmax) jmax=j;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
           if (j <= jmin) jmin=j;    if (!v) nrerror("allocation failure in ivector");
           sum=sum+j;    return v-nl+NR_END;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  }
           }  
         }  /******************free lvector **************************/
         else{  void free_lvector(long *v, long nl, long nh)
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  {
           k=k+1;    free((FREE_ARG)(v+nl-NR_END));
           if (j >= jmax) jmax=j;  }
           else if (j <= jmin)jmin=j;  
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  /******************* imatrix *******************************/
           sum=sum+j;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         jk= j/stepm;  { 
         jl= j -jk*stepm;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         ju= j -(jk+1)*stepm;    int **m; 
         if(jl <= -ju)    
           dh[mi][i]=jk;    /* allocate pointers to rows */ 
         else    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
           dh[mi][i]=jk+1;    if (!m) nrerror("allocation failure 1 in matrix()"); 
         if(dh[mi][i]==0)    m += NR_END; 
           dh[mi][i]=1; /* At least one step */    m -= nrl; 
       }    
     }    
   }    /* allocate rows and set pointers to them */ 
   jmean=sum/k;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
  }    m[nrl] += NR_END; 
 /*********** Tricode ****************************/    m[nrl] -= ncl; 
 void tricode(int *Tvar, int **nbcode, int imx)    
 {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   int Ndum[20],ij=1, k, j, i;    
   int cptcode=0;    /* return pointer to array of pointers to rows */ 
   cptcoveff=0;    return m; 
    } 
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        int **m;
     for (i=1; i<=imx; i++) {        long nch,ncl,nrh,nrl; 
       ij=(int)(covar[Tvar[j]][i]);       /* free an int matrix allocated by imatrix() */ 
       Ndum[ij]++;  { 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       if (ij > cptcode) cptcode=ij;    free((FREE_ARG) (m+nrl-NR_END)); 
     }  } 
   
     for (i=0; i<=cptcode; i++) {  /******************* matrix *******************************/
       if(Ndum[i]!=0) ncodemax[j]++;  double **matrix(long nrl, long nrh, long ncl, long nch)
     }  {
     ij=1;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
   
     for (i=1; i<=ncodemax[j]; i++) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for (k=0; k<=19; k++) {    if (!m) nrerror("allocation failure 1 in matrix()");
         if (Ndum[k] != 0) {    m += NR_END;
           nbcode[Tvar[j]][ij]=k;    m -= nrl;
            
           ij++;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         if (ij > ncodemax[j]) break;    m[nrl] += NR_END;
       }      m[nrl] -= ncl;
     }  
   }      for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
  for (k=0; k<19; k++) Ndum[k]=0;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
  for (i=1; i<=ncovmodel-2; i++) {  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
       ij=Tvar[i];     */
       Ndum[ij]++;  }
     }  
   /*************************free matrix ************************/
  ij=1;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
  for (i=1; i<=10; i++) {  {
    if((Ndum[i]!=0) && (i<=ncovcol)){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      Tvaraff[ij]=i;    free((FREE_ARG)(m+nrl-NR_END));
      ij++;  }
    }  
  }  /******************* ma3x *******************************/
    double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     cptcoveff=ij-1;  {
 }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
 /*********** Health Expectancies ****************/  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 {    m -= nrl;
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double age, agelim, hf;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double ***p3mat,***varhe;    m[nrl] += NR_END;
   double **dnewm,**doldm;    m[nrl] -= ncl;
   double *xp;  
   double **gp, **gm;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double ***gradg, ***trgradg;  
   int theta;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    m[nrl][ncl] += NR_END;
   xp=vector(1,npar);    m[nrl][ncl] -= nll;
   dnewm=matrix(1,nlstate*2,1,npar);    for (j=ncl+1; j<=nch; j++) 
   doldm=matrix(1,nlstate*2,1,nlstate*2);      m[nrl][j]=m[nrl][j-1]+nlay;
      
   fprintf(ficreseij,"# Health expectancies\n");    for (i=nrl+1; i<=nrh; i++) {
   fprintf(ficreseij,"# Age");      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   for(i=1; i<=nlstate;i++)      for (j=ncl+1; j<=nch; j++) 
     for(j=1; j<=nlstate;j++)        m[i][j]=m[i][j-1]+nlay;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    }
   fprintf(ficreseij,"\n");    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   if(estepm < stepm){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     printf ("Problem %d lower than %d\n",estepm, stepm);    */
   }  }
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months  /*************************free ma3x ************************/
    * This is mainly to measure the difference between two models: for example  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
    * if stepm=24 months pijx are given only every 2 years and by summing them  {
    * we are calculating an estimate of the Life Expectancy assuming a linear    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
    * progression inbetween and thus overestimating or underestimating according    free((FREE_ARG)(m[nrl]+ncl-NR_END));
    * to the curvature of the survival function. If, for the same date, we    free((FREE_ARG)(m+nrl-NR_END));
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  }
    * to compare the new estimate of Life expectancy with the same linear  
    * hypothesis. A more precise result, taking into account a more precise  /*************** function subdirf ***********/
    * curvature will be obtained if estepm is as small as stepm. */  char *subdirf(char fileres[])
   {
   /* For example we decided to compute the life expectancy with the smallest unit */    /* Caution optionfilefiname is hidden */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    strcpy(tmpout,optionfilefiname);
      nhstepm is the number of hstepm from age to agelim    strcat(tmpout,"/"); /* Add to the right */
      nstepm is the number of stepm from age to agelin.    strcat(tmpout,fileres);
      Look at hpijx to understand the reason of that which relies in memory size    return tmpout;
      and note for a fixed period like estepm months */  }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it  /*************** function subdirf2 ***********/
      means that if the survival funtion is printed only each two years of age and if  char *subdirf2(char fileres[], char *preop)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  {
      results. So we changed our mind and took the option of the best precision.    
   */    /* Caution optionfilefiname is hidden */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   agelim=AGESUP;    strcat(tmpout,preop);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    strcat(tmpout,fileres);
     /* nhstepm age range expressed in number of stepm */    return tmpout;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  
     /* if (stepm >= YEARM) hstepm=1;*/  /*************** function subdirf3 ***********/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  char *subdirf3(char fileres[], char *preop, char *preop2)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    
     gp=matrix(0,nhstepm,1,nlstate*2);    /* Caution optionfilefiname is hidden */
     gm=matrix(0,nhstepm,1,nlstate*2);    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    strcat(tmpout,preop);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    strcat(tmpout,preop2);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      strcat(tmpout,fileres);
      return tmpout;
   }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */   
   /*************** function subdirfext ***********/
     /* Computing Variances of health expectancies */  char *subdirfext(char fileres[], char *preop, char *postop)
   {
      for(theta=1; theta <=npar; theta++){    
       for(i=1; i<=npar; i++){    strcpy(tmpout,preop);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    strcat(tmpout,fileres);
       }    strcat(tmpout,postop);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      return tmpout;
    }
       cptj=0;  
       for(j=1; j<= nlstate; j++){  /*************** function subdirfext3 ***********/
         for(i=1; i<=nlstate; i++){  char *subdirfext3(char fileres[], char *preop, char *postop)
           cptj=cptj+1;  {
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    /* Caution optionfilefiname is hidden */
           }    strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
          strcat(tmpout,fileres);
          strcat(tmpout,postop);
       for(i=1; i<=npar; i++)    return tmpout;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);     
        char *asc_diff_time(long time_sec, char ascdiff[])
       cptj=0;  {
       for(j=1; j<= nlstate; j++){    long sec_left, days, hours, minutes;
         for(i=1;i<=nlstate;i++){    days = (time_sec) / (60*60*24);
           cptj=cptj+1;    sec_left = (time_sec) % (60*60*24);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    hours = (sec_left) / (60*60) ;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    sec_left = (sec_left) %(60*60);
           }    minutes = (sec_left) /60;
         }    sec_left = (sec_left) % (60);
       }    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
          return ascdiff;
      }
   
       for(j=1; j<= nlstate*2; j++)  /***************** f1dim *************************/
         for(h=0; h<=nhstepm-1; h++){  extern int ncom; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  extern double *pcom,*xicom;
         }  extern double (*nrfunc)(double []); 
    
      }  double f1dim(double x) 
      { 
 /* End theta */    int j; 
     double f;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    double *xt; 
    
      for(h=0; h<=nhstepm-1; h++)    xt=vector(1,ncom); 
       for(j=1; j<=nlstate*2;j++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         for(theta=1; theta <=npar; theta++)    f=(*nrfunc)(xt); 
         trgradg[h][j][theta]=gradg[h][theta][j];    free_vector(xt,1,ncom); 
     return f; 
   } 
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)  /*****************brent *************************/
         varhe[i][j][(int)age] =0.;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   {
     for(h=0;h<=nhstepm-1;h++){    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
       for(k=0;k<=nhstepm-1;k++){     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
         for(i=1;i<=nlstate*2;i++)     * returned function value. 
           for(j=1;j<=nlstate*2;j++)    */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    int iter; 
       }    double a,b,d,etemp;
     }    double fu=0,fv,fw,fx;
     double ftemp=0.;
          double p,q,r,tol1,tol2,u,v,w,x,xm; 
     /* Computing expectancies */    double e=0.0; 
     for(i=1; i<=nlstate;i++)   
       for(j=1; j<=nlstate;j++)    a=(ax < cx ? ax : cx); 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    b=(ax > cx ? ax : cx); 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    x=w=v=bx; 
              fw=fv=fx=(*f)(x); 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
         }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     fprintf(ficreseij,"%3.0f",age );      printf(".");fflush(stdout);
     cptj=0;      fprintf(ficlog,".");fflush(ficlog);
     for(i=1; i<=nlstate;i++)  #ifdef DEBUGBRENT
       for(j=1; j<=nlstate;j++){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         cptj++;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
     fprintf(ficreseij,"\n");      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
            *xmin=x; 
     free_matrix(gm,0,nhstepm,1,nlstate*2);        return fx; 
     free_matrix(gp,0,nhstepm,1,nlstate*2);      } 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      ftemp=fu;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      if (fabs(e) > tol1) { 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        r=(x-w)*(fx-fv); 
   }        q=(x-v)*(fx-fw); 
   free_vector(xp,1,npar);        p=(x-v)*q-(x-w)*r; 
   free_matrix(dnewm,1,nlstate*2,1,npar);        q=2.0*(q-r); 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        if (q > 0.0) p = -p; 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        q=fabs(q); 
 }        etemp=e; 
         e=d; 
 /************ Variance ******************/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)                                  d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {        else { 
   /* Variance of health expectancies */                                  d=p/q; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                                  u=x+d; 
   double **newm;                                  if (u-a < tol2 || b-u < tol2) 
   double **dnewm,**doldm;                                          d=SIGN(tol1,xm-x); 
   int i, j, nhstepm, hstepm, h, nstepm ;        } 
   int k, cptcode;      } else { 
   double *xp;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double **gp, **gm;      } 
   double ***gradg, ***trgradg;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   double ***p3mat;      fu=(*f)(u); 
   double age,agelim, hf;      if (fu <= fx) { 
   int theta;        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
    fprintf(ficresvij,"# Covariances of life expectancies\n");        SHFT(fv,fw,fx,fu) 
   fprintf(ficresvij,"# Age");      } else { 
   for(i=1; i<=nlstate;i++)        if (u < x) a=u; else b=u; 
     for(j=1; j<=nlstate;j++)        if (fu <= fw || w == x) { 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);                                  v=w; 
   fprintf(ficresvij,"\n");                                  w=u; 
                                   fv=fw; 
   xp=vector(1,npar);                                  fw=fu; 
   dnewm=matrix(1,nlstate,1,npar);        } else if (fu <= fv || v == x || v == w) { 
   doldm=matrix(1,nlstate,1,nlstate);                                  v=u; 
                                    fv=fu; 
   if(estepm < stepm){        } 
     printf ("Problem %d lower than %d\n",estepm, stepm);      } 
   }    } 
   else  hstepm=estepm;      nrerror("Too many iterations in brent"); 
   /* For example we decided to compute the life expectancy with the smallest unit */    *xmin=x; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    return fx; 
      nhstepm is the number of hstepm from age to agelim  } 
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size  /****************** mnbrak ***********************/
      and note for a fixed period like k years */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
      survival function given by stepm (the optimization length). Unfortunately it              double (*func)(double)) 
      means that if the survival funtion is printed only each two years of age and if  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  the downhill direction (defined by the function as evaluated at the initial points) and returns
      results. So we changed our mind and took the option of the best precision.  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
   */  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     */
   agelim = AGESUP;    double ulim,u,r,q, dum;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double fu; 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double scale=10.;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int iterscale=0;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
     gm=matrix(0,nhstepm,1,nlstate);    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
   
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
       }    /*   *bx = *ax - (*ax - *bx)/scale; */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /* } */
   
       if (popbased==1) {    if (*fb > *fa) { 
         for(i=1; i<=nlstate;i++)      SHFT(dum,*ax,*bx,dum) 
           prlim[i][i]=probs[(int)age][i][ij];      SHFT(dum,*fb,*fa,dum) 
       }    } 
      *cx=(*bx)+GOLD*(*bx-*ax); 
       for(j=1; j<= nlstate; j++){    *fc=(*func)(*cx); 
         for(h=0; h<=nhstepm; h++){  #ifdef DEBUG
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
         }  #endif
       }    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/
          r=(*bx-*ax)*(*fb-*fc); 
       for(i=1; i<=npar; i++) /* Computes gradient */      q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
        if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
       if (popbased==1) {        fu=(*func)(u); 
         for(i=1; i<=nlstate;i++)  #ifdef DEBUG
           prlim[i][i]=probs[(int)age][i][ij];        /* f(x)=A(x-u)**2+f(u) */
       }        double A, fparabu; 
         A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
       for(j=1; j<= nlstate; j++){        fparabu= *fa - A*(*ax-u)*(*ax-u);
         for(h=0; h<=nhstepm; h++){        printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        /* And thus,it can be that fu > *fc even if fparabu < *fc */
         }        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
       }          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
         /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
       for(j=1; j<= nlstate; j++)  #endif 
         for(h=0; h<=nhstepm; h++){  #ifdef MNBRAKORIGINAL
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  #else
         }  /*       if (fu > *fc) { */
     } /* End theta */  /* #ifdef DEBUG */
   /*       printf("mnbrak4  fu > fc \n"); */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
   /* #endif */
     for(h=0; h<=nhstepm; h++)  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
       for(j=1; j<=nlstate;j++)  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
         for(theta=1; theta <=npar; theta++)  /*      dum=u; /\* Shifting c and u *\/ */
           trgradg[h][j][theta]=gradg[h][theta][j];  /*      u = *cx; */
   /*      *cx = dum; */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  /*      dum = fu; */
     for(i=1;i<=nlstate;i++)  /*      fu = *fc; */
       for(j=1;j<=nlstate;j++)  /*      *fc =dum; */
         vareij[i][j][(int)age] =0.;  /*       } else { /\* end *\/ */
   /* #ifdef DEBUG */
     for(h=0;h<=nhstepm;h++){  /*       printf("mnbrak3  fu < fc \n"); */
       for(k=0;k<=nhstepm;k++){  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  /* #endif */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  /*      dum=u; /\* Shifting c and u *\/ */
         for(i=1;i<=nlstate;i++)  /*      u = *cx; */
           for(j=1;j<=nlstate;j++)  /*      *cx = dum; */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  /*      dum = fu; */
       }  /*      fu = *fc; */
     }  /*      *fc =dum; */
   /*       } */
     fprintf(ficresvij,"%.0f ",age );  #ifdef DEBUGMNBRAK
     for(i=1; i<=nlstate;i++)                   double A, fparabu; 
       for(j=1; j<=nlstate;j++){       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);       fparabu= *fa - A*(*ax-u)*(*ax-u);
       }       printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
     fprintf(ficresvij,"\n");       fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
     free_matrix(gp,0,nhstepm,1,nlstate);  #endif
     free_matrix(gm,0,nhstepm,1,nlstate);        dum=u; /* Shifting c and u */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        u = *cx;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        *cx = dum;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        dum = fu;
   } /* End age */        fu = *fc;
          *fc =dum;
   free_vector(xp,1,npar);  #endif
   free_matrix(doldm,1,nlstate,1,npar);      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
   free_matrix(dnewm,1,nlstate,1,nlstate);  #ifdef DEBUG
         printf("\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
 }        fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
   #endif
 /************ Variance of prevlim ******************/        fu=(*func)(u); 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        if (fu < *fc) { 
 {  #ifdef DEBUG
   /* Variance of prevalence limit */                                  printf("\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                            fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
   double **newm;  #endif
   double **dnewm,**doldm;                            SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   int i, j, nhstepm, hstepm;                                  SHFT(*fb,*fc,fu,(*func)(u)) 
   int k, cptcode;  #ifdef DEBUG
   double *xp;                                          printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx));
   double *gp, *gm;  #endif
   double **gradg, **trgradg;        } 
   double age,agelim;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
   int theta;  #ifdef DEBUG
            printf("\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        fprintf(ficlog,"\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
   fprintf(ficresvpl,"# Age");  #endif
   for(i=1; i<=nlstate;i++)        u=ulim; 
       fprintf(ficresvpl," %1d-%1d",i,i);        fu=(*func)(u); 
   fprintf(ficresvpl,"\n");      } else { /* u could be left to b (if r > q parabola has a maximum) */
   #ifdef DEBUG
   xp=vector(1,npar);        printf("\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficlog,"\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
   doldm=matrix(1,nlstate,1,nlstate);  #endif
          u=(*cx)+GOLD*(*cx-*bx); 
   hstepm=1*YEARM; /* Every year of age */        fu=(*func)(u); 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  #ifdef DEBUG
   agelim = AGESUP;        printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  #endif
     if (stepm >= YEARM) hstepm=1;      } /* end tests */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      SHFT(*ax,*bx,*cx,u) 
     gradg=matrix(1,npar,1,nlstate);      SHFT(*fa,*fb,*fc,fu) 
     gp=vector(1,nlstate);  #ifdef DEBUG
     gm=vector(1,nlstate);        printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
         fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
     for(theta=1; theta <=npar; theta++){  #endif
       for(i=1; i<=npar; i++){ /* Computes gradient */    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  } 
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  /*************** linmin ************************/
       for(i=1;i<=nlstate;i++)  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
         gp[i] = prlim[i][i];  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
      and replaces xi by the actual vector displacement that p was moved. Also returns as fret
       for(i=1; i<=npar; i++) /* Computes gradient */  the value of func at the returned location p . This is actually all accomplished by calling the
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  routines mnbrak and brent .*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  int ncom; 
       for(i=1;i<=nlstate;i++)  double *pcom,*xicom;
         gm[i] = prlim[i][i];  double (*nrfunc)(double []); 
    
       for(i=1;i<=nlstate;i++)  #ifdef LINMINORIGINAL
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     } /* End theta */  #else
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat) 
     trgradg =matrix(1,nlstate,1,npar);  #endif
   { 
     for(j=1; j<=nlstate;j++)    double brent(double ax, double bx, double cx, 
       for(theta=1; theta <=npar; theta++)                 double (*f)(double), double tol, double *xmin); 
         trgradg[j][theta]=gradg[theta][j];    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     for(i=1;i<=nlstate;i++)                double *fc, double (*func)(double)); 
       varpl[i][(int)age] =0.;    int j; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double xx,xmin,bx,ax; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double fx,fb,fa;
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  #ifdef LINMINORIGINAL
   #else
     fprintf(ficresvpl,"%.0f ",age );    double scale=10., axs, xxs; /* Scale added for infinity */
     for(i=1; i<=nlstate;i++)  #endif
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    
     fprintf(ficresvpl,"\n");    ncom=n; 
     free_vector(gp,1,nlstate);    pcom=vector(1,n); 
     free_vector(gm,1,nlstate);    xicom=vector(1,n); 
     free_matrix(gradg,1,npar,1,nlstate);    nrfunc=func; 
     free_matrix(trgradg,1,nlstate,1,npar);    for (j=1;j<=n;j++) { 
   } /* End age */      pcom[j]=p[j]; 
       xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
   free_vector(xp,1,npar);    } 
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  #ifdef LINMINORIGINAL
     xx=1.;
 }  #else
     axs=0.0;
 /************ Variance of one-step probabilities  ******************/    xxs=1.;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    do{
 {      xx= xxs;
   int i, j, i1, k1, j1, z1;  #endif
   int k=0, cptcode;      ax=0.;
   double **dnewm,**doldm;      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
   double *xp;      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
   double *gp, *gm;      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
   double **gradg, **trgradg;      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
   double age,agelim, cov[NCOVMAX];      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
   int theta;      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
   char fileresprob[FILENAMELENGTH];      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
   #ifdef LINMINORIGINAL
   strcpy(fileresprob,"prob");  #else
   strcat(fileresprob,fileres);      if (fx != fx){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {                          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
     printf("Problem with resultfile: %s\n", fileresprob);                          printf("|");
   }                          fprintf(ficlog,"|");
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  #ifdef DEBUGLINMIN
                            printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");  #endif
   fprintf(ficresprob,"# Age");      }
   for(i=1; i<=nlstate;i++)    }while(fx != fx && xxs > 1.e-5);
     for(j=1; j<=(nlstate+ndeath);j++)  #endif
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    
   #ifdef DEBUGLINMIN
     printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
   fprintf(ficresprob,"\n");    fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
   #endif
   #ifdef LINMINORIGINAL
   xp=vector(1,npar);  #else
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          if(fb == fx){ /* Flat function in the direction */
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));                  xmin=xx;
        *flat=1;
   cov[1]=1;          }else{
   j=cptcoveff;      *flat=0;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  #endif
   j1=0;                  /*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */
   for(k1=1; k1<=1;k1++){    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
     for(i1=1; i1<=ncodemax[k1];i1++){    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
     j1++;    /* fmin = f(p[j] + xmin * xi[j]) */
     /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
     if  (cptcovn>0) {    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
       fprintf(ficresprob, "\n#********** Variable ");  #ifdef DEBUG
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
       fprintf(ficresprob, "**********\n#");    fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
     }  #endif
      #ifdef LINMINORIGINAL
       for (age=bage; age<=fage; age ++){  #else
         cov[2]=age;                          }
         for (k=1; k<=cptcovn;k++) {  #endif
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  #ifdef DEBUGLINMIN
              printf("linmin end ");
         }    fprintf(ficlog,"linmin end ");
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #endif
         for (k=1; k<=cptcovprod;k++)    for (j=1;j<=n;j++) { 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #ifdef LINMINORIGINAL
              xi[j] *= xmin; 
         gradg=matrix(1,npar,1,9);  #else
         trgradg=matrix(1,9,1,npar);  #ifdef DEBUGLINMIN
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      if(xxs <1.0)
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        printf(" before xi[%d]=%12.8f", j,xi[j]);
      #endif
         for(theta=1; theta <=npar; theta++){      xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
           for(i=1; i<=npar; i++)  #ifdef DEBUGLINMIN
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      if(xxs <1.0)
                  printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  #endif
            #endif
           k=0;      p[j] += xi[j]; /* Parameters values are updated accordingly */
           for(i=1; i<= (nlstate+ndeath); i++){    } 
             for(j=1; j<=(nlstate+ndeath);j++){  #ifdef DEBUGLINMIN
               k=k+1;    printf("\n");
               gp[k]=pmmij[i][j];    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
             }    fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
           }    for (j=1;j<=n;j++) { 
                printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
           for(i=1; i<=npar; i++)      fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      if(j % ncovmodel == 0){
            printf("\n");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        fprintf(ficlog,"\n");
           k=0;      }
           for(i=1; i<=(nlstate+ndeath); i++){    }
             for(j=1; j<=(nlstate+ndeath);j++){  #else
               k=k+1;  #endif
               gm[k]=pmmij[i][j];    free_vector(xicom,1,n); 
             }    free_vector(pcom,1,n); 
           }  } 
        
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    /*************** powell ************************/
         }  /*
   Minimization of a function func of n variables. Input consists of an initial starting point
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
           for(theta=1; theta <=npar; theta++)  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
             trgradg[j][theta]=gradg[theta][j];  such that failure to decrease by more than this amount on one iteration signals doneness. On
          output, p is set to the best point found, xi is the then-current direction set, fret is the returned
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);  function value at p , and iter is the number of iterations taken. The routine linmin is used.
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);   */
          #ifdef LINMINORIGINAL
         pmij(pmmij,cov,ncovmodel,x,nlstate);  #else
                  int *flatdir; /* Function is vanishing in that direction */
         k=0;          int flat=0, flatd=0; /* Function is vanishing in that direction */
         for(i=1; i<=(nlstate+ndeath); i++){  #endif
           for(j=1; j<=(nlstate+ndeath);j++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
             k=k+1;              double (*func)(double [])) 
             gm[k]=pmmij[i][j];  { 
           }  #ifdef LINMINORIGINAL
         }   void linmin(double p[], double xi[], int n, double *fret, 
                      double (*func)(double [])); 
      /*printf("\n%d ",(int)age);  #else 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){   void linmin(double p[], double xi[], int n, double *fret, 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                                                   double (*func)(double []),int *flat); 
      }*/  #endif
    int i,ibig,j,jk,k; 
         fprintf(ficresprob,"\n%d ",(int)age);    double del,t,*pt,*ptt,*xit;
     double directest;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    double fp,fptt;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));    double *xits;
      int niterf, itmp;
       }  #ifdef LINMINORIGINAL
     }  #else
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    flatdir=ivector(1,n); 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for (j=1;j<=n;j++) flatdir[j]=0; 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  #endif
   }  
   free_vector(xp,1,npar);    pt=vector(1,n); 
   fclose(ficresprob);    ptt=vector(1,n); 
      xit=vector(1,n); 
 }    xits=vector(1,n); 
     *fret=(*func)(p); 
 /******************* Printing html file ***********/    for (j=1;j<=n;j++) pt[j]=p[j]; 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    rcurr_time = time(NULL);  
  int lastpass, int stepm, int weightopt, char model[],\    for (*iter=1;;++(*iter)) { 
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \      fp=(*fret); /* From former iteration or initial value */
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\      ibig=0; 
  char version[], int popforecast, int estepm ){      del=0.0; 
   int jj1, k1, i1, cpt;      rlast_time=rcurr_time;
   FILE *fichtm;      /* (void) gettimeofday(&curr_time,&tzp); */
   /*char optionfilehtm[FILENAMELENGTH];*/      rcurr_time = time(NULL);  
       curr_time = *localtime(&rcurr_time);
   strcpy(optionfilehtm,optionfile);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
   strcat(optionfilehtm,".htm");      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
     printf("Problem with %s \n",optionfilehtm), exit(0);      for (i=1;i<=n;i++) {
   }        fprintf(ficrespow," %.12lf", p[i]);
       }
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      fprintf(ficrespow,"\n");fflush(ficrespow);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      printf("\n#model=  1      +     age ");
 \n      fprintf(ficlog,"\n#model=  1      +     age ");
 Total number of observations=%d <br>\n      if(nagesqr==1){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          printf("  + age*age  ",Tvar[j]);
 <hr  size=\"2\" color=\"#EC5E5E\">          fprintf(ficlog,"  + age*age  ",Tvar[j]);
  <ul><li>Outputs files<br>\n      }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      for(j=1;j <=ncovmodel-2;j++){
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n        if(Typevar[j]==0) {
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          printf("  +      V%d  ",Tvar[j]);
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n          fprintf(ficlog,"  +      V%d  ",Tvar[j]);
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n        }else if(Typevar[j]==1) {
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          printf("  +    V%d*age ",Tvar[j]);
           fprintf(ficlog,"  +    V%d*age ",Tvar[j]);
  fprintf(fichtm,"\n        }else if(Typevar[j]==2) {
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n          printf("  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          fprintf(ficlog,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        }
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n      }
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      printf("\n");
   /*     printf("12   47.0114589    0.0154322   33.2424412    0.3279905    2.3731903  */
  if(popforecast==1) fprintf(fichtm,"\n  /* 13  -21.5392400    0.1118147    1.2680506    1.2973408   -1.0663662  */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      fprintf(ficlog,"\n");
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      for(i=1,jk=1; i <=nlstate; i++){
         <br>",fileres,fileres,fileres,fileres);        for(k=1; k <=(nlstate+ndeath); k++){
  else          if (k != i) {
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            printf("%d%d ",i,k);
 fprintf(fichtm," <li>Graphs</li><p>");            fprintf(ficlog,"%d%d ",i,k);
             for(j=1; j <=ncovmodel; j++){
  m=cptcoveff;              printf("%12.7f ",p[jk]);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              fprintf(ficlog,"%12.7f ",p[jk]);
               jk++; 
  jj1=0;            }
  for(k1=1; k1<=m;k1++){            printf("\n");
    for(i1=1; i1<=ncodemax[k1];i1++){            fprintf(ficlog,"\n");
        jj1++;          }
        if (cptcovn > 0) {        }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      }
          for (cpt=1; cpt<=cptcoveff;cpt++)      if(*iter <=3){
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        tml = *localtime(&rcurr_time);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        strcpy(strcurr,asctime(&tml));
        }        rforecast_time=rcurr_time; 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        itmp = strlen(strcurr);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
        for(cpt=1; cpt<nlstate;cpt++){                                  strcurr[itmp-1]='\0';
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
        }        for(niterf=10;niterf<=30;niterf+=10){
     for(cpt=1; cpt<=nlstate;cpt++) {                                  rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                                  forecast_time = *localtime(&rforecast_time);
 interval) in state (%d): v%s%d%d.gif <br>                                  strcpy(strfor,asctime(&forecast_time));
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                                    itmp = strlen(strfor);
      }                                  if(strfor[itmp-1]=='\n')
      for(cpt=1; cpt<=nlstate;cpt++) {                                          strfor[itmp-1]='\0';
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>                                  printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                                  fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
      }        }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      }
 health expectancies in states (1) and (2): e%s%d.gif<br>      for (i=1;i<=n;i++) { /* For each direction i */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
 fprintf(fichtm,"\n</body>");        fptt=(*fret); 
    }  #ifdef DEBUG
    }        printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 fclose(fichtm);        fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 }  #endif
         printf("%d",i);fflush(stdout); /* print direction (parameter) i */
 /******************* Gnuplot file **************/        fprintf(ficlog,"%d",i);fflush(ficlog);
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  #ifdef LINMINORIGINAL
         linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  #else
         linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
   strcpy(optionfilegnuplot,optionfilefiname);                          flatdir[i]=flat; /* Function is vanishing in that direction i */
   strcat(optionfilegnuplot,".gp.txt");  #endif
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                          /* Outputs are fret(new point p) p is updated and xit rescaled */
     printf("Problem with file %s",optionfilegnuplot);        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
   }                                  /* because that direction will be replaced unless the gain del is small */
                                   /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
 #ifdef windows                                  /* Unless the n directions are conjugate some gain in the determinant may be obtained */
     fprintf(ficgp,"cd \"%s\" \n",pathc);                                  /* with the new direction. */
 #endif                                  del=fabs(fptt-(*fret)); 
 m=pow(2,cptcoveff);                                  ibig=i; 
          } 
  /* 1eme*/  #ifdef DEBUG
   for (cpt=1; cpt<= nlstate ; cpt ++) {        printf("%d %.12e",i,(*fret));
    for (k1=1; k1<= m ; k1 ++) {        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);                                  xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
                                   printf(" x(%d)=%.12e",j,xit[j]);
 for (i=1; i<= nlstate ; i ++) {                                  fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1;j<=n;j++) {
 }                                  printf(" p(%d)=%.12e",j,p[j]);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                                  fprintf(ficlog," p(%d)=%.12e",j,p[j]);
     for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        printf("\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficlog,"\n");
 }  #endif
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      } /* end loop on each direction i */
      for (i=1; i<= nlstate ; i ++) {      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      /* New value of last point Pn is not computed, P(n-1) */
 }          for(j=1;j<=n;j++) {
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                                  if(flatdir[j] >0){
                                           printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                                          fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
    }                                  }
   }                                  /* printf("\n"); */
   /*2 eme*/                                  /* fprintf(ficlog,"\n"); */
                           }
   for (k1=1; k1<= m ; k1 ++) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
            /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
     for (i=1; i<= nlstate+1 ; i ++) {        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
       k=2*i;        /* decreased of more than 3.84  */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
       for (j=1; j<= nlstate+1 ; j ++) {        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        /* By adding 10 parameters more the gain should be 18.31 */
   else fprintf(ficgp," \%%*lf (\%%*lf)");                          
 }          /* Starting the program with initial values given by a former maximization will simply change */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        /* the scales of the directions and the directions, because the are reset to canonical directions */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
       for (j=1; j<= nlstate+1 ; j ++) {  #ifdef DEBUG
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        int k[2],l;
         else fprintf(ficgp," \%%*lf (\%%*lf)");        k[0]=1;
 }          k[1]=-1;
       fprintf(ficgp,"\" t\"\" w l 0,");        printf("Max: %.12e",(*func)(p));
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        fprintf(ficlog,"Max: %.12e",(*func)(p));
       for (j=1; j<= nlstate+1 ; j ++) {        for (j=1;j<=n;j++) {
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          printf(" %.12e",p[j]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficlog," %.12e",p[j]);
 }          }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        printf("\n");
       else fprintf(ficgp,"\" t\"\" w l 0,");        fprintf(ficlog,"\n");
     }        for(l=0;l<=1;l++) {
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          for (j=1;j<=n;j++) {
   }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
              printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /*3eme*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
   for (k1=1; k1<= m ; k1 ++) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (cpt=1; cpt<= nlstate ; cpt ++) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       k=2+nlstate*(2*cpt-2);        }
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  #endif
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  #ifdef LINMINORIGINAL
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  #else
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        free_ivector(flatdir,1,n); 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  #endif
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        free_vector(xit,1,n); 
         free_vector(xits,1,n); 
 */        free_vector(ptt,1,n); 
       for (i=1; i< nlstate ; i ++) {        free_vector(pt,1,n); 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        return; 
       } /* enough precision */ 
       }      if (*iter == ITMAX*n) nrerror("powell exceeding maximum iterations."); 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
     }        ptt[j]=2.0*p[j]-pt[j]; 
     }        xit[j]=p[j]-pt[j]; 
          pt[j]=p[j]; 
   /* CV preval stat */      } 
     for (k1=1; k1<= m ; k1 ++) {      fptt=(*func)(ptt); /* f_3 */
     for (cpt=1; cpt<nlstate ; cpt ++) {  #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
       k=3;                  if (*iter <=4) {
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  #else
   #endif
       for (i=1; i< nlstate ; i ++)  #ifdef POWELLNOF3INFF1TEST    /* skips test F3 <F1 */
         fprintf(ficgp,"+$%d",k+i+1);  #else
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
        #endif
       l=3+(nlstate+ndeath)*cpt;        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
       for (i=1; i< nlstate ; i ++) {        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         l=3+(nlstate+ndeath)*cpt;        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
         fprintf(ficgp,"+$%d",l+i+1);        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
       }        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del or directest <0 */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          /* also  lamda^2=(f1-f2)^2/mu² is a parasite solution of powell */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        /* For powell, inclusion of this average direction is only if t(del)<0 or del inbetween mu^2 and lambda^2 */
     }        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   }          /*  Even if f3 <f1, directest can be negative and t >0 */
          /* mu² and del² are equal when f3=f1 */
   /* proba elementaires */                          /* f3 < f1 : mu² < del <= lambda^2 both test are equivalent */
    for(i=1,jk=1; i <=nlstate; i++){                          /* f3 < f1 : mu² < lambda^2 < del then directtest is negative and powell t is positive */
     for(k=1; k <=(nlstate+ndeath); k++){                          /* f3 > f1 : lambda² < mu^2 < del then t is negative and directest >0  */
       if (k != i) {                          /* f3 > f1 : lambda² < del < mu^2 then t is positive and directest >0  */
         for(j=1; j <=ncovmodel; j++){  #ifdef NRCORIGINAL
                t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  #else
           jk++;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
           fprintf(ficgp,"\n");        t= t- del*SQR(fp-fptt);
         }  #endif
       }        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
     }  #ifdef DEBUG
     }        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
         fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
     for(jk=1; jk <=m; jk++) {        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
    i=1;        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
    for(k2=1; k2<=nlstate; k2++) {               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
      k3=i;        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
      for(k=1; k<=(nlstate+ndeath); k++) {        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
        if (k != k2){  #endif
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  #ifdef POWELLORIGINAL
 ij=1;        if (t < 0.0) { /* Then we use it for new direction */
         for(j=3; j <=ncovmodel; j++) {  #else
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        if (directest*t < 0.0) { /* Contradiction between both tests */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                                  printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
             ij++;          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
           }          fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
           else          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        } 
         }        if (directest < 0.0) { /* Then we use it for new direction */
           fprintf(ficgp,")/(1");  #endif
          #ifdef DEBUGLINMIN
         for(k1=1; k1 <=nlstate; k1++){            printf("Before linmin in direction P%d-P0\n",n);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          for (j=1;j<=n;j++) {
 ij=1;            printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
           for(j=3; j <=ncovmodel; j++){            fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            if(j % ncovmodel == 0){
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              printf("\n");
             ij++;              fprintf(ficlog,"\n");
           }            }
           else          }
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  #endif
           }  #ifdef LINMINORIGINAL
           fprintf(ficgp,")");          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
         }  #else
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);          linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          flatdir[i]=flat; /* Function is vanishing in that direction i */
         i=i+ncovmodel;  #endif
        }          
      }  #ifdef DEBUGLINMIN
    }          for (j=1;j<=n;j++) { 
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
    }            fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                if(j % ncovmodel == 0){
   fclose(ficgp);              printf("\n");
 }  /* end gnuplot */              fprintf(ficlog,"\n");
             }
           }
 /*************** Moving average **************/  #endif
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
   int i, cpt, cptcod;            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          }
       for (i=1; i<=nlstate;i++)  #ifdef LINMINORIGINAL
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  #else
           mobaverage[(int)agedeb][i][cptcod]=0.;          for (j=1, flatd=0;j<=n;j++) {
                if(flatdir[j]>0)
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){              flatd++;
       for (i=1; i<=nlstate;i++){          }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          if(flatd >0){
           for (cpt=0;cpt<=4;cpt++){            printf("%d flat directions\n",flatd);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            fprintf(ficlog,"%d flat directions\n",flatd);
           }            for (j=1;j<=n;j++) { 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;              if(flatdir[j]>0){
         }                printf("%d ",j);
       }                fprintf(ficlog,"%d ",j);
     }              }
                }
 }            printf("\n");
             fprintf(ficlog,"\n");
           }
 /************** Forecasting ******************/  #endif
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
            fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          
   int *popage;  #ifdef DEBUG
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double *popeffectif,*popcount;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double ***p3mat;          for(j=1;j<=n;j++){
   char fileresf[FILENAMELENGTH];            printf(" %lf",xit[j]);
             fprintf(ficlog," %lf",xit[j]);
  agelim=AGESUP;          }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          printf("\n");
           fprintf(ficlog,"\n");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  #endif
          } /* end of t or directest negative */
    #ifdef POWELLNOF3INFF1TEST
   strcpy(fileresf,"f");  #else
   strcat(fileresf,fileres);        } /* end if (fptt < fp)  */
   if((ficresf=fopen(fileresf,"w"))==NULL) {  #endif
     printf("Problem with forecast resultfile: %s\n", fileresf);  #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
   }      } /*NODIRECTIONCHANGEDUNTILNITER  No change in drections until some iterations are done */
   printf("Computing forecasting: result on file '%s' \n", fileresf);  #else
   #endif
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                  } /* loop iteration */ 
   } 
   if (mobilav==1) {    
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /**** Prevalence limit (stable or period prevalence)  ****************/
     movingaverage(agedeb, fage, ageminpar, mobaverage);    
   }    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres)
     {
   stepsize=(int) (stepm+YEARM-1)/YEARM;      /* Computes the prevalence limit in each live state at age x and for covariate combination ij 
   if (stepm<=12) stepsize=1;         (and selected quantitative values in nres)
           by left multiplying the unit
   agelim=AGESUP;         matrix by transitions matrix until convergence is reached with precision ftolpl */
      /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
   hstepm=1;    /* Wx is row vector: population in state 1, population in state 2, population dead */
   hstepm=hstepm/stepm;    /* or prevalence in state 1, prevalence in state 2, 0 */
   yp1=modf(dateintmean,&yp);    /* newm is the matrix after multiplications, its rows are identical at a factor */
   anprojmean=yp;    /* Initial matrix pimij */
   yp2=modf((yp1*12),&yp);    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
   mprojmean=yp;    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
   yp1=modf((yp2*30.5),&yp);    /*  0,                   0                  , 1} */
   jprojmean=yp;    /*
   if(jprojmean==0) jprojmean=1;     * and after some iteration: */
   if(mprojmean==0) jprojmean=1;    /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
      /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    /*  0,                   0                  , 1} */
      /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
   for(cptcov=1;cptcov<=i2;cptcov++){    /* {0.51571254859325999, 0.4842874514067399, */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /*  0.51326036147820708, 0.48673963852179264} */
       k=k+1;    /* If we start from prlim again, prlim tends to a constant matrix */
       fprintf(ficresf,"\n#******");      
       for(j=1;j<=cptcoveff;j++) {    int i, ii,j,k;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double *min, *max, *meandiff, maxmax,sumnew=0.;
       }    /* double **matprod2(); */ /* test */
       fprintf(ficresf,"******\n");    double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */
       fprintf(ficresf,"# StartingAge FinalAge");    double **newm;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
          int ncvloop=0;
          
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    min=vector(1,nlstate);
         fprintf(ficresf,"\n");    max=vector(1,nlstate);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      meandiff=vector(1,nlstate);
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          /* Starting with matrix unity */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    for (ii=1;ii<=nlstate+ndeath;ii++)
           nhstepm = nhstepm/hstepm;      for (j=1;j<=nlstate+ndeath;j++){
                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
           oldm=oldms;savm=savms;    
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      cov[1]=1.;
            
           for (h=0; h<=nhstepm; h++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             if (h==(int) (calagedate+YEARM*cpt)) {    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
             }      ncvloop++;
             for(j=1; j<=nlstate+ndeath;j++) {      newm=savm;
               kk1=0.;kk2=0;      /* Covariates have to be included here again */
               for(i=1; i<=nlstate;i++) {                    cov[2]=agefin;
                 if (mobilav==1)      if(nagesqr==1)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        cov[3]= agefin*agefin;;
                 else {      for (k=1; k<=nsd;k++) { /* For single dummy covariates only */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                          /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */
                 }        cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
                        /* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
               }      }
               if (h==(int)(calagedate+12*cpt)){      for (k=1; k<=nsq;k++) { /* For single varying covariates only */
                 fprintf(ficresf," %.3f", kk1);                          /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
                                cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; 
               }        /* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
             }      }
           }      for (k=1; k<=cptcovage;k++){  /* For product with age */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(Dummy[Tvar[Tage[k]]]){
         }          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
       }        } else{
     }          cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; 
   }        }
                /* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
       for (k=1; k<=cptcovprod;k++){ /* For product without age */
   fclose(ficresf);        /* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */
 }        if(Dummy[Tvard[k][1]==0]){
 /************** Forecasting ******************/          if(Dummy[Tvard[k][2]==0]){
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
            }else{
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k];
   int *popage;          }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        }else{
   double *popeffectif,*popcount;          if(Dummy[Tvard[k][2]==0]){
   double ***p3mat,***tabpop,***tabpopprev;            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]];
   char filerespop[FILENAMELENGTH];          }else{
             cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]];
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   agelim=AGESUP;      }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
        /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
        /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   strcpy(filerespop,"pop");                  /* age and covariate values of ij are in 'cov' */
   strcat(filerespop,fileres);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      
     printf("Problem with forecast resultfile: %s\n", filerespop);      savm=oldm;
   }      oldm=newm;
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
       for(j=1; j<=nlstate; j++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        max[j]=0.;
         min[j]=1.;
   if (mobilav==1) {      }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1;i<=nlstate;i++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);        sumnew=0;
   }        for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         for(j=1; j<=nlstate; j++){ 
   stepsize=(int) (stepm+YEARM-1)/YEARM;          prlim[i][j]= newm[i][j]/(1-sumnew);
   if (stepm<=12) stepsize=1;          max[j]=FMAX(max[j],prlim[i][j]);
            min[j]=FMIN(min[j],prlim[i][j]);
   agelim=AGESUP;        }
        }
   hstepm=1;  
   hstepm=hstepm/stepm;      maxmax=0.;
        for(j=1; j<=nlstate; j++){
   if (popforecast==1) {        meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
     if((ficpop=fopen(popfile,"r"))==NULL) {        maxmax=FMAX(maxmax,meandiff[j]);
       printf("Problem with population file : %s\n",popfile);exit(0);        /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
     }      } /* j loop */
     popage=ivector(0,AGESUP);      *ncvyear= (int)age- (int)agefin;
     popeffectif=vector(0,AGESUP);      /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
     popcount=vector(0,AGESUP);      if(maxmax < ftolpl){
            /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
     i=1;          free_vector(min,1,nlstate);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        free_vector(max,1,nlstate);
            free_vector(meandiff,1,nlstate);
     imx=i;        return prlim;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      }
   }    } /* age loop */
       /* After some age loop it doesn't converge */
   for(cptcov=1;cptcov<=i2;cptcov++){    printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
       k=k+1;    /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
       fprintf(ficrespop,"\n#******");    free_vector(min,1,nlstate);
       for(j=1;j<=cptcoveff;j++) {    free_vector(max,1,nlstate);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_vector(meandiff,1,nlstate);
       }    
       fprintf(ficrespop,"******\n");    return prlim; /* should not reach here */
       fprintf(ficrespop,"# Age");  }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
         /**** Back Prevalence limit (stable or period prevalence)  ****************/
       for (cpt=0; cpt<=0;cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
           /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){   double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  {
           nhstepm = nhstepm/hstepm;    /* Computes the prevalence limit in each live state at age x and covariate ij by left multiplying the unit
                 matrix by transitions matrix until convergence is reached with precision ftolpl */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
           oldm=oldms;savm=savms;    /* Wx is row vector: population in state 1, population in state 2, population dead */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* or prevalence in state 1, prevalence in state 2, 0 */
            /* newm is the matrix after multiplications, its rows are identical at a factor */
           for (h=0; h<=nhstepm; h++){    /* Initial matrix pimij */
             if (h==(int) (calagedate+YEARM*cpt)) {    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
             }    /*  0,                   0                  , 1} */
             for(j=1; j<=nlstate+ndeath;j++) {    /*
               kk1=0.;kk2=0;     * and after some iteration: */
               for(i=1; i<=nlstate;i++) {                  /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
                 if (mobilav==1)    /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    /*  0,                   0                  , 1} */
                 else {    /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* {0.51571254859325999, 0.4842874514067399, */
                 }    /*  0.51326036147820708, 0.48673963852179264} */
               }    /* If we start from prlim again, prlim tends to a constant matrix */
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    int i, ii,j,k;
                   /*fprintf(ficrespop," %.3f", kk1);    double *min, *max, *meandiff, maxmax,sumnew=0.;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    /* double **matprod2(); */ /* test */
               }    double **out, cov[NCOVMAX+1], **bmij();
             }    double **newm;
             for(i=1; i<=nlstate;i++){    double         **dnewm, **doldm, **dsavm;  /* for use */
               kk1=0.;    double         **oldm, **savm;  /* for use */
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
                 }    int ncvloop=0;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    
             }    min=vector(1,nlstate);
     max=vector(1,nlstate);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    meandiff=vector(1,nlstate);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }          dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          oldm=oldms; savm=savms;
         }  
       }          /* Starting with matrix unity */
            for (ii=1;ii<=nlstate+ndeath;ii++)
   /******/                  for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    cov[1]=1.;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    
           nhstepm = nhstepm/hstepm;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
              /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
           oldm=oldms;savm=savms;    for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /* A changer en age */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        ncvloop++;
           for (h=0; h<=nhstepm; h++){      newm=savm; /* oldm should be kept from previous iteration or unity at start */
             if (h==(int) (calagedate+YEARM*cpt)) {                  /* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      /* Covariates have to be included here again */
             }      cov[2]=agefin;
             for(j=1; j<=nlstate+ndeath;j++) {      if(nagesqr==1)
               kk1=0.;kk2=0;        cov[3]= agefin*agefin;;
               for(i=1; i<=nlstate;i++) {                    for (k=1; k<=cptcovn;k++) {
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
               }        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
             }      }
           }      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (k=1; k<=cptcovprod;k++) /* Useless */
         }        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
       }        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
    }      
   }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   if (popforecast==1) {      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
     free_ivector(popage,0,AGESUP);                  /* ij should be linked to the correct index of cov */
     free_vector(popeffectif,0,AGESUP);                  /* age and covariate values ij are in 'cov', but we need to pass
     free_vector(popcount,0,AGESUP);                   * ij for the observed prevalence at age and status and covariate
   }                   * number:  prevacurrent[(int)agefin][ii][ij]
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                   */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
   fclose(ficrespop);      /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
 }      out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */
       savm=oldm;
 /***********************************************/      oldm=newm;
 /**************** Main Program *****************/      for(j=1; j<=nlstate; j++){
 /***********************************************/        max[j]=0.;
         min[j]=1.;
 int main(int argc, char *argv[])      }
 {      for(j=1; j<=nlstate; j++){ 
         for(i=1;i<=nlstate;i++){
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          /* bprlim[i][j]= newm[i][j]/(1-sumnew); */
   double agedeb, agefin,hf;          bprlim[i][j]= newm[i][j];
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */
           min[i]=FMIN(min[i],bprlim[i][j]);
   double fret;        }
   double **xi,tmp,delta;      }
                   
   double dum; /* Dummy variable */      maxmax=0.;
   double ***p3mat;      for(i=1; i<=nlstate; i++){
   int *indx;        meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */
   char line[MAXLINE], linepar[MAXLINE];        maxmax=FMAX(maxmax,meandiff[i]);
   char title[MAXLINE];        /* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      } /* j loop */
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      *ncvyear= -( (int)age- (int)agefin);
        /* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear);*/
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      if(maxmax < ftolpl){
         /* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
   char filerest[FILENAMELENGTH];        free_vector(min,1,nlstate);
   char fileregp[FILENAMELENGTH];        free_vector(max,1,nlstate);
   char popfile[FILENAMELENGTH];        free_vector(meandiff,1,nlstate);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        return bprlim;
   int firstobs=1, lastobs=10;      }
   int sdeb, sfin; /* Status at beginning and end */    } /* age loop */
   int c,  h , cpt,l;      /* After some age loop it doesn't converge */
   int ju,jl, mi;    printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
   int mobilav=0,popforecast=0;    free_vector(min,1,nlstate);
   int hstepm, nhstepm;    free_vector(max,1,nlstate);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    free_vector(meandiff,1,nlstate);
     
   double bage, fage, age, agelim, agebase;    return bprlim; /* should not reach here */
   double ftolpl=FTOL;  }
   double **prlim;  
   double *severity;  /*************** transition probabilities ***************/ 
   double ***param; /* Matrix of parameters */  
   double  *p;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   double **matcov; /* Matrix of covariance */  {
   double ***delti3; /* Scale */    /* According to parameters values stored in x and the covariate's values stored in cov,
   double *delti; /* Scale */       computes the probability to be observed in state j being in state i by appying the
   double ***eij, ***vareij;       model to the ncovmodel covariates (including constant and age).
   double **varpl; /* Variances of prevalence limits by age */       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   double *epj, vepp;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   double kk1, kk2;       ncth covariate in the global vector x is given by the formula:
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
        Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   char *alph[]={"a","a","b","c","d","e"}, str[4];       Outputs ps[i][j] the probability to be observed in j being in j according to
        the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     */
   char z[1]="c", occ;    double s1, lnpijopii;
 #include <sys/time.h>    /*double t34;*/
 #include <time.h>    int i,j, nc, ii, jj;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
      for(i=1; i<= nlstate; i++){
   /* long total_usecs;      for(j=1; j<i;j++){
   struct timeval start_time, end_time;        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   getcwd(pathcd, size);          /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }
   printf("\n%s",version);        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   if(argc <=1){        /*        printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     printf("\nEnter the parameter file name: ");      }
     scanf("%s",pathtot);      for(j=i+1; j<=nlstate+ndeath;j++){
   }        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   else{          /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
     strcpy(pathtot,argv[1]);          lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   }          /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        }
   /*cygwin_split_path(pathtot,path,optionfile);        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      }
   /* cutv(path,optionfile,pathtot,'\\');*/    }
     
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    for(i=1; i<= nlstate; i++){
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      s1=0;
   chdir(path);      for(j=1; j<i; j++){
   replace(pathc,path);        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 /*-------- arguments in the command line --------*/      }
       for(j=i+1; j<=nlstate+ndeath; j++){
   strcpy(fileres,"r");        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   strcat(fileres, optionfilefiname);        /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   strcat(fileres,".txt");    /* Other files have txt extension */      }
       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   /*---------arguments file --------*/      ps[i][i]=1./(s1+1.);
       /* Computing other pijs */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      for(j=1; j<i; j++)
     printf("Problem with optionfile %s\n",optionfile);        ps[i][j]= exp(ps[i][j])*ps[i][i];
     goto end;      for(j=i+1; j<=nlstate+ndeath; j++)
   }        ps[i][j]= exp(ps[i][j])*ps[i][i];
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   strcpy(filereso,"o");    } /* end i */
   strcat(filereso,fileres);    
   if((ficparo=fopen(filereso,"w"))==NULL) {    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      for(jj=1; jj<= nlstate+ndeath; jj++){
   }        ps[ii][jj]=0;
         ps[ii][ii]=1;
   /* Reads comments: lines beginning with '#' */      }
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    
     puts(line);    /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     fputs(line,ficparo);    /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   }    /*    printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   ungetc(c,ficpar);    /*   } */
     /*   printf("\n "); */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    /* } */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    /* printf("\n ");printf("%lf ",cov[2]);*/
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    /*
 while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i<= npar; i++) printf("%f ",x[i]);
     ungetc(c,ficpar);                  goto end;*/
     fgets(line, MAXLINE, ficpar);    return ps;
     puts(line);  }
     fputs(line,ficparo);  
   }  /*************** backward transition probabilities ***************/ 
   ungetc(c,ficpar);  
     /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ageminpar, double agemaxpar, double ***dnewm, double **doldm, double **dsavm, int ij ) */
      /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */
   covar=matrix(0,NCOVMAX,1,n);   double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, int ij )
   cptcovn=0;  {
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    /* Computes the backward probability at age agefin and covariate ij
      * and returns in **ps as well as **bmij.
   ncovmodel=2+cptcovn;     */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    int i, ii, j,k;
      
   /* Read guess parameters */    double **out, **pmij();
   /* Reads comments: lines beginning with '#' */    double sumnew=0.;
   while((c=getc(ficpar))=='#' && c!= EOF){    double agefin;
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    double **dnewm, **dsavm, **doldm;
     puts(line);    double **bbmij;
     fputs(line,ficparo);    
   }    doldm=ddoldms; /* global pointers */
   ungetc(c,ficpar);    dnewm=ddnewms;
      dsavm=ddsavms;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    
     for(i=1; i <=nlstate; i++)    agefin=cov[2];
     for(j=1; j <=nlstate+ndeath-1; j++){    /* bmij *//* age is cov[2], ij is included in cov, but we need for
       fscanf(ficpar,"%1d%1d",&i1,&j1);       the observed prevalence (with this covariate ij) */
       fprintf(ficparo,"%1d%1d",i1,j1);    dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate);
       printf("%1d%1d",i,j);    /* We do have the matrix Px in savm  and we need pij */
       for(k=1; k<=ncovmodel;k++){    for (j=1;j<=nlstate+ndeath;j++){
         fscanf(ficpar," %lf",&param[i][j][k]);      sumnew=0.; /* w1 p11 + w2 p21 only on live states */
         printf(" %lf",param[i][j][k]);      for (ii=1;ii<=nlstate;ii++){
         fprintf(ficparo," %lf",param[i][j][k]);        sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij];
       }      } /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */
       fscanf(ficpar,"\n");      for (ii=1;ii<=nlstate+ndeath;ii++){
       printf("\n");        if(sumnew >= 1.e-10){
       fprintf(ficparo,"\n");          /* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */
     }          /*      doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
            /* }else if(agefin >= agemaxpar+stepm/YEARM){ */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          /*      doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
           /* }else */
   p=param[1][1];          doldm[ii][j]=(ii==j ? 1./sumnew : 0.0);
          }else{
   /* Reads comments: lines beginning with '#' */          printf("ii=%d, i=%d, doldm=%lf dsavm=%lf, probs=%lf, sumnew=%lf,agefin=%d\n",ii,j,doldm[ii][j],dsavm[ii][j],prevacurrent[(int)agefin][ii][ij],sumnew, (int)agefin);
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      } /*End ii */
     fgets(line, MAXLINE, ficpar);    } /* End j, At the end doldm is diag[1/(w_1p1i+w_2 p2i)] */
     puts(line);    /* left Product of this diag matrix by dsavm=Px (newm=dsavm*doldm) */
     fputs(line,ficparo);    bbmij=matprod2(dnewm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, doldm); /* Bug Valgrind */
   }    /* dsavm=doldm; /\* dsavm is now diag [1/(w_1p1i+w_2 p2i)] but can be overwritten*\/ */
   ungetc(c,ficpar);    /* doldm=dnewm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */
     /* dnewm=dsavm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /* left Product of this matrix by diag matrix of prevalences (savm) */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    for (j=1;j<=nlstate+ndeath;j++){
   for(i=1; i <=nlstate; i++){      for (ii=1;ii<=nlstate+ndeath;ii++){
     for(j=1; j <=nlstate+ndeath-1; j++){        dsavm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij] : 0.0);
       fscanf(ficpar,"%1d%1d",&i1,&j1);      }
       printf("%1d%1d",i,j);    } /* End j, At the end oldm is diag[1/(w_1p1i+w_2 p2i)] */
       fprintf(ficparo,"%1d%1d",i1,j1);    ps=matprod2(doldm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dnewm); /* Bug Valgrind */
       for(k=1; k<=ncovmodel;k++){    /* newm or out is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */
         fscanf(ficpar,"%le",&delti3[i][j][k]);    /* end bmij */
         printf(" %le",delti3[i][j][k]);    return ps; 
         fprintf(ficparo," %le",delti3[i][j][k]);  }
       }  /*************** transition probabilities ***************/ 
       fscanf(ficpar,"\n");  
       printf("\n");  double **bpmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       fprintf(ficparo,"\n");  {
     }    /* According to parameters values stored in x and the covariate's values stored in cov,
   }       computes the probability to be observed in state j being in state i by appying the
   delti=delti3[1][1];       model to the ncovmodel covariates (including constant and age).
         lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   /* Reads comments: lines beginning with '#' */       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   while((c=getc(ficpar))=='#' && c!= EOF){       ncth covariate in the global vector x is given by the formula:
     ungetc(c,ficpar);       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
     fgets(line, MAXLINE, ficpar);       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
     puts(line);       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
     fputs(line,ficparo);       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   }       Outputs ps[i][j] the probability to be observed in j being in j according to
   ungetc(c,ficpar);       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
      */
   matcov=matrix(1,npar,1,npar);    double s1, lnpijopii;
   for(i=1; i <=npar; i++){    /*double t34;*/
     fscanf(ficpar,"%s",&str);    int i,j, nc, ii, jj;
     printf("%s",str);  
     fprintf(ficparo,"%s",str);    for(i=1; i<= nlstate; i++){
     for(j=1; j <=i; j++){      for(j=1; j<i;j++){
       fscanf(ficpar," %le",&matcov[i][j]);        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       printf(" %.5le",matcov[i][j]);          /*lnpijopii += param[i][j][nc]*cov[nc];*/
       fprintf(ficparo," %.5le",matcov[i][j]);          lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
     }          /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     fscanf(ficpar,"\n");        }
     printf("\n");        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     fprintf(ficparo,"\n");        /*        printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   }      }
   for(i=1; i <=npar; i++)      for(j=i+1; j<=nlstate+ndeath;j++){
     for(j=i+1;j<=npar;j++)        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       matcov[i][j]=matcov[j][i];          /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
              lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   printf("\n");          /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         }
         ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     /*-------- Rewriting paramater file ----------*/      }
      strcpy(rfileres,"r");    /* "Rparameterfile */    }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    
      strcat(rfileres,".");    /* */    for(i=1; i<= nlstate; i++){
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      s1=0;
     if((ficres =fopen(rfileres,"w"))==NULL) {      for(j=1; j<i; j++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     }        /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     fprintf(ficres,"#%s\n",version);      }
          for(j=i+1; j<=nlstate+ndeath; j++){
     /*-------- data file ----------*/        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     if((fic=fopen(datafile,"r"))==NULL)    {        /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       printf("Problem with datafile: %s\n", datafile);goto end;      }
     }      /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
       ps[i][i]=1./(s1+1.);
     n= lastobs;      /* Computing other pijs */
     severity = vector(1,maxwav);      for(j=1; j<i; j++)
     outcome=imatrix(1,maxwav+1,1,n);        ps[i][j]= exp(ps[i][j])*ps[i][i];
     num=ivector(1,n);      for(j=i+1; j<=nlstate+ndeath; j++)
     moisnais=vector(1,n);        ps[i][j]= exp(ps[i][j])*ps[i][i];
     annais=vector(1,n);      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     moisdc=vector(1,n);    } /* end i */
     andc=vector(1,n);    
     agedc=vector(1,n);    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     cod=ivector(1,n);      for(jj=1; jj<= nlstate+ndeath; jj++){
     weight=vector(1,n);        ps[ii][jj]=0;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        ps[ii][ii]=1;
     mint=matrix(1,maxwav,1,n);      }
     anint=matrix(1,maxwav,1,n);    }
     s=imatrix(1,maxwav+1,1,n);    /* Added for backcast */ /* Transposed matrix too */
     adl=imatrix(1,maxwav+1,1,n);        for(jj=1; jj<= nlstate+ndeath; jj++){
     tab=ivector(1,NCOVMAX);      s1=0.;
     ncodemax=ivector(1,8);      for(ii=1; ii<= nlstate+ndeath; ii++){
         s1+=ps[ii][jj];
     i=1;      }
     while (fgets(line, MAXLINE, fic) != NULL)    {      for(ii=1; ii<= nlstate; ii++){
       if ((i >= firstobs) && (i <=lastobs)) {        ps[ii][jj]=ps[ii][jj]/s1;
              }
         for (j=maxwav;j>=1;j--){    }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    /* Transposition */
           strcpy(line,stra);    for(jj=1; jj<= nlstate+ndeath; jj++){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(ii=jj; ii<= nlstate+ndeath; ii++){
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        s1=ps[ii][jj];
         }        ps[ii][jj]=ps[jj][ii];
                ps[jj][ii]=s1;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    }
     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    /*    printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     /*   } */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    /*   printf("\n "); */
         for (j=ncovcol;j>=1;j--){    /* } */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /* printf("\n ");printf("%lf ",cov[2]);*/
         }    /*
         num[i]=atol(stra);      for(i=1; i<= npar; i++) printf("%f ",x[i]);
              goto end;*/
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    return ps;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  }
   
         i=i+1;  
       }  /**************** Product of 2 matrices ******************/
     }  
     /* printf("ii=%d", ij);  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
        scanf("%d",i);*/  {
   imx=i-1; /* Number of individuals */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   /* for (i=1; i<=imx; i++){    /* in, b, out are matrice of pointers which should have been initialized 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;       before: only the contents of out is modified. The function returns
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;       a pointer to pointers identical to out */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    int i, j, k;
     }*/    for(i=nrl; i<= nrh; i++)
    /*  for (i=1; i<=imx; i++){      for(k=ncolol; k<=ncoloh; k++){
      if (s[4][i]==9)  s[4][i]=-1;        out[i][k]=0.;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        for(j=ncl; j<=nch; j++)
            out[i][k] +=in[i][j]*b[j][k];
        }
   /* Calculation of the number of parameter from char model*/    return out;
   Tvar=ivector(1,15);  }
   Tprod=ivector(1,15);  
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);  /************* Higher Matrix Product ***************/
   Tage=ivector(1,15);        
      double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres )
   if (strlen(model) >1){  {
     j=0, j1=0, k1=1, k2=1;    /* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over 
     j=nbocc(model,'+');       'nhstepm*hstepm*stepm' months (i.e. until
     j1=nbocc(model,'*');       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     cptcovn=j+1;       nhstepm*hstepm matrices. 
     cptcovprod=j1;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
           (typically every 2 years instead of every month which is too big 
     strcpy(modelsav,model);       for the memory).
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){       Model is determined by parameters x and covariates have to be 
       printf("Error. Non available option model=%s ",model);       included manually here. 
       goto end;  
     }       */
      
     for(i=(j+1); i>=1;i--){    int i, j, d, h, k;
       cutv(stra,strb,modelsav,'+');    double **out, cov[NCOVMAX+1];
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    double **newm;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    double agexact;
       /*scanf("%d",i);*/    double agebegin, ageend;
       if (strchr(strb,'*')) {  
         cutv(strd,strc,strb,'*');    /* Hstepm could be zero and should return the unit matrix */
         if (strcmp(strc,"age")==0) {    for (i=1;i<=nlstate+ndeath;i++)
           cptcovprod--;      for (j=1;j<=nlstate+ndeath;j++){
           cutv(strb,stre,strd,'V');        oldm[i][j]=(i==j ? 1.0 : 0.0);
           Tvar[i]=atoi(stre);        po[i][j][0]=(i==j ? 1.0 : 0.0);
           cptcovage++;      }
             Tage[cptcovage]=i;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             /*printf("stre=%s ", stre);*/    for(h=1; h <=nhstepm; h++){
         }      for(d=1; d <=hstepm; d++){
         else if (strcmp(strd,"age")==0) {        newm=savm;
           cptcovprod--;        /* Covariates have to be included here again */
           cutv(strb,stre,strc,'V');        cov[1]=1.;
           Tvar[i]=atoi(stre);        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
           cptcovage++;        cov[2]=agexact;
           Tage[cptcovage]=i;        if(nagesqr==1)
         }          cov[3]= agexact*agexact;
         else {        for (k=1; k<=nsd;k++) { /* For single dummy covariates only */
           cutv(strb,stre,strc,'V');                          /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */
           Tvar[i]=ncovcol+k1;          cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
           cutv(strb,strc,strd,'V');          /* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
           Tprod[k1]=i;        }
           Tvard[k1][1]=atoi(strc);        for (k=1; k<=nsq;k++) { /* For single varying covariates only */
           Tvard[k1][2]=atoi(stre);          /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
           Tvar[cptcovn+k2]=Tvard[k1][1];          cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          /* printf("hPxij Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
           for (k=1; k<=lastobs;k++)        }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        for (k=1; k<=cptcovage;k++){
           k1++;          if(Dummy[Tvar[Tage[k]]]){
           k2=k2+2;            cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
         }          } else{
       }            cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; 
       else {          }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          /* printf("hPxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
        /*  scanf("%d",i);*/        }
       cutv(strd,strc,strb,'V');        for (k=1; k<=cptcovprod;k++){ /*  */
       Tvar[i]=atoi(strc);          /* printf("hPxij Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */
       }          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
       strcpy(modelsav,stra);          }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        /* for (k=1; k<=cptcovn;k++)  */
         scanf("%d",i);*/        /*        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */
     }        /* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */
 }        /*        cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; */
          /* for (k=1; k<=cptcovprod;k++) /\* Useless because included in cptcovn *\/ */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        /*        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; */
   printf("cptcovprod=%d ", cptcovprod);        
   scanf("%d ",i);*/        
     fclose(fic);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     /*  if(mle==1){*/                          /* right multiplication of oldm by the current matrix */
     if (weightopt != 1) { /* Maximisation without weights*/        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       for(i=1;i<=n;i++) weight[i]=1.0;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     }        /* if((int)age == 70){ */
     /*-calculation of age at interview from date of interview and age at death -*/        /*        printf(" Forward hpxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
     agev=matrix(1,maxwav,1,imx);        /*        for(i=1; i<=nlstate+ndeath; i++) { */
         /*          printf("%d pmmij ",i); */
     for (i=1; i<=imx; i++) {        /*          for(j=1;j<=nlstate+ndeath;j++) { */
       for(m=2; (m<= maxwav); m++) {        /*            printf("%f ",pmmij[i][j]); */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        /*          } */
          anint[m][i]=9999;        /*          printf(" oldm "); */
          s[m][i]=-1;        /*          for(j=1;j<=nlstate+ndeath;j++) { */
        }        /*            printf("%f ",oldm[i][j]); */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        /*          } */
       }        /*          printf("\n"); */
     }        /*        } */
         /* } */
     for (i=1; i<=imx; i++)  {        savm=oldm;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        oldm=newm;
       for(m=1; (m<= maxwav); m++){      }
         if(s[m][i] >0){      for(i=1; i<=nlstate+ndeath; i++)
           if (s[m][i] >= nlstate+1) {        for(j=1;j<=nlstate+ndeath;j++) {
             if(agedc[i]>0)                                  po[i][j][h]=newm[i][j];
               if(moisdc[i]!=99 && andc[i]!=9999)                                  /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
                 agev[m][i]=agedc[i];        }
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      /*printf("h=%d ",h);*/
            else {    } /* end h */
               if (andc[i]!=9999){          /*     printf("\n H=%d \n",h); */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    return po;
               agev[m][i]=-1;  }
               }  
             }  /************* Higher Back Matrix Product ***************/
           }  /* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */
           else if(s[m][i] !=9){ /* Should no more exist */  double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij )
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  {
             if(mint[m][i]==99 || anint[m][i]==9999)    /* Computes the transition matrix starting at age 'age' over
               agev[m][i]=1;       'nhstepm*hstepm*stepm' months (i.e. until
             else if(agev[m][i] <agemin){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
               agemin=agev[m][i];       nhstepm*hstepm matrices.
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
             }       (typically every 2 years instead of every month which is too big
             else if(agev[m][i] >agemax){       for the memory).
               agemax=agev[m][i];       Model is determined by parameters x and covariates have to be
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/       included manually here.
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/    */
             /*   agev[m][i] = age[i]+2*m;*/  
           }    int i, j, d, h, k;
           else { /* =9 */    double **out, cov[NCOVMAX+1];
             agev[m][i]=1;    double **newm;
             s[m][i]=-1;    double agexact;
           }    double agebegin, ageend;
         }    double **oldm, **savm;
         else /*= 0 Unknown */  
           agev[m][i]=1;    oldm=oldms;savm=savms;
       }    /* Hstepm could be zero and should return the unit matrix */
        for (i=1;i<=nlstate+ndeath;i++)
     }      for (j=1;j<=nlstate+ndeath;j++){
     for (i=1; i<=imx; i++)  {        oldm[i][j]=(i==j ? 1.0 : 0.0);
       for(m=1; (m<= maxwav); m++){        po[i][j][0]=(i==j ? 1.0 : 0.0);
         if (s[m][i] > (nlstate+ndeath)) {      }
           printf("Error: Wrong value in nlstate or ndeath\n");      /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           goto end;    for(h=1; h <=nhstepm; h++){
         }      for(d=1; d <=hstepm; d++){
       }        newm=savm;
     }        /* Covariates have to be included here again */
         cov[1]=1.;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        agexact=age-((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
         /* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */
     free_vector(severity,1,maxwav);        cov[2]=agexact;
     free_imatrix(outcome,1,maxwav+1,1,n);        if(nagesqr==1)
     free_vector(moisnais,1,n);          cov[3]= agexact*agexact;
     free_vector(annais,1,n);        for (k=1; k<=cptcovn;k++)
     /* free_matrix(mint,1,maxwav,1,n);          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
        free_matrix(anint,1,maxwav,1,n);*/        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
     free_vector(moisdc,1,n);        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
     free_vector(andc,1,n);          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
            /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
     wav=ivector(1,imx);        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
                              
     /* Concatenates waves */                          
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         /* Careful transposed matrix */
       Tcode=ivector(1,100);        /* age is in cov[2] */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        /* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */
       ncodemax[1]=1;        /*                                                 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\
                           1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
    codtab=imatrix(1,100,1,10);        /* if((int)age == 70){ */
    h=0;        /*        printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
    m=pow(2,cptcoveff);        /*        for(i=1; i<=nlstate+ndeath; i++) { */
          /*          printf("%d pmmij ",i); */
    for(k=1;k<=cptcoveff; k++){        /*          for(j=1;j<=nlstate+ndeath;j++) { */
      for(i=1; i <=(m/pow(2,k));i++){        /*            printf("%f ",pmmij[i][j]); */
        for(j=1; j <= ncodemax[k]; j++){        /*          } */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        /*          printf(" oldm "); */
            h++;        /*          for(j=1;j<=nlstate+ndeath;j++) { */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        /*            printf("%f ",oldm[i][j]); */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        /*          } */
          }        /*          printf("\n"); */
        }        /*        } */
      }        /* } */
    }        savm=oldm;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        oldm=newm;
       codtab[1][2]=1;codtab[2][2]=2; */      }
    /* for(i=1; i <=m ;i++){      for(i=1; i<=nlstate+ndeath; i++)
       for(k=1; k <=cptcovn; k++){        for(j=1;j<=nlstate+ndeath;j++) {
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          po[i][j][h]=newm[i][j];
       }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
       printf("\n");        }
       }      /*printf("h=%d ",h);*/
       scanf("%d",i);*/    } /* end h */
        /*     printf("\n H=%d \n",h); */
    /* Calculates basic frequencies. Computes observed prevalence at single age    return po;
        and prints on file fileres'p'. */  }
   
      
      #ifdef NLOPT
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double fret;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *xt;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int j;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    myfunc_data *d2 = (myfunc_data *) pd;
        /* xt = (p1-1); */
     /* For Powell, parameters are in a vector p[] starting at p[1]    xt=vector(1,n); 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
     fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
     if(mle==1){    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    printf("Function = %.12lf ",fret);
     }    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
        printf("\n");
     /*--------- results files --------------*/   free_vector(xt,1,n);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    return fret;
    }
   #endif
    jk=1;  
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  /*************** log-likelihood *************/
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  double func( double *x)
    for(i=1,jk=1; i <=nlstate; i++){  {
      for(k=1; k <=(nlstate+ndeath); k++){    int i, ii, j, k, mi, d, kk;
        if (k != i)    int ioffset=0;
          {    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
            printf("%d%d ",i,k);    double **out;
            fprintf(ficres,"%1d%1d ",i,k);    double lli; /* Individual log likelihood */
            for(j=1; j <=ncovmodel; j++){    int s1, s2;
              printf("%f ",p[jk]);    int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
              fprintf(ficres,"%f ",p[jk]);    double bbh, survp;
              jk++;    long ipmx;
            }    double agexact;
            printf("\n");    /*extern weight */
            fprintf(ficres,"\n");    /* We are differentiating ll according to initial status */
          }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      }    /*for(i=1;i<imx;i++) 
    }      printf(" %d\n",s[4][i]);
  if(mle==1){    */
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */    ++countcallfunc;
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }    cov[1]=1.;
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
      for(i=1,jk=1; i <=nlstate; i++){    ioffset=0;
       for(j=1; j <=nlstate+ndeath; j++){    if(mle==1){
         if (j!=i) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           fprintf(ficres,"%1d%1d",i,j);        /* Computes the values of the ncovmodel covariates of the model
           printf("%1d%1d",i,j);           depending if the covariates are fixed or varying (age dependent) and stores them in cov[]
           for(k=1; k<=ncovmodel;k++){           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
             printf(" %.5e",delti[jk]);           to be observed in j being in i according to the model.
             fprintf(ficres," %.5e",delti[jk]);        */
             jk++;        ioffset=2+nagesqr+cptcovage;
           }     /* Fixed */
           printf("\n");        for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */
           fprintf(ficres,"\n");          cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/
         }        }
       }        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
      }           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
               has been calculated etc */
     k=1;        /* For an individual i, wav[i] gives the number of effective waves */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        /* We compute the contribution to Likelihood of each effective transition
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");           mw[mi][i] is real wave of the mi th effectve wave */
     for(i=1;i<=npar;i++){        /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i];
       /*  if (k>nlstate) k=1;           s2=s[mw[mi+1][i]][i];
       i1=(i-1)/(ncovmodel*nlstate)+1;           And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i]
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);           But if the variable is not in the model TTvar[iv] is the real variable effective in the model:
       printf("%s%d%d",alph[k],i1,tab[i]);*/           meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]
       fprintf(ficres,"%3d",i);        */
       printf("%3d",i);        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<=i;j++){          for(k=1; k <= ncovv ; k++){ /* Varying  covariates (single and product but no age )*/
         fprintf(ficres," %.5e",matcov[i][j]);            cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i];
         printf(" %.5e",matcov[i][j]);          }
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficres,"\n");            for (j=1;j<=nlstate+ndeath;j++){
       printf("\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       k++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
              for(d=0; d<dh[mi][i]; d++){
     while((c=getc(ficpar))=='#' && c!= EOF){            newm=savm;
       ungetc(c,ficpar);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fgets(line, MAXLINE, ficpar);            cov[2]=agexact;
       puts(line);            if(nagesqr==1)
       fputs(line,ficparo);              cov[3]= agexact*agexact;  /* Should be changed here */
     }            for (kk=1; kk<=cptcovage;kk++) {
     ungetc(c,ficpar);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
     estepm=0;            }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if (estepm==0 || estepm < stepm) estepm=stepm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if (fage <= 2) {            savm=oldm;
       bage = ageminpar;            oldm=newm;
       fage = agemaxpar;          } /* end mult */
     }          
              /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          /* But now since version 0.9 we anticipate for bias at large stepm.
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);           * (in months) between two waves is not a multiple of stepm, we rounded to 
             * the nearest (and in case of equal distance, to the lowest) interval but now
     while((c=getc(ficpar))=='#' && c!= EOF){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     ungetc(c,ficpar);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     fgets(line, MAXLINE, ficpar);           * probability in order to take into account the bias as a fraction of the way
     puts(line);                                   * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     fputs(line,ficparo);                                   * -stepm/2 to stepm/2 .
   }                                   * For stepm=1 the results are the same as for previous versions of Imach.
   ungetc(c,ficpar);                                   * For stepm > 1 the results are less biased than in previous versions. 
                                     */
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          s1=s[mw[mi][i]][i];
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          s2=s[mw[mi+1][i]][i];
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          bbh=(double)bh[mi][i]/(double)stepm; 
                /* bias bh is positive if real duration
   while((c=getc(ficpar))=='#' && c!= EOF){           * is higher than the multiple of stepm and negative otherwise.
     ungetc(c,ficpar);           */
     fgets(line, MAXLINE, ficpar);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     puts(line);          if( s2 > nlstate){ 
     fputs(line,ficparo);            /* i.e. if s2 is a death state and if the date of death is known 
   }               then the contribution to the likelihood is the probability to 
   ungetc(c,ficpar);               die between last step unit time and current  step unit time, 
                 which is also equal to probability to die before dh 
                minus probability to die before dh-stepm . 
    dateprev1=anprev1+mprev1/12.+jprev1/365.;               In version up to 0.92 likelihood was computed
    dateprev2=anprev2+mprev2/12.+jprev2/365.;               as if date of death was unknown. Death was treated as any other
                health state: the date of the interview describes the actual state
   fscanf(ficpar,"pop_based=%d\n",&popbased);               and not the date of a change in health state. The former idea was
   fprintf(ficparo,"pop_based=%d\n",popbased);                 to consider that at each interview the state was recorded
   fprintf(ficres,"pop_based=%d\n",popbased);                 (healthy, disable or death) and IMaCh was corrected; but when we
                 introduced the exact date of death then we should have modified
   while((c=getc(ficpar))=='#' && c!= EOF){               the contribution of an exact death to the likelihood. This new
     ungetc(c,ficpar);               contribution is smaller and very dependent of the step unit
     fgets(line, MAXLINE, ficpar);               stepm. It is no more the probability to die between last interview
     puts(line);               and month of death but the probability to survive from last
     fputs(line,ficparo);               interview up to one month before death multiplied by the
   }               probability to die within a month. Thanks to Chris
   ungetc(c,ficpar);               Jackson for correcting this bug.  Former versions increased
                mortality artificially. The bad side is that we add another loop
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);               which slows down the processing. The difference can be up to 10%
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);               lower mortality.
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            */
             /* If, at the beginning of the maximization mostly, the
                cumulative probability or probability to be dead is
 while((c=getc(ficpar))=='#' && c!= EOF){               constant (ie = 1) over time d, the difference is equal to
     ungetc(c,ficpar);               0.  out[s1][3] = savm[s1][3]: probability, being at state
     fgets(line, MAXLINE, ficpar);               s1 at precedent wave, to be dead a month before current
     puts(line);               wave is equal to probability, being at state s1 at
     fputs(line,ficparo);               precedent wave, to be dead at mont of the current
   }               wave. Then the observed probability (that this person died)
   ungetc(c,ficpar);               is null according to current estimated parameter. In fact,
                it should be very low but not zero otherwise the log go to
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);               infinity.
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  /* #ifdef INFINITYORIGINAL */
   /*          lli=log(out[s1][s2] - savm[s1][s2]); */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /* #else */
   /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
 /*------------ gnuplot -------------*/  /*          lli=log(mytinydouble); */
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);  /*        else */
    /*          lli=log(out[s1][s2] - savm[s1][s2]); */
 /*------------ free_vector  -------------*/  /* #endif */
  chdir(path);            lli=log(out[s1][s2] - savm[s1][s2]);
              
  free_ivector(wav,1,imx);          } else if  ( s2==-1 ) { /* alive */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            for (j=1,survp=0. ; j<=nlstate; j++) 
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
  free_ivector(num,1,n);            /*survp += out[s1][j]; */
  free_vector(agedc,1,n);            lli= log(survp);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          }
  fclose(ficparo);          else if  (s2==-4) { 
  fclose(ficres);            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 /*--------- index.htm --------*/            lli= log(survp); 
           } 
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);          else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   /*--------------- Prevalence limit --------------*/            lli= log(survp); 
            } 
   strcpy(filerespl,"pl");          else{
   strcat(filerespl,fileres);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          } 
   }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          /*if(lli ==000.0)*/
   fprintf(ficrespl,"#Prevalence limit\n");          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   fprintf(ficrespl,"#Age ");          ipmx +=1;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          sw += weight[i];
   fprintf(ficrespl,"\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            /* if (lli < log(mytinydouble)){ */
   prlim=matrix(1,nlstate,1,nlstate);          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          /* } */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        } /* end of wave */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      } /* end of individual */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    }  else if(mle==2){
   k=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   agebase=ageminpar;        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   agelim=agemaxpar;        for(mi=1; mi<= wav[i]-1; mi++){
   ftolpl=1.e-10;          for (ii=1;ii<=nlstate+ndeath;ii++)
   i1=cptcoveff;            for (j=1;j<=nlstate+ndeath;j++){
   if (cptcovn < 1){i1=1;}              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(cptcov=1;cptcov<=i1;cptcov++){            }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for(d=0; d<=dh[mi][i]; d++){
         k=k+1;            newm=savm;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficrespl,"\n#******");            cov[2]=agexact;
         for(j=1;j<=cptcoveff;j++)            if(nagesqr==1)
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              cov[3]= agexact*agexact;
         fprintf(ficrespl,"******\n");            for (kk=1; kk<=cptcovage;kk++) {
                      cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
         for (age=agebase; age<=agelim; age++){            }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           fprintf(ficrespl,"%.0f",age );                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(i=1; i<=nlstate;i++)            savm=oldm;
           fprintf(ficrespl," %.5f", prlim[i][i]);            oldm=newm;
           fprintf(ficrespl,"\n");          } /* end mult */
         }        
       }          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
   fclose(ficrespl);          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   /*------------- h Pij x at various ages ------------*/          ipmx +=1;
            sw += weight[i];
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        } /* end of wave */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      } /* end of individual */
   }    }  else if(mle==3){  /* exponential inter-extrapolation */
   printf("Computing pij: result on file '%s' \n", filerespij);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(mi=1; mi<= wav[i]-1; mi++){
   /*if (stepm<=24) stepsize=2;*/          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   agelim=AGESUP;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=stepsize*YEARM; /* Every year of age */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */            }
            for(d=0; d<dh[mi][i]; d++){
   k=0;            newm=savm;
   for(cptcov=1;cptcov<=i1;cptcov++){            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            cov[2]=agexact;
       k=k+1;            if(nagesqr==1)
         fprintf(ficrespij,"\n#****** ");              cov[3]= agexact*agexact;
         for(j=1;j<=cptcoveff;j++)            for (kk=1; kk<=cptcovage;kk++) {
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
         fprintf(ficrespij,"******\n");            }
                    out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            savm=oldm;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            oldm=newm;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          } /* end mult */
           oldm=oldms;savm=savms;        
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            s1=s[mw[mi][i]][i];
           fprintf(ficrespij,"# Age");          s2=s[mw[mi+1][i]][i];
           for(i=1; i<=nlstate;i++)          bbh=(double)bh[mi][i]/(double)stepm; 
             for(j=1; j<=nlstate+ndeath;j++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               fprintf(ficrespij," %1d-%1d",i,j);          ipmx +=1;
           fprintf(ficrespij,"\n");          sw += weight[i];
            for (h=0; h<=nhstepm; h++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        } /* end of wave */
             for(i=1; i<=nlstate;i++)      } /* end of individual */
               for(j=1; j<=nlstate+ndeath;j++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             fprintf(ficrespij,"\n");        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
              }        for(mi=1; mi<= wav[i]-1; mi++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (ii=1;ii<=nlstate+ndeath;ii++)
           fprintf(ficrespij,"\n");            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
           for(d=0; d<dh[mi][i]; d++){
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);            newm=savm;
             agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fclose(ficrespij);            cov[2]=agexact;
             if(nagesqr==1)
               cov[3]= agexact*agexact;
   /*---------- Forecasting ------------------*/            for (kk=1; kk<=cptcovage;kk++) {
   if((stepm == 1) && (strcmp(model,".")==0)){              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);            }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   else{                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     erreur=108;            savm=oldm;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);            oldm=newm;
   }          } /* end mult */
          
           s1=s[mw[mi][i]][i];
   /*---------- Health expectancies and variances ------------*/          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
   strcpy(filerest,"t");            lli=log(out[s1][s2] - savm[s1][s2]);
   strcat(filerest,fileres);          } else if  ( s2==-1 ) { /* alive */
   if((ficrest=fopen(filerest,"w"))==NULL) {            for (j=1,survp=0. ; j<=nlstate; j++) 
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;              survp += out[s1][j];
   }            lli= log(survp);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
   strcpy(filerese,"e");          ipmx +=1;
   strcat(filerese,fileres);          sw += weight[i];
   if((ficreseij=fopen(filerese,"w"))==NULL) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   }        } /* end of wave */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
  strcpy(fileresv,"v");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   strcat(fileresv,fileres);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        for(mi=1; mi<= wav[i]-1; mi++){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   calagedate=-1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            }
           for(d=0; d<dh[mi][i]; d++){
   k=0;            newm=savm;
   for(cptcov=1;cptcov<=i1;cptcov++){            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            cov[2]=agexact;
       k=k+1;            if(nagesqr==1)
       fprintf(ficrest,"\n#****** ");              cov[3]= agexact*agexact;
       for(j=1;j<=cptcoveff;j++)            for (kk=1; kk<=cptcovage;kk++) {
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
       fprintf(ficrest,"******\n");            }
           
       fprintf(ficreseij,"\n#****** ");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1;j<=cptcoveff;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            savm=oldm;
       fprintf(ficreseij,"******\n");            oldm=newm;
           } /* end mult */
       fprintf(ficresvij,"\n#****** ");        
       for(j=1;j<=cptcoveff;j++)          s1=s[mw[mi][i]][i];
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          s2=s[mw[mi+1][i]][i];
       fprintf(ficresvij,"******\n");          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          sw += weight[i];
       oldm=oldms;savm=savms;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);            /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
          } /* end of wave */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      } /* end of individual */
       oldm=oldms;savm=savms;    } /* End of if */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
        /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      return -l;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");  /*************** log-likelihood *************/
   double funcone( double *x)
       epj=vector(1,nlstate+1);  {
       for(age=bage; age <=fage ;age++){    /* Same as func but slower because of a lot of printf and if */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    int i, ii, j, k, mi, d, kk;
         if (popbased==1) {    int ioffset=0;
           for(i=1; i<=nlstate;i++)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
             prlim[i][i]=probs[(int)age][i][k];    double **out;
         }    double lli; /* Individual log likelihood */
            double llt;
         fprintf(ficrest," %4.0f",age);    int s1, s2;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    double bbh, survp;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    double agexact;
           }    double agebegin, ageend;
           epj[nlstate+1] +=epj[j];    /*extern weight */
         }    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         for(i=1, vepp=0.;i <=nlstate;i++)    /*for(i=1;i<imx;i++) 
           for(j=1;j <=nlstate;j++)      printf(" %d\n",s[4][i]);
             vepp += vareij[i][j][(int)age];    */
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    cov[1]=1.;
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }    ioffset=0;
         fprintf(ficrest,"\n");    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }      ioffset=2+nagesqr+cptcovage;
     }      /* Fixed */
   }      /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */
 free_matrix(mint,1,maxwav,1,n);      /* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */
     free_vector(weight,1,n);        cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/
   fclose(ficreseij);  /*    cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i];  */
   fclose(ficresvij);  /*    cov[2+6]=covar[Tvar[6]][i];  */
   fclose(ficrest);  /*    cov[2+6]=covar[2][i]; V2  */
   fclose(ficpar);  /*    cov[TvarFind[2]]=covar[Tvar[TvarFind[2]]][i];  */
   free_vector(epj,1,nlstate+1);  /*    cov[2+7]=covar[Tvar[7]][i];  */
    /*    cov[2+7]=covar[7][i]; V7=V1*V2  */
   /*------- Variance limit prevalence------*/    /*    cov[TvarFind[3]]=covar[Tvar[TvarFind[3]]][i];  */
   /*    cov[2+9]=covar[Tvar[9]][i];  */
   strcpy(fileresvpl,"vpl");  /*    cov[2+9]=covar[1][i]; V1  */
   strcat(fileresvpl,fileres);      }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      /* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      /*   cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */
     exit(0);      /* } */
   }      /* for(iqv=1; iqv <= nqfveff; iqv++){ /\* Quantitative fixed covariates *\/ */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      /*   cov[++ioffset]=coqvar[Tvar[iqv]][i]; /\* Only V2 k=6 and V1*V2 7 *\/ */
       /* } */
   k=0;      
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(mi=1; mi<= wav[i]-1; mi++){  /* Varying with waves */
       k=k+1;      /* Wave varying (but not age varying) */
       fprintf(ficresvpl,"\n#****** ");        for(k=1; k <= ncovv ; k++){ /* Varying  covariates (single and product but no age )*/
       for(j=1;j<=cptcoveff;j++)                                  cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i];
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                          }
       fprintf(ficresvpl,"******\n");        /* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */
                                        /* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                                  /* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */
       oldm=oldms;savm=savms;                                  /* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                                  /* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */
     }                                  /* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */
  }        /* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */
                           /*      iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */
   fclose(ficresvpl);                          /*      /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */
                           /*      cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */
   /*---------- End : free ----------------*/        /* } */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        for (ii=1;ii<=nlstate+ndeath;ii++)
                                    for (j=1;j<=nlstate+ndeath;j++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                                          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                                          savm[ii][j]=(ii==j ? 1.0 : 0.0);
                                    }
          
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(d=0; d<dh[mi][i]; d++){  /* Delay between two effective waves */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                                  /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                                            and mw[mi+1][i]. dh depends on stepm.*/
   free_matrix(matcov,1,npar,1,npar);                                  newm=savm;
   free_vector(delti,1,npar);                                  agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_matrix(agev,1,maxwav,1,imx);                                  cov[2]=agexact;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                                  if(nagesqr==1)
                                           cov[3]= agexact*agexact;
   if(erreur >0)                                  for (kk=1; kk<=cptcovage;kk++) {
     printf("End of Imach with error or warning %d\n",erreur);                                          cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   else   printf("End of Imach\n");                                  }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                                  /* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */
                                    /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /*printf("Total time was %d uSec.\n", total_usecs);*/                                                                                   1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /*------ End -----------*/                                  /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
                                   /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
                                   savm=oldm;
  end:                                  oldm=newm;
   /* chdir(pathcd);*/        } /* end mult */
  /*system("wgnuplot graph.plt");*/        
  /*system("../gp37mgw/wgnuplot graph.plt");*/        s1=s[mw[mi][i]][i];
  /*system("cd ../gp37mgw");*/        s2=s[mw[mi+1][i]][i];
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        /* if(s2==-1){ */
  strcpy(plotcmd,GNUPLOTPROGRAM);        /*        printf(" s1=%d, s2=%d i=%d \n", s1, s2, i); */
  strcat(plotcmd," ");        /*        /\* exit(1); *\/ */
  strcat(plotcmd,optionfilegnuplot);        /* } */
  system(plotcmd);        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
  /*#ifdef windows*/         * is higher than the multiple of stepm and negative otherwise.
   while (z[0] != 'q') {         */
     /* chdir(path); */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                                  lli=log(out[s1][s2] - savm[s1][s2]);
     scanf("%s",z);        } else if  ( s2==-1 ) { /* alive */
     if (z[0] == 'c') system("./imach");                                  for (j=1,survp=0. ; j<=nlstate; j++) 
     else if (z[0] == 'e') system(optionfilehtm);                                          survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     else if (z[0] == 'g') system(plotcmd);                                  lli= log(survp);
     else if (z[0] == 'q') exit(0);        }else if (mle==1){
   }                                  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /*#endif */        } else if(mle==2){
 }                                  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
                                   lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
                                   lli=log(out[s1][s2]); /* Original formula */
         } else{  /* mle=0 back to 1 */
                                   lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                                   /*lli=log(out[s1][s2]); */ /* Original formula */
         } /* End of if */
         ipmx +=1;
         sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
                                   fprintf(ficresilk,"%9ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\
    %11.6f %11.6f %11.6f ", \
                                                                   num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
                                                                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
                                   for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                                           llt +=ll[k]*gipmx/gsw;
                                           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
                                   }
                                   fprintf(ficresilk," %10.6f\n", -llt);
         }
           } /* end of wave */
   } /* end of individual */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   if(globpr==0){ /* First time we count the contributions and weights */
           gipmx=ipmx;
           gsw=sw;
   }
   return -l;
   }
   
   
   /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
     /* This routine should help understanding what is done with 
        the selection of individuals/waves and
        to check the exact contribution to the likelihood.
        Plotting could be done.
      */
     int k;
   
     if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ILK_"); 
       strcat(fileresilk,fileresu);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
       fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
   
     *fretone=(*funcone)(p);
     if(*globpri !=0){
       fclose(ficresilk);
       if (mle ==0)
         fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
       else if(mle >=1)
         fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
       fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       
         
       for (k=1; k<= nlstate ; k++) {
         fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
   <img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
       }
       fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
   <img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
       fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
   <img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
       fflush(fichtm);
     }
     return;
   }
   
   
   /*********** Maximum Likelihood Estimation ***************/
   
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
     int i,j, iter=0;
     double **xi;
     double fret;
     double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
   
   #ifdef NLOPT
     int creturn;
     nlopt_opt opt;
     /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
     double *lb;
     double minf; /* the minimum objective value, upon return */
     double * p1; /* Shifted parameters from 0 instead of 1 */
     myfunc_data dinst, *d = &dinst;
   #endif
   
   
     xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"POW_"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
   #ifdef POWELL
     powell(p,xi,npar,ftol,&iter,&fret,func);
   #endif
   
   #ifdef NLOPT
   #ifdef NEWUOA
     opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   #else
     opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   #endif
     lb=vector(0,npar-1);
     for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
     nlopt_set_lower_bounds(opt, lb);
     nlopt_set_initial_step1(opt, 0.1);
     
     p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
     d->function = func;
     printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
     nlopt_set_min_objective(opt, myfunc, d);
     nlopt_set_xtol_rel(opt, ftol);
     if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
       printf("nlopt failed! %d\n",creturn); 
     }
     else {
       printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
       iter=1; /* not equal */
     }
     nlopt_destroy(opt);
   #endif
     free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
     printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   
   }
   
   /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
     double  **a,**y,*x,pd;
     /* double **hess; */
     int i, j;
     int *indx;
   
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
     /* hess=matrix(1,npar,1,npar); */
   
     printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
       printf("%d-",i);fflush(stdout);
       fprintf(ficlog,"%d-",i);fflush(ficlog);
      
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
       /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
     
     for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
         if (j>i) { 
           printf(".%d-%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
           
           hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
         }
       }
     }
     printf("\n");
     fprintf(ficlog,"\n");
   
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
     a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
     x=vector(1,npar);
     indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
   
     for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
       lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
       }
     }
   
     printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
         printf("%.6e ",hess[i][j]);
         fprintf(ficlog,"%.6e ",hess[i][j]);
       }
       printf("\n");
       fprintf(ficlog,"\n");
     }
   
     /* printf("\n#Covariance matrix#\n"); */
     /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
     /* for (i=1;i<=npar;i++) {  */
     /*   for (j=1;j<=npar;j++) {  */
     /*     printf("%.6e ",matcov[i][j]); */
     /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
     /*   } */
     /*   printf("\n"); */
     /*   fprintf(ficlog,"\n"); */
     /* } */
   
     /* Recompute Inverse */
     /* for (i=1;i<=npar;i++) */
     /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
     /* ludcmp(a,npar,indx,&pd); */
   
     /*  printf("\n#Hessian matrix recomputed#\n"); */
   
     /* for (j=1;j<=npar;j++) { */
     /*   for (i=1;i<=npar;i++) x[i]=0; */
     /*   x[j]=1; */
     /*   lubksb(a,npar,indx,x); */
     /*   for (i=1;i<=npar;i++){  */
     /*     y[i][j]=x[i]; */
     /*     printf("%.3e ",y[i][j]); */
     /*     fprintf(ficlog,"%.3e ",y[i][j]); */
     /*   } */
     /*   printf("\n"); */
     /*   fprintf(ficlog,"\n"); */
     /* } */
   
     /* Verifying the inverse matrix */
   #ifdef DEBUGHESS
     y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
   
      printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
      fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
   
     for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++){ 
         printf("%.2f ",y[i][j]);
         fprintf(ficlog,"%.2f ",y[i][j]);
       }
       printf("\n");
       fprintf(ficlog,"\n");
     }
   #endif
   
     free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
     free_ivector(indx,1,npar);
     /* free_matrix(hess,1,npar,1,npar); */
   
   
   }
   
   /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   { /* Around values of x, computes the function func and returns the scales delti and hessian */
     int i;
     int l=1, lmax=20;
     double k1,k2, res, fx;
     double p2[MAXPARM+1]; /* identical to x */
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     int k=0,kmax=10;
     double l1;
   
     fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
       l1=pow(10,l);
       delts=delt;
       for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
         p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
         
   #ifdef DEBUGHESSII
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
         }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10;
         }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
         }
       } /* End loop k */
     }
     delti[theta]=delts;
     return res; 
     
   }
   
   double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
     int i;
     int l=1, lmax=20;
     double k1,k2,k3,k4,res,fx;
     double p2[MAXPARM+1];
     int k, kmax=1;
     double v1, v2, cv12, lc1, lc2;
   
     int firstime=0;
     
     fx=func(x);
     for (k=1; k<=kmax; k=k+10) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]*k;
       p2[thetaj]=x[thetaj]+delti[thetaj]*k;
       k1=func(p2)-fx;
     
       p2[thetai]=x[thetai]+delti[thetai]*k;
       p2[thetaj]=x[thetaj]-delti[thetaj]*k;
       k2=func(p2)-fx;
     
       p2[thetai]=x[thetai]-delti[thetai]*k;
       p2[thetaj]=x[thetaj]+delti[thetaj]*k;
       k3=func(p2)-fx;
     
       p2[thetai]=x[thetai]-delti[thetai]*k;
       p2[thetaj]=x[thetaj]-delti[thetaj]*k;
       k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
       if(k1*k2*k3*k4 <0.){
         firstime=1;
         kmax=kmax+10;
       }
       if(kmax >=10 || firstime ==1){
         printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol);
         fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol);
         printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }
   #ifdef DEBUGHESSIJ
       v1=hess[thetai][thetai];
       v2=hess[thetaj][thetaj];
       cv12=res;
       /* Computing eigen value of Hessian matrix */
       lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       if ((lc2 <0) || (lc1 <0) ){
         printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
         fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
         printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }
   #endif
     }
     return res;
   }
   
       /* Not done yet: Was supposed to fix if not exactly at the maximum */
   /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
   /* { */
   /*   int i; */
   /*   int l=1, lmax=20; */
   /*   double k1,k2,k3,k4,res,fx; */
   /*   double p2[MAXPARM+1]; */
   /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
   /*   int k=0,kmax=10; */
   /*   double l1; */
     
   /*   fx=func(x); */
   /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
   /*     l1=pow(10,l); */
   /*     delts=delt; */
   /*     for(k=1 ; k <kmax; k=k+1){ */
   /*       delt = delti*(l1*k); */
   /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
   /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
   /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
   /*       k1=func(p2)-fx; */
         
   /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
   /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
   /*       k2=func(p2)-fx; */
         
   /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
   /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
   /*       k3=func(p2)-fx; */
         
   /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
   /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
   /*       k4=func(p2)-fx; */
   /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
   /* #ifdef DEBUGHESSIJ */
   /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
   /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
   /* #endif */
   /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
   /*      k=kmax; */
   /*       } */
   /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
   /*      k=kmax; l=lmax*10; */
   /*       } */
   /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
   /*      delts=delt; */
   /*       } */
   /*     } /\* End loop k *\/ */
   /*   } */
   /*   delti[theta]=delts; */
   /*   return res;  */
   /* } */
   
   
   /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
   { 
     int i,imax,j,k; 
     double big,dum,sum,temp; 
     double *vv; 
    
     vv=vector(1,n); 
     *d=1.0; 
     for (i=1;i<=n;i++) { 
       big=0.0; 
       for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
     } 
     for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
         sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
       } 
       big=0.0; 
       for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
         for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
           imax=i; 
         } 
       } 
       if (j != imax) { 
         for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
         } 
         *d = -(*d); 
         vv[imax]=vv[j]; 
       } 
       indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
         dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
     } 
     free_vector(vv,1,n);  /* Doesn't work */
   ;
   } 
   
   void lubksb(double **a, int n, int *indx, double b[]) 
   { 
     int i,ii=0,ip,j; 
     double sum; 
    
     for (i=1;i<=n;i++) { 
       ip=indx[i]; 
       sum=b[ip]; 
       b[ip]=b[i]; 
       if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
       b[i]=sum; 
     } 
     for (i=n;i>=1;i--) { 
       sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
     } 
   } 
   
   void pstamp(FILE *fichier)
   {
     fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
   }
   
   /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \
                     int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \
                     int firstpass,  int lastpass, int stepm, int weightopt, char model[])
   {  /* Some frequencies */
     
     int i, m, jk, j1, bool, z1,j, k, iv;
     int iind=0, iage=0;
     int mi; /* Effective wave */
     int first;
     double ***freq; /* Frequencies */
     double *meanq;
     double **meanqt;
     double *pp, **prop, *posprop, *pospropt;
     double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0;
     char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH];
     double agebegin, ageend;
       
     pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); 
     posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ 
     pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ 
     /* prop=matrix(1,nlstate,iagemin,iagemax+3); */
     meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
     meanqt=matrix(1,lastpass,1,nqtveff);
     strcpy(fileresp,"P_");
     strcat(fileresp,fileresu);
     /*strcat(fileresphtm,fileresu);*/
     if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
     }
     
     strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));
     if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {
       printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
       fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
       fflush(ficlog);
       exit(70); 
     }
     else{
       fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n                                    \
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
               fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
     fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm);
     
     strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
     if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
       printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
       fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
       fflush(ficlog);
       exit(70); 
     } else{
       fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n                                    \
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
               fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
     fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr);
     
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+3+AGEMARGE);
     j1=0;
     
     /* j=ncoveff;  /\* Only fixed dummy covariates *\/ */
     j=cptcoveff;  /* Only dummy covariates of the model */
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
     first=1;
     
     /* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels:
        reference=low_education V1=0,V2=0
        med_educ                V1=1 V2=0, 
        high_educ               V1=0 V2=1
        Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff 
     */
     
     for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on covariates combination in order of model, excluding quantitatives V4=0, V3=0 for example, fixed or varying covariates */
       posproptt=0.;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         scanf("%d", i);*/
       for (i=-5; i<=nlstate+ndeath; i++)  
         for (jk=-5; jk<=nlstate+ndeath; jk++)  
           for(m=iagemin; m <= iagemax+3; m++)
             freq[i][jk][m]=0;
       
       for (i=1; i<=nlstate; i++)  {
         for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
         posprop[i]=0;
         pospropt[i]=0;
       }
       /* for (z1=1; z1<= nqfveff; z1++) {   */
       /*   meanq[z1]+=0.; */
       /*   for(m=1;m<=lastpass;m++){ */
       /*  meanqt[m][z1]=0.; */
       /*   } */
       /* } */
       
       dateintsum=0;
       k2cpt=0;
       /* For that combination of covariate j1, we count and print the frequencies in one pass */
       for (iind=1; iind<=imx; iind++) { /* For each individual iind */
         bool=1;
         if(anyvaryingduminmodel==0){ /* If All fixed covariates */
           if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
             /* for (z1=1; z1<= nqfveff; z1++) {   */
             /*   meanq[z1]+=coqvar[Tvar[z1]][iind];  /\* Computes mean of quantitative with selected filter *\/ */
             /* } */
             for (z1=1; z1<=cptcoveff; z1++) {  
               /* if(Tvaraff[z1] ==-20){ */
               /*   /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */
               /* }else  if(Tvaraff[z1] ==-10){ */
               /*   /\* sumnew+=coqvar[z1][iind]; *\/ */
               /* }else  */
               if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
                 /* Tests if this individual iind responded to j1 (V4=1 V3=0) */
                 bool=0;
                 /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
                    bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
                    j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
                 /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
               } /* Onlyf fixed */
             } /* end z1 */
           } /* cptcovn > 0 */
         } /* end any */
         if (bool==1){ /* We selected an individual iind satisfying combination j1 or all fixed */
           /* for(m=firstpass; m<=lastpass; m++){ */
           for(mi=1; mi<wav[iind];mi++){ /* For that wave */
             m=mw[mi][iind];
             if(anyvaryingduminmodel==1){ /* Some are varying covariates */
               for (z1=1; z1<=cptcoveff; z1++) {
                 if( Fixed[Tmodelind[z1]]==1){
                   iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
                   if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */
                     bool=0;
                 }else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */
                   if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {
                     bool=0;
                   }
                 }
               }
             }/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop  */
             /* bool =0 we keep that guy which corresponds to the combination of dummy values */
             if(bool==1){
               /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind]
                  and mw[mi+1][iind]. dh depends on stepm. */
               agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/
               ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */
               if(m >=firstpass && m <=lastpass){
                 k2=anint[m][iind]+(mint[m][iind]/12.);
                 /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][iind]==0) agev[m][iind]=iagemax+1;  /* All ages equal to 0 are in iagemax+1 */
                 if(agev[m][iind]==1) agev[m][iind]=iagemax+2;  /* All ages equal to 1 are in iagemax+2 */
                 if (s[m][iind]>0 && s[m][iind]<=nlstate)  /* If status at wave m is known and a live state */
                   prop[s[m][iind]][(int)agev[m][iind]] += weight[iind];  /* At age of beginning of transition, where status is known */
                 if (m<lastpass) {
                   /* if(s[m][iind]==4 && s[m+1][iind]==4) */
                   /*   printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */
                   if(s[m][iind]==-1)
                     printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.));
                   freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */
                   /* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */
                   freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */
                 }
               } /* end if between passes */  
               if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99)) {
                 dateintsum=dateintsum+k2;
                 k2cpt++;
                 /* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
               }
             } /* end bool 2 */
           } /* end m */
         } /* end bool */
       } /* end iind = 1 to imx */
       /* prop[s][age] is feeded for any initial and valid live state as well as
          freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */
       
       
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       pstamp(ficresp);
       if  (cptcoveff>0){
         fprintf(ficresp, "\n#********** Variable "); 
         fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); 
         fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); 
         fprintf(ficlog, "\n#********** Variable "); 
         for (z1=1; z1<=cptcoveff; z1++){
           if(DummyV[z1]){
             fprintf(ficresp, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
             fprintf(ficresphtm, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
             fprintf(ficresphtmfr, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
             fprintf(ficlog, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           }else{
             fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
             fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
             fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
             fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           }
         }
         fprintf(ficresp, "**********\n#");
         fprintf(ficresphtm, "**********</h3>\n");
         fprintf(ficresphtmfr, "**********</h3>\n");
         fprintf(ficlog, "**********\n");
       }
       fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");
       for(i=1; i<=nlstate;i++) {
         fprintf(ficresp, " Age Prev(%d)  N(%d)  N  ",i,i);
         fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);
       }
       fprintf(ficresp, "\n");
       fprintf(ficresphtm, "\n");
       
       /* Header of frequency table by age */
       fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">");
       fprintf(ficresphtmfr,"<th>Age</th> ");
       for(jk=-1; jk <=nlstate+ndeath; jk++){
         for(m=-1; m <=nlstate+ndeath; m++){
           if(jk!=0 && m!=0)
             fprintf(ficresphtmfr,"<th>%d%d</th> ",jk,m);
         }
       }
       fprintf(ficresphtmfr, "\n");
       
       /* For each age */
       for(iage=iagemin; iage <= iagemax+3; iage++){
         fprintf(ficresphtm,"<tr>");
         if(iage==iagemax+1){
           fprintf(ficlog,"1");
           fprintf(ficresphtmfr,"<tr><th>0</th> ");
         }else if(iage==iagemax+2){
           fprintf(ficlog,"0");
           fprintf(ficresphtmfr,"<tr><th>Unknown</th> ");
         }else if(iage==iagemax+3){
           fprintf(ficlog,"Total");
           fprintf(ficresphtmfr,"<tr><th>Total</th> ");
         }else{
           if(first==1){
             first=0;
             printf("See log file for details...\n");
           }
           fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage);
           fprintf(ficlog,"Age %d", iage);
         }
         for(jk=1; jk <=nlstate ; jk++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             pp[jk] += freq[jk][m][iage]; 
         }
         for(jk=1; jk <=nlstate ; jk++){
           for(m=-1, pos=0; m <=0 ; m++)
             pos += freq[jk][m][iage];
           if(pp[jk]>=1.e-10){
             if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           }else{
             if(first==1)
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           }
         }
         
         for(jk=1; jk <=nlstate ; jk++){ 
           /* posprop[jk]=0; */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */
             pp[jk] += freq[jk][m][iage];
         } /* pp[jk] is the total number of transitions starting from state jk and any ending status until this age */
         
         for(jk=1,pos=0, pospropta=0.; jk <=nlstate ; jk++){
           pos += pp[jk]; /* pos is the total number of transitions until this age */
           posprop[jk] += prop[jk][iage]; /* prop is the number of transitions from a live state
                                             from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
           pospropta += prop[jk][iage]; /* prop is the number of transitions from a live state
                                           from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
         }
         for(jk=1; jk <=nlstate ; jk++){
           if(pos>=1.e-5){
             if(first==1)
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           }else{
             if(first==1)
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           }
           if( iage <= iagemax){
             if(pos>=1.e-5){
               fprintf(ficresp," %d %.5f %.0f %.0f",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);
               fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);
               /*probs[iage][jk][j1]= pp[jk]/pos;*/
               /*printf("\niage=%d jk=%d j1=%d %.5f %.0f %.0f %f",iage,jk,j1,pp[jk]/pos, pp[jk],pos,probs[iage][jk][j1]);*/
             }
             else{
               fprintf(ficresp," %d NaNq %.0f %.0f",iage,prop[jk][iage],pospropta);
               fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[jk][iage],pospropta);
             }
           }
           pospropt[jk] +=posprop[jk];
         } /* end loop jk */
         /* pospropt=0.; */
         for(jk=-1; jk <=nlstate+ndeath; jk++){
           for(m=-1; m <=nlstate+ndeath; m++){
             if(freq[jk][m][iage] !=0 ) { /* minimizing output */
               if(first==1){
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][iage]);
               }
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iage]);
             }
             if(jk!=0 && m!=0)
               fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[jk][m][iage]);
           }
         } /* end loop jk */
         posproptt=0.; 
         for(jk=1; jk <=nlstate; jk++){
           posproptt += pospropt[jk];
         }
         fprintf(ficresphtmfr,"</tr>\n ");
         if(iage <= iagemax){
           fprintf(ficresp,"\n");
           fprintf(ficresphtm,"</tr>\n");
         }
         if(first==1)
           printf("Others in log...\n");
         fprintf(ficlog,"\n");
       } /* end loop age iage */
       fprintf(ficresphtm,"<tr><th>Tot</th>");
       for(jk=1; jk <=nlstate ; jk++){
         if(posproptt < 1.e-5){
           fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[jk],posproptt);   
         }else{
           fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[jk]/posproptt,pospropt[jk],posproptt);    
         }
       }
       fprintf(ficresphtm,"</tr>\n");
       fprintf(ficresphtm,"</table>\n");
       fprintf(ficresphtmfr,"</table>\n");
       if(posproptt < 1.e-5){
         fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
         fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
         fprintf(ficres,"\n  This combination (%d) is not valid and no result will be produced\n\n",j1);
         invalidvarcomb[j1]=1;
       }else{
         fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1);
         invalidvarcomb[j1]=0;
       }
       fprintf(ficresphtmfr,"</table>\n");
     } /* end selected combination of covariate j1 */
     dateintmean=dateintsum/k2cpt; 
     
     fclose(ficresp);
     fclose(ficresphtm);
     fclose(ficresphtmfr);
     free_vector(meanq,1,nqfveff);
     free_matrix(meanqt,1,lastpass,1,nqtveff);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+3+AGEMARGE);
     free_vector(pospropt,1,nlstate);
     free_vector(posprop,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+3+AGEMARGE);
     free_vector(pp,1,nlstate);
     /* End of freqsummary */
   }
   
   /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
    
     int i, m, jk, j1, bool, z1,j, iv;
     int mi; /* Effective wave */
     int iage;
     double agebegin, ageend;
   
     double **prop;
     double posprop; 
     double  y2; /* in fractional years */
     int iagemin, iagemax;
     int first; /** to stop verbosity which is redirected to log file */
   
     iagemin= (int) agemin;
     iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
     
     /*j=cptcoveff;*/
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
     first=1;
     for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */
       for (i=1; i<=nlstate; i++)  
         for(iage=iagemin-AGEMARGE; iage <= iagemax+3+AGEMARGE; iage++)
           prop[i][iage]=0.0;
       printf("Prevalence combination of varying and fixed dummies %d\n",j1);
       /* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */
       fprintf(ficlog,"Prevalence combination of varying and fixed dummies %d\n",j1);
       
       for (i=1; i<=imx; i++) { /* Each individual */
         bool=1;
         /* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */
         for(mi=1; mi<wav[i];mi++){ /* For this wave too look where individual can be counted V4=0 V3=0 */
           m=mw[mi][i];
           /* Tmodelind[z1]=k is the position of the varying covariate in the model, but which # within 1 to ntv? */
           /* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */
           for (z1=1; z1<=cptcoveff; z1++){
             if( Fixed[Tmodelind[z1]]==1){
               iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
               if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */
                 bool=0;
             }else if( Fixed[Tmodelind[z1]]== 0)  /* fixed */
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {
                 bool=0;
               }
           }
           if(bool==1){ /* Otherwise we skip that wave/person */
             agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
             /* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */
             if(m >=firstpass && m <=lastpass){
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+3+AGEMARGE){
                   printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d  m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); 
                   exit(1);
                 }
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */
                   prop[s[m][i]][iagemax+3] += weight[i]; 
                 } /* end valid statuses */ 
               } /* end selection of dates */
             } /* end selection of waves */
           } /* end bool */
         } /* end wave */
       } /* end individual */
       for(i=iagemin; i <= iagemax+3; i++){  
         for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           posprop += prop[jk][i]; 
         } 
         
         for(jk=1; jk <=nlstate ; jk++){       
           if( i <=  iagemax){ 
             if(posprop>=1.e-5){ 
               probs[i][jk][j1]= prop[jk][i]/posprop;
             } else{
               if(first==1){
                 first=0;
                 printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,j1,probs[i][jk][j1]);
               }
             }
           } 
         }/* end jk */ 
       }/* end i */ 
        /*} *//* end i1 */
     } /* end j1 */
     
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+3+AGEMARGE);
   }  /* End of prevalence */
   
   /************* Waves Concatenation ***************/
   
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     */
   
     int i=0, mi=0, m=0, mli=0;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
     int first=0, firstwo=0, firsthree=0, firstfour=0, firstfiv=0;
     int j, k=0,jk, ju, jl;
     double sum=0.;
     first=0;
     firstwo=0;
     firsthree=0;
     firstfour=0;
     jmin=100000;
     jmax=-1;
     jmean=0.;
   
   /* Treating live states */
     for(i=1; i<=imx; i++){  /* For simple cases and if state is death */
       mi=0;  /* First valid wave */
       mli=0; /* Last valid wave */
       m=firstpass;
       while(s[m][i] <= nlstate){  /* a live state */
         if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */
           mli=m-1;/* mw[++mi][i]=m-1; */
         }else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */
           mw[++mi][i]=m;
           mli=m;
         } /* else might be a useless wave  -1 and mi is not incremented and mw[mi] not updated */
         if(m < lastpass){ /* m < lastpass, standard case */
           m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */
         }
         else{ /* m >= lastpass, eventual special issue with warning */
   #ifdef UNKNOWNSTATUSNOTCONTRIBUTING
           break;
   #else
           if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){
             if(firsthree == 0){
               printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
               firsthree=1;
             }
             fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
             mw[++mi][i]=m;
             mli=m;
           }
           if(s[m][i]==-2){ /* Vital status is really unknown */
             nbwarn++;
             if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified? */
               printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
               fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
             }
             break;
           }
           break;
   #endif
         }/* End m >= lastpass */
       }/* end while */
   
       /* mi is the last effective wave, m is lastpass, mw[j][i] gives the # of j-th effective wave for individual i */
       /* After last pass */
   /* Treating death states */
       if (s[m][i] > nlstate){  /* In a death state */
         /* if( mint[m][i]==mdc[m][i] && anint[m][i]==andc[m][i]){ /\* same date of death and date of interview *\/ */
         /* } */
         mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
         /* Only death is a correct wave */
         mw[mi][i]=m;
       }
   #ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE
       else if ((int) andc[i] != 9999) { /* Status is negative. A death occured after lastpass, we can't take it into account because of potential bias */
         /* m++; */
         /* mi++; */
         /* s[m][i]=nlstate+1;  /\* We are setting the status to the last of non live state *\/ */
         /* mw[mi][i]=m; */
         if ((int)anint[m][i]!= 9999) { /* date of last interview is known */
           if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* death occured before last wave and status should have been death instead of -1 */
             nbwarn++;
             if(firstfiv==0){
               printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
               firstfiv=1;
             }else{
               fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
             }
           }else{ /* Death occured afer last wave potential bias */
             nberr++;
             if(firstwo==0){
               printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
               firstwo=1;
             }
             fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
           }
         }else{ /* end date of interview is known */
           /* death is known but not confirmed by death status at any wave */
           if(firstfour==0){
             printf("Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
             firstfour=1;
           }
           fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
         }
       } /* end if date of death is known */
   #endif
       wav[i]=mi; /* mi should be the last effective wave (or mli) */
       /* wav[i]=mw[mi][i]; */
       if(mi==0){
         nbwarn++;
         if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
         }
         if(first==1){
           fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
       } /* end mi==0 */
     } /* End individuals */
     /* wav and mw are no more changed */
           
     
     for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
           dh[mi][i]=1;
         else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
                 nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
               k=k+1;
               if (j >= jmax){
                 jmax=j;
                 ijmax=i;
               }
               if (j <= jmin){
                 jmin=j;
                 ijmin=i;
               }
               sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
           }
           else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
                                           
             k=k+1;
             if (j >= jmax) {
               jmax=j;
               ijmax=i;
             }
             else if (j <= jmin){
               jmin=j;
               ijmin=i;
             }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
               nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
             sum=sum+j;
           }
           jk= j/stepm;
           jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
               dh[mi][i]=jk;
               bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
                     * to avoid the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
           }else{
             if(jl <= -ju){
               dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
                                    */
             }
             else{
               dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
             if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
           } /* end if mle */
         }
       } /* end wave */
     }
     jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   }
   
   /*********** Tricode ****************************/
    void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum)
   {
     /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
      * Boring subroutine which should only output nbcode[Tvar[j]][k]
      * Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable
      * nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually);
     */
   
     int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     int modmaxcovj=0; /* Modality max of covariates j */
     int cptcode=0; /* Modality max of covariates j */
     int modmincovj=0; /* Modality min of covariates j */
   
   
     /* cptcoveff=0;  */
           /* *cptcov=0; */
    
     for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   
     /* Loop on covariates without age and products and no quantitative variable */
     /* for (j=1; j<=(cptcovs); j++) { /\* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only *\/ */
     for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */
       for (j=-1; (j < maxncov); j++) Ndum[j]=0;
       if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ 
         switch(Fixed[k]) {
         case 0: /* Testing on fixed dummy covariate, simple or product of fixed */
                                   for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/
                                           ij=(int)(covar[Tvar[k]][i]);
                                           /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                                            * If product of Vn*Vm, still boolean *:
                                            * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                                            * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
                                           /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                                    modality of the nth covariate of individual i. */
                                           if (ij > modmaxcovj)
                                                   modmaxcovj=ij; 
                                           else if (ij < modmincovj) 
                                                   modmincovj=ij; 
                                           if ((ij < -1) && (ij > NCOVMAX)){
                                                   printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
                                                   exit(1);
                                           }else
                                                   Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
                                           /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
                                           /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                                           /* getting the maximum value of the modality of the covariate
                                                    (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
                                                    female ies 1, then modmaxcovj=1.
                                           */
                                   } /* end for loop on individuals i */
                                   printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
                                   fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
                                   cptcode=modmaxcovj;
                                   /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
                                   /*for (i=0; i<=cptcode; i++) {*/
                                   for (j=modmincovj;  j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */
                                           printf("Frequencies of covariates %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
                                           fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
                                           if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */
                                                   if( j != -1){
                                                           ncodemax[k]++;  /* ncodemax[k]= Number of modalities of the k th
                                                                                                                                    covariate for which somebody answered excluding 
                                                                                                                                    undefined. Usually 2: 0 and 1. */
                                                   }
                                                   ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th
                                                                                                                                                   covariate for which somebody answered including 
                                                                                                                                                   undefined. Usually 3: -1, 0 and 1. */
                                           }       /* In fact  ncodemax[k]=2 (dichotom. variables only) but it could be more for
                                                    * historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
                                   } /* Ndum[-1] number of undefined modalities */
                           
                                   /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
                                   /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */
                                   /* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */
                                   /* modmincovj=3; modmaxcovj = 7; */
                                   /* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */
                                   /* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */
                             /*             defining two dummy variables: variables V1_1 and V1_2.*/
                 /* nbcode[Tvar[j]][ij]=k; */
                 /* nbcode[Tvar[j]][1]=0; */
                 /* nbcode[Tvar[j]][2]=1; */
                 /* nbcode[Tvar[j]][3]=2; */
                 /* To be continued (not working yet). */
                 ij=0; /* ij is similar to i but can jump over null modalities */
                                   for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
             if (Ndum[i] == 0) { /* If nobody responded to this modality k */
                     break;
                   }
                                           ij++;
                                           nbcode[Tvar[k]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1*/
                                           cptcode = ij; /* New max modality for covar j */
                                   } /* end of loop on modality i=-1 to 1 or more */
                                   break;
         case 1: /* Testing on varying covariate, could be simple and
                  * should look at waves or product of fixed *
                  * varying. No time to test -1, assuming 0 and 1 only */
                                   ij=0;
                                   for(i=0; i<=1;i++){
                                           nbcode[Tvar[k]][++ij]=i;
                                   }
                                   break;
         default:
                                   break;
         } /* end switch */
       } /* end dummy test */
       
       /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
       /*  /\*recode from 0 *\/ */
       /*                               k is a modality. If we have model=V1+V1*sex  */
       /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
       /*  } */
       /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
       /*  if (ij > ncodemax[j]) { */
       /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
       /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
       /*    break; */
       /*  } */
       /*   }  /\* end of loop on modality k *\/ */
     } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
     for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     /* Look at fixed dummy (single or product) covariates to check empty modalities */
     for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
       /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
       ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ 
       Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */
       /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1,  {2, 1, 1, 1, 2, 1, 1, 0, 0} */
     } /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */
     
     ij=0;
     /* for (i=0; i<=  maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */
     for (k=1; k<=  cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
       /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
       /* if((Ndum[i]!=0) && (i<=ncovcol)){  /\* Tvar[i] <= ncovmodel ? *\/ */
       if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){  /* Only Dummy and non empty in the model */
         /* If product not in single variable we don't print results */
         /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
         ++ij;/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, */
         Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/
         Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */
         TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */
         if(Fixed[k]!=0)
           anyvaryingduminmodel=1;
                           /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */
                           /*   Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */
                           /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */
                           /*   Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */
                           /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */
                           /*   Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */
       } 
     } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */
     /* ij--; */
     /* cptcoveff=ij; /\*Number of total covariates*\/ */
     *cptcov=ij; /*Number of total real effective covariates: effective
                                                            * because they can be excluded from the model and real
                                                            * if in the model but excluded because missing values, but how to get k from ij?*/
     for(j=ij+1; j<= cptcovt; j++){
       Tvaraff[j]=0;
       Tmodelind[j]=0;
     }
     for(j=ntveff+1; j<= cptcovt; j++){
       TmodelInvind[j]=0;
     }
     /* To be sorted */
     ;
   }
   
   
   /*********** Health Expectancies ****************/
   
    void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[], int nres )
   
   {
     /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3mat;
     double eip;
   
     /* pstamp(ficreseij); */
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
       }
       fprintf(ficreseij," e%1d. ",i);
     }
     fprintf(ficreseij,"\n");
   
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
    void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[], int nres )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
        to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij, nres);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij, nres);  
                           
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
                           
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
                   
       for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
                   
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
                   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
                                           
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                                           
           }
                   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
                   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
                   
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
           
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
    
   /************ Variance ******************/
    void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres)
    {
      /* Variance of health expectancies */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
      /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
      /* int movingaverage(); */
      double **dnewm,**doldm;
      double **dnewmp,**doldmp;
      int i, j, nhstepm, hstepm, h, nstepm ;
      int k;
      double *xp;
      double **gp, **gm;  /* for var eij */
      double ***gradg, ***trgradg; /*for var eij */
      double **gradgp, **trgradgp; /* for var p point j */
      double *gpp, *gmp; /* for var p point j */
      double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      double ***p3mat;
      double age,agelim, hf;
      /* double ***mobaverage; */
      int theta;
      char digit[4];
      char digitp[25];
   
      char fileresprobmorprev[FILENAMELENGTH];
   
      if(popbased==1){
        if(mobilav!=0)
          strcpy(digitp,"-POPULBASED-MOBILAV_");
        else strcpy(digitp,"-POPULBASED-NOMOBIL_");
      }
      else 
        strcpy(digitp,"-STABLBASED_");
   
      /* if (mobilav!=0) { */
      /*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
      /*   if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */
      /*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */
      /*     printf(" Error in movingaverage mobilav=%d\n",mobilav); */
      /*   } */
      /* } */
   
      strcpy(fileresprobmorprev,"PRMORPREV-"); 
      sprintf(digit,"%-d",ij);
      /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      strcat(fileresprobmorprev,digit); /* Tvar to be done */
      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      strcat(fileresprobmorprev,fileresu);
      if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobmorprev);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
      printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      pstamp(ficresprobmorprev);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies");
      for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
        fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
      }
      for(j=1;j<=cptcoveff;j++) 
        fprintf(ficresprobmorprev,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,j)]);
      fprintf(ficresprobmorprev,"\n");
   
      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficresprobmorprev," p.%-d SE",j);
        for(i=1; i<=nlstate;i++)
          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      }  
      fprintf(ficresprobmorprev,"\n");
     
      fprintf(ficgp,"\n# Routine varevsij");
      fprintf(ficgp,"\nunset title \n");
      /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
      /*   } */
      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      pstamp(ficresvij);
      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
      if(popbased==1)
        fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
      else
        fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
      fprintf(ficresvij,"# Age");
      for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++)
          fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
      fprintf(ficresvij,"\n");
   
      xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
      gmp=vector(nlstate+1,nlstate+ndeath);
      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
      if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
      }
      else  hstepm=estepm;   
      /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelim. 
         Look at function hpijx to understand why because of memory size limitations, 
         we decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
      */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
        gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
                   
                   
        for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
                           
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nresult);
                           
          if (popbased==1) {
            if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
            }
          }
                           
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  /* Returns p3mat[i][j][h] for h=1 to nhstepm */
          for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
          }
          /* Next for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
          */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
          /* end probability of death */
                           
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
                           
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nresult);
                           
          if (popbased==1) {
            if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
            }
          }
                           
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  
                           
          for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
            for(h=0; h<=nhstepm; h++){
              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
          }
          /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
          */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gmp[j]=0.; i<= nlstate; i++)
              gmp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
          /* end probability of death */
                           
          for(j=1; j<= nlstate; j++) /* vareij */
            for(h=0; h<=nhstepm; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            }
                           
          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          }
                           
        } /* End theta */
                   
        trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   
        for(h=0; h<=nhstepm; h++) /* veij */
          for(j=1; j<=nlstate;j++)
            for(theta=1; theta <=npar; theta++)
              trgradg[h][j][theta]=gradg[h][theta][j];
                   
        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
          for(theta=1; theta <=npar; theta++)
            trgradgp[j][theta]=gradgp[theta][j];
                   
                   
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
            vareij[i][j][(int)age] =0.;
                   
        for(h=0;h<=nhstepm;h++){
          for(k=0;k<=nhstepm;k++){
            matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
            for(i=1;i<=nlstate;i++)
              for(j=1;j<=nlstate;j++)
                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
        }
                   
        /* pptj */
        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        for(j=nlstate+1;j<=nlstate+ndeath;j++)
          for(i=nlstate+1;i<=nlstate+ndeath;i++)
            varppt[j][i]=doldmp[j][i];
        /* end ppptj */
        /*  x centered again */
                   
        prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij, nresult);
                   
        if (popbased==1) {
          if(mobilav ==0){
            for(i=1; i<=nlstate;i++)
              prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
            for(i=1; i<=nlstate;i++)
              prlim[i][i]=mobaverage[(int)age][i][ij];
          }
        }
                   
        /* This for computing probability of death (h=1 means
           computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           as a weighted average of prlim.
        */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij, nres);  
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
        }    
        /* end probability of death */
                   
        fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
          for(i=1; i<=nlstate;i++){
            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
        } 
        fprintf(ficresprobmorprev,"\n");
                   
        fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
            fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
        fprintf(ficresvij,"\n");
        free_matrix(gp,0,nhstepm,1,nlstate);
        free_matrix(gm,0,nhstepm,1,nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      } /* End age */
      free_vector(gpp,nlstate+1,nlstate+ndeath);
      free_vector(gmp,nlstate+1,nlstate+ndeath);
      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
      fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
      /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
      fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
      fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
      /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
      /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
      /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
       */
      /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
      fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   
      free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,nlstate);
      free_matrix(dnewm,1,nlstate,1,npar);
      free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
      fclose(ficresprobmorprev);
      fflush(ficgp);
      fflush(fichtm); 
    }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[], int nres)
   {
     /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mgm, **mgp;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       mgp=matrix(1,npar,1,nlstate);
       mgm=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
         else
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
         for(i=1;i<=nlstate;i++){
           gp[i] = prlim[i][i];
           mgp[theta][i] = prlim[i][i];
         }
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
         else
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
         for(i=1;i<=nlstate;i++){
           gm[i] = prlim[i][i];
           mgm[theta][i] = prlim[i][i];
         }
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\nmgm mgp %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf(" %d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\n gradg %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf("%d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf("%d %lf ",theta,gradg[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       if((int)age==79 ||(int)age== 80  ||(int)age== 81){
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }else{
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(mgm,1,npar,1,nlstate);
       free_matrix(mgp,1,npar,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
    {
      int i, j=0,  k1, l1, tj;
      int k2, l2, j1,  z1;
      int k=0, l;
      int first=1, first1, first2;
      double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      double **dnewm,**doldm;
      double *xp;
      double *gp, *gm;
      double **gradg, **trgradg;
      double **mu;
      double age, cov[NCOVMAX+1];
      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      int theta;
      char fileresprob[FILENAMELENGTH];
      char fileresprobcov[FILENAMELENGTH];
      char fileresprobcor[FILENAMELENGTH];
      double ***varpij;
   
      strcpy(fileresprob,"PROB_"); 
      strcat(fileresprob,fileres);
      if((ficresprob=fopen(fileresprob,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprob);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
      }
      strcpy(fileresprobcov,"PROBCOV_"); 
      strcat(fileresprobcov,fileresu);
      if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcov);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      }
      strcpy(fileresprobcor,"PROBCOR_"); 
      strcat(fileresprobcor,fileresu);
      if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcor);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
      }
      printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      pstamp(ficresprob);
      fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      fprintf(ficresprob,"# Age");
      pstamp(ficresprobcov);
      fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
      fprintf(ficresprobcov,"# Age");
      pstamp(ficresprobcor);
      fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
      fprintf(ficresprobcor,"# Age");
   
   
      for(i=1; i<=nlstate;i++)
        for(j=1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprob," p%1d-%1d (SE)",i,j);
          fprintf(ficresprobcov," p%1d-%1d ",i,j);
          fprintf(ficresprobcor," p%1d-%1d ",i,j);
        }  
      /* fprintf(ficresprob,"\n");
         fprintf(ficresprobcov,"\n");
         fprintf(ficresprobcor,"\n");
      */
      xp=vector(1,npar);
      dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
      varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      first=1;
      fprintf(ficgp,"\n# Routine varprob");
      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
      fprintf(fichtm,"\n");
   
      fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
      fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
      fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
      fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
      cov[1]=1;
      /* tj=cptcoveff; */
      tj = (int) pow(2,cptcoveff);
      if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      j1=0;
      for(j1=1; j1<=tj;j1++){  /* For each valid combination of covariates or only once*/
        if  (cptcovn>0) {
          fprintf(ficresprob, "\n#********** Variable "); 
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
          fprintf(ficresprob, "**********\n#\n");
          fprintf(ficresprobcov, "\n#********** Variable "); 
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
          fprintf(ficresprobcov, "**********\n#\n");
                           
          fprintf(ficgp, "\n#********** Variable "); 
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
          fprintf(ficgp, "**********\n#\n");
                           
                           
          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                           
          fprintf(ficresprobcor, "\n#********** Variable ");    
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
          fprintf(ficresprobcor, "**********\n#");    
          if(invalidvarcomb[j1]){
            fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); 
            fprintf(fichtmcov,"\n<h3>Combination (%d) ignored because no cases </h3>\n",j1); 
            continue;
          }
        }
        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
        gp=vector(1,(nlstate)*(nlstate+ndeath));
        gm=vector(1,(nlstate)*(nlstate+ndeath));
        for (age=bage; age<=fage; age ++){ 
          cov[2]=age;
          if(nagesqr==1)
            cov[3]= age*age;
          for (k=1; k<=cptcovn;k++) {
            cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
            /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                                                                       * 1  1 1 1 1
                                                                       * 2  2 1 1 1
                                                                       * 3  1 2 1 1
                                                                       */
            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
          }
          /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
          for (k=1; k<=cptcovprod;k++)
            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
                           
                           
          for(theta=1; theta <=npar; theta++){
            for(i=1; i<=npar; i++)
              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                                   
            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                                   
            k=0;
            for(i=1; i<= (nlstate); i++){
              for(j=1; j<=(nlstate+ndeath);j++){
                k=k+1;
                gp[k]=pmmij[i][j];
              }
            }
                                   
            for(i=1; i<=npar; i++)
              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
                                   
            pmij(pmmij,cov,ncovmodel,xp,nlstate);
            k=0;
            for(i=1; i<=(nlstate); i++){
              for(j=1; j<=(nlstate+ndeath);j++){
                k=k+1;
                gm[k]=pmmij[i][j];
              }
            }
                                   
            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
          }
   
          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
            for(theta=1; theta <=npar; theta++)
              trgradg[j][theta]=gradg[theta][j];
                           
          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
                           
          pmij(pmmij,cov,ncovmodel,x,nlstate);
                           
          k=0;
          for(i=1; i<=(nlstate); i++){
            for(j=1; j<=(nlstate+ndeath);j++){
              k=k+1;
              mu[k][(int) age]=pmmij[i][j];
            }
          }
          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
              varpij[i][j][(int)age] = doldm[i][j];
                           
          /*printf("\n%d ",(int)age);
            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
            }*/
                           
          fprintf(ficresprob,"\n%d ",(int)age);
          fprintf(ficresprobcov,"\n%d ",(int)age);
          fprintf(ficresprobcor,"\n%d ",(int)age);
                           
          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
          }
          i=0;
          for (k=1; k<=(nlstate);k++){
            for (l=1; l<=(nlstate+ndeath);l++){ 
              i++;
              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
              for (j=1; j<=i;j++){
                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
              }
            }
          }/* end of loop for state */
        } /* end of loop for age */
        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       
        /* Confidence intervalle of pij  */
        /*
          fprintf(ficgp,"\nunset parametric;unset label");
          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
        */
                   
        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
        first1=1;first2=2;
        for (k2=1; k2<=(nlstate);k2++){
          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
            if(l2==k2) continue;
            j=(k2-1)*(nlstate+ndeath)+l2;
            for (k1=1; k1<=(nlstate);k1++){
              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                if(l1==k1) continue;
                i=(k1-1)*(nlstate+ndeath)+l1;
                if(i<=j) continue;
                for (age=bage; age<=fage; age ++){ 
                  if ((int)age %5==0){
                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                    mu1=mu[i][(int) age]/stepm*YEARM ;
                    mu2=mu[j][(int) age]/stepm*YEARM;
                    c12=cv12/sqrt(v1*v2);
                    /* Computing eigen value of matrix of covariance */
                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                    if ((lc2 <0) || (lc1 <0) ){
                      if(first2==1){
                        first1=0;
                        printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                      }
                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
                      /* lc2=fabs(lc2); */
                    }
                                                                   
                    /* Eigen vectors */
                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                    /*v21=sqrt(1.-v11*v11); *//* error */
                    v21=(lc1-v1)/cv12*v11;
                    v12=-v21;
                    v22=v11;
                    tnalp=v21/v11;
                    if(first1==1){
                      first1=0;
                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                    }
                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                    /*printf(fignu*/
                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                    if(first==1){
                      first=0;
                      fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                      fprintf(ficgp,"\nset parametric;unset label");
                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                      fprintf(ficgp,"\nset ter svg size 640, 480");
                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">                                                                                                                                           \
   %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
                              subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,      \
                              subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                      fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                      fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",      \
                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),                                                                         \
                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                    }else{
                      first=0;
                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \
                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),                                 \
                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                    }/* if first */
                  } /* age mod 5 */
                } /* end loop age */
                fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                first=1;
              } /*l12 */
            } /* k12 */
          } /*l1 */
        }/* k1 */
      }  /* loop on combination of covariates j1 */
      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
      free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
      free_vector(xp,1,npar);
      fclose(ficresprob);
      fclose(ficresprobcov);
      fclose(ficresprobcor);
      fflush(ficgp);
      fflush(fichtmcov);
    }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int prevfcast, int backcast, int estepm , \
                     double jprev1, double mprev1,double anprev1, double dateprev1, \
                     double jprev2, double mprev2,double anprev2, double dateprev2){
     int jj1, k1, i1, cpt, k4, nres;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li> model=1+age+%s\n \
   </ul>", model);
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");
      fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
      fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
      fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
      fprintf(fichtm,"\
    - Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
      fprintf(fichtm,"\
    - Period (stable) back prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
      if(prevfcast==1){
        fprintf(fichtm,"\
    - Prevalence projections by age and states:                            \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
      }
   
      fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
      m=pow(2,cptcoveff);
      if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
      jj1=0;
   
      for(nres=1; nres <= nresult; nres++) /* For each resultline */
      for(k1=1; k1<=m;k1++){
        if(TKresult[nres]!= k1)
          continue;
   
        /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]);
            printf(" V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);fflush(stdout);
            /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
            /* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */
          }
          for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);fflush(stdout);
         }
          
          /* if(nqfveff+nqtveff 0) */ /* Test to be done */
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
          if(invalidvarcomb[k1]){
            fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); 
            printf("\nCombination (%d) ignored because no cases \n",k1); 
            continue;
          }
        }
        /* aij, bij */
        fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
   <img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
        /* Pij */
        fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
   <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \
    incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
   divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
   <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
        /* Survival functions (period) in state j */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
        }
        /* State specific survival functions (period) */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\
    Or probability to survive in various states (1 to %d) being in state %d at different ages.     \
    <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
        }
        /* Period (stable) prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
        }
        if(backcast==1){
          /* Period (stable) back prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>\n- Convergence to period (stable) back prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1);
          }
        }
        if(prevfcast==1){
          /* Projection of prevalence up to period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1);
          }
        }
            
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \
   <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
        }
        /* } /\* end i1 *\/ */
      }/* End k1 */
      fprintf(fichtm,"</ul>");
   
      fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
   But because parameters are usually highly correlated (a higher incidence of disability \
   and a higher incidence of recovery can give very close observed transition) it might \
   be very useful to look not only at linear confidence intervals estimated from the \
   variances but at the covariance matrix. And instead of looking at the estimated coefficients \
   (parameters) of the logistic regression, it might be more meaningful to visualize the \
   covariance matrix of the one-step probabilities. \
   See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
   
      fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
      fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
   
      fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
      fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
      fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
      fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
              estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
      fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
              estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
      fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
              subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
      fflush(fichtm);
      fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
      m=pow(2,cptcoveff);
      if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
      jj1=0;
   
      for(nres=1; nres <= nresult; nres++) /* For each resultline */
      for(k1=1; k1<=m;k1++){
        if(TKresult[nres]!= k1)
          continue;
        /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++)  /**< cptcoveff number of variables */
            fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);
            /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
          for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         }
   
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   
          if(invalidvarcomb[k1]){
            fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); 
            continue;
          }
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d.svg\"> %s_%d-%d.svg</a>\n <br>\
   <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences:  <a href=\"%s_%d.svg\">%s_%d.svg</a>\n<br>\
   <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
        /* } /\* end i1 *\/ */
      }/* End k1 */
      fprintf(fichtm,"</ul>");
      fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, int backcast, char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     char gplotcondition[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,ij=0, ijp=0, l=0;
     int lv=0, vlv=0, kl=0;
     int ng=0;
     int vpopbased;
     int ioffset; /* variable offset for columns */
     int nres=0; /* Index of resultline */
   
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
     /*#endif */
     m=pow(2,cptcoveff);
   
     /* Contribution to likelihood */
     /* Plot the probability implied in the likelihood */
     fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
     /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
     fprintf(ficgp,"\nset ter pngcairo size 640, 480");
   /* nice for mle=4 plot by number of matrix products.
      replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
   /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
     /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
     fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
     fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
     fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
     fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
     for (i=1; i<= nlstate ; i ++) {
       fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
       fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
       fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
       for (j=2; j<= nlstate+ndeath ; j ++) {
         fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
       }
       fprintf(ficgp,";\nset out; unset ylabel;\n"); 
     }
     /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */                
     /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
     /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
     fprintf(ficgp,"\nset out;unset log\n");
     /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */
       for (k1=1; k1<= m ; k1 ++){ /* For each valid combination of covariate */
         for(nres=1; nres <= nresult; nres++){ /* For each resultline */
           /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
           if(TKresult[nres]!= k1)
             continue;
           /* We are interested in selected combination by the resultline */
           printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt);
           fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files  and live state =%d ", cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate k get corresponding value lv for combination k1 */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */
             /* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */
             printf(" V%d=%d ",Tvaraff[k],vlv);
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           printf("\n#\n");
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
         
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
           fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
         
           for (i=1; i<= nlstate ; i ++) {
             if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
             else        fprintf(ficgp," %%*lf (%%*lf)");
           }
           fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
           for (i=1; i<= nlstate ; i ++) {
             if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           } 
           fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
           for (i=1; i<= nlstate ; i ++) {
             if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }  
           fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
           if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */
             /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */
             fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1 */
             if(cptcoveff ==0){
               fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line ",        2+(cpt-1),  cpt );
             }else{
               kl=0;
               for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
                 lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
                 /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                 /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                 /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                 vlv= nbcode[Tvaraff[k]][lv];
                 kl++;
                 /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                 /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                 /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                 /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                 if(k==cptcoveff){
                   fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
                           4+(cpt-1),  cpt );  /* 4 or 6 ?*/
                 }else{
                   fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);
                   kl++;
                 }
               } /* end covariate */
             } /* end if no covariate */
           } /* end if backcast */
           fprintf(ficgp,"\nset out \n");
         } /* nres */
       } /* k1 */
     } /* cpt */
   
     
     /*2 eme*/
     for (k1=1; k1<= m ; k1 ++){  
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(TKresult[nres]!= k1)
           continue;
         fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[k]][lv];
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
         }
         /* for(k=1; k <= ncovds; k++){ */
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         }
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         }
                           
         fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
           if(vpopbased==0)
             fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
           else
             fprintf(ficgp,"\nreplot ");
           for (i=1; i<= nlstate+1 ; i ++) {
             k=2*i;
             fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
             for (j=1; j<= nlstate+1 ; j ++) {
               if (j==i) fprintf(ficgp," %%lf (%%lf)");
               else fprintf(ficgp," %%*lf (%%*lf)");
             }   
             if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
             else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
             fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
             for (j=1; j<= nlstate+1 ; j ++) {
               if (j==i) fprintf(ficgp," %%lf (%%lf)");
               else fprintf(ficgp," %%*lf (%%*lf)");
             }   
             fprintf(ficgp,"\" t\"\" w l lt 0,");
             fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
             for (j=1; j<= nlstate+1 ; j ++) {
               if (j==i) fprintf(ficgp," %%lf (%%lf)");
               else fprintf(ficgp," %%*lf (%%*lf)");
             }   
             if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
             else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
           } /* state */
         } /* vpopbased */
         fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
       } /* end nres */
     } /* k1 end 2 eme*/
           
           
     /*3eme*/
     for (k1=1; k1<= m ; k1 ++){
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(TKresult[nres]!= k1)
           continue;
   
         for (cpt=1; cpt<= nlstate ; cpt ++) {
           fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files:  combination=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
                           
           /*       k=2+nlstate*(2*cpt-2); */
           k=2+(nlstate+1)*(cpt-1);
           fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
           fprintf(ficgp,"set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
           /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
             fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                                   
           */
           for (i=1; i< nlstate ; i ++) {
             fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
             /*    fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                                   
           } 
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
         }
       } /* end nres */
     } /* end kl 3eme */
     
     /* 4eme */
     /* Survival functions (period) from state i in state j by initial state i */
     for (k1=1; k1<=m; k1++){    /* For each covariate and each value */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/
           fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
         
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
           k=3;
           for (i=1; i<= nlstate ; i ++){
             if(i==1){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
             }else{
               fprintf(ficgp,", '' ");
             }
             l=(nlstate+ndeath)*(i-1)+1;
             fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
             for (j=2; j<= nlstate+ndeath ; j ++)
               fprintf(ficgp,"+$%d",k+l+j-1);
             fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
           } /* nlstate */
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/ 
       } /* end nres */
     } /* end covariate k1 */  
   
   /* 5eme */
     /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1++){ /* For each covariate combination if any */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
           fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
         
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
           k=3;
           for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
             if(j==1)
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
             else
               fprintf(ficgp,", '' ");
             l=(nlstate+ndeath)*(cpt-1) +j;
             fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
             /* for (i=2; i<= nlstate+ndeath ; i ++) */
             /*   fprintf(ficgp,"+$%d",k+l+i-1); */
             fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
           } /* nlstate */
           fprintf(ficgp,", '' ");
           fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
           for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
             l=(nlstate+ndeath)*(cpt-1) +j;
             if(j < nlstate)
               fprintf(ficgp,"$%d +",k+l);
             else
               fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
           }
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/ 
       } /* end covariate */  
     } /* end nres */
     
   /* 6eme */
     /* CV preval stable (period) for each covariate */
     for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       if(TKresult[nres]!= k1)
         continue;
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[k]][lv];
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
         }
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         } 
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         }
         
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3; /* Offset */
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     
   /* 7eme */
     if(backcast == 1){
       /* CV back preval stable (period) for each covariate */
       for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           fprintf(ficgp,"\n#\n#\n#CV Back preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
           
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
           k=3; /* Offset */
           for (i=1; i<= nlstate ; i ++){
             if(i==1)
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_"));
             else
               fprintf(ficgp,", '' ");
             /* l=(nlstate+ndeath)*(i-1)+1; */
             l=(nlstate+ndeath)*(cpt-1)+1;
             /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */
             /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */
             fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+(cpt-1)+i-1); /* a vérifier */
             /* for (j=2; j<= nlstate ; j ++) */
             /*    fprintf(ficgp,"+$%d",k+l+j-1); */
             /*    /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */
             fprintf(ficgp,") t \"bprev(%d,%d)\" w l",i,cpt);
           } /* nlstate */
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/ 
       } /* end covariate */  
     } /* End if backcast */
     
     /* 8eme */
     if(prevfcast==1){
       /* Projection from cross-sectional to stable (period) for each covariate */
       
       for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
           
           fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
           for (i=1; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
             /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             if(i==1){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
             }else{
               fprintf(ficgp,",\\\n '' ");
             }
             if(cptcoveff ==0){ /* No covariate */
               ioffset=2; /* Age is in 2 */
               /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               fprintf(ficgp," u %d:(", ioffset); 
               if(i==nlstate+1)
                 fprintf(ficgp," $%d/(1.-$%d)) t 'pw.%d' with line ",      \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
               else
                 fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ",      \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
             }else{ /* more than 2 covariates */
               if(cptcoveff ==1){
                 ioffset=4; /* Age is in 4 */
               }else{
                 ioffset=6; /* Age is in 6 */
                 /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                 /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
               }   
               fprintf(ficgp," u %d:(",ioffset); 
               kl=0;
               strcpy(gplotcondition,"(");
               for (k=1; k<=cptcoveff; k++){    /* For each covariate writing the chain of conditions */
                 lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */
                 /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                 /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                 /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                 vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */
                 kl++;
                 sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]);
                 kl++;
                 if(k <cptcoveff && cptcoveff>1)
                   sprintf(gplotcondition+strlen(gplotcondition)," && ");
               }
               strcpy(gplotcondition+strlen(gplotcondition),")");
               /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
               /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
               /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
               /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
               if(i==nlstate+1){
                 fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
               }else{
                 fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt );
               }
             } /* end if covariate */
           } /* nlstate */
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/
       } /* end covariate */
     } /* End if prevfcast */
     
     
     /* 9eme writing MLE parameters */
     fprintf(ficgp,"\n##############\n#9eme MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
     }
     fprintf(ficgp,"##############\n#\n");
     
     /*goto avoid;*/
     /* 10eme Graphics of probabilities or incidences using written MLE parameters */
     fprintf(ficgp,"\n##############\n#10eme Graphics of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
     for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
       fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n");
       fprintf(ficgp,"#model=%s \n",model);
       fprintf(ficgp,"# Type of graphic ng=%d\n",ng);
       fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);/* to be checked */
       for(jk=1; jk <=m; jk++)  /* For each combination of covariate */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(TKresult[nres]!= jk)
           continue;
         fprintf(ficgp,"# Combination of dummy  jk=%d and ",jk);
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         } 
         fprintf(ficgp,"\n#\n");
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
         fprintf(ficgp,"\nset ter svg size 640, 480 ");
         if (ng==1){
           fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
           fprintf(ficgp,"\nunset log y");
         }else if (ng==2){
           fprintf(ficgp,"\nset ylabel \"Probability\"\n");
           fprintf(ficgp,"\nset log y");
         }else if (ng==3){
           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           fprintf(ficgp,"\nset log y");
         }else
           fprintf(ficgp,"\nunset title ");
         fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
         i=1;
         for(k2=1; k2<=nlstate; k2++) {
           k3=i;
           for(k=1; k<=(nlstate+ndeath); k++) {
             if (k != k2){
               switch( ng) {
               case 1:
                 if(nagesqr==0)
                   fprintf(ficgp," p%d+p%d*x",i,i+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                 break;
               case 2: /* ng=2 */
                 if(nagesqr==0)
                   fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                 break;
               case 3:
                 if(nagesqr==0)
                   fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                 break;
               }
               ij=1;/* To be checked else nbcode[0][0] wrong */
               ijp=1; /* product no age */
               /* for(j=3; j <=ncovmodel-nagesqr; j++) { */
               for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */
                 /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                 if(j==Tage[ij]) { /* Product by age */
                   if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */
                     if(DummyV[j]==0){
                       fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);;
                     }else{ /* quantitative */
                       fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */
                       /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                     }
                     ij++;
                   }
                 }else if(j==Tprod[ijp]) { /* */ 
                   /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
                   if(ijp <=cptcovprod) { /* Product */
                     if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */
                       if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */
                         /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(jk,j)],nbcode[Tvard[ijp][2]][codtabm(jk,j)]); */
                         fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);
                       }else{ /* Vn is dummy and Vm is quanti */
                         /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(jk,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
                         fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                       }
                     }else{ /* Vn*Vm Vn is quanti */
                       if(DummyV[Tvard[ijp][2]]==0){
                         fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]);
                       }else{ /* Both quanti */
                         fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                       }
                     }
                     ijp++;
                   }
                 } else{  /* simple covariate */
                   /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(jk,j)]); /\* Valgrind bug nbcode *\/ */
                   if(Dummy[j]==0){
                     fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /*  */
                   }else{ /* quantitative */
                     fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */
                     /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                   }
                 } /* end simple */
               } /* end j */
             }else{
               i=i-ncovmodel;
               if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */
                 fprintf(ficgp," (1.");
             }
             
             if(ng != 1){
               fprintf(ficgp,")/(1");
               
               for(k1=1; k1 <=nlstate; k1++){ 
                 if(nagesqr==0)
                   fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
                  
                 ij=1;
                 for(j=3; j <=ncovmodel-nagesqr; j++){
                   if((j-2)==Tage[ij]) { /* Bug valgrind */
                     if(ij <=cptcovage) { /* Bug valgrind */
                       fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                       /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                       ij++;
                     }
                   }
                   else
                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);/* Valgrind bug nbcode */
                 }
                 fprintf(ficgp,")");
               }
               fprintf(ficgp,")");
               if(ng ==2)
                 fprintf(ficgp," t \"p%d%d\" ", k2,k);
               else /* ng= 3 */
                 fprintf(ficgp," t \"i%d%d\" ", k2,k);
             }else{ /* end ng <> 1 */
               if( k !=k2) /* logit p11 is hard to draw */
                 fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
             }
             if ((k+k2)!= (nlstate*2+ndeath) && ng != 1)
               fprintf(ficgp,",");
             if (ng == 1 && k!=k2 && (k+k2)!= (nlstate*2+ndeath))
               fprintf(ficgp,",");
             i=i+ncovmodel;
           } /* end k */
         } /* end k2 */
         fprintf(ficgp,"\n set out\n");
       } /* end jk */
     } /* end ng */
     /* avoid: */
     fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   /* int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav, double bageout, double fageout){ */
    int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav){
      
      int i, cpt, cptcod;
      int modcovmax =1;
      int mobilavrange, mob;
      int iage=0;
   
      double sum=0.;
      double age;
      double *sumnewp, *sumnewm;
      double *agemingood, *agemaxgood; /* Currently identical for all covariates */
     
     
      /* modcovmax=2*cptcoveff;/\* Max number of modalities. We suppose  */
      /*              a covariate has 2 modalities, should be equal to ncovcombmax  *\/ */
   
      sumnewp = vector(1,ncovcombmax);
      sumnewm = vector(1,ncovcombmax);
      agemingood = vector(1,ncovcombmax);  
      agemaxgood = vector(1,ncovcombmax);
   
      for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
        sumnewm[cptcod]=0.;
        sumnewp[cptcod]=0.;
        agemingood[cptcod]=0;
        agemaxgood[cptcod]=0;
      }
      if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */
     
      if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
        if(mobilav==1) mobilavrange=5; /* default */
        else mobilavrange=mobilav;
        for (age=bage; age<=fage; age++)
          for (i=1; i<=nlstate;i++)
            for (cptcod=1;cptcod<=ncovcombmax;cptcod++)
              mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
        /* We keep the original values on the extreme ages bage, fage and for 
           fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           we use a 5 terms etc. until the borders are no more concerned. 
        */ 
        for (mob=3;mob <=mobilavrange;mob=mob+2){
          for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
            for (i=1; i<=nlstate;i++){
              for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
                mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                }
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
              }
            }
          }/* end age */
        }/* end mob */
      }else
        return -1;
      for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
        /* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */
        if(invalidvarcomb[cptcod]){
          printf("\nCombination (%d) ignored because no cases \n",cptcod); 
          continue;
        }
   
        agemingood[cptcod]=fage-(mob-1)/2;
        for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, finding the youngest wrong */
          sumnewm[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
          }
          if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
            agemingood[cptcod]=age;
          }else{ /* bad */
            for (i=1; i<=nlstate;i++){
              mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
            } /* i */
          } /* end bad */
        }/* age */
        sum=0.;
        for (i=1; i<=nlstate;i++){
          sum+=mobaverage[(int)agemingood[cptcod]][i][cptcod];
        }
        if(fabs(sum - 1.) > 1.e-3) { /* bad */
          printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any descending age!\n",cptcod);
          /* for (i=1; i<=nlstate;i++){ */
          /*   mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
          /* } /\* i *\/ */
        } /* end bad */
        /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
        /* From youngest, finding the oldest wrong */
        agemaxgood[cptcod]=bage+(mob-1)/2;
        for (age=bage+(mob-1)/2; age<=fage; age++){
          sumnewm[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
          }
          if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
            agemaxgood[cptcod]=age;
          }else{ /* bad */
            for (i=1; i<=nlstate;i++){
              mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
            } /* i */
          } /* end bad */
        }/* age */
        sum=0.;
        for (i=1; i<=nlstate;i++){
          sum+=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
        }
        if(fabs(sum - 1.) > 1.e-3) { /* bad */
          printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any ascending age!\n",cptcod);
          /* for (i=1; i<=nlstate;i++){ */
          /*   mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
          /* } /\* i *\/ */
        } /* end bad */
                   
        for (age=bage; age<=fage; age++){
          /* printf("%d %d ", cptcod, (int)age); */
          sumnewp[cptcod]=0.;
          sumnewm[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewp[cptcod]+=probs[(int)age][i][cptcod];
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
            /* printf("%.4f %.4f ",probs[(int)age][i][cptcod], mobaverage[(int)age][i][cptcod]); */
          }
          /* printf("%.4f %.4f \n",sumnewp[cptcod], sumnewm[cptcod]); */
        }
        /* printf("\n"); */
        /* } */
        /* brutal averaging */
        for (i=1; i<=nlstate;i++){
          for (age=1; age<=bage; age++){
            mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
            /* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */
          }        
          for (age=fage; age<=AGESUP; age++){
            mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
            /* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */
          }
        } /* end i status */
        for (i=nlstate+1; i<=nlstate+ndeath;i++){
          for (age=1; age<=AGESUP; age++){
            /*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*/
            mobaverage[(int)age][i][cptcod]=0.;
          }
        }
      }/* end cptcod */
      free_vector(sumnewm,1, ncovcombmax);
      free_vector(sumnewp,1, ncovcombmax);
      free_vector(agemaxgood,1, ncovcombmax);
      free_vector(agemingood,1, ncovcombmax);
      return 0;
    }/* End movingaverage */
    
   
   /************** Forecasting ******************/
    void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
      int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     /* double ***mobaverage; */
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
     /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
     /*          firstpass, lastpass,  stepm,  weightopt, model); */
    
     strcpy(fileresf,"F_"); 
     strcat(fileresf,fileresu);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
     fprintf(ficlog,"\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=pow(2,cptcoveff);
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
     
   /*            if (h==(int)(YEARM*yearp)){ */
     for(nres=1; nres <= nresult; nres++) /* For each resultline */
     for(k=1; k<=i1;k++){
       if(TKresult[nres]!= k)
         continue;
       if(invalidvarcomb[k]){
         printf("\nCombination (%d) projection ignored because no cases \n",k); 
         continue;
       }
       fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
       for(j=1;j<=cptcoveff;j++) {
         fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
         fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
       }
       fprintf(ficresf," yearproj age");
       for(j=1; j<=nlstate+ndeath;j++){ 
         for(i=1; i<=nlstate;i++)        
           fprintf(ficresf," p%d%d",i,j);
         fprintf(ficresf," wp.%d",j);
       }
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
         fprintf(ficresf,"\n");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
         for (agec=fage; agec>=(ageminpar-1); agec--){ 
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
           nhstepm = nhstepm/hstepm; 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k,nres);
           
           for (h=0; h<=nhstepm; h++){
             if (h*hstepm/YEARM*stepm ==yearp) {
               fprintf(ficresf,"\n");
               for(j=1;j<=cptcoveff;j++) 
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
             } 
             for(j=1; j<=nlstate+ndeath;j++) {
               ppij=0.;
               for(i=1; i<=nlstate;i++) {
                 if (mobilav==1) 
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][k];
                 else {
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k];
                 }
                 if (h*hstepm/YEARM*stepm== yearp) {
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);
                 }
               } /* end i */
               if (h*hstepm/YEARM*stepm==yearp) {
                 fprintf(ficresf," %.3f", ppij);
               }
             }/* end j */
           } /* end h */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         } /* end agec */
       } /* end yearp */
     } /* end  k */
           
     fclose(ficresf);
     printf("End of Computing forecasting \n");
     fprintf(ficlog,"End of Computing forecasting\n");
   
   }
   
   /* /\************** Back Forecasting ******************\/ */
   /* void prevbackforecast(char fileres[], double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */
   /*   /\* back1, year, month, day of starting backection  */
   /*      agemin, agemax range of age */
   /*      dateprev1 dateprev2 range of dates during which prevalence is computed */
   /*      anback2 year of en of backection (same day and month as back1). */
   /*   *\/ */
   /*   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; */
   /*   double agec; /\* generic age *\/ */
   /*   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; */
   /*   double *popeffectif,*popcount; */
   /*   double ***p3mat; */
   /*   /\* double ***mobaverage; *\/ */
   /*   char fileresfb[FILENAMELENGTH]; */
           
   /*   agelim=AGESUP; */
   /*   /\* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people */
   /*      in each health status at the date of interview (if between dateprev1 and dateprev2). */
   /*      We still use firstpass and lastpass as another selection. */
   /*   *\/ */
   /*   /\* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ *\/ */
   /*   /\*              firstpass, lastpass,  stepm,  weightopt, model); *\/ */
   /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
           
   /*   strcpy(fileresfb,"FB_");  */
   /*   strcat(fileresfb,fileresu); */
   /*   if((ficresfb=fopen(fileresfb,"w"))==NULL) { */
   /*     printf("Problem with back forecast resultfile: %s\n", fileresfb); */
   /*     fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); */
   /*   } */
   /*   printf("Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */
   /*   fprintf(ficlog,"Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */
           
   /*   if (cptcoveff==0) ncodemax[cptcoveff]=1; */
           
   /*   /\* if (mobilav!=0) { *\/ */
   /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
   /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
   /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*   } *\/ */
   /*   /\* } *\/ */
           
   /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */
   /*   if (stepm<=12) stepsize=1; */
   /*   if(estepm < stepm){ */
   /*     printf ("Problem %d lower than %d\n",estepm, stepm); */
   /*   } */
   /*   else  hstepm=estepm;    */
           
   /*   hstepm=hstepm/stepm;  */
   /*   yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
   /*                                fractional in yp1 *\/ */
   /*   anprojmean=yp; */
   /*   yp2=modf((yp1*12),&yp); */
   /*   mprojmean=yp; */
   /*   yp1=modf((yp2*30.5),&yp); */
   /*   jprojmean=yp; */
   /*   if(jprojmean==0) jprojmean=1; */
   /*   if(mprojmean==0) jprojmean=1; */
           
   /*   i1=cptcoveff; */
   /*   if (cptcovn < 1){i1=1;} */
     
   /*   fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);  */
     
   /*   fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); */
           
   /*      /\*           if (h==(int)(YEARM*yearp)){ *\/ */
   /*   for(cptcov=1, k=0;cptcov<=i1;cptcov++){ */
   /*     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */
   /*       k=k+1; */
   /*       fprintf(ficresfb,"\n#****** hbijx=probability over h years, hp.jx is weighted by observed prev \n#"); */
   /*       for(j=1;j<=cptcoveff;j++) { */
   /*                              fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
   /*       } */
   /*       fprintf(ficresfb," yearbproj age"); */
   /*       for(j=1; j<=nlstate+ndeath;j++){  */
   /*                              for(i=1; i<=nlstate;i++)               */
   /*           fprintf(ficresfb," p%d%d",i,j); */
   /*                              fprintf(ficresfb," p.%d",j); */
   /*       } */
   /*       for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) {  */
   /*                              /\* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {  *\/ */
   /*                              fprintf(ficresfb,"\n"); */
   /*                              fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp);    */
   /*                              for (agec=fage; agec>=(ageminpar-1); agec--){  */
   /*                                      nhstepm=(int) rint((agelim-agec)*YEARM/stepm);  */
   /*                                      nhstepm = nhstepm/hstepm;  */
   /*                                      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*                                      oldm=oldms;savm=savms; */
   /*                                      hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm,oldm,savm, dnewm, doldm, dsavm, k);       */
   /*                                      for (h=0; h<=nhstepm; h++){ */
   /*                                              if (h*hstepm/YEARM*stepm ==yearp) { */
   /*               fprintf(ficresfb,"\n"); */
   /*               for(j=1;j<=cptcoveff;j++)  */
   /*                 fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
   /*                                                      fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec+h*hstepm/YEARM*stepm); */
   /*                                              }  */
   /*                                              for(j=1; j<=nlstate+ndeath;j++) { */
   /*                                                      ppij=0.; */
   /*                                                      for(i=1; i<=nlstate;i++) { */
   /*                                                              if (mobilav==1)  */
   /*                                                                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; */
   /*                                                              else { */
   /*                                                                      ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; */
   /*                                                              } */
   /*                                                              if (h*hstepm/YEARM*stepm== yearp) { */
   /*                                                                      fprintf(ficresfb," %.3f", p3mat[i][j][h]); */
   /*                                                              } */
   /*                                                      } /\* end i *\/ */
   /*                                                      if (h*hstepm/YEARM*stepm==yearp) { */
   /*                                                              fprintf(ficresfb," %.3f", ppij); */
   /*                                                      } */
   /*                                              }/\* end j *\/ */
   /*                                      } /\* end h *\/ */
   /*                                      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*                              } /\* end agec *\/ */
   /*       } /\* end yearp *\/ */
   /*     } /\* end cptcod *\/ */
   /*   } /\* end  cptcov *\/ */
           
   /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
           
   /*   fclose(ficresfb); */
   /*   printf("End of Computing Back forecasting \n"); */
   /*   fprintf(ficlog,"End of Computing Back forecasting\n"); */
           
   /* } */
   
   /************** Forecasting *****not tested NB*************/
   /* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */
     
   /*   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; */
   /*   int *popage; */
   /*   double calagedatem, agelim, kk1, kk2; */
   /*   double *popeffectif,*popcount; */
   /*   double ***p3mat,***tabpop,***tabpopprev; */
   /*   /\* double ***mobaverage; *\/ */
   /*   char filerespop[FILENAMELENGTH]; */
   
   /*   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   agelim=AGESUP; */
   /*   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; */
     
   /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
     
     
   /*   strcpy(filerespop,"POP_");  */
   /*   strcat(filerespop,fileresu); */
   /*   if((ficrespop=fopen(filerespop,"w"))==NULL) { */
   /*     printf("Problem with forecast resultfile: %s\n", filerespop); */
   /*     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); */
   /*   } */
   /*   printf("Computing forecasting: result on file '%s' \n", filerespop); */
   /*   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); */
   
   /*   if (cptcoveff==0) ncodemax[cptcoveff]=1; */
   
   /*   /\* if (mobilav!=0) { *\/ */
   /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
   /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
   /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*   } *\/ */
   /*   /\* } *\/ */
   
   /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */
   /*   if (stepm<=12) stepsize=1; */
     
   /*   agelim=AGESUP; */
     
   /*   hstepm=1; */
   /*   hstepm=hstepm/stepm;  */
           
   /*   if (popforecast==1) { */
   /*     if((ficpop=fopen(popfile,"r"))==NULL) { */
   /*       printf("Problem with population file : %s\n",popfile);exit(0); */
   /*       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); */
   /*     }  */
   /*     popage=ivector(0,AGESUP); */
   /*     popeffectif=vector(0,AGESUP); */
   /*     popcount=vector(0,AGESUP); */
       
   /*     i=1;    */
   /*     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; */
       
   /*     imx=i; */
   /*     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; */
   /*   } */
     
   /*   for(cptcov=1,k=0;cptcov<=i2;cptcov++){ */
   /*     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */
   /*       k=k+1; */
   /*       fprintf(ficrespop,"\n#******"); */
   /*       for(j=1;j<=cptcoveff;j++) { */
   /*      fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
   /*       } */
   /*       fprintf(ficrespop,"******\n"); */
   /*       fprintf(ficrespop,"# Age"); */
   /*       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); */
   /*       if (popforecast==1)  fprintf(ficrespop," [Population]"); */
         
   /*       for (cpt=0; cpt<=0;cpt++) {  */
   /*      fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
           
   /*      for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
   /*        nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
   /*        nhstepm = nhstepm/hstepm;  */
             
   /*        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*        oldm=oldms;savm=savms; */
   /*        hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
             
   /*        for (h=0; h<=nhstepm; h++){ */
   /*          if (h==(int) (calagedatem+YEARM*cpt)) { */
   /*            fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
   /*          }  */
   /*          for(j=1; j<=nlstate+ndeath;j++) { */
   /*            kk1=0.;kk2=0; */
   /*            for(i=1; i<=nlstate;i++) {               */
   /*              if (mobilav==1)  */
   /*                kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; */
   /*              else { */
   /*                kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; */
   /*              } */
   /*            } */
   /*            if (h==(int)(calagedatem+12*cpt)){ */
   /*              tabpop[(int)(agedeb)][j][cptcod]=kk1; */
   /*              /\*fprintf(ficrespop," %.3f", kk1); */
   /*                if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*\/ */
   /*            } */
   /*          } */
   /*          for(i=1; i<=nlstate;i++){ */
   /*            kk1=0.; */
   /*            for(j=1; j<=nlstate;j++){ */
   /*              kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  */
   /*            } */
   /*            tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; */
   /*          } */
               
   /*          if (h==(int)(calagedatem+12*cpt)) */
   /*            for(j=1; j<=nlstate;j++)  */
   /*              fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); */
   /*        } */
   /*        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*      } */
   /*       } */
         
   /*       /\******\/ */
         
   /*       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  */
   /*      fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
   /*      for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
   /*        nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
   /*        nhstepm = nhstepm/hstepm;  */
             
   /*        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*        oldm=oldms;savm=savms; */
   /*        hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
   /*        for (h=0; h<=nhstepm; h++){ */
   /*          if (h==(int) (calagedatem+YEARM*cpt)) { */
   /*            fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
   /*          }  */
   /*          for(j=1; j<=nlstate+ndeath;j++) { */
   /*            kk1=0.;kk2=0; */
   /*            for(i=1; i<=nlstate;i++) {               */
   /*              kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];     */
   /*            } */
   /*            if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);         */
   /*          } */
   /*        } */
   /*        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*      } */
   /*       } */
   /*     }  */
   /*   } */
     
   /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
     
   /*   if (popforecast==1) { */
   /*     free_ivector(popage,0,AGESUP); */
   /*     free_vector(popeffectif,0,AGESUP); */
   /*     free_vector(popcount,0,AGESUP); */
   /*   } */
   /*   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   fclose(ficrespop); */
   /* } /\* End of popforecast *\/ */
    
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=1;i<=imx ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0, iv=0, v;
     int lstra;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
   
     DummyV=ivector(1,NCOVMAX); /* 1 to 3 */
     FixedV=ivector(1,NCOVMAX); /* 1 to 3 */
   
     for(v=1; v <=ncovcol;v++){
       DummyV[v]=0;
       FixedV[v]=0;
     }
     for(v=ncovcol+1; v <=ncovcol+nqv;v++){
       DummyV[v]=1;
       FixedV[v]=0;
     }
     for(v=ncovcol+nqv+1; v <=ncovcol+nqv+ntv;v++){
       DummyV[v]=0;
       FixedV[v]=1;
     }
     for(v=ncovcol+nqv+ntv+1; v <=ncovcol+nqv+ntv+nqtv;v++){
       DummyV[v]=1;
       FixedV[v]=1;
     }
     for(v=1; v <=ncovcol+nqv+ntv+nqtv;v++){
       printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]);
       fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]);
     }
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
       
       /* Loops on waves */
       for (j=maxwav;j>=1;j--){
         for (iv=nqtv;iv>=1;iv--){  /* Loop  on time varying quantitative variables */
           cutv(stra, strb, line, ' '); 
           if(strb[0]=='.') { /* Missing value */
             lval=-1;
             cotqvar[j][iv][i]=-1; /* 0.0/0.0 */
             cotvar[j][ntv+iv][i]=-1; /* For performance reasons */
             if(isalpha(strb[1])) { /* .m or .d Really Missing value */
               printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);
               fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog);
               return 1;
             }
           }else{
             errno=0;
             /* what_kind_of_number(strb); */
             dval=strtod(strb,&endptr); 
             /* if( strb[0]=='\0' || (*endptr != '\0')){ */
             /* if(strb != endptr && *endptr == '\0') */
             /*    dval=dlval; */
             /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
             if( strb[0]=='\0' || (*endptr != '\0')){
               printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav);
               fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog);
               return 1;
             }
             cotqvar[j][iv][i]=dval; 
             cotvar[j][ntv+iv][i]=dval; 
           }
           strcpy(line,stra);
         }/* end loop ntqv */
         
         for (iv=ntv;iv>=1;iv--){  /* Loop  on time varying dummies */
           cutv(stra, strb, line, ' '); 
           if(strb[0]=='.') { /* Missing value */
             lval=-1;
           }else{
             errno=0;
             lval=strtol(strb,&endptr,10); 
             /*    if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
             if( strb[0]=='\0' || (*endptr != '\0')){
               printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav);
               fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog);
               return 1;
             }
           }
           if(lval <-1 || lval >1){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
             return 1;
           }
           cotvar[j][iv][i]=(double)(lval);
           strcpy(line,stra);
         }/* end loop ntv */
         
         /* Statuses  at wave */
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing value */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         
         s[j][i]=lval;
         
         /* Date of Interview */
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* End loop on waves */
       
       /* Date of death */
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       /* Date of birth */
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;
         
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       /* Sample weight */
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (iv=nqv;iv>=1;iv--){  /* Loop  on fixed quantitative variables */
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing value */
           lval=-1;
         }else{
           errno=0;
           /* what_kind_of_number(strb); */
           dval=strtod(strb,&endptr);
           /* if(strb != endptr && *endptr == '\0') */
           /*   dval=dlval; */
           /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog);
             return 1;
           }
           coqvar[iv][i]=dval; 
           covar[ncovcol+iv][i]=dval; /* including qvar in standard covar for performance reasons */ 
         }
         strcpy(line,stra);
       }/* end loop nqv */
       
       /* Covariate values */
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing covariate value */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     
     *imax=i-1; /* Number of individuals */
     fclose(fic);
     
     return (0);
     /* endread: */
     printf("Exiting readdata: ");
     fclose(fic);
     return (1);
   }
   
   void removefirstspace(char **stri){/*, char stro[]) {*/
     char *p1 = *stri, *p2 = *stri;
     while (*p2 == ' ')
       p2++; 
     /* while ((*p1++ = *p2++) !=0) */
     /*   ; */
     /* do */
     /*   while (*p2 == ' ') */
     /*     p2++; */
     /* while (*p1++ == *p2++); */
     *stri=p2; 
   }
   
   int decoderesult ( char resultline[], int nres)
   /**< This routine decode one result line and returns the combination # of dummy covariates only **/
   {
     int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0;
     char resultsav[MAXLINE];
     int resultmodel[MAXLINE];
     int modelresult[MAXLINE];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     removefirstspace(&resultline);
     printf("decoderesult:%s\n",resultline);
   
     if (strstr(resultline,"v") !=0){
       printf("Error. 'v' must be in upper case 'V' result: %s ",resultline);
       fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultline);fflush(ficlog);
       return 1;
     }
     trimbb(resultsav, resultline);
     if (strlen(resultsav) >1){
       j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' */
     }
     if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */
       printf("ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs);
       fprintf(ficlog,"ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs);
     }
     for(k=1; k<=j;k++){ /* Loop on any covariate of the result line */
       if(nbocc(resultsav,'=') >1){
          cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' 
                                         resultsav= V4=1 V5=25.1 V3=0 strb=V3=0 stra= V4=1 V5=25.1 */
          cutl(strc,strd,strb,'=');  /* strb:V4=1 strc=1 strd=V4 */
       }else
         cutl(strc,strd,resultsav,'=');
       Tvalsel[k]=atof(strc); /* 1 */
       
       cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */;
       Tvarsel[k]=atoi(strc);
       /* Typevarsel[k]=1;  /\* 1 for age product *\/ */
       /* cptcovsel++;     */
       if (nbocc(stra,'=') >0)
         strcpy(resultsav,stra); /* and analyzes it */
     }
     /* Checking for missing or useless values in comparison of current model needs */
     for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       if(Typevar[k1]==0){ /* Single covariate in model */
         match=0;
         for(k2=1; k2 <=j;k2++){/* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
           if(Tvar[k1]==Tvarsel[k2]) {/* Tvar[1]=5 == Tvarsel[2]=5   */
             modelresult[k2]=k1;/* modelresult[2]=1 modelresult[1]=2  modelresult[3]=3  modelresult[6]=4 modelresult[9]=5 */
             match=1;
             break;
           }
         }
         if(match == 0){
           printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model);
         }
       }
     }
     /* Checking for missing or useless values in comparison of current model needs */
     for(k2=1; k2 <=j;k2++){ /* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
       match=0;
       for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         if(Typevar[k1]==0){ /* Single */
           if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4   */
             resultmodel[k1]=k2;  /* resultmodel[2]=1 resultmodel[1]=2  resultmodel[3]=3  resultmodel[6]=4 resultmodel[9]=5 */
             ++match;
           }
         }
       }
       if(match == 0){
         printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model);
       }else if(match > 1){
         printf("Error in result line: %d doubled; result: %s, model=%s\n",k2, resultline, model);
       }
     }
         
     /* We need to deduce which combination number is chosen and save quantitative values */
     /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
     /* result line V4=1 V5=25.1 V3=0  V2=8 V1=1 */
     /* should give a combination of dummy V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 5 + (1offset) = 6*/
     /* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
     /* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/
     /*    1 0 0 0 */
     /*    2 1 0 0 */
     /*    3 0 1 0 */ 
     /*    4 1 1 0 */ /* V4=1, V3=1, V1=0 */
     /*    5 0 0 1 */
     /*    6 1 0 1 */ /* V4=1, V3=0, V1=1 */
     /*    7 0 1 1 */
     /*    8 1 1 1 */
     /* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */
     /* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */
     /* V5*age V5 known which value for nres?  */
     /* Tqinvresult[2]=8 Tqinvresult[1]=25.1  */
     for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* model line */
       if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Single dummy */
         k3= resultmodel[k1]; /* resultmodel[2(V4)] = 1=k3 */
         k2=(int)Tvarsel[k3]; /*  Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */
         k+=Tvalsel[k3]*pow(2,k4);  /*  Tvalsel[1]=1  */
         Tresult[nres][k4+1]=Tvalsel[k3];/* Tresult[nres][1]=1(V4=1)  Tresult[nres][2]=0(V3=0) */
         Tvresult[nres][k4+1]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */
         Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */
         printf("Decoderesult Dummy k=%d, V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k2, k3, (int)Tvalsel[k3], k4);
         k4++;;
       }  else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Single quantitative */
         k3q= resultmodel[k1]; /* resultmodel[2] = 1=k3 */
         k2q=(int)Tvarsel[k3q]; /*  Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */
         Tqresult[nres][k4q+1]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */
         Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */
         Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */
         printf("Decoderesult Quantitative nres=%d, V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]);
         k4q++;;
       }
     }
     
     TKresult[nres]=++k; /* Combination for the nresult and the model */
     return (0);
   }
   
   int decodemodel( char model[], int lastobs)
    /**< This routine decodes the model and returns:
           * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
           * - nagesqr = 1 if age*age in the model, otherwise 0.
           * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
           * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
           * - cptcovage number of covariates with age*products =2
           * - cptcovs number of simple covariates
           * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
           *     which is a new column after the 9 (ncovcol) variables. 
           * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
           * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
           *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
           * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
           */
   {
     int i, j, k, ks, v;
     int  j1, k1, k2, k3, k4;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
           printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
           fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
           return 1;
         }
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =5-3=2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                        * cst, age and age*age 
                        * V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/
         /* including age products which are counted in cptcovage.
          * but the covariates which are products must be treated 
          * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
         
         
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[2]=1 Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
         
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--){ /**< Number of covariates not including constant and age, neither age*age*/
           Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0;
         }
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               Typevar[k]=1;  /* 1 for age product */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               Typevar[k]=1;  /* 1 for age product */
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but
                                                   because this model-covariate is a construction we invent a new column
                                                   which is after existing variables ncovcol+nqv+ntv+nqtv + k1
                                                   If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                                   Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               Typevar[k]=2;  /* 2 for double fixed dummy covariates */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tposprod[k]=k1; /* Tpsprod[3]=1, Tposprod[2]=5 */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;  /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */
               /* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */
               /* Tvar[cptcovt+k2+1]=Tvard[k1][2];  /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */
               /*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */
               /*                     1  2   3      4     5 | Tvar[5+1)=1, Tvar[7]=2   */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates dummy or quantitative, fixe or varying */
             cptcovn++; /** V4+V3+V5: V4 and V3 timevarying dummy covariates, V5 timevarying quantitative */
             Tvar[k]=atoi(strd);
             Typevar[k]=0;  /* 0 for simple covariates */
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
                                   /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
                                     scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
     
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
        printf("cptcovprod=%d ", cptcovprod);
        fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
        scanf("%d ",i);*/
   
   
   /* Until here, decodemodel knows only the grammar (simple, product, age*) of the model but not what kind
      of variable (dummy vs quantitative, fixed vs time varying) is behind. But we know the # of each. */
   /* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1  = 5 possible variables data: 2 fixed 3, varying
      model=        V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place
      k =           1    2   3     4       5       6      7      8        9
      Tvar[k]=      5    4   3 1+1+2+1+1=6 5       2      7      1        5
      Typevar[k]=   0    0   0     2       1       0      2      1        1
      Fixed[k]      1    1   1     1       3       0    0 or 2   2        3
      Dummy[k]      1    0   0     0       3       1      1      2        3
             Tmodelind[combination of covar]=k;
   */  
   /* Dispatching between quantitative and time varying covariates */
     /* If Tvar[k] >ncovcol it is a product */
     /* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p  Vp=Vn*Vm for product */
           /* Computing effective variables, ie used by the model, that is from the cptcovt variables */
     printf("Model=%s\n\
   Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
   Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
   Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
     fprintf(ficlog,"Model=%s\n\
   Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
   Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
   Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
     for(k=1;k<=cptcovt; k++){ Fixed[k]=0; Dummy[k]=0;}
     for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */
       if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */
         Fixed[k]= 0;
         Dummy[k]= 0;
         ncoveff++;
         ncovf++;
         nsd++;
         modell[k].maintype= FTYPE;
         TvarsD[nsd]=Tvar[k];
         TvarsDind[nsd]=k;
         TvarF[ncovf]=Tvar[k];
         TvarFind[ncovf]=k;
         TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       }else if( Tvar[k] <=ncovcol &&  Typevar[k]==2){ /* Product of fixed dummy (<=ncovcol) covariates */
         Fixed[k]= 0;
         Dummy[k]= 0;
         ncoveff++;
         ncovf++;
         modell[k].maintype= FTYPE;
         TvarF[ncovf]=Tvar[k];
         TvarFind[ncovf]=k;
         TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       }else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){/* Remind that product Vn*Vm are added in k Only simple fixed quantitative variable */
         Fixed[k]= 0;
         Dummy[k]= 1;
         nqfveff++;
         modell[k].maintype= FTYPE;
         modell[k].subtype= FQ;
         nsq++;
         TvarsQ[nsq]=Tvar[k];
         TvarsQind[nsq]=k;
         ncovf++;
         TvarF[ncovf]=Tvar[k];
         TvarFind[ncovf]=k;
         TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
         TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
       }else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying variables */
         Fixed[k]= 1;
         Dummy[k]= 0;
         ntveff++; /* Only simple time varying dummy variable */
         modell[k].maintype= VTYPE;
         modell[k].subtype= VD;
         nsd++;
         TvarsD[nsd]=Tvar[k];
         TvarsDind[nsd]=k;
         ncovv++; /* Only simple time varying variables */
         TvarV[ncovv]=Tvar[k];
         TvarVind[ncovv]=k;
         TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4  TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
         TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
         printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv);
         printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv);
       }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv  && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/
         Fixed[k]= 1;
         Dummy[k]= 1;
         nqtveff++;
         modell[k].maintype= VTYPE;
         modell[k].subtype= VQ;
         ncovv++; /* Only simple time varying variables */
         nsq++;
         TvarsQ[nsq]=Tvar[k];
         TvarsQind[nsq]=k;
         TvarV[ncovv]=Tvar[k];
         TvarVind[ncovv]=k;
         TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
         TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
         TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */
         /* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */
         printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%d,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv);
         printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv);
       }else if (Typevar[k] == 1) {  /* product with age */
         ncova++;
         TvarA[ncova]=Tvar[k];
         TvarAind[ncova]=k;
         if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */
           Fixed[k]= 2;
           Dummy[k]= 2;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APFD;
           /* ncoveff++; */
         }else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/
           Fixed[k]= 2;
           Dummy[k]= 3;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APFQ;                /*      Product age * fixed quantitative */
           /* nqfveff++;  /\* Only simple fixed quantitative variable *\/ */
         }else if( Tvar[k] <=ncovcol+nqv+ntv ){
           Fixed[k]= 3;
           Dummy[k]= 2;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APVD;                /*      Product age * varying dummy */
           /* ntveff++; /\* Only simple time varying dummy variable *\/ */
         }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){
           Fixed[k]= 3;
           Dummy[k]= 3;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APVQ;                /*      Product age * varying quantitative */
           /* nqtveff++;/\* Only simple time varying quantitative variable *\/ */
         }
       }else if (Typevar[k] == 2) {  /* product without age */
         k1=Tposprod[k];
         if(Tvard[k1][1] <=ncovcol){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 0;
             modell[k].maintype= FTYPE;
             modell[k].subtype= FPDD;              /*      Product fixed dummy * fixed dummy */
             ncovf++; /* Fixed variables without age */
             TvarF[ncovf]=Tvar[k];
             TvarFind[ncovf]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 0;  /* or 2 ?*/
             Dummy[k]= 1;
             modell[k].maintype= FTYPE;
             modell[k].subtype= FPDQ;              /*      Product fixed dummy * fixed quantitative */
             ncovf++; /* Varying variables without age */
             TvarF[ncovf]=Tvar[k];
             TvarFind[ncovf]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 0;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDD;              /*      Product fixed dummy * varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product fixed dummy * varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
         }else if(Tvard[k1][1] <=ncovcol+nqv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 0;  /* or 2 ?*/
             Dummy[k]= 1;
             modell[k].maintype= FTYPE;
             modell[k].subtype= FPDQ;              /*      Product fixed quantitative * fixed dummy */
             ncovf++; /* Fixed variables without age */
             TvarF[ncovf]=Tvar[k];
             TvarFind[ncovf]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product fixed quantitative * varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPQQ;              /*      Product fixed quantitative * varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
         }else if(Tvard[k1][1] <=ncovcol+nqv+ntv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDD;              /*      Product time varying dummy * fixed dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying dummy * fixed quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 0;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDD;              /*      Product time varying dummy * time varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying dummy * time varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
         }else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying quantitative * fixed dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPQQ;              /*      Product time varying quantitative * fixed quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying quantitative * time varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPQQ;              /*      Product time varying quantitative * time varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
         }else{
           printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
           fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
         } /*end k1*/
       }else{
         printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
         fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
       }
       printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
       printf("           modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype);
       fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
     }
     /* Searching for doublons in the model */
     for(k1=1; k1<= cptcovt;k1++){
       for(k2=1; k2 <k1;k2++){
         if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){
           if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */
             if(Tvar[k1]==Tvar[k2]){
               printf("Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);
               fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);
               return(1);
             }
           }else if (Typevar[k1] ==2){
             k3=Tposprod[k1];
             k4=Tposprod[k2];
             if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){
               printf("Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);
               fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);
               return(1);
             }
           }
         }
       }
     }
     printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
     fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
     printf("ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd,nsq);
     fprintf(ficlog,"ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd, nsq);
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
     printf("Exiting decodemodel: ");
     return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
     int firstone=0;
     
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           if (s[m][i] != -2) /* Keeping initial status of unknown vital status */
             s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           if(firstone == 0){
             firstone=1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\nOther similar cases in log file\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
           }
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0  || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
                 /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           } /* end if */
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           } /* en if 9*/
           else { /* =9 */
             /* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else if(s[m][i]==0) /*= 0 Unknown */
           agev[m][i]=1;
         else{
           printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           agev[m][i]=0;
         }
       } /* End for lastpass */
     }
       
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
   }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1, k4=0, nres=0 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
   
     strcpy(filerespl,"PL_");
     strcat(filerespl,fileresu);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     }
     printf("\nComputing period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"\nComputing period (stable) prevalence: result on file '%s' \n", filerespl);
     pstamp(ficrespl);
     fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
     agebase=ageminpar;
     agelim=agemaxpar;
   
     /* i1=pow(2,ncoveff); */
     i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
     if (cptcovn < 1){i1=1;}
   
     for(k=1; k<=i1;k++){ /* For each combination k of dummy covariates in the model */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(TKresult[nres]!= k)
           continue;
   
         /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
         /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         /* k=k+1; */
         /* to clean */
         //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
         fprintf(ficrespl,"#******");
         printf("#******");
         fprintf(ficlog,"#******");
         for(j=1;j<=cptcoveff ;j++) {/* all covariates */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); /* Here problem for varying dummy*/
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
         if(invalidvarcomb[k]){
           printf("\nCombination (%d) ignored because no case \n",k); 
           fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k); 
           fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k); 
           continue;
         }
   
         fprintf(ficrespl,"#Age ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
         fprintf(ficrespl,"Total Years_to_converge\n");
       
         for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
           prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           tot=0.;
           for(i=1; i<=nlstate;i++){
             tot +=  prlim[i][i];
             fprintf(ficrespl," %.5f", prlim[i][i]);
           }
           fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
         } /* Age */
         /* was end of cptcod */
       } /* cptcov */
     } /* nres */
     return 0;
   }
   
   int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){
           /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
           
           /* Computes the back prevalence limit  for any combination      of covariate values 
      * at any age between ageminpar and agemaxpar
            */
     int i, j, k, i1, nres=0 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
     /* double ***mobaverage; */
     /* double      **dnewm, **doldm, **dsavm;  /\* for use *\/ */
   
     strcpy(fileresplb,"PLB_");
     strcat(fileresplb,fileresu);
     if((ficresplb=fopen(fileresplb,"w"))==NULL) {
       printf("Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;
       fprintf(ficlog,"Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;
     }
     printf("Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);
     fprintf(ficlog,"Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);
     pstamp(ficresplb);
     fprintf(ficresplb,"# Period (stable) back prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficresplb,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i);
     fprintf(ficresplb,"\n");
     
     
     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
     
     agebase=ageminpar;
     agelim=agemaxpar;
     
     
     i1=pow(2,cptcoveff);
     if (cptcovn < 1){i1=1;}
     
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
         if(TKresult[nres]!= k)
           continue;
         //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
         fprintf(ficresplb,"#******");
         printf("#******");
         fprintf(ficlog,"#******");
         for(j=1;j<=cptcoveff ;j++) {/* all covariates */
           fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         }
         fprintf(ficresplb,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
         if(invalidvarcomb[k]){
           printf("\nCombination (%d) ignored because no cases \n",k); 
           fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); 
           fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); 
           continue;
         }
       
         fprintf(ficresplb,"#Age ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for(i=1; i<=nlstate;i++) fprintf(ficresplb,"  %d-%d   ",i,i);
         fprintf(ficresplb,"Total Years_to_converge\n");
       
       
         for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
           if(mobilavproj > 0){
             /* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */
             /* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
             bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k);
           }else if (mobilavproj == 0){
             printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
             fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
             exit(1);
           }else{
             /* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
             bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k);
           }
           fprintf(ficresplb,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           tot=0.;
           for(i=1; i<=nlstate;i++){
             tot +=  bprlim[i][i];
             fprintf(ficresplb," %.5f", bprlim[i][i]);
           }
           fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp);
         } /* Age */
         /* was end of cptcod */
       } /* end of any combination */
     } /* end of nres */  
     /* hBijx(p, bage, fage); */
     /* fclose(ficrespijb); */
     
     return 0;
   }
    
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k, k4, nres=0;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
                   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
                   /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
                   /*      k=k+1;  */
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){
         if(TKresult[nres]!= k)
           continue;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         }
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
       return 0;
   }
    
    int hBijx(double *p, int bage, int fage, double ***prevacurrent){
       /*------------- h Bij x at various ages ------------*/
   
     int stepsize;
     /* int agelim; */
           int ageminl;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k, nres;
           
     double agedeb;
     double ***p3mat;
           
     strcpy(filerespijb,"PIJB_");  strcat(filerespijb,fileresu);
     if((ficrespijb=fopen(filerespijb,"w"))==NULL) {
       printf("Problem with Pij back resultfile: %s\n", filerespijb); return 1;
       fprintf(ficlog,"Problem with Pij back resultfile: %s\n", filerespijb); return 1;
     }
     printf("Computing pij back: result on file '%s' \n", filerespijb);
     fprintf(ficlog,"Computing pij back: result on file '%s' \n", filerespijb);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
     
     /* agelim=AGESUP; */
     ageminl=30;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
     
     /* hstepm=1;   aff par mois*/
     pstamp(ficrespijb);
     fprintf(ficrespijb,"#****** h Pij x Back Probability to be in state i at age x-h being in j at x ");
     i1= pow(2,cptcoveff);
     /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
     /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
     /*    k=k+1;  */
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
         if(TKresult[nres]!= k)
           continue;
         fprintf(ficrespijb,"\n#****** ");
         for(j=1;j<=cptcoveff;j++)
           fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         }
         fprintf(ficrespijb,"******\n");
         if(invalidvarcomb[k]){
           fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); 
           continue;
         }
         
         /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */
         for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */
           /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */
           nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           /* oldm=oldms;savm=savms; */
           /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
           hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k);
           /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */
           fprintf(ficrespijb,"# Cov Agex agex-h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespijb," %1d-%1d",i,j);
           fprintf(ficrespijb,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm );
             /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespijb," %.5f", p3mat[i][j][h]);
             fprintf(ficrespijb,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespijb,"\n");
         } /* end age deb */
       } /* end combination */
     } /* end nres */
     return 0;
    } /*  hBijx */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
     int ncvyear=0; /* Number of years needed for the period prevalence to converge */
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
     int nres=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
     double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     /* double ***mobaverage; */
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char  modeltemp[MAXLINE];
     char resultline[MAXLINE];
     
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int backcast=0;
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double **bprlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double **hess; /* Hessian matrix */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000;
   
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       if(!fgets(pathr,FILENAMELENGTH,stdin)){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
       }
       i=strlen(pathr);
       if( i==0 ){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nqv, &ntv, &nqtv, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 11) {
         printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
         printf("but line=%s\n",line);
       }
       printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled == 0)
               model[0]='\0';
       else if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
       printf("model=1+age+%s\n",model);fflush(stdout);
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     coqvar=matrix(1,nqv,1,n);  /**< Fixed quantitative covariate */
     cotvar=ma3x(1,maxwav,1,ntv+nqtv,1,n);  /**< Time varying covariate (dummy and quantitative)*/
     cotqvar=ma3x(1,maxwav,1,nqtv,1,n);  /**< Time varying quantitative covariate */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }  else if(mle==-5) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
     }  else{ /* Begin of mle != -1 or -5 */
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
       
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
       
       /* Reads covariance matrix */
       delti=delti3[1][1];
                   
                   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
                   
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
                   
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
                   
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else{
           if(mle==1)
             printf("%1d%1d%d",i1,j1,jk);
         }
         fprintf(ficlog,"%1d%1d%d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
                                   printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", rfileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
     
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     weight=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     for(i=1;i<=n;i++){
       num[i]=0;
       moisnais[i]=0;
       annais[i]=0;
       moisdc[i]=0;
       andc[i]=0;
       agedc[i]=0;
       cod[i]=0;
       weight[i]=1.0; /* Equal weights, 1 by default */
     }
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
     */
     
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     TvarsDind=ivector(1,NCOVMAX); /*  */
     TvarsD=ivector(1,NCOVMAX); /*  */
     TvarsQind=ivector(1,NCOVMAX); /*  */
     TvarsQ=ivector(1,NCOVMAX); /*  */
     TvarF=ivector(1,NCOVMAX); /*  */
     TvarFind=ivector(1,NCOVMAX); /*  */
     TvarV=ivector(1,NCOVMAX); /*  */
     TvarVind=ivector(1,NCOVMAX); /*  */
     TvarA=ivector(1,NCOVMAX); /*  */
     TvarAind=ivector(1,NCOVMAX); /*  */
     TvarFD=ivector(1,NCOVMAX); /*  */
     TvarFDind=ivector(1,NCOVMAX); /*  */
     TvarFQ=ivector(1,NCOVMAX); /*  */
     TvarFQind=ivector(1,NCOVMAX); /*  */
     TvarVD=ivector(1,NCOVMAX); /*  */
     TvarVDind=ivector(1,NCOVMAX); /*  */
     TvarVQ=ivector(1,NCOVMAX); /*  */
     TvarVQind=ivector(1,NCOVMAX); /*  */
   
     Tvalsel=vector(1,NCOVMAX); /*  */
     Tvarsel=ivector(1,NCOVMAX); /*  */
     Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */
     Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */
     Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the k position of the k1 product */
     Tposprod=ivector(1,NCOVMAX); /* Gives the k1 product from the k position */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
        Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
     Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an
                                   * individual dummy, fixed or varying:
                                   * Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4,
                                   * 3, 1, 0, 0, 0, 0, 0, 0},
                                   * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 , 
                                   * V1 df, V2 qf, V3 & V4 dv, V5 qv
                                   * Tmodelind[1]@9={9,0,3,2,}*/
     TmodelInvind=ivector(1,NCOVMAX); /* TmodelInvind=Tvar[k]- ncovcol-nqv={5-2-1=2,*/
     TmodelInvQind=ivector(1,NCOVMAX);/** gives the k model position of an
                                   * individual quantitative, fixed or varying:
                                   * Tmodelqind[1]=1,Tvaraff[1]@9={4,
                                   * 3, 1, 0, 0, 0, 0, 0, 0},
                                   * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1) /* In order to get Tvar[k] V4+V3+V5 p Tvar[1]@3  = {4, 3, 5}*/
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     /* free_vector(moisdc,1,n); */
     /* free_vector(andc,1,n); */
     /* */
     
     wav=ivector(1,imx);
     /* dh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* bh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* mw=imatrix(1,lastpass-firstpass+1,1,imx); */
     dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/
     bh=imatrix(1,lastpass-firstpass+2,1,imx);
     mw=imatrix(1,lastpass-firstpass+2,1,imx);
      
     /* Concatenates waves */
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
        mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     */
   
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     cptcoveff=0;
     if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */
       tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     }
     
     ncovcombmax=pow(2,cptcoveff);
     invalidvarcomb=ivector(1, ncovcombmax); 
     for(i=1;i<ncovcombmax;i++)
       invalidvarcomb[i]=0;
     
     /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] which is the maximum value of this jth covariate */
     
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     /* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, 
      * codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded 
      * (currently 0 or 1) in the data.
      * In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of 
      * corresponding modality (h,j).
      */
   
     h=0;
     /*if (cptcovn > 0) */
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to m=2**k
              * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
              * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
        /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
        * and the value of each covariate?
        * V1=1, V2=1, V3=2, V4=1 ?
        * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
        * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
        * In order to get the real value in the data, we use nbcode
        * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
        * We are keeping this crazy system in order to be able (in the future?) 
        * to have more than 2 values (0 or 1) for a covariate.
        * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
        * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
        *              bbbbbbbb
        *              76543210     
        *   h-1        00000101 (6-1=5)
        *(h-1)>>(k-1)= 00000010 >> (2-1) = 1 right shift
        *           &
        *     1        00000001 (1)
        *              00000000        = 1 & ((h-1) >> (k-1))
        *          +1= 00000001 =1 
        *
        * h=14, k=3 => h'=h-1=13, k'=k-1=2
        *          h'      1101 =2^3+2^2+0x2^1+2^0
        *    >>k'            11
        *          &   00000001
        *            = 00000001
        *      +1    = 00000010=2    =  codtabm(14,3)   
        * Reverse h=6 and m=16?
        * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
        * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
        * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 
        * decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1)
        * V3=decodtabm(14,3,2**4)=2
        *          h'=13   1101 =2^3+2^2+0x2^1+2^0
        *(h-1) >> (j-1)    0011 =13 >> 2
        *          &1 000000001
        *           = 000000001
        *         +1= 000000010 =2
        *                  2211
        *                  V1=1+1, V2=0+1, V3=1+1, V4=1+1
        *                  V3=2
                    * codtabm and decodtabm are identical
        */
   
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# IMaCh-%s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br>  \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   <font size=\"2\">IMaCh-%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age 
                    and for any valid combination of covariates
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \
                 firstpass, lastpass,  stepm,  weightopt, model);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
   
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
                   for(i=1;i<=NDIM;i++)
                           for(j=1;j<=NDIM;j++)
                                   ximort[i][j]=0.;
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
                   
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
       
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
           
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
                                   matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       fprintf(ficlog,"\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
                                   printf("%f ",matcov[i][j]);
                                   fprintf(ficlog,"%f ",matcov[i][j]);
         }
         printf("\n ");  fprintf(ficlog,"\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
                   ageminpar=50;
                   agemaxpar=100;
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else{
                           printf("Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
                           fprintf(ficlog,"Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
                   }
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
       free_matrix(ximort,1,NDIM,1,NDIM);
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
   #ifdef GSL
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard  */
     else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
       globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
       /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximization */
         /* mlikeli uses func not funcone */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
         globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
         /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
         likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       }
       globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle != 0){
         /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, hess, p, npar, delti, ftolhess, func);
         printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         for(i=1,jk=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(j=1; j <=ncovmodel; j++){
                 printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 jk++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         }
       } /* end of hesscov and Wald tests */
       
       /*  */
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle >= 1) /* To big for the screen */
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.7e",matcov[jj][ll]); 
                           fprintf(ficlog," %.7e",matcov[jj][ll]); 
                           fprintf(ficres," %.7e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       while(fgets(line, MAXLINE, ficpar)) {
         /* If line starts with a # it is a comment */
         if (line[0] == '#') {
           numlinepar++;
           fputs(line,stdout);
           fputs(line,ficparo);
           fputs(line,ficlog);
           continue;
         }else
           break;
       }
       
       /* while((c=getc(ficpar))=='#' && c!= EOF){ */
       /*   ungetc(c,ficpar); */
       /*   fgets(line, MAXLINE, ficpar); */
       /*   fputs(line,stdout); */
       /*   fputs(line,ficparo); */
       /* } */
       /* ungetc(c,ficpar); */
       
       estepm=0;
       if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
         
         if (num_filled != 6) {
           printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
           fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
           goto end;
         }
         printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
       }
       /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
       /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
       
       /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
                   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficres);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficres);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj);
       fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
       fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
       fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       /* Results */
       nresult=0;
       while(fgets(line, MAXLINE, ficpar)) {
         /* If line starts with a # it is a comment */
         if (line[0] == '#') {
           numlinepar++;
           fputs(line,stdout);
           fputs(line,ficparo);
           fputs(line,ficlog);
           fputs(line,ficres);
           continue;
         }else
           break;
       }
       if (!feof(ficpar))
       while((num_filled=sscanf(line,"result:%[^\n]\n",resultline)) !=EOF){
         if (num_filled == 0){
           resultline[0]='\0';
         break;
         } else if (num_filled != 1){
           printf("ERROR %d: result line should be at minimum 'result=' %s\n",num_filled, line);
         }
         nresult++; /* Sum of resultlines */
         printf("Result %d: result=%s\n",nresult, resultline);
         if(nresult > MAXRESULTLINES){
           printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult);
           fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult);
           goto end;
         }
         decoderesult(resultline, nresult); /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */
         fprintf(ficparo,"result: %s\n",resultline);
         fprintf(ficres,"result: %s\n",resultline);
         fprintf(ficlog,"result: %s\n",resultline);
         while(fgets(line, MAXLINE, ficpar)) {
           /* If line starts with a # it is a comment */
           if (line[0] == '#') {
             numlinepar++;
             fputs(line,stdout);
             fputs(line,ficparo);
             fputs(line,ficres);
             fputs(line,ficlog);
             continue;
           }else
             break;
         }
         if (feof(ficpar))
           break;
         else{ /* Processess output results for this combination of covariate values */
         }                            
       } /* end while */
   
   
       
       /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
         printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
         fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else{
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p);
       }
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,backcast, estepm, \
                    jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2);
                   
       /*------------ free_vector  -------------*/
       /*  chdir(path); */
                   
       /* free_ivector(wav,1,imx); */  /* Moved after last prevalence call */
       /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
                   
                   
       /* Other results (useful)*/
                   
                   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
       
       /* ncovcombmax=  pow(2,cptcoveff); */
       /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
       
       /* Prevalence for each covariates in probs[age][status][cov] */
       probs= ma3x(1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */
           for(k=1;k<=ncovcombmax;k++)
             probs[i][j][k]=0.;
       prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       if (mobilav!=0 ||mobilavproj !=0 ) {
         mobaverages= ma3x(1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
         for(i=1;i<=AGESUP;i++)
           for(j=1;j<=nlstate;j++)
             for(k=1;k<=ncovcombmax;k++)
               mobaverages[i][j][k]=0.;
         mobaverage=mobaverages;
         if (mobilav!=0) {
           printf("Movingaveraging observed prevalence\n");
           if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){
             fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             printf(" Error in movingaverage mobilav=%d\n",mobilav);
           }
         }
         /* /\* Prevalence for each covariates in probs[age][status][cov] *\/ */
         /* prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
         else if (mobilavproj !=0) {
           printf("Movingaveraging projected observed prevalence\n");
           if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){
             fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj);
             printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj);
           }
         }
       }/* end if moving average */
       
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
       }
       if(backcast==1){
         ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
         ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
         ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);
   
         /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
   
         bprlim=matrix(1,nlstate,1,nlstate);
         back_prevalence_limit(p, bprlim,  ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj);
         fclose(ficresplb);
   
         hBijx(p, bage, fage, mobaverage);
         fclose(ficrespijb);
         free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */
   
         /* prevbackforecast(fileresu, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, mobilavproj,
            bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */
         free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath);
         free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath);
         free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath);
       }
       
    
       /* ------ Other prevalence ratios------------ */
   
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+2,1,imx);   
                   
                   
       /*---------- Health expectancies, no variances ------------*/
                   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
   
       pstamp(ficreseij);
                   
       i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
       if (cptcovn < 1){i1=1;}
       
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
         if(TKresult[nres]!= k)
           continue;
         fprintf(ficreseij,"\n#****** ");
         printf("\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficreseij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         }
         fprintf(ficreseij,"******\n");
         printf("******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres);  
         
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
       }
       fclose(ficreseij);
       printf("done evsij\n");fflush(stdout);
       fprintf(ficlog,"done evsij\n");fflush(ficlog);
                   
       /*---------- State-specific expectancies and variances ------------*/
                   
                   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
                   
   
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout);
       fprintf(ficlog,"      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
       if (cptcovn < 1){i1=1;}
       
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
         if(TKresult[nres]!= k)
           continue;
         printf("\n#****** Selected:");
         fprintf(ficrest,"\n#****** Selected:");
         fprintf(ficlog,"\n#****** Selected:");
         for(j=1;j<=cptcoveff;j++){ 
           printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficrest,"******\n");
         fprintf(ficlog,"******\n");
         printf("******\n");
         
         fprintf(ficresstdeij,"\n#****** ");
         fprintf(ficrescveij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           fprintf(ficresstdeij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficrescveij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficresstdeij,"******\n");
         fprintf(ficrescveij,"******\n");
         
         fprintf(ficresvij,"\n#****** ");
         /* pstamp(ficresvij); */
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficresvij,"******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         printf(" cvevsij ");
         fprintf(ficlog, " cvevsij ");
         cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart, nres);
         printf(" end cvevsij \n ");
         fprintf(ficlog, " end cvevsij \n ");
         
         /*
          */
         /* goto endfree; */
         
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         pstamp(ficrest);
         
         
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
           oldm=oldms;savm=savms; /* ZZ Segmentation fault */
           cptcod= 0; /* To be deleted */
           printf("varevsij vpopbased=%d \n",vpopbased);
           fprintf(ficlog, "varevsij vpopbased=%d \n",vpopbased);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart, nres); /* cptcod not initialized Intel */
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
           if(vpopbased==1)
             fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
           else
             fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
           fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
           /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
           epj=vector(1,nlstate+1);
           printf("Computing age specific period (stable) prevalences in each health state \n");
           fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n");
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */
             if (vpopbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
             
             fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
             /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
             /* printf(" age %4.0f ",age); */
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
               }
               epj[nlstate+1] +=epj[j];
             }
             /* printf(" age %4.0f \n",age); */
             
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
         } /* End vpopbased */
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
         printf("done selection\n");fflush(stdout);
         fprintf(ficlog,"done selection\n");fflush(ficlog);
         
         /*}*/
       } /* End k selection */
   
       printf("done State-specific expectancies\n");fflush(stdout);
       fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog);
   
       /*------- Variance of period (stable) prevalence------*/   
       
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
       fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
       
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
       
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){
         if(TKresult[nres]!= k)
           continue;
         fprintf(ficresvpl,"\n#****** ");
         printf("\n#****** ");
         fprintf(ficlog,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficresvpl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart, nres);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       
       fclose(ficresvpl);
       printf("done variance-covariance of period prevalence\n");fflush(stdout);
       fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog);
       
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
       
       
       /*---------- End : free ----------------*/
       if (mobilav!=0 ||mobilavproj !=0)
         free_ma3x(mobaverages,1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */
       free_ma3x(probs,1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     }  /* mle==-3 arrives here for freeing */
     /* endfree:*/
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_ma3x(cotqvar,1,maxwav,1,nqtv,1,n);
     free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,1,n);
     free_matrix(coqvar,1,maxwav,1,n);
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     free_matrix(hess,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     
     free_ivector(ncodemax,1,NCOVMAX);
     free_ivector(ncodemaxwundef,1,NCOVMAX);
     free_ivector(Dummy,-1,NCOVMAX);
     free_ivector(Fixed,-1,NCOVMAX);
     free_ivector(DummyV,1,NCOVMAX);
     free_ivector(FixedV,1,NCOVMAX);
     free_ivector(Typevar,-1,NCOVMAX);
     free_ivector(Tvar,1,NCOVMAX);
     free_ivector(TvarsQ,1,NCOVMAX);
     free_ivector(TvarsQind,1,NCOVMAX);
     free_ivector(TvarsD,1,NCOVMAX);
     free_ivector(TvarsDind,1,NCOVMAX);
     free_ivector(TvarFD,1,NCOVMAX);
     free_ivector(TvarFDind,1,NCOVMAX);
     free_ivector(TvarF,1,NCOVMAX);
     free_ivector(TvarFind,1,NCOVMAX);
     free_ivector(TvarV,1,NCOVMAX);
     free_ivector(TvarVind,1,NCOVMAX);
     free_ivector(TvarA,1,NCOVMAX);
     free_ivector(TvarAind,1,NCOVMAX);
     free_ivector(TvarFQ,1,NCOVMAX);
     free_ivector(TvarFQind,1,NCOVMAX);
     free_ivector(TvarVD,1,NCOVMAX);
     free_ivector(TvarVDind,1,NCOVMAX);
     free_ivector(TvarVQ,1,NCOVMAX);
     free_ivector(TvarVQind,1,NCOVMAX);
     free_ivector(Tvarsel,1,NCOVMAX);
     free_vector(Tvalsel,1,NCOVMAX);
     free_ivector(Tposprod,1,NCOVMAX);
     free_ivector(Tprod,1,NCOVMAX);
     free_ivector(Tvaraff,1,NCOVMAX);
     free_ivector(invalidvarcomb,1,ncovcombmax);
     free_ivector(Tage,1,NCOVMAX);
     free_ivector(Tmodelind,1,NCOVMAX);
     free_ivector(TmodelInvind,1,NCOVMAX);
     free_ivector(TmodelInvQind,1,NCOVMAX);
     
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
     /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
     
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
     
     
     printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
     if (_chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(_getcwd(pathcd,MAXLINE) > 0)
   #else
       if(chdir(pathcd) != 0)
         printf("Can't move to directory %s!\n", path);
     if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
     
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
   end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.41.2.2  
changed lines
  Added in v.1.240


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>