Diff for /imach/src/imach.c between versions 1.24 and 1.89

version 1.24, 2002/02/22 18:10:15 version 1.89, 2003/06/24 12:30:52
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.89  2003/06/24 12:30:52  brouard
      (Module): Some bugs corrected for windows. Also, when
   This program computes Healthy Life Expectancies from    mle=-1 a template is output in file "or"mypar.txt with the design
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    of the covariance matrix to be input.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.88  2003/06/23 17:54:56  brouard
   case of a health survey which is our main interest) -2- at least a    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.87  2003/06/18 12:26:01  brouard
   computed from the time spent in each health state according to a    Version 0.96
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.86  2003/06/17 20:04:08  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Change position of html and gnuplot routines and added
   probabibility to be observed in state j at the second wave    routine fileappend.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.85  2003/06/17 13:12:43  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    * imach.c (Repository): Check when date of death was earlier that
   complex model than "constant and age", you should modify the program    current date of interview. It may happen when the death was just
   where the markup *Covariates have to be included here again* invites    prior to the death. In this case, dh was negative and likelihood
   you to do it.  More covariates you add, slower the    was wrong (infinity). We still send an "Error" but patch by
   convergence.    assuming that the date of death was just one stepm after the
     interview.
   The advantage of this computer programme, compared to a simple    (Repository): Because some people have very long ID (first column)
   multinomial logistic model, is clear when the delay between waves is not    we changed int to long in num[] and we added a new lvector for
   identical for each individual. Also, if a individual missed an    memory allocation. But we also truncated to 8 characters (left
   intermediate interview, the information is lost, but taken into    truncation)
   account using an interpolation or extrapolation.      (Repository): No more line truncation errors.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.84  2003/06/13 21:44:43  brouard
   conditional to the observed state i at age x. The delay 'h' can be    * imach.c (Repository): Replace "freqsummary" at a correct
   split into an exact number (nh*stepm) of unobserved intermediate    place. It differs from routine "prevalence" which may be called
   states. This elementary transition (by month or quarter trimester,    many times. Probs is memory consuming and must be used with
   semester or year) is model as a multinomial logistic.  The hPx    parcimony.
   matrix is simply the matrix product of nh*stepm elementary matrices    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.82  2003/06/05 15:57:20  brouard
      Add log in  imach.c and  fullversion number is now printed.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.  */
   This software have been partly granted by Euro-REVES, a concerted action  /*
   from the European Union.     Interpolated Markov Chain
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Short summary of the programme:
   can be accessed at http://euroreves.ined.fr/imach .    
   **********************************************************************/    This program computes Healthy Life Expectancies from
      cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #include <math.h>    first survey ("cross") where individuals from different ages are
 #include <stdio.h>    interviewed on their health status or degree of disability (in the
 #include <stdlib.h>    case of a health survey which is our main interest) -2- at least a
 #include <unistd.h>    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 #define MAXLINE 256    computed from the time spent in each health state according to a
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"    model. More health states you consider, more time is necessary to reach the
 #define FILENAMELENGTH 80    Maximum Likelihood of the parameters involved in the model.  The
 /*#define DEBUG*/    simplest model is the multinomial logistic model where pij is the
 #define windows    probability to be observed in state j at the second wave
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    conditional to be observed in state i at the first wave. Therefore
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    complex model than "constant and age", you should modify the program
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 #define NINTERVMAX 8    convergence.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    The advantage of this computer programme, compared to a simple
 #define NCOVMAX 8 /* Maximum number of covariates */    multinomial logistic model, is clear when the delay between waves is not
 #define MAXN 20000    identical for each individual. Also, if a individual missed an
 #define YEARM 12. /* Number of months per year */    intermediate interview, the information is lost, but taken into
 #define AGESUP 130    account using an interpolation or extrapolation.  
 #define AGEBASE 40  
     hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 int erreur; /* Error number */    split into an exact number (nh*stepm) of unobserved intermediate
 int nvar;    states. This elementary transition (by month, quarter,
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    semester or year) is modelled as a multinomial logistic.  The hPx
 int npar=NPARMAX;    matrix is simply the matrix product of nh*stepm elementary matrices
 int nlstate=2; /* Number of live states */    and the contribution of each individual to the likelihood is simply
 int ndeath=1; /* Number of dead states */    hPijx.
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
 int *wav; /* Number of waves for this individuual 0 is possible */    
 int maxwav; /* Maxim number of waves */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int jmin, jmax; /* min, max spacing between 2 waves */             Institut national d'études démographiques, Paris.
 int mle, weightopt;    This software have been partly granted by Euro-REVES, a concerted action
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    from the European Union.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    It is copyrighted identically to a GNU software product, ie programme and
 double jmean; /* Mean space between 2 waves */    software can be distributed freely for non commercial use. Latest version
 double **oldm, **newm, **savm; /* Working pointers to matrices */    can be accessed at http://euroreves.ined.fr/imach .
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 FILE *ficreseij;    
   char filerese[FILENAMELENGTH];    **********************************************************************/
  FILE  *ficresvij;  /*
   char fileresv[FILENAMELENGTH];    main
  FILE  *ficresvpl;    read parameterfile
   char fileresvpl[FILENAMELENGTH];    read datafile
     concatwav
 #define NR_END 1    freqsummary
 #define FREE_ARG char*    if (mle >= 1)
 #define FTOL 1.0e-10      mlikeli
     print results files
 #define NRANSI    if mle==1 
 #define ITMAX 200       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 #define TOL 2.0e-4        begin-prev-date,...
     open gnuplot file
 #define CGOLD 0.3819660    open html file
 #define ZEPS 1.0e-10    stable prevalence
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     for age prevalim()
     h Pij x
 #define GOLD 1.618034    variance of p varprob
 #define GLIMIT 100.0    forecasting if prevfcast==1 prevforecast call prevalence()
 #define TINY 1.0e-20    health expectancies
     Variance-covariance of DFLE
 static double maxarg1,maxarg2;    prevalence()
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))     movingaverage()
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    varevsij() 
      if popbased==1 varevsij(,popbased)
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    total life expectancies
 #define rint(a) floor(a+0.5)    Variance of stable prevalence
    end
 static double sqrarg;  */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
   
 int imx;   
 int stepm;  #include <math.h>
 /* Stepm, step in month: minimum step interpolation*/  #include <stdio.h>
   #include <stdlib.h>
 int m,nb;  #include <unistd.h>
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #include <sys/time.h>
 double **pmmij, ***probs, ***mobaverage;  #include <time.h>
 double dateintmean=0;  #include "timeval.h"
   
 double *weight;  #define MAXLINE 256
 int **s; /* Status */  #define GNUPLOTPROGRAM "gnuplot"
 double *agedc, **covar, idx;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define FILENAMELENGTH 132
   /*#define DEBUG*/
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  /*#define windows*/
 double ftolhess; /* Tolerance for computing hessian */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
    l1 = strlen( path );                 /* length of path */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define NCOVMAX 8 /* Maximum number of covariates */
 #ifdef windows  #define MAXN 20000
    s = strrchr( path, '\\' );           /* find last / */  #define YEARM 12. /* Number of months per year */
 #else  #define AGESUP 130
    s = strrchr( path, '/' );            /* find last / */  #define AGEBASE 40
 #endif  #ifdef unix
    if ( s == NULL ) {                   /* no directory, so use current */  #define DIRSEPARATOR '/'
 #if     defined(__bsd__)                /* get current working directory */  #define ODIRSEPARATOR '\\'
       extern char       *getwd( );  #else
   #define DIRSEPARATOR '\\'
       if ( getwd( dirc ) == NULL ) {  #define ODIRSEPARATOR '/'
 #else  #endif
       extern char       *getcwd( );  
   /* $Id$ */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  /* $State$ */
 #endif  
          return( GLOCK_ERROR_GETCWD );  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
       }  char fullversion[]="$Revision$ $Date$"; 
       strcpy( name, path );             /* we've got it */  int erreur; /* Error number */
    } else {                             /* strip direcotry from path */  int nvar;
       s++;                              /* after this, the filename */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
       l2 = strlen( s );                 /* length of filename */  int npar=NPARMAX;
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int nlstate=2; /* Number of live states */
       strcpy( name, s );                /* save file name */  int ndeath=1; /* Number of dead states */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       dirc[l1-l2] = 0;                  /* add zero */  int popbased=0;
    }  
    l1 = strlen( dirc );                 /* length of directory */  int *wav; /* Number of waves for this individuual 0 is possible */
 #ifdef windows  int maxwav; /* Maxim number of waves */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int jmin, jmax; /* min, max spacing between 2 waves */
 #else  int gipmx, gsw; /* Global variables on the number of contributions 
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }                     to the likelihood and the sum of weights (done by funcone)*/
 #endif  int mle, weightopt;
    s = strrchr( name, '.' );            /* find last / */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    s++;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    strcpy(ext,s);                       /* save extension */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
    l1= strlen( name);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
    l2= strlen( s)+1;  double jmean; /* Mean space between 2 waves */
    strncpy( finame, name, l1-l2);  double **oldm, **newm, **savm; /* Working pointers to matrices */
    finame[l1-l2]= 0;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    return( 0 );                         /* we're done */  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 /******************************************/  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
 void replace(char *s, char*t)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 {  FILE *ficresilk;
   int i;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   int lg=20;  FILE *ficresprobmorprev;
   i=0;  FILE *fichtm; /* Html File */
   lg=strlen(t);  FILE *ficreseij;
   for(i=0; i<= lg; i++) {  char filerese[FILENAMELENGTH];
     (s[i] = t[i]);  FILE  *ficresvij;
     if (t[i]== '\\') s[i]='/';  char fileresv[FILENAMELENGTH];
   }  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 int nbocc(char *s, char occ)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   int i,j=0;  char tmpout[FILENAMELENGTH]; 
   int lg=20;  char command[FILENAMELENGTH];
   i=0;  int  outcmd=0;
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   if  (s[i] == occ ) j++;  char lfileres[FILENAMELENGTH];
   }  char filelog[FILENAMELENGTH]; /* Log file */
   return j;  char filerest[FILENAMELENGTH];
 }  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 void cutv(char *u,char *v, char*t, char occ)  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   int i,lg,j,p=0;  
   i=0;  #define NR_END 1
   for(j=0; j<=strlen(t)-1; j++) {  #define FREE_ARG char*
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define FTOL 1.0e-10
   }  
   #define NRANSI 
   lg=strlen(t);  #define ITMAX 200 
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  #define TOL 2.0e-4 
   }  
      u[p]='\0';  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
    for(j=0; j<= lg; j++) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  #define GOLD 1.618034 
 }  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
 /********************** nrerror ********************/  
   static double maxarg1,maxarg2;
 void nrerror(char error_text[])  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   fprintf(stderr,"ERREUR ...\n");    
   fprintf(stderr,"%s\n",error_text);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   exit(1);  #define rint(a) floor(a+0.5)
 }  
 /*********************** vector *******************/  static double sqrarg;
 double *vector(int nl, int nh)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int imx; 
   if (!v) nrerror("allocation failure in vector");  int stepm;
   return v-nl+NR_END;  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 /************************ free vector ******************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 void free_vector(double*v, int nl, int nh)  
 {  int m,nb;
   free((FREE_ARG)(v+nl-NR_END));  long *num;
 }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 /************************ivector *******************************/  double **pmmij, ***probs;
 int *ivector(long nl,long nh)  double dateintmean=0;
 {  
   int *v;  double *weight;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int **s; /* Status */
   if (!v) nrerror("allocation failure in ivector");  double *agedc, **covar, idx;
   return v-nl+NR_END;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 /******************free ivector **************************/  double ftolhess; /* Tolerance for computing hessian */
 void free_ivector(int *v, long nl, long nh)  
 {  /**************** split *************************/
   free((FREE_ARG)(v+nl-NR_END));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     char  *ss;                            /* pointer */
 /******************* imatrix *******************************/    int   l1, l2;                         /* length counters */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    l1 = strlen(path );                   /* length of path */
 {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   int **m;    if ( ss == NULL ) {                   /* no directory, so use current */
        /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   /* allocate pointers to rows */        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));      /* get current working directory */
   if (!m) nrerror("allocation failure 1 in matrix()");      /*    extern  char* getcwd ( char *buf , int len);*/
   m += NR_END;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m -= nrl;        return( GLOCK_ERROR_GETCWD );
        }
        strcpy( name, path );               /* we've got it */
   /* allocate rows and set pointers to them */    } else {                              /* strip direcotry from path */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      ss++;                               /* after this, the filename */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      l2 = strlen( ss );                  /* length of filename */
   m[nrl] += NR_END;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   m[nrl] -= ncl;      strcpy( name, ss );         /* save file name */
        strncpy( dirc, path, l1 - l2 );     /* now the directory */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;      dirc[l1-l2] = 0;                    /* add zero */
      }
   /* return pointer to array of pointers to rows */    l1 = strlen( dirc );                  /* length of directory */
   return m;    /*#ifdef windows
 }    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   #else
 /****************** free_imatrix *************************/    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 void free_imatrix(m,nrl,nrh,ncl,nch)  #endif
       int **m;    */
       long nch,ncl,nrh,nrl;    ss = strrchr( name, '.' );            /* find last / */
      /* free an int matrix allocated by imatrix() */    ss++;
 {    strcpy(ext,ss);                       /* save extension */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    l1= strlen( name);
   free((FREE_ARG) (m+nrl-NR_END));    l2= strlen(ss)+1;
 }    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
 /******************* matrix *******************************/    return( 0 );                          /* we're done */
 double **matrix(long nrl, long nrh, long ncl, long nch)  }
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  /******************************************/
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  void replace_back_to_slash(char *s, char*t)
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    int i;
   m -= nrl;    int lg=0;
     i=0;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    lg=strlen(t);
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    for(i=0; i<= lg; i++) {
   m[nrl] += NR_END;      (s[i] = t[i]);
   m[nrl] -= ncl;      if (t[i]== '\\') s[i]='/';
     }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  }
   return m;  
 }  int nbocc(char *s, char occ)
   {
 /*************************free matrix ************************/    int i,j=0;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    int lg=20;
 {    i=0;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    lg=strlen(s);
   free((FREE_ARG)(m+nrl-NR_END));    for(i=0; i<= lg; i++) {
 }    if  (s[i] == occ ) j++;
     }
 /******************* ma3x *******************************/    return j;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  }
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  void cutv(char *u,char *v, char*t, char occ)
   double ***m;  {
     /* cuts string t into u and v where u is ended by char occ excluding it
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   if (!m) nrerror("allocation failure 1 in matrix()");       gives u="abcedf" and v="ghi2j" */
   m += NR_END;    int i,lg,j,p=0;
   m -= nrl;    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    lg=strlen(t);
     for(j=0; j<p; j++) {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      (u[j] = t[j]);
     }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));       u[p]='\0';
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;     for(j=0; j<= lg; j++) {
   m[nrl][ncl] -= nll;      if (j>=(p+1))(v[j-p-1] = t[j]);
   for (j=ncl+1; j<=nch; j++)    }
     m[nrl][j]=m[nrl][j-1]+nlay;  }
    
   for (i=nrl+1; i<=nrh; i++) {  /********************** nrerror ********************/
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  void nrerror(char error_text[])
       m[i][j]=m[i][j-1]+nlay;  {
   }    fprintf(stderr,"ERREUR ...\n");
   return m;    fprintf(stderr,"%s\n",error_text);
 }    exit(EXIT_FAILURE);
   }
 /*************************free ma3x ************************/  /*********************** vector *******************/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  double *vector(int nl, int nh)
 {  {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    double *v;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   free((FREE_ARG)(m+nrl-NR_END));    if (!v) nrerror("allocation failure in vector");
 }    return v-nl+NR_END;
   }
 /***************** f1dim *************************/  
 extern int ncom;  /************************ free vector ******************/
 extern double *pcom,*xicom;  void free_vector(double*v, int nl, int nh)
 extern double (*nrfunc)(double []);  {
      free((FREE_ARG)(v+nl-NR_END));
 double f1dim(double x)  }
 {  
   int j;  /************************ivector *******************************/
   double f;  int *ivector(long nl,long nh)
   double *xt;  {
      int *v;
   xt=vector(1,ncom);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    if (!v) nrerror("allocation failure in ivector");
   f=(*nrfunc)(xt);    return v-nl+NR_END;
   free_vector(xt,1,ncom);  }
   return f;  
 }  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
 /*****************brent *************************/  {
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   int iter;  
   double a,b,d,etemp;  /************************lvector *******************************/
   double fu,fv,fw,fx;  long *lvector(long nl,long nh)
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;    long *v;
   double e=0.0;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
      if (!v) nrerror("allocation failure in ivector");
   a=(ax < cx ? ax : cx);    return v-nl+NR_END;
   b=(ax > cx ? ax : cx);  }
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  /******************free lvector **************************/
   for (iter=1;iter<=ITMAX;iter++) {  void free_lvector(long *v, long nl, long nh)
     xm=0.5*(a+b);  {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    free((FREE_ARG)(v+nl-NR_END));
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  }
     printf(".");fflush(stdout);  
 #ifdef DEBUG  /******************* imatrix *******************************/
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 #endif  { 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       *xmin=x;    int **m; 
       return fx;    
     }    /* allocate pointers to rows */ 
     ftemp=fu;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (fabs(e) > tol1) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
       r=(x-w)*(fx-fv);    m += NR_END; 
       q=(x-v)*(fx-fw);    m -= nrl; 
       p=(x-v)*q-(x-w)*r;    
       q=2.0*(q-r);    
       if (q > 0.0) p = -p;    /* allocate rows and set pointers to them */ 
       q=fabs(q);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       etemp=e;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       e=d;    m[nrl] += NR_END; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    m[nrl] -= ncl; 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    
       else {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         d=p/q;    
         u=x+d;    /* return pointer to array of pointers to rows */ 
         if (u-a < tol2 || b-u < tol2)    return m; 
           d=SIGN(tol1,xm-x);  } 
       }  
     } else {  /****************** free_imatrix *************************/
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  void free_imatrix(m,nrl,nrh,ncl,nch)
     }        int **m;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));        long nch,ncl,nrh,nrl; 
     fu=(*f)(u);       /* free an int matrix allocated by imatrix() */ 
     if (fu <= fx) {  { 
       if (u >= x) a=x; else b=x;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       SHFT(v,w,x,u)    free((FREE_ARG) (m+nrl-NR_END)); 
         SHFT(fv,fw,fx,fu)  } 
         } else {  
           if (u < x) a=u; else b=u;  /******************* matrix *******************************/
           if (fu <= fw || w == x) {  double **matrix(long nrl, long nrh, long ncl, long nch)
             v=w;  {
             w=u;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
             fv=fw;    double **m;
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             v=u;    if (!m) nrerror("allocation failure 1 in matrix()");
             fv=fu;    m += NR_END;
           }    m -= nrl;
         }  
   }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   nrerror("Too many iterations in brent");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   *xmin=x;    m[nrl] += NR_END;
   return fx;    m[nrl] -= ncl;
 }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 /****************** mnbrak ***********************/    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     */
             double (*func)(double))  }
 {  
   double ulim,u,r,q, dum;  /*************************free matrix ************************/
   double fu;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
    {
   *fa=(*func)(*ax);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   *fb=(*func)(*bx);    free((FREE_ARG)(m+nrl-NR_END));
   if (*fb > *fa) {  }
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  /******************* ma3x *******************************/
       }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   *cx=(*bx)+GOLD*(*bx-*ax);  {
   *fc=(*func)(*cx);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   while (*fb > *fc) {    double ***m;
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if (!m) nrerror("allocation failure 1 in matrix()");
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    m += NR_END;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m -= nrl;
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     } else if ((*cx-u)*(u-ulim) > 0.0) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       fu=(*func)(u);    m[nrl] += NR_END;
       if (fu < *fc) {    m[nrl] -= ncl;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       u=ulim;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       fu=(*func)(u);    m[nrl][ncl] += NR_END;
     } else {    m[nrl][ncl] -= nll;
       u=(*cx)+GOLD*(*cx-*bx);    for (j=ncl+1; j<=nch; j++) 
       fu=(*func)(u);      m[nrl][j]=m[nrl][j-1]+nlay;
     }    
     SHFT(*ax,*bx,*cx,u)    for (i=nrl+1; i<=nrh; i++) {
       SHFT(*fa,*fb,*fc,fu)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       }      for (j=ncl+1; j<=nch; j++) 
 }        m[i][j]=m[i][j-1]+nlay;
     }
 /*************** linmin ************************/    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 int ncom;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 double *pcom,*xicom;    */
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /*************************free ma3x ************************/
 {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   double brent(double ax, double bx, double cx,  {
                double (*f)(double), double tol, double *xmin);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   double f1dim(double x);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    free((FREE_ARG)(m+nrl-NR_END));
               double *fc, double (*func)(double));  }
   int j;  
   double xx,xmin,bx,ax;  /***************** f1dim *************************/
   double fx,fb,fa;  extern int ncom; 
    extern double *pcom,*xicom;
   ncom=n;  extern double (*nrfunc)(double []); 
   pcom=vector(1,n);   
   xicom=vector(1,n);  double f1dim(double x) 
   nrfunc=func;  { 
   for (j=1;j<=n;j++) {    int j; 
     pcom[j]=p[j];    double f;
     xicom[j]=xi[j];    double *xt; 
   }   
   ax=0.0;    xt=vector(1,ncom); 
   xx=1.0;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    f=(*nrfunc)(xt); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    free_vector(xt,1,ncom); 
 #ifdef DEBUG    return f; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  } 
 #endif  
   for (j=1;j<=n;j++) {  /*****************brent *************************/
     xi[j] *= xmin;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     p[j] += xi[j];  { 
   }    int iter; 
   free_vector(xicom,1,n);    double a,b,d,etemp;
   free_vector(pcom,1,n);    double fu,fv,fw,fx;
 }    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
 /*************** powell ************************/    double e=0.0; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,   
             double (*func)(double []))    a=(ax < cx ? ax : cx); 
 {    b=(ax > cx ? ax : cx); 
   void linmin(double p[], double xi[], int n, double *fret,    x=w=v=bx; 
               double (*func)(double []));    fw=fv=fx=(*f)(x); 
   int i,ibig,j;    for (iter=1;iter<=ITMAX;iter++) { 
   double del,t,*pt,*ptt,*xit;      xm=0.5*(a+b); 
   double fp,fptt;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   double *xits;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   pt=vector(1,n);      printf(".");fflush(stdout);
   ptt=vector(1,n);      fprintf(ficlog,".");fflush(ficlog);
   xit=vector(1,n);  #ifdef DEBUG
   xits=vector(1,n);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   *fret=(*func)(p);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for (j=1;j<=n;j++) pt[j]=p[j];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   for (*iter=1;;++(*iter)) {  #endif
     fp=(*fret);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     ibig=0;        *xmin=x; 
     del=0.0;        return fx; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      } 
     for (i=1;i<=n;i++)      ftemp=fu;
       printf(" %d %.12f",i, p[i]);      if (fabs(e) > tol1) { 
     printf("\n");        r=(x-w)*(fx-fv); 
     for (i=1;i<=n;i++) {        q=(x-v)*(fx-fw); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        p=(x-v)*q-(x-w)*r; 
       fptt=(*fret);        q=2.0*(q-r); 
 #ifdef DEBUG        if (q > 0.0) p = -p; 
       printf("fret=%lf \n",*fret);        q=fabs(q); 
 #endif        etemp=e; 
       printf("%d",i);fflush(stdout);        e=d; 
       linmin(p,xit,n,fret,func);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       if (fabs(fptt-(*fret)) > del) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         del=fabs(fptt-(*fret));        else { 
         ibig=i;          d=p/q; 
       }          u=x+d; 
 #ifdef DEBUG          if (u-a < tol2 || b-u < tol2) 
       printf("%d %.12e",i,(*fret));            d=SIGN(tol1,xm-x); 
       for (j=1;j<=n;j++) {        } 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      } else { 
         printf(" x(%d)=%.12e",j,xit[j]);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       }      } 
       for(j=1;j<=n;j++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         printf(" p=%.12e",p[j]);      fu=(*f)(u); 
       printf("\n");      if (fu <= fx) { 
 #endif        if (u >= x) a=x; else b=x; 
     }        SHFT(v,w,x,u) 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {          SHFT(fv,fw,fx,fu) 
 #ifdef DEBUG          } else { 
       int k[2],l;            if (u < x) a=u; else b=u; 
       k[0]=1;            if (fu <= fw || w == x) { 
       k[1]=-1;              v=w; 
       printf("Max: %.12e",(*func)(p));              w=u; 
       for (j=1;j<=n;j++)              fv=fw; 
         printf(" %.12e",p[j]);              fw=fu; 
       printf("\n");            } else if (fu <= fv || v == x || v == w) { 
       for(l=0;l<=1;l++) {              v=u; 
         for (j=1;j<=n;j++) {              fv=fu; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];            } 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);          } 
         }    } 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    nrerror("Too many iterations in brent"); 
       }    *xmin=x; 
 #endif    return fx; 
   } 
   
       free_vector(xit,1,n);  /****************** mnbrak ***********************/
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       free_vector(pt,1,n);              double (*func)(double)) 
       return;  { 
     }    double ulim,u,r,q, dum;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    double fu; 
     for (j=1;j<=n;j++) {   
       ptt[j]=2.0*p[j]-pt[j];    *fa=(*func)(*ax); 
       xit[j]=p[j]-pt[j];    *fb=(*func)(*bx); 
       pt[j]=p[j];    if (*fb > *fa) { 
     }      SHFT(dum,*ax,*bx,dum) 
     fptt=(*func)(ptt);        SHFT(dum,*fb,*fa,dum) 
     if (fptt < fp) {        } 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    *cx=(*bx)+GOLD*(*bx-*ax); 
       if (t < 0.0) {    *fc=(*func)(*cx); 
         linmin(p,xit,n,fret,func);    while (*fb > *fc) { 
         for (j=1;j<=n;j++) {      r=(*bx-*ax)*(*fb-*fc); 
           xi[j][ibig]=xi[j][n];      q=(*bx-*cx)*(*fb-*fa); 
           xi[j][n]=xit[j];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 #ifdef DEBUG      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      if ((*bx-u)*(u-*cx) > 0.0) { 
         for(j=1;j<=n;j++)        fu=(*func)(u); 
           printf(" %.12e",xit[j]);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         printf("\n");        fu=(*func)(u); 
 #endif        if (fu < *fc) { 
       }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     }            SHFT(*fb,*fc,fu,(*func)(u)) 
   }            } 
 }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
 /**** Prevalence limit ****************/        fu=(*func)(u); 
       } else { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        u=(*cx)+GOLD*(*cx-*bx); 
 {        fu=(*func)(u); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      } 
      matrix by transitions matrix until convergence is reached */      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
   int i, ii,j,k;        } 
   double min, max, maxmin, maxmax,sumnew=0.;  } 
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  /*************** linmin ************************/
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  int ncom; 
   double *pcom,*xicom;
   for (ii=1;ii<=nlstate+ndeath;ii++)  double (*nrfunc)(double []); 
     for (j=1;j<=nlstate+ndeath;j++){   
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     }  { 
     double brent(double ax, double bx, double cx, 
    cov[1]=1.;                 double (*f)(double), double tol, double *xmin); 
      double f1dim(double x); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){                double *fc, double (*func)(double)); 
     newm=savm;    int j; 
     /* Covariates have to be included here again */    double xx,xmin,bx,ax; 
      cov[2]=agefin;    double fx,fb,fa;
     
       for (k=1; k<=cptcovn;k++) {    ncom=n; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    pcom=vector(1,n); 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    xicom=vector(1,n); 
       }    nrfunc=func; 
       for (k=1; k<=cptcovage;k++)    for (j=1;j<=n;j++) { 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      pcom[j]=p[j]; 
       for (k=1; k<=cptcovprod;k++)      xicom[j]=xi[j]; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    } 
     ax=0.0; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    xx=1.0; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     savm=oldm;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     oldm=newm;  #endif
     maxmax=0.;    for (j=1;j<=n;j++) { 
     for(j=1;j<=nlstate;j++){      xi[j] *= xmin; 
       min=1.;      p[j] += xi[j]; 
       max=0.;    } 
       for(i=1; i<=nlstate; i++) {    free_vector(xicom,1,n); 
         sumnew=0;    free_vector(pcom,1,n); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  } 
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  /*************** powell ************************/
         min=FMIN(min,prlim[i][j]);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       }              double (*func)(double [])) 
       maxmin=max-min;  { 
       maxmax=FMAX(maxmax,maxmin);    void linmin(double p[], double xi[], int n, double *fret, 
     }                double (*func)(double [])); 
     if(maxmax < ftolpl){    int i,ibig,j; 
       return prlim;    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
   }    double *xits;
 }    pt=vector(1,n); 
     ptt=vector(1,n); 
 /*************** transition probabilities ***************/    xit=vector(1,n); 
     xits=vector(1,n); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    *fret=(*func)(p); 
 {    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double s1, s2;    for (*iter=1;;++(*iter)) { 
   /*double t34;*/      fp=(*fret); 
   int i,j,j1, nc, ii, jj;      ibig=0; 
       del=0.0; 
     for(i=1; i<= nlstate; i++){      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     for(j=1; j<i;j++){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      fprintf(ficrespow,"%d %.12f",*iter,*fret);
         /*s2 += param[i][j][nc]*cov[nc];*/      for (i=1;i<=n;i++) {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        printf(" %d %.12f",i, p[i]);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        fprintf(ficlog," %d %.12lf",i, p[i]);
       }        fprintf(ficrespow," %.12lf", p[i]);
       ps[i][j]=s2;      }
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      printf("\n");
     }      fprintf(ficlog,"\n");
     for(j=i+1; j<=nlstate+ndeath;j++){      fprintf(ficrespow,"\n");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      for (i=1;i<=n;i++) { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        fptt=(*fret); 
       }  #ifdef DEBUG
       ps[i][j]=s2;        printf("fret=%lf \n",*fret);
     }        fprintf(ficlog,"fret=%lf \n",*fret);
   }  #endif
     /*ps[3][2]=1;*/        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
   for(i=1; i<= nlstate; i++){        linmin(p,xit,n,fret,func); 
      s1=0;        if (fabs(fptt-(*fret)) > del) { 
     for(j=1; j<i; j++)          del=fabs(fptt-(*fret)); 
       s1+=exp(ps[i][j]);          ibig=i; 
     for(j=i+1; j<=nlstate+ndeath; j++)        } 
       s1+=exp(ps[i][j]);  #ifdef DEBUG
     ps[i][i]=1./(s1+1.);        printf("%d %.12e",i,(*fret));
     for(j=1; j<i; j++)        fprintf(ficlog,"%d %.12e",i,(*fret));
       ps[i][j]= exp(ps[i][j])*ps[i][i];        for (j=1;j<=n;j++) {
     for(j=i+1; j<=nlstate+ndeath; j++)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       ps[i][j]= exp(ps[i][j])*ps[i][i];          printf(" x(%d)=%.12e",j,xit[j]);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   } /* end i */        }
         for(j=1;j<=n;j++) {
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          printf(" p=%.12e",p[j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){          fprintf(ficlog," p=%.12e",p[j]);
       ps[ii][jj]=0;        }
       ps[ii][ii]=1;        printf("\n");
     }        fprintf(ficlog,"\n");
   }  #endif
       } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  #ifdef DEBUG
     for(jj=1; jj<= nlstate+ndeath; jj++){        int k[2],l;
      printf("%lf ",ps[ii][jj]);        k[0]=1;
    }        k[1]=-1;
     printf("\n ");        printf("Max: %.12e",(*func)(p));
     }        fprintf(ficlog,"Max: %.12e",(*func)(p));
     printf("\n ");printf("%lf ",cov[2]);*/        for (j=1;j<=n;j++) {
 /*          printf(" %.12e",p[j]);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          fprintf(ficlog," %.12e",p[j]);
   goto end;*/        }
     return ps;        printf("\n");
 }        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
 /**************** Product of 2 matrices ******************/          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   /* in, b, out are matrice of pointers which should have been initialized          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
      before: only the contents of out is modified. The function returns        }
      a pointer to pointers identical to out */  #endif
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)        free_vector(xit,1,n); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        free_vector(xits,1,n); 
         out[i][k] +=in[i][j]*b[j][k];        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
   return out;        return; 
 }      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
 /************* Higher Matrix Product ***************/        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        pt[j]=p[j]; 
 {      } 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      fptt=(*func)(ptt); 
      duration (i.e. until      if (fptt < fp) { 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        if (t < 0.0) { 
      (typically every 2 years instead of every month which is too big).          linmin(p,xit,n,fret,func); 
      Model is determined by parameters x and covariates have to be          for (j=1;j<=n;j++) { 
      included manually here.            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
      */          }
   #ifdef DEBUG
   int i, j, d, h, k;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double **out, cov[NCOVMAX];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double **newm;          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
   /* Hstepm could be zero and should return the unit matrix */            fprintf(ficlog," %.12e",xit[j]);
   for (i=1;i<=nlstate+ndeath;i++)          }
     for (j=1;j<=nlstate+ndeath;j++){          printf("\n");
       oldm[i][j]=(i==j ? 1.0 : 0.0);          fprintf(ficlog,"\n");
       po[i][j][0]=(i==j ? 1.0 : 0.0);  #endif
     }        }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      } 
   for(h=1; h <=nhstepm; h++){    } 
     for(d=1; d <=hstepm; d++){  } 
       newm=savm;  
       /* Covariates have to be included here again */  /**** Prevalence limit (stable prevalence)  ****************/
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  {
       for (k=1; k<=cptcovage;k++)    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];       matrix by transitions matrix until convergence is reached */
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    double **out, cov[NCOVMAX], **pmij();
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    double **newm;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double agefin, delaymax=50 ; /* Max number of years to converge */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;    for (ii=1;ii<=nlstate+ndeath;ii++)
       oldm=newm;      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=1; i<=nlstate+ndeath; i++)      }
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];     cov[1]=1.;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);   
          */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   } /* end h */      newm=savm;
   return po;      /* Covariates have to be included here again */
 }       cov[2]=agefin;
     
         for (k=1; k<=cptcovn;k++) {
 /*************** log-likelihood *************/          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 double func( double *x)          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 {        }
   int i, ii, j, k, mi, d, kk;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        for (k=1; k<=cptcovprod;k++)
   double **out;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   long ipmx;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   /*extern weight */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   /* We are differentiating ll according to initial status */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)      savm=oldm;
     printf(" %d\n",s[4][i]);      oldm=newm;
   */      maxmax=0.;
   cov[1]=1.;      for(j=1;j<=nlstate;j++){
         min=1.;
   for(k=1; k<=nlstate; k++) ll[k]=0.;        max=0.;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for(i=1; i<=nlstate; i++) {
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          sumnew=0;
     for(mi=1; mi<= wav[i]-1; mi++){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for (ii=1;ii<=nlstate+ndeath;ii++)          prlim[i][j]= newm[i][j]/(1-sumnew);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          max=FMAX(max,prlim[i][j]);
       for(d=0; d<dh[mi][i]; d++){          min=FMIN(min,prlim[i][j]);
         newm=savm;        }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        maxmin=max-min;
         for (kk=1; kk<=cptcovage;kk++) {        maxmax=FMAX(maxmax,maxmin);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      }
         }      if(maxmax < ftolpl){
                return prlim;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    }
         savm=oldm;  }
         oldm=newm;  
          /*************** transition probabilities ***************/ 
          
       } /* end mult */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
        {
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    double s1, s2;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    /*double t34;*/
       ipmx +=1;    int i,j,j1, nc, ii, jj;
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      for(i=1; i<= nlstate; i++){
     } /* end of wave */      for(j=1; j<i;j++){
   } /* end of individual */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           /*s2 += param[i][j][nc]*cov[nc];*/
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        }
   return -l;        ps[i][j]=s2;
 }        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       }
       for(j=i+1; j<=nlstate+ndeath;j++){
 /*********** Maximum Likelihood Estimation ***************/        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
 {        }
   int i,j, iter;        ps[i][j]=s2;
   double **xi,*delti;      }
   double fret;    }
   xi=matrix(1,npar,1,npar);      /*ps[3][2]=1;*/
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)    for(i=1; i<= nlstate; i++){
       xi[i][j]=(i==j ? 1.0 : 0.0);       s1=0;
   printf("Powell\n");      for(j=1; j<i; j++)
   powell(p,xi,npar,ftol,&iter,&fret,func);        s1+=exp(ps[i][j]);
       for(j=i+1; j<=nlstate+ndeath; j++)
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        s1+=exp(ps[i][j]);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)
 }        ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=i+1; j<=nlstate+ndeath; j++)
 /**** Computes Hessian and covariance matrix ***/        ps[i][j]= exp(ps[i][j])*ps[i][i];
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 {    } /* end i */
   double  **a,**y,*x,pd;  
   double **hess;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   int i, j,jk;      for(jj=1; jj<= nlstate+ndeath; jj++){
   int *indx;        ps[ii][jj]=0;
         ps[ii][ii]=1;
   double hessii(double p[], double delta, int theta, double delti[]);      }
   double hessij(double p[], double delti[], int i, int j);    }
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
     /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   hess=matrix(1,npar,1,npar);      for(jj=1; jj<= nlstate+ndeath; jj++){
        printf("%lf ",ps[ii][jj]);
   printf("\nCalculation of the hessian matrix. Wait...\n");     }
   for (i=1;i<=npar;i++){      printf("\n ");
     printf("%d",i);fflush(stdout);      }
     hess[i][i]=hessii(p,ftolhess,i,delti);      printf("\n ");printf("%lf ",cov[2]);*/
     /*printf(" %f ",p[i]);*/  /*
     /*printf(" %lf ",hess[i][i]);*/    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   }    goto end;*/
        return ps;
   for (i=1;i<=npar;i++) {  }
     for (j=1;j<=npar;j++)  {  
       if (j>i) {  /**************** Product of 2 matrices ******************/
         printf(".%d%d",i,j);fflush(stdout);  
         hess[i][j]=hessij(p,delti,i,j);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         hess[j][i]=hess[i][j];      {
         /*printf(" %lf ",hess[i][j]);*/    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     }    /* in, b, out are matrice of pointers which should have been initialized 
   }       before: only the contents of out is modified. The function returns
   printf("\n");       a pointer to pointers identical to out */
     long i, j, k;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    for(i=nrl; i<= nrh; i++)
        for(k=ncolol; k<=ncoloh; k++)
   a=matrix(1,npar,1,npar);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   y=matrix(1,npar,1,npar);          out[i][k] +=in[i][j]*b[j][k];
   x=vector(1,npar);  
   indx=ivector(1,npar);    return out;
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  
   /************* Higher Matrix Product ***************/
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     x[j]=1;  {
     lubksb(a,npar,indx,x);    /* Computes the transition matrix starting at age 'age' over 
     for (i=1;i<=npar;i++){       'nhstepm*hstepm*stepm' months (i.e. until
       matcov[i][j]=x[i];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     }       nhstepm*hstepm matrices. 
   }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
   printf("\n#Hessian matrix#\n");       for the memory).
   for (i=1;i<=npar;i++) {       Model is determined by parameters x and covariates have to be 
     for (j=1;j<=npar;j++) {       included manually here. 
       printf("%.3e ",hess[i][j]);  
     }       */
     printf("\n");  
   }    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
   /* Recompute Inverse */    double **newm;
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    /* Hstepm could be zero and should return the unit matrix */
   ludcmp(a,npar,indx,&pd);    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
   /*  printf("\n#Hessian matrix recomputed#\n");        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
   for (j=1;j<=npar;j++) {      }
     for (i=1;i<=npar;i++) x[i]=0;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     x[j]=1;    for(h=1; h <=nhstepm; h++){
     lubksb(a,npar,indx,x);      for(d=1; d <=hstepm; d++){
     for (i=1;i<=npar;i++){        newm=savm;
       y[i][j]=x[i];        /* Covariates have to be included here again */
       printf("%.3e ",y[i][j]);        cov[1]=1.;
     }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     printf("\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   }        for (k=1; k<=cptcovage;k++)
   */          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
   free_matrix(a,1,npar,1,npar);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   free_matrix(hess,1,npar,1,npar);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
 }        savm=oldm;
         oldm=newm;
 /*************** hessian matrix ****************/      }
 double hessii( double x[], double delta, int theta, double delti[])      for(i=1; i<=nlstate+ndeath; i++)
 {        for(j=1;j<=nlstate+ndeath;j++) {
   int i;          po[i][j][h]=newm[i][j];
   int l=1, lmax=20;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   double k1,k2;           */
   double p2[NPARMAX+1];        }
   double res;    } /* end h */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    return po;
   double fx;  }
   int k=0,kmax=10;  
   double l1;  
   /*************** log-likelihood *************/
   fx=func(x);  double func( double *x)
   for (i=1;i<=npar;i++) p2[i]=x[i];  {
   for(l=0 ; l <=lmax; l++){    int i, ii, j, k, mi, d, kk;
     l1=pow(10,l);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     delts=delt;    double **out;
     for(k=1 ; k <kmax; k=k+1){    double sw; /* Sum of weights */
       delt = delta*(l1*k);    double lli; /* Individual log likelihood */
       p2[theta]=x[theta] +delt;    int s1, s2;
       k1=func(p2)-fx;    double bbh, survp;
       p2[theta]=x[theta]-delt;    long ipmx;
       k2=func(p2)-fx;    /*extern weight */
       /*res= (k1-2.0*fx+k2)/delt/delt; */    /* We are differentiating ll according to initial status */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
          /*for(i=1;i<imx;i++) 
 #ifdef DEBUG      printf(" %d\n",s[4][i]);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    */
 #endif    cov[1]=1.;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    for(k=1; k<=nlstate; k++) ll[k]=0.;
         k=kmax;  
       }    if(mle==1){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         k=kmax; l=lmax*10.;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          for (ii=1;ii<=nlstate+ndeath;ii++)
         delts=delt;            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   delti[theta]=delts;          for(d=0; d<dh[mi][i]; d++){
   return res;            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 double hessij( double x[], double delti[], int thetai,int thetaj)            }
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int l=1, l1, lmax=20;            savm=oldm;
   double k1,k2,k3,k4,res,fx;            oldm=newm;
   double p2[NPARMAX+1];          } /* end mult */
   int k;        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   fx=func(x);          /* But now since version 0.9 we anticipate for bias and large stepm.
   for (k=1; k<=2; k++) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for (i=1;i<=npar;i++) p2[i]=x[i];           * (in months) between two waves is not a multiple of stepm, we rounded to 
     p2[thetai]=x[thetai]+delti[thetai]/k;           * the nearest (and in case of equal distance, to the lowest) interval but now
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     k1=func(p2)-fx;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
             * probability in order to take into account the bias as a fraction of the way
     p2[thetai]=x[thetai]+delti[thetai]/k;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * -stepm/2 to stepm/2 .
     k2=func(p2)-fx;           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
     p2[thetai]=x[thetai]-delti[thetai]/k;           */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          s1=s[mw[mi][i]][i];
     k3=func(p2)-fx;          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
     p2[thetai]=x[thetai]-delti[thetai]/k;          /* bias is positive if real duration
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * is higher than the multiple of stepm and negative otherwise.
     k4=func(p2)-fx;           */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 #ifdef DEBUG          if( s2 > nlstate){ 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            /* i.e. if s2 is a death state and if the date of death is known then the contribution
 #endif               to the likelihood is the probability to die between last step unit time and current 
   }               step unit time, which is also the differences between probability to die before dh 
   return res;               and probability to die before dh-stepm . 
 }               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
 /************** Inverse of matrix **************/          health state: the date of the interview describes the actual state
 void ludcmp(double **a, int n, int *indx, double *d)          and not the date of a change in health state. The former idea was
 {          to consider that at each interview the state was recorded
   int i,imax,j,k;          (healthy, disable or death) and IMaCh was corrected; but when we
   double big,dum,sum,temp;          introduced the exact date of death then we should have modified
   double *vv;          the contribution of an exact death to the likelihood. This new
            contribution is smaller and very dependent of the step unit
   vv=vector(1,n);          stepm. It is no more the probability to die between last interview
   *d=1.0;          and month of death but the probability to survive from last
   for (i=1;i<=n;i++) {          interview up to one month before death multiplied by the
     big=0.0;          probability to die within a month. Thanks to Chris
     for (j=1;j<=n;j++)          Jackson for correcting this bug.  Former versions increased
       if ((temp=fabs(a[i][j])) > big) big=temp;          mortality artificially. The bad side is that we add another loop
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          which slows down the processing. The difference can be up to 10%
     vv[i]=1.0/big;          lower mortality.
   }            */
   for (j=1;j<=n;j++) {            lli=log(out[s1][s2] - savm[s1][s2]);
     for (i=1;i<j;i++) {          }else{
       sum=a[i][j];            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       a[i][j]=sum;          } 
     }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     big=0.0;          /*if(lli ==000.0)*/
     for (i=j;i<=n;i++) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       sum=a[i][j];          ipmx +=1;
       for (k=1;k<j;k++)          sw += weight[i];
         sum -= a[i][k]*a[k][j];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       a[i][j]=sum;        } /* end of wave */
       if ( (dum=vv[i]*fabs(sum)) >= big) {      } /* end of individual */
         big=dum;    }  else if(mle==2){
         imax=i;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
     if (j != imax) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (k=1;k<=n;k++) {            for (j=1;j<=nlstate+ndeath;j++){
         dum=a[imax][k];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         a[imax][k]=a[j][k];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         a[j][k]=dum;            }
       }          for(d=0; d<=dh[mi][i]; d++){
       *d = -(*d);            newm=savm;
       vv[imax]=vv[j];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
     indx[j]=imax;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if (a[j][j] == 0.0) a[j][j]=TINY;            }
     if (j != n) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       dum=1.0/(a[j][j]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            savm=oldm;
     }            oldm=newm;
   }          } /* end mult */
   free_vector(vv,1,n);  /* Doesn't work */        
 ;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 }          /* But now since version 0.9 we anticipate for bias and large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
 void lubksb(double **a, int n, int *indx, double b[])           * (in months) between two waves is not a multiple of stepm, we rounded to 
 {           * the nearest (and in case of equal distance, to the lowest) interval but now
   int i,ii=0,ip,j;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double sum;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
             * probability in order to take into account the bias as a fraction of the way
   for (i=1;i<=n;i++) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     ip=indx[i];           * -stepm/2 to stepm/2 .
     sum=b[ip];           * For stepm=1 the results are the same as for previous versions of Imach.
     b[ip]=b[i];           * For stepm > 1 the results are less biased than in previous versions. 
     if (ii)           */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          s1=s[mw[mi][i]][i];
     else if (sum) ii=i;          s2=s[mw[mi+1][i]][i];
     b[i]=sum;          bbh=(double)bh[mi][i]/(double)stepm; 
   }          /* bias is positive if real duration
   for (i=n;i>=1;i--) {           * is higher than the multiple of stepm and negative otherwise.
     sum=b[i];           */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     b[i]=sum/a[i][i];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   }          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
 }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
 /************ Frequencies ********************/          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)          ipmx +=1;
 {  /* Some frequencies */          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        } /* end of wave */
   double ***freq; /* Frequencies */      } /* end of individual */
   double *pp;    }  else if(mle==3){  /* exponential inter-extrapolation */
   double pos, k2, dateintsum=0,k2cpt=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   FILE *ficresp;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   char fileresp[FILENAMELENGTH];        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   pp=vector(1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcpy(fileresp,"p");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresp,fileres);            }
   if((ficresp=fopen(fileresp,"w"))==NULL) {          for(d=0; d<dh[mi][i]; d++){
     printf("Problem with prevalence resultfile: %s\n", fileresp);            newm=savm;
     exit(0);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   j1=0;            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   j=cptcoveff;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            savm=oldm;
             oldm=newm;
   for(k1=1; k1<=j;k1++){          } /* end mult */
    for(i1=1; i1<=ncodemax[k1];i1++){        
        j1++;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          /* But now since version 0.9 we anticipate for bias and large stepm.
          scanf("%d", i);*/           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         for (i=-1; i<=nlstate+ndeath; i++)             * (in months) between two waves is not a multiple of stepm, we rounded to 
          for (jk=-1; jk<=nlstate+ndeath; jk++)             * the nearest (and in case of equal distance, to the lowest) interval but now
            for(m=agemin; m <= agemax+3; m++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
              freq[i][jk][m]=0;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
         dateintsum=0;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         k2cpt=0;           * -stepm/2 to stepm/2 .
        for (i=1; i<=imx; i++) {           * For stepm=1 the results are the same as for previous versions of Imach.
          bool=1;           * For stepm > 1 the results are less biased than in previous versions. 
          if  (cptcovn>0) {           */
            for (z1=1; z1<=cptcoveff; z1++)          s1=s[mw[mi][i]][i];
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          s2=s[mw[mi+1][i]][i];
                bool=0;          bbh=(double)bh[mi][i]/(double)stepm; 
          }          /* bias is positive if real duration
          if (bool==1) {           * is higher than the multiple of stepm and negative otherwise.
            for(m=firstpass; m<=lastpass; m++){           */
              k2=anint[m][i]+(mint[m][i]/12.);          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
              if ((k2>=dateprev1) && (k2<=dateprev2)) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                if(agev[m][i]==0) agev[m][i]=agemax+1;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                if(agev[m][i]==1) agev[m][i]=agemax+2;          /*if(lli ==000.0)*/
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          ipmx +=1;
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          sw += weight[i];
                  dateintsum=dateintsum+k2;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                  k2cpt++;        } /* end of wave */
                }      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
              }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          }        for(mi=1; mi<= wav[i]-1; mi++){
        }          for (ii=1;ii<=nlstate+ndeath;ii++)
         if  (cptcovn>0) {            for (j=1;j<=nlstate+ndeath;j++){
          fprintf(ficresp, "\n#********** Variable ");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
        fprintf(ficresp, "**********\n#");            }
         }          for(d=0; d<dh[mi][i]; d++){
        for(i=1; i<=nlstate;i++)            newm=savm;
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
        fprintf(ficresp, "\n");            for (kk=1; kk<=cptcovage;kk++) {
                      cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(i=(int)agemin; i <= (int)agemax+3; i++){            }
     if(i==(int)agemax+3)          
       printf("Total");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       printf("Age %d", i);            savm=oldm;
     for(jk=1; jk <=nlstate ; jk++){            oldm=newm;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          } /* end mult */
         pp[jk] += freq[jk][m][i];        
     }          s1=s[mw[mi][i]][i];
     for(jk=1; jk <=nlstate ; jk++){          s2=s[mw[mi+1][i]][i];
       for(m=-1, pos=0; m <=0 ; m++)          if( s2 > nlstate){ 
         pos += freq[jk][m][i];            lli=log(out[s1][s2] - savm[s1][s2]);
       if(pp[jk]>=1.e-10)          }else{
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       else          }
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          ipmx +=1;
     }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      for(jk=1; jk <=nlstate ; jk++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        } /* end of wave */
         pp[jk] += freq[jk][m][i];      } /* end of individual */
      }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(jk=1,pos=0; jk <=nlstate ; jk++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       pos += pp[jk];        for(mi=1; mi<= wav[i]-1; mi++){
     for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
       if(pos>=1.e-5)            for (j=1;j<=nlstate+ndeath;j++){
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       else              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            }
       if( i <= (int) agemax){          for(d=0; d<dh[mi][i]; d++){
         if(pos>=1.e-5){            newm=savm;
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           probs[i][jk][j1]= pp[jk]/pos;            for (kk=1; kk<=cptcovage;kk++) {
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
       else          
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
     for(jk=-1; jk <=nlstate+ndeath; jk++)            oldm=newm;
       for(m=-1; m <=nlstate+ndeath; m++)          } /* end mult */
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        
     if(i <= (int) agemax)          s1=s[mw[mi][i]][i];
       fprintf(ficresp,"\n");          s2=s[mw[mi+1][i]][i];
     printf("\n");          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     }          ipmx +=1;
     }          sw += weight[i];
  }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   dateintmean=dateintsum/k2cpt;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
          } /* end of wave */
   fclose(ficresp);      } /* end of individual */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    } /* End of if */
   free_vector(pp,1,nlstate);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /* End of Freq */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 }    return -l;
   }
 /************ Prevalence ********************/  
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  /*************** log-likelihood *************/
 {  /* Some frequencies */  double funcone( double *x)
    {
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    /* Same as likeli but slower because of a lot of printf and if */
   double ***freq; /* Frequencies */    int i, ii, j, k, mi, d, kk;
   double *pp;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double pos, k2;    double **out;
     double lli; /* Individual log likelihood */
   pp=vector(1,nlstate);    double llt;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    int s1, s2;
      double bbh, survp;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /*extern weight */
   j1=0;    /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   j=cptcoveff;    /*for(i=1;i<imx;i++) 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      printf(" %d\n",s[4][i]);
      */
  for(k1=1; k1<=j;k1++){    cov[1]=1.;
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
       for (i=-1; i<=nlstate+ndeath; i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(m=agemin; m <= agemax+3; m++)      for(mi=1; mi<= wav[i]-1; mi++){
             freq[i][jk][m]=0;        for (ii=1;ii<=nlstate+ndeath;ii++)
                for (j=1;j<=nlstate+ndeath;j++){
       for (i=1; i<=imx; i++) {            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         bool=1;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {          }
           for (z1=1; z1<=cptcoveff; z1++)        for(d=0; d<dh[mi][i]; d++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          newm=savm;
               bool=0;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }          for (kk=1; kk<=cptcovage;kk++) {
         if (bool==1) {            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=firstpass; m<=lastpass; m++){          }
             k2=anint[m][i]+(mint[m][i]/12.);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             if ((k2>=dateprev1) && (k2<=dateprev2)) {                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if(agev[m][i]==0) agev[m][i]=agemax+1;          savm=oldm;
               if(agev[m][i]==1) agev[m][i]=agemax+2;          oldm=newm;
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        } /* end mult */
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];          
             }        s1=s[mw[mi][i]][i];
           }        s2=s[mw[mi+1][i]][i];
         }        bbh=(double)bh[mi][i]/(double)stepm; 
       }        /* bias is positive if real duration
               * is higher than the multiple of stepm and negative otherwise.
         for(i=(int)agemin; i <= (int)agemax+3; i++){         */
           for(jk=1; jk <=nlstate ; jk++){        if( s2 > nlstate && (mle <5) ){  /* Jackson */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          lli=log(out[s1][s2] - savm[s1][s2]);
               pp[jk] += freq[jk][m][i];        } else if (mle==1){
           }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           for(jk=1; jk <=nlstate ; jk++){        } else if(mle==2){
             for(m=-1, pos=0; m <=0 ; m++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             pos += freq[jk][m][i];        } else if(mle==3){  /* exponential inter-extrapolation */
         }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                } else if (mle==4){  /* mle=4 no inter-extrapolation */
          for(jk=1; jk <=nlstate ; jk++){          lli=log(out[s1][s2]); /* Original formula */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
              pp[jk] += freq[jk][m][i];          lli=log(out[s1][s2]); /* Original formula */
          }        } /* End of if */
                  ipmx +=1;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          for(jk=1; jk <=nlstate ; jk++){            /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
            if( i <= (int) agemax){        if(globpr){
              if(pos>=1.e-5){          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
                probs[i][jk][j1]= pp[jk]/pos;   %10.6f %10.6f %10.6f ", \
              }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
            }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
          }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                      llt +=ll[k]*gipmx/gsw;
         }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     }          }
   }          fprintf(ficresilk," %10.6f\n", -llt);
          }
        } /* end of wave */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    } /* end of individual */
   free_vector(pp,1,nlstate);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 }  /* End of Freq */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
 /************* Waves Concatenation ***************/      gipmx=ipmx;
       gsw=sw;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    }
 {    return -l;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  }
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  char *subdirf(char fileres[])
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  {
      and mw[mi+1][i]. dh depends on stepm.    
      */    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
   int i, mi, m;    strcat(tmpout,fileres);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    return tmpout;
      double sum=0., jmean=0.;*/  }
   
   int j, k=0,jk, ju, jl;  char *subdirf2(char fileres[], char *preop)
   double sum=0.;  {
   jmin=1e+5;    
   jmax=-1;    strcpy(tmpout,optionfilefiname);
   jmean=0.;    strcat(tmpout,"/");
   for(i=1; i<=imx; i++){    strcat(tmpout,preop);
     mi=0;    strcat(tmpout,fileres);
     m=firstpass;    return tmpout;
     while(s[m][i] <= nlstate){  }
       if(s[m][i]>=1)  char *subdirf3(char fileres[], char *preop, char *preop2)
         mw[++mi][i]=m;  {
       if(m >=lastpass)    
         break;    strcpy(tmpout,optionfilefiname);
       else    strcat(tmpout,"/");
         m++;    strcat(tmpout,preop);
     }/* end while */    strcat(tmpout,preop2);
     if (s[m][i] > nlstate){    strcat(tmpout,fileres);
       mi++;     /* Death is another wave */    return tmpout;
       /* if(mi==0)  never been interviewed correctly before death */  }
          /* Only death is a correct wave */  
       mw[mi][i]=m;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     }  {
     /* This routine should help understanding what is done with 
     wav[i]=mi;       the selection of individuals/waves and
     if(mi==0)       to check the exact contribution to the likelihood.
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);       Plotting could be done.
   }     */
     int k;
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){    if(*globpri !=0){ /* Just counts and sums, no printings */
       if (stepm <=0)      strcpy(fileresilk,"ilk"); 
         dh[mi][i]=1;      strcat(fileresilk,fileres);
       else{      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         if (s[mw[mi+1][i]][i] > nlstate) {        printf("Problem with resultfile: %s\n", fileresilk);
           if (agedc[i] < 2*AGESUP) {        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      }
           if(j==0) j=1;  /* Survives at least one month after exam */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
           k=k+1;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
           if (j >= jmax) jmax=j;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
           if (j <= jmin) jmin=j;      for(k=1; k<=nlstate; k++) 
           sum=sum+j;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
           /* if (j<10) printf("j=%d num=%d ",j,i); */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
           }    }
         }  
         else{    *fretone=(*funcone)(p);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    if(*globpri !=0){
           k=k+1;      fclose(ficresilk);
           if (j >= jmax) jmax=j;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           else if (j <= jmin)jmin=j;      fflush(fichtm); 
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    } 
           sum=sum+j;    return;
         }  }
         jk= j/stepm;  
         jl= j -jk*stepm;  
         ju= j -(jk+1)*stepm;  /*********** Maximum Likelihood Estimation ***************/
         if(jl <= -ju)  
           dh[mi][i]=jk;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         else  {
           dh[mi][i]=jk+1;    int i,j, iter;
         if(dh[mi][i]==0)    double **xi;
           dh[mi][i]=1; /* At least one step */    double fret;
       }    double fretone; /* Only one call to likelihood */
     }    char filerespow[FILENAMELENGTH];
   }    xi=matrix(1,npar,1,npar);
   jmean=sum/k;    for (i=1;i<=npar;i++)
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      for (j=1;j<=npar;j++)
  }        xi[i][j]=(i==j ? 1.0 : 0.0);
 /*********** Tricode ****************************/    printf("Powell\n");  fprintf(ficlog,"Powell\n");
 void tricode(int *Tvar, int **nbcode, int imx)    strcpy(filerespow,"pow"); 
 {    strcat(filerespow,fileres);
   int Ndum[20],ij=1, k, j, i;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   int cptcode=0;      printf("Problem with resultfile: %s\n", filerespow);
   cptcoveff=0;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      }
   for (k=0; k<19; k++) Ndum[k]=0;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   for (k=1; k<=7; k++) ncodemax[k]=0;    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     for (i=1; i<=imx; i++) {    fprintf(ficrespow,"\n");
       ij=(int)(covar[Tvar[j]][i]);  
       Ndum[ij]++;    powell(p,xi,npar,ftol,&iter,&fret,func);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij;    fclose(ficrespow);
     }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for (i=0; i<=cptcode; i++) {    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       if(Ndum[i]!=0) ncodemax[j]++;  
     }  }
     ij=1;  
   /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     for (i=1; i<=ncodemax[j]; i++) {  {
       for (k=0; k<=19; k++) {    double  **a,**y,*x,pd;
         if (Ndum[k] != 0) {    double **hess;
           nbcode[Tvar[j]][ij]=k;    int i, j,jk;
           ij++;    int *indx;
         }  
         if (ij > ncodemax[j]) break;    double hessii(double p[], double delta, int theta, double delti[]);
       }      double hessij(double p[], double delti[], int i, int j);
     }    void lubksb(double **a, int npar, int *indx, double b[]) ;
   }      void ludcmp(double **a, int npar, int *indx, double *d) ;
   
  for (k=0; k<19; k++) Ndum[k]=0;    hess=matrix(1,npar,1,npar);
   
  for (i=1; i<=ncovmodel-2; i++) {    printf("\nCalculation of the hessian matrix. Wait...\n");
       ij=Tvar[i];    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       Ndum[ij]++;    for (i=1;i<=npar;i++){
     }      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
  ij=1;      hess[i][i]=hessii(p,ftolhess,i,delti);
  for (i=1; i<=10; i++) {      /*printf(" %f ",p[i]);*/
    if((Ndum[i]!=0) && (i<=ncov)){      /*printf(" %lf ",hess[i][i]);*/
      Tvaraff[ij]=i;    }
      ij++;    
    }    for (i=1;i<=npar;i++) {
  }      for (j=1;j<=npar;j++)  {
          if (j>i) { 
     cptcoveff=ij-1;          printf(".%d%d",i,j);fflush(stdout);
 }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j);
 /*********** Health Expectancies ****************/          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)        }
 {      }
   /* Health expectancies */    }
   int i, j, nhstepm, hstepm, h;    printf("\n");
   double age, agelim,hf;    fprintf(ficlog,"\n");
   double ***p3mat;  
      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficreseij,"# Health expectancies\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficreseij,"# Age");    
   for(i=1; i<=nlstate;i++)    a=matrix(1,npar,1,npar);
     for(j=1; j<=nlstate;j++)    y=matrix(1,npar,1,npar);
       fprintf(ficreseij," %1d-%1d",i,j);    x=vector(1,npar);
   fprintf(ficreseij,"\n");    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
   hstepm=1*YEARM; /*  Every j years of age (in month) */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    ludcmp(a,npar,indx,&pd);
   
   agelim=AGESUP;    for (j=1;j<=npar;j++) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (i=1;i<=npar;i++) x[i]=0;
     /* nhstepm age range expressed in number of stepm */      x[j]=1;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);      lubksb(a,npar,indx,x);
     /* Typically if 20 years = 20*12/6=40 stepm */      for (i=1;i<=npar;i++){ 
     if (stepm >= YEARM) hstepm=1;        matcov[i][j]=x[i];
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */      }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    printf("\n#Hessian matrix#\n");
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
     for(i=1; i<=nlstate;i++)        printf("%.3e ",hess[i][j]);
       for(j=1; j<=nlstate;j++)        fprintf(ficlog,"%.3e ",hess[i][j]);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){      }
           eij[i][j][(int)age] +=p3mat[i][j][h];      printf("\n");
         }      fprintf(ficlog,"\n");
        }
     hf=1;  
     if (stepm >= YEARM) hf=stepm/YEARM;    /* Recompute Inverse */
     fprintf(ficreseij,"%.0f",age );    for (i=1;i<=npar;i++)
     for(i=1; i<=nlstate;i++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       for(j=1; j<=nlstate;j++){    ludcmp(a,npar,indx,&pd);
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);  
       }    /*  printf("\n#Hessian matrix recomputed#\n");
     fprintf(ficreseij,"\n");  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (j=1;j<=npar;j++) {
   }      for (i=1;i<=npar;i++) x[i]=0;
 }      x[j]=1;
       lubksb(a,npar,indx,x);
 /************ Variance ******************/      for (i=1;i<=npar;i++){ 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        y[i][j]=x[i];
 {        printf("%.3e ",y[i][j]);
   /* Variance of health expectancies */        fprintf(ficlog,"%.3e ",y[i][j]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      }
   double **newm;      printf("\n");
   double **dnewm,**doldm;      fprintf(ficlog,"\n");
   int i, j, nhstepm, hstepm, h;    }
   int k, cptcode;    */
   double *xp;  
   double **gp, **gm;    free_matrix(a,1,npar,1,npar);
   double ***gradg, ***trgradg;    free_matrix(y,1,npar,1,npar);
   double ***p3mat;    free_vector(x,1,npar);
   double age,agelim;    free_ivector(indx,1,npar);
   int theta;    free_matrix(hess,1,npar,1,npar);
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");  
   fprintf(ficresvij,"# Age");  }
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  /*************** hessian matrix ****************/
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  double hessii( double x[], double delta, int theta, double delti[])
   fprintf(ficresvij,"\n");  {
     int i;
   xp=vector(1,npar);    int l=1, lmax=20;
   dnewm=matrix(1,nlstate,1,npar);    double k1,k2;
   doldm=matrix(1,nlstate,1,nlstate);    double p2[NPARMAX+1];
      double res;
   hstepm=1*YEARM; /* Every year of age */    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double fx;
   agelim = AGESUP;    int k=0,kmax=10;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double l1;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;    fx=func(x);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    for (i=1;i<=npar;i++) p2[i]=x[i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(l=0 ; l <=lmax; l++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      l1=pow(10,l);
     gp=matrix(0,nhstepm,1,nlstate);      delts=delt;
     gm=matrix(0,nhstepm,1,nlstate);      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
     for(theta=1; theta <=npar; theta++){        p2[theta]=x[theta] +delt;
       for(i=1; i<=npar; i++){ /* Computes gradient */        k1=func(p2)-fx;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        p2[theta]=x[theta]-delt;
       }        k2=func(p2)-fx;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          /*res= (k1-2.0*fx+k2)/delt/delt; */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
       if (popbased==1) {  #ifdef DEBUG
         for(i=1; i<=nlstate;i++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           prlim[i][i]=probs[(int)age][i][ij];        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }  #endif
              /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for(j=1; j<= nlstate; j++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         for(h=0; h<=nhstepm; h++){          k=kmax;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         }          k=kmax; l=lmax*10.;
       }        }
            else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       for(i=1; i<=npar; i++) /* Computes gradient */          delts=delt;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
     delti[theta]=delts;
       if (popbased==1) {    return res; 
         for(i=1; i<=nlstate;i++)    
           prlim[i][i]=probs[(int)age][i][ij];  }
       }  
   double hessij( double x[], double delti[], int thetai,int thetaj)
       for(j=1; j<= nlstate; j++){  {
         for(h=0; h<=nhstepm; h++){    int i;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    int l=1, l1, lmax=20;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    double k1,k2,k3,k4,res,fx;
         }    double p2[NPARMAX+1];
       }    int k;
   
       for(j=1; j<= nlstate; j++)    fx=func(x);
         for(h=0; h<=nhstepm; h++){    for (k=1; k<=2; k++) {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for (i=1;i<=npar;i++) p2[i]=x[i];
         }      p2[thetai]=x[thetai]+delti[thetai]/k;
     } /* End theta */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    
       p2[thetai]=x[thetai]+delti[thetai]/k;
     for(h=0; h<=nhstepm; h++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(j=1; j<=nlstate;j++)      k2=func(p2)-fx;
         for(theta=1; theta <=npar; theta++)    
           trgradg[h][j][theta]=gradg[h][theta][j];      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for(i=1;i<=nlstate;i++)      k3=func(p2)-fx;
       for(j=1;j<=nlstate;j++)    
         vareij[i][j][(int)age] =0.;      p2[thetai]=x[thetai]-delti[thetai]/k;
     for(h=0;h<=nhstepm;h++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(k=0;k<=nhstepm;k++){      k4=func(p2)-fx;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  #ifdef DEBUG
         for(i=1;i<=nlstate;i++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           for(j=1;j<=nlstate;j++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             vareij[i][j][(int)age] += doldm[i][j];  #endif
       }    }
     }    return res;
     h=1;  }
     if (stepm >= YEARM) h=stepm/YEARM;  
     fprintf(ficresvij,"%.0f ",age );  /************** Inverse of matrix **************/
     for(i=1; i<=nlstate;i++)  void ludcmp(double **a, int n, int *indx, double *d) 
       for(j=1; j<=nlstate;j++){  { 
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    int i,imax,j,k; 
       }    double big,dum,sum,temp; 
     fprintf(ficresvij,"\n");    double *vv; 
     free_matrix(gp,0,nhstepm,1,nlstate);   
     free_matrix(gm,0,nhstepm,1,nlstate);    vv=vector(1,n); 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    *d=1.0; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    for (i=1;i<=n;i++) { 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      big=0.0; 
   } /* End age */      for (j=1;j<=n;j++) 
          if ((temp=fabs(a[i][j])) > big) big=temp; 
   free_vector(xp,1,npar);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   free_matrix(doldm,1,nlstate,1,npar);      vv[i]=1.0/big; 
   free_matrix(dnewm,1,nlstate,1,nlstate);    } 
     for (j=1;j<=n;j++) { 
 }      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
 /************ Variance of prevlim ******************/        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        a[i][j]=sum; 
 {      } 
   /* Variance of prevalence limit */      big=0.0; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (i=j;i<=n;i++) { 
   double **newm;        sum=a[i][j]; 
   double **dnewm,**doldm;        for (k=1;k<j;k++) 
   int i, j, nhstepm, hstepm;          sum -= a[i][k]*a[k][j]; 
   int k, cptcode;        a[i][j]=sum; 
   double *xp;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   double *gp, *gm;          big=dum; 
   double **gradg, **trgradg;          imax=i; 
   double age,agelim;        } 
   int theta;      } 
          if (j != imax) { 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        for (k=1;k<=n;k++) { 
   fprintf(ficresvpl,"# Age");          dum=a[imax][k]; 
   for(i=1; i<=nlstate;i++)          a[imax][k]=a[j][k]; 
       fprintf(ficresvpl," %1d-%1d",i,i);          a[j][k]=dum; 
   fprintf(ficresvpl,"\n");        } 
         *d = -(*d); 
   xp=vector(1,npar);        vv[imax]=vv[j]; 
   dnewm=matrix(1,nlstate,1,npar);      } 
   doldm=matrix(1,nlstate,1,nlstate);      indx[j]=imax; 
        if (a[j][j] == 0.0) a[j][j]=TINY; 
   hstepm=1*YEARM; /* Every year of age */      if (j != n) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        dum=1.0/(a[j][j]); 
   agelim = AGESUP;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      } 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    } 
     if (stepm >= YEARM) hstepm=1;    free_vector(vv,1,n);  /* Doesn't work */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  ;
     gradg=matrix(1,npar,1,nlstate);  } 
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
     for(theta=1; theta <=npar; theta++){    int i,ii=0,ip,j; 
       for(i=1; i<=npar; i++){ /* Computes gradient */    double sum; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);   
       }    for (i=1;i<=n;i++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      ip=indx[i]; 
       for(i=1;i<=nlstate;i++)      sum=b[ip]; 
         gp[i] = prlim[i][i];      b[ip]=b[i]; 
          if (ii) 
       for(i=1; i<=npar; i++) /* Computes gradient */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      else if (sum) ii=i; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      b[i]=sum; 
       for(i=1;i<=nlstate;i++)    } 
         gm[i] = prlim[i][i];    for (i=n;i>=1;i--) { 
       sum=b[i]; 
       for(i=1;i<=nlstate;i++)      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      b[i]=sum/a[i][i]; 
     } /* End theta */    } 
   } 
     trgradg =matrix(1,nlstate,1,npar);  
   /************ Frequencies ********************/
     for(j=1; j<=nlstate;j++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
       for(theta=1; theta <=npar; theta++)  {  /* Some frequencies */
         trgradg[j][theta]=gradg[theta][j];    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     for(i=1;i<=nlstate;i++)    int first;
       varpl[i][(int)age] =0.;    double ***freq; /* Frequencies */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double *pp, **prop;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     for(i=1;i<=nlstate;i++)    FILE *ficresp;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    char fileresp[FILENAMELENGTH];
     
     fprintf(ficresvpl,"%.0f ",age );    pp=vector(1,nlstate);
     for(i=1; i<=nlstate;i++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    strcpy(fileresp,"p");
     fprintf(ficresvpl,"\n");    strcat(fileresp,fileres);
     free_vector(gp,1,nlstate);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     free_vector(gm,1,nlstate);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     free_matrix(gradg,1,npar,1,nlstate);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     free_matrix(trgradg,1,nlstate,1,npar);      exit(0);
   } /* End age */    }
     freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   free_vector(xp,1,npar);    j1=0;
   free_matrix(doldm,1,nlstate,1,npar);    
   free_matrix(dnewm,1,nlstate,1,nlstate);    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
 }  
     first=1;
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    for(k1=1; k1<=j;k1++){
 {      for(i1=1; i1<=ncodemax[k1];i1++){
   int i, j;        j1++;
   int k=0, cptcode;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   double **dnewm,**doldm;          scanf("%d", i);*/
   double *xp;        for (i=-1; i<=nlstate+ndeath; i++)  
   double *gp, *gm;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   double **gradg, **trgradg;            for(m=iagemin; m <= iagemax+3; m++)
   double age,agelim, cov[NCOVMAX];              freq[i][jk][m]=0;
   int theta;  
   char fileresprob[FILENAMELENGTH];      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
   strcpy(fileresprob,"prob");          prop[i][m]=0;
   strcat(fileresprob,fileres);        
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        dateintsum=0;
     printf("Problem with resultfile: %s\n", fileresprob);        k2cpt=0;
   }        for (i=1; i<=imx; i++) {
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);          bool=1;
            if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   xp=vector(1,npar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                bool=0;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          }
            if (bool==1){
   cov[1]=1;            for(m=firstpass; m<=lastpass; m++){
   for (age=bage; age<=fage; age ++){              k2=anint[m][i]+(mint[m][i]/12.);
     cov[2]=age;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     gradg=matrix(1,npar,1,9);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     trgradg=matrix(1,9,1,npar);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));                if (m<lastpass) {
                      freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     for(theta=1; theta <=npar; theta++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       for(i=1; i<=npar; i++)                }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                
                      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       pmij(pmmij,cov,ncovmodel,xp,nlstate);                  dateintsum=dateintsum+k2;
                      k2cpt++;
       k=0;                }
       for(i=1; i<= (nlstate+ndeath); i++){                /*}*/
         for(j=1; j<=(nlstate+ndeath);j++){            }
            k=k+1;          }
           gp[k]=pmmij[i][j];        }
         }         
       }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
       for(i=1; i<=npar; i++)        if  (cptcovn>0) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          fprintf(ficresp, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        }
       k=0;        for(i=1; i<=nlstate;i++) 
       for(i=1; i<=(nlstate+ndeath); i++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         for(j=1; j<=(nlstate+ndeath);j++){        fprintf(ficresp, "\n");
           k=k+1;        
           gm[k]=pmmij[i][j];        for(i=iagemin; i <= iagemax+3; i++){
         }          if(i==iagemax+3){
       }            fprintf(ficlog,"Total");
                }else{
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)            if(first==1){
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                first=0;
     }              printf("See log file for details...\n");
             }
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)            fprintf(ficlog,"Age %d", i);
       for(theta=1; theta <=npar; theta++)          }
       trgradg[j][theta]=gradg[theta][j];          for(jk=1; jk <=nlstate ; jk++){
              for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              pp[jk] += freq[jk][m][i]; 
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          }
           for(jk=1; jk <=nlstate ; jk++){
      pmij(pmmij,cov,ncovmodel,x,nlstate);            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
      k=0;            if(pp[jk]>=1.e-10){
      for(i=1; i<=(nlstate+ndeath); i++){              if(first==1){
        for(j=1; j<=(nlstate+ndeath);j++){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
          k=k+1;              }
          gm[k]=pmmij[i][j];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         }            }else{
      }              if(first==1)
                      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      /*printf("\n%d ",(int)age);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            }
                  }
   
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          for(jk=1; jk <=nlstate ; jk++){
      }*/            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
   fprintf(ficresprob,"\n%d ",(int)age);          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            pos += pp[jk];
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);            posprop += prop[jk][i];
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          }
   }          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              if(first==1)
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            }else{
 }              if(first==1)
  free_vector(xp,1,npar);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 fclose(ficresprob);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
  exit(0);            }
 }            if( i <= iagemax){
               if(pos>=1.e-5){
 /***********************************************/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 /**************** Main Program *****************/                /*probs[i][jk][j1]= pp[jk]/pos;*/
 /***********************************************/                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
 int main(int argc, char *argv[])              else
 {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          }
   double agedeb, agefin,hf;          
   double agemin=1.e20, agemax=-1.e20;          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
   double fret;              if(freq[jk][m][i] !=0 ) {
   double **xi,tmp,delta;              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   double dum; /* Dummy variable */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   double ***p3mat;              }
   int *indx;          if(i <= iagemax)
   char line[MAXLINE], linepar[MAXLINE];            fprintf(ficresp,"\n");
   char title[MAXLINE];          if(first==1)
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];            printf("Others in log...\n");
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];          fprintf(ficlog,"\n");
          }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];      }
     }
   char filerest[FILENAMELENGTH];    dateintmean=dateintsum/k2cpt; 
   char fileregp[FILENAMELENGTH];   
   char popfile[FILENAMELENGTH];    fclose(ficresp);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   int firstobs=1, lastobs=10;    free_vector(pp,1,nlstate);
   int sdeb, sfin; /* Status at beginning and end */    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   int c,  h , cpt,l;    /* End of Freq */
   int ju,jl, mi;  }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  /************ Prevalence ********************/
   int mobilav=0,popforecast=0;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   int hstepm, nhstepm;  {  
   int *popage;/*boolprev=0 if date and zero if wave*/    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
   double bage, fage, age, agelim, agebase;    */
   double ftolpl=FTOL;   
   double **prlim;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   double *severity;    double ***freq; /* Frequencies */
   double ***param; /* Matrix of parameters */    double *pp, **prop;
   double  *p;    double pos,posprop; 
   double **matcov; /* Matrix of covariance */    double  y2; /* in fractional years */
   double ***delti3; /* Scale */    int iagemin, iagemax;
   double *delti; /* Scale */  
   double ***eij, ***vareij;    iagemin= (int) agemin;
   double **varpl; /* Variances of prevalence limits by age */    iagemax= (int) agemax;
   double *epj, vepp;    /*pp=vector(1,nlstate);*/
   double kk1, kk2;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   double *popeffectif,*popcount;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;    j1=0;
   double yp,yp1,yp2;    
     j=cptcoveff;
   char version[80]="Imach version 0.7, February 2002, INED-EUROREVES ";    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   char *alph[]={"a","a","b","c","d","e"}, str[4];    
     for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   char z[1]="c", occ;        j1++;
 #include <sys/time.h>        
 #include <time.h>        for (i=1; i<=nlstate; i++)  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          for(m=iagemin; m <= iagemax+3; m++)
              prop[i][m]=0.0;
   /* long total_usecs;       
   struct timeval start_time, end_time;        for (i=1; i<=imx; i++) { /* Each individual */
            bool=1;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   printf("\n%s",version);                bool=0;
   if(argc <=1){          } 
     printf("\nEnter the parameter file name: ");          if (bool==1) { 
     scanf("%s",pathtot);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   else{              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     strcpy(pathtot,argv[1]);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   /*cygwin_split_path(pathtot,path,optionfile);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   /* cutv(path,optionfile,pathtot,'\\');*/                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);                } 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);              }
   chdir(path);            } /* end selection of waves */
   replace(pathc,path);          }
         }
 /*-------- arguments in the command line --------*/        for(i=iagemin; i <= iagemax+3; i++){  
           
   strcpy(fileres,"r");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   strcat(fileres, optionfilefiname);            posprop += prop[jk][i]; 
   strcat(fileres,".txt");    /* Other files have txt extension */          } 
   
   /*---------arguments file --------*/          for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {              if(posprop>=1.e-5){ 
     printf("Problem with optionfile %s\n",optionfile);                probs[i][jk][j1]= prop[jk][i]/posprop;
     goto end;              } 
   }            } 
           }/* end jk */ 
   strcpy(filereso,"o");        }/* end i */ 
   strcat(filereso,fileres);      } /* end i1 */
   if((ficparo=fopen(filereso,"w"))==NULL) {    } /* end k1 */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    
   }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
   /* Reads comments: lines beginning with '#' */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   while((c=getc(ficpar))=='#' && c!= EOF){  }  /* End of prevalence */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /************* Waves Concatenation ***************/
     puts(line);  
     fputs(line,ficparo);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   }  {
   ungetc(c,ficpar);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);       and mw[mi+1][i]. dh depends on stepm.
 while((c=getc(ficpar))=='#' && c!= EOF){       */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    int i, mi, m;
     puts(line);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     fputs(line,ficparo);       double sum=0., jmean=0.;*/
   }    int first;
   ungetc(c,ficpar);    int j, k=0,jk, ju, jl;
      double sum=0.;
        first=0;
   covar=matrix(0,NCOVMAX,1,n);    jmin=1e+5;
   cptcovn=0;    jmax=-1;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    jmean=0.;
     for(i=1; i<=imx; i++){
   ncovmodel=2+cptcovn;      mi=0;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      m=firstpass;
        while(s[m][i] <= nlstate){
   /* Read guess parameters */        if(s[m][i]>=1)
   /* Reads comments: lines beginning with '#' */          mw[++mi][i]=m;
   while((c=getc(ficpar))=='#' && c!= EOF){        if(m >=lastpass)
     ungetc(c,ficpar);          break;
     fgets(line, MAXLINE, ficpar);        else
     puts(line);          m++;
     fputs(line,ficparo);      }/* end while */
   }      if (s[m][i] > nlstate){
   ungetc(c,ficpar);        mi++;     /* Death is another wave */
          /* if(mi==0)  never been interviewed correctly before death */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);           /* Only death is a correct wave */
     for(i=1; i <=nlstate; i++)        mw[mi][i]=m;
     for(j=1; j <=nlstate+ndeath-1; j++){      }
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);      wav[i]=mi;
       printf("%1d%1d",i,j);      if(mi==0){
       for(k=1; k<=ncovmodel;k++){        if(first==0){
         fscanf(ficpar," %lf",&param[i][j][k]);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         printf(" %lf",param[i][j][k]);          first=1;
         fprintf(ficparo," %lf",param[i][j][k]);        }
       }        if(first==1){
       fscanf(ficpar,"\n");          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
       printf("\n");        }
       fprintf(ficparo,"\n");      } /* end mi==0 */
     }    } /* End individuals */
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
   p=param[1][1];        if (stepm <=0)
            dh[mi][i]=1;
   /* Reads comments: lines beginning with '#' */        else{
   while((c=getc(ficpar))=='#' && c!= EOF){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     ungetc(c,ficpar);            if (agedc[i] < 2*AGESUP) {
     fgets(line, MAXLINE, ficpar);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     puts(line);              if(j==0) j=1;  /* Survives at least one month after exam */
     fputs(line,ficparo);              else if(j<0){
   }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   ungetc(c,ficpar);                j=1; /* Careful Patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   for(i=1; i <=nlstate; i++){              }
     for(j=1; j <=nlstate+ndeath-1; j++){              k=k+1;
       fscanf(ficpar,"%1d%1d",&i1,&j1);              if (j >= jmax) jmax=j;
       printf("%1d%1d",i,j);              if (j <= jmin) jmin=j;
       fprintf(ficparo,"%1d%1d",i1,j1);              sum=sum+j;
       for(k=1; k<=ncovmodel;k++){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         fscanf(ficpar,"%le",&delti3[i][j][k]);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         printf(" %le",delti3[i][j][k]);            }
         fprintf(ficparo," %le",delti3[i][j][k]);          }
       }          else{
       fscanf(ficpar,"\n");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       printf("\n");            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       fprintf(ficparo,"\n");            k=k+1;
     }            if (j >= jmax) jmax=j;
   }            else if (j <= jmin)jmin=j;
   delti=delti3[1][1];            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
              /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   /* Reads comments: lines beginning with '#' */            if(j<0){
   while((c=getc(ficpar))=='#' && c!= EOF){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     ungetc(c,ficpar);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fgets(line, MAXLINE, ficpar);            }
     puts(line);            sum=sum+j;
     fputs(line,ficparo);          }
   }          jk= j/stepm;
   ungetc(c,ficpar);          jl= j -jk*stepm;
            ju= j -(jk+1)*stepm;
   matcov=matrix(1,npar,1,npar);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   for(i=1; i <=npar; i++){            if(jl==0){
     fscanf(ficpar,"%s",&str);              dh[mi][i]=jk;
     printf("%s",str);              bh[mi][i]=0;
     fprintf(ficparo,"%s",str);            }else{ /* We want a negative bias in order to only have interpolation ie
     for(j=1; j <=i; j++){                    * at the price of an extra matrix product in likelihood */
       fscanf(ficpar," %le",&matcov[i][j]);              dh[mi][i]=jk+1;
       printf(" %.5le",matcov[i][j]);              bh[mi][i]=ju;
       fprintf(ficparo," %.5le",matcov[i][j]);            }
     }          }else{
     fscanf(ficpar,"\n");            if(jl <= -ju){
     printf("\n");              dh[mi][i]=jk;
     fprintf(ficparo,"\n");              bh[mi][i]=jl;       /* bias is positive if real duration
   }                                   * is higher than the multiple of stepm and negative otherwise.
   for(i=1; i <=npar; i++)                                   */
     for(j=i+1;j<=npar;j++)            }
       matcov[i][j]=matcov[j][i];            else{
                  dh[mi][i]=jk+1;
   printf("\n");              bh[mi][i]=ju;
             }
             if(dh[mi][i]==0){
     /*-------- data file ----------*/              dh[mi][i]=1; /* At least one step */
     if((ficres =fopen(fileres,"w"))==NULL) {              bh[mi][i]=ju; /* At least one step */
       printf("Problem with resultfile: %s\n", fileres);goto end;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     }            }
     fprintf(ficres,"#%s\n",version);          } /* end if mle */
            }
     if((fic=fopen(datafile,"r"))==NULL)    {      } /* end wave */
       printf("Problem with datafile: %s\n", datafile);goto end;    }
     }    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     n= lastobs;    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     severity = vector(1,maxwav);   }
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);  /*********** Tricode ****************************/
     moisnais=vector(1,n);  void tricode(int *Tvar, int **nbcode, int imx)
     annais=vector(1,n);  {
     moisdc=vector(1,n);    
     andc=vector(1,n);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     agedc=vector(1,n);    int cptcode=0;
     cod=ivector(1,n);    cptcoveff=0; 
     weight=vector(1,n);   
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    for (k=0; k<maxncov; k++) Ndum[k]=0;
     mint=matrix(1,maxwav,1,n);    for (k=1; k<=7; k++) ncodemax[k]=0;
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     adl=imatrix(1,maxwav+1,1,n);          for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     tab=ivector(1,NCOVMAX);                                 modality*/ 
     ncodemax=ivector(1,8);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         Ndum[ij]++; /*store the modality */
     i=1;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     while (fgets(line, MAXLINE, fic) != NULL)    {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       if ((i >= firstobs) && (i <=lastobs)) {                                         Tvar[j]. If V=sex and male is 0 and 
                                                 female is 1, then  cptcode=1.*/
         for (j=maxwav;j>=1;j--){      }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);      for (i=0; i<=cptcode; i++) {
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      }
         }  
              ij=1; 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      for (i=1; i<=ncodemax[j]; i++) {
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            nbcode[Tvar[j]][ij]=k; 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            ij++;
         for (j=ncov;j>=1;j--){          }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          if (ij > ncodemax[j]) break; 
         }        }  
         num[i]=atol(stra);      } 
            }  
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
         i=i+1;   for (i=1; i<=ncovmodel-2; i++) { 
       }     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     }     ij=Tvar[i];
     /* printf("ii=%d", ij);     Ndum[ij]++;
        scanf("%d",i);*/   }
   imx=i-1; /* Number of individuals */  
    ij=1;
   /* for (i=1; i<=imx; i++){   for (i=1; i<= maxncov; i++) {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;     if((Ndum[i]!=0) && (i<=ncovcol)){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;       Tvaraff[ij]=i; /*For printing */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;       ij++;
     }     }
    }
     for (i=1; i<=imx; i++)   
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/   cptcoveff=ij-1; /*Number of simple covariates*/
   }
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);  /*********** Health Expectancies ****************/
   Tprod=ivector(1,15);  
   Tvaraff=ivector(1,15);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);        {
        /* Health expectancies */
   if (strlen(model) >1){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     j=0, j1=0, k1=1, k2=1;    double age, agelim, hf;
     j=nbocc(model,'+');    double ***p3mat,***varhe;
     j1=nbocc(model,'*');    double **dnewm,**doldm;
     cptcovn=j+1;    double *xp;
     cptcovprod=j1;    double **gp, **gm;
        double ***gradg, ***trgradg;
        int theta;
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       printf("Error. Non available option model=%s ",model);    xp=vector(1,npar);
       goto end;    dnewm=matrix(1,nlstate*nlstate,1,npar);
     }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
        
     for(i=(j+1); i>=1;i--){    fprintf(ficreseij,"# Health expectancies\n");
       cutv(stra,strb,modelsav,'+');    fprintf(ficreseij,"# Age");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    for(i=1; i<=nlstate;i++)
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      for(j=1; j<=nlstate;j++)
       /*scanf("%d",i);*/        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       if (strchr(strb,'*')) {    fprintf(ficreseij,"\n");
         cutv(strd,strc,strb,'*');  
         if (strcmp(strc,"age")==0) {    if(estepm < stepm){
           cptcovprod--;      printf ("Problem %d lower than %d\n",estepm, stepm);
           cutv(strb,stre,strd,'V');    }
           Tvar[i]=atoi(stre);    else  hstepm=estepm;   
           cptcovage++;    /* We compute the life expectancy from trapezoids spaced every estepm months
             Tage[cptcovage]=i;     * This is mainly to measure the difference between two models: for example
             /*printf("stre=%s ", stre);*/     * if stepm=24 months pijx are given only every 2 years and by summing them
         }     * we are calculating an estimate of the Life Expectancy assuming a linear 
         else if (strcmp(strd,"age")==0) {     * progression in between and thus overestimating or underestimating according
           cptcovprod--;     * to the curvature of the survival function. If, for the same date, we 
           cutv(strb,stre,strc,'V');     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           Tvar[i]=atoi(stre);     * to compare the new estimate of Life expectancy with the same linear 
           cptcovage++;     * hypothesis. A more precise result, taking into account a more precise
           Tage[cptcovage]=i;     * curvature will be obtained if estepm is as small as stepm. */
         }  
         else {    /* For example we decided to compute the life expectancy with the smallest unit */
           cutv(strb,stre,strc,'V');    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           Tvar[i]=ncov+k1;       nhstepm is the number of hstepm from age to agelim 
           cutv(strb,strc,strd,'V');       nstepm is the number of stepm from age to agelin. 
           Tprod[k1]=i;       Look at hpijx to understand the reason of that which relies in memory size
           Tvard[k1][1]=atoi(strc);       and note for a fixed period like estepm months */
           Tvard[k1][2]=atoi(stre);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           Tvar[cptcovn+k2]=Tvard[k1][1];       survival function given by stepm (the optimization length). Unfortunately it
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       means that if the survival funtion is printed only each two years of age and if
           for (k=1; k<=lastobs;k++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];       results. So we changed our mind and took the option of the best precision.
           k1++;    */
           k2=k2+2;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         }  
       }    agelim=AGESUP;
       else {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      /* nhstepm age range expressed in number of stepm */
        /*  scanf("%d",i);*/      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       cutv(strd,strc,strb,'V');      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       Tvar[i]=atoi(strc);      /* if (stepm >= YEARM) hstepm=1;*/
       }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       strcpy(modelsav,stra);        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         scanf("%d",i);*/      gp=matrix(0,nhstepm,1,nlstate*nlstate);
     }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
 }  
        /* Computed by stepm unit matrices, product of hstepm matrices, stored
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   printf("cptcovprod=%d ", cptcovprod);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   scanf("%d ",i);*/   
     fclose(fic);  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/      /* Computing Variances of health expectancies */
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }       for(theta=1; theta <=npar; theta++){
     /*-calculation of age at interview from date of interview and age at death -*/        for(i=1; i<=npar; i++){ 
     agev=matrix(1,maxwav,1,imx);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
    for (i=1; i<=imx; i++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      for(m=2; (m<= maxwav); m++)    
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        cptj=0;
          anint[m][i]=9999;        for(j=1; j<= nlstate; j++){
          s[m][i]=-1;          for(i=1; i<=nlstate; i++){
        }            cptj=cptj+1;
                for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     for (i=1; i<=imx; i++)  {              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            }
       for(m=1; (m<= maxwav); m++){          }
         if(s[m][i] >0){        }
           if (s[m][i] == nlstate+1) {       
             if(agedc[i]>0)       
               if(moisdc[i]!=99 && andc[i]!=9999)        for(i=1; i<=npar; i++) 
               agev[m][i]=agedc[i];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             else {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               if (andc[i]!=9999){        
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        cptj=0;
               agev[m][i]=-1;        for(j=1; j<= nlstate; j++){
               }          for(i=1;i<=nlstate;i++){
             }            cptj=cptj+1;
           }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             if(mint[m][i]==99 || anint[m][i]==9999)            }
               agev[m][i]=1;          }
             else if(agev[m][i] <agemin){        }
               agemin=agev[m][i];        for(j=1; j<= nlstate*nlstate; j++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          for(h=0; h<=nhstepm-1; h++){
             }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
             else if(agev[m][i] >agemax){          }
               agemax=agev[m][i];       } 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/     
             }  /* End theta */
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           }  
           else { /* =9 */       for(h=0; h<=nhstepm-1; h++)
             agev[m][i]=1;        for(j=1; j<=nlstate*nlstate;j++)
             s[m][i]=-1;          for(theta=1; theta <=npar; theta++)
           }            trgradg[h][j][theta]=gradg[h][theta][j];
         }       
         else /*= 0 Unknown */  
           agev[m][i]=1;       for(i=1;i<=nlstate*nlstate;i++)
       }        for(j=1;j<=nlstate*nlstate;j++)
              varhe[i][j][(int)age] =0.;
     }  
     for (i=1; i<=imx; i++)  {       printf("%d|",(int)age);fflush(stdout);
       for(m=1; (m<= maxwav); m++){       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         if (s[m][i] > (nlstate+ndeath)) {       for(h=0;h<=nhstepm-1;h++){
           printf("Error: Wrong value in nlstate or ndeath\n");          for(k=0;k<=nhstepm-1;k++){
           goto end;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       }          for(i=1;i<=nlstate*nlstate;i++)
     }            for(j=1;j<=nlstate*nlstate;j++)
               varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        }
       }
     free_vector(severity,1,maxwav);      /* Computing expectancies */
     free_imatrix(outcome,1,maxwav+1,1,n);      for(i=1; i<=nlstate;i++)
     free_vector(moisnais,1,n);        for(j=1; j<=nlstate;j++)
     free_vector(annais,1,n);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     /* free_matrix(mint,1,maxwav,1,n);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
        free_matrix(anint,1,maxwav,1,n);*/            
     free_vector(moisdc,1,n);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     free_vector(andc,1,n);  
           }
      
     wav=ivector(1,imx);      fprintf(ficreseij,"%3.0f",age );
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      cptj=0;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      for(i=1; i<=nlstate;i++)
            for(j=1; j<=nlstate;j++){
     /* Concatenates waves */          cptj++;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         }
       fprintf(ficreseij,"\n");
       Tcode=ivector(1,100);     
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       ncodemax[1]=1;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
            free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
    codtab=imatrix(1,100,1,10);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    h=0;    }
    m=pow(2,cptcoveff);    printf("\n");
      fprintf(ficlog,"\n");
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){    free_vector(xp,1,npar);
        for(j=1; j <= ncodemax[k]; j++){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
            h++;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
            if (h>m) h=1;codtab[h][k]=j;  }
          }  
        }  /************ Variance ******************/
      }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
    }  {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
    /*for(i=1; i <=m ;i++){    /* double **newm;*/
      for(k=1; k <=cptcovn; k++){    double **dnewm,**doldm;
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);    double **dnewmp,**doldmp;
      }    int i, j, nhstepm, hstepm, h, nstepm ;
      printf("\n");    int k, cptcode;
    }    double *xp;
    scanf("%d",i);*/    double **gp, **gm;  /* for var eij */
        double ***gradg, ***trgradg; /*for var eij */
    /* Calculates basic frequencies. Computes observed prevalence at single age    double **gradgp, **trgradgp; /* for var p point j */
        and prints on file fileres'p'. */    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
        double ***p3mat;
        double age,agelim, hf;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***mobaverage;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int theta;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char digit[4];
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char digitp[25];
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
          char fileresprobmorprev[FILENAMELENGTH];
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    if(popbased==1){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
     if(mle==1){      else strcpy(digitp,"-populbased-nomobil-");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    }
     }    else 
          strcpy(digitp,"-stablbased-");
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
    jk=1;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
    fprintf(ficres,"# Parameters\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
    printf("# Parameters\n");      }
    for(i=1,jk=1; i <=nlstate; i++){    }
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)    strcpy(fileresprobmorprev,"prmorprev"); 
          {    sprintf(digit,"%-d",ij);
            printf("%d%d ",i,k);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
            fprintf(ficres,"%1d%1d ",i,k);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
            for(j=1; j <=ncovmodel; j++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
              printf("%f ",p[jk]);    strcat(fileresprobmorprev,fileres);
              fprintf(ficres,"%f ",p[jk]);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
              jk++;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
            }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
            printf("\n");    }
            fprintf(ficres,"\n");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
          }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
    }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
  if(mle==1){    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     /* Computing hessian and covariance matrix */      fprintf(ficresprobmorprev," p.%-d SE",j);
     ftolhess=ftol; /* Usually correct */      for(i=1; i<=nlstate;i++)
     hesscov(matcov, p, npar, delti, ftolhess, func);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
  }    }  
     fprintf(ficres,"# Scales\n");    fprintf(ficresprobmorprev,"\n");
     printf("# Scales\n");    fprintf(ficgp,"\n# Routine varevsij");
      for(i=1,jk=1; i <=nlstate; i++){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       for(j=1; j <=nlstate+ndeath; j++){    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         if (j!=i) {  /*   } */
           fprintf(ficres,"%1d%1d",i,j);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
             printf(" %.5e",delti[jk]);    fprintf(ficresvij,"# Age");
             fprintf(ficres," %.5e",delti[jk]);    for(i=1; i<=nlstate;i++)
             jk++;      for(j=1; j<=nlstate;j++)
           }        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
           printf("\n");    fprintf(ficresvij,"\n");
           fprintf(ficres,"\n");  
         }    xp=vector(1,npar);
       }    dnewm=matrix(1,nlstate,1,npar);
      }    doldm=matrix(1,nlstate,1,nlstate);
        dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     k=1;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fprintf(ficres,"# Covariance\n");  
     printf("# Covariance\n");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     for(i=1;i<=npar;i++){    gpp=vector(nlstate+1,nlstate+ndeath);
       /*  if (k>nlstate) k=1;    gmp=vector(nlstate+1,nlstate+ndeath);
       i1=(i-1)/(ncovmodel*nlstate)+1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    
       printf("%s%d%d",alph[k],i1,tab[i]);*/    if(estepm < stepm){
       fprintf(ficres,"%3d",i);      printf ("Problem %d lower than %d\n",estepm, stepm);
       printf("%3d",i);    }
       for(j=1; j<=i;j++){    else  hstepm=estepm;   
         fprintf(ficres," %.5e",matcov[i][j]);    /* For example we decided to compute the life expectancy with the smallest unit */
         printf(" %.5e",matcov[i][j]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficres,"\n");       nstepm is the number of stepm from age to agelin. 
       printf("\n");       Look at hpijx to understand the reason of that which relies in memory size
       k++;       and note for a fixed period like k years */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           survival function given by stepm (the optimization length). Unfortunately it
     while((c=getc(ficpar))=='#' && c!= EOF){       means that if the survival funtion is printed every two years of age and if
       ungetc(c,ficpar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fgets(line, MAXLINE, ficpar);       results. So we changed our mind and took the option of the best precision.
       puts(line);    */
       fputs(line,ficparo);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     }    agelim = AGESUP;
     ungetc(c,ficpar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if (fage <= 2) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       bage = agemin;      gp=matrix(0,nhstepm,1,nlstate);
       fage = agemax;      gm=matrix(0,nhstepm,1,nlstate);
     }  
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      for(theta=1; theta <=npar; theta++){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
     while((c=getc(ficpar))=='#' && c!= EOF){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     ungetc(c,ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fgets(line, MAXLINE, ficpar);  
     puts(line);        if (popbased==1) {
     fputs(line,ficparo);          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);              prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);            for(i=1; i<=nlstate;i++)
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);              prlim[i][i]=mobaverage[(int)age][i][ij];
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          }
              }
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);        for(j=1; j<= nlstate; j++){
     fgets(line, MAXLINE, ficpar);          for(h=0; h<=nhstepm; h++){
     puts(line);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     fputs(line,ficparo);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   }          }
   ungetc(c,ficpar);        }
          /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
    dateprev1=anprev1+mprev1/12.+jprev1/365.;           as a weighted average of prlim.
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fscanf(ficpar,"pop_based=%d\n",&popbased);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
    fprintf(ficparo,"pop_based=%d\n",popbased);              gpp[j] += prlim[i][i]*p3mat[i][j][1];
    fprintf(ficres,"pop_based=%d\n",popbased);          }    
         /* end probability of death */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     fgets(line, MAXLINE, ficpar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     puts(line);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fputs(line,ficparo);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }   
   ungetc(c,ficpar);        if (popbased==1) {
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);          if(mobilav ==0){
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);            for(i=1; i<=nlstate;i++)
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
              }
     /*------------ gnuplot -------------*/        }
     /*chdir(pathcd);*/  
     strcpy(optionfilegnuplot,optionfilefiname);        for(j=1; j<= nlstate; j++){
     strcat(optionfilegnuplot,".plt");          for(h=0; h<=nhstepm; h++){
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       printf("Problem with file %s",optionfilegnuplot);goto end;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     }          }
 #ifdef windows        }
     fprintf(ficgp,"cd \"%s\" \n",pathc);        /* This for computing probability of death (h=1 means
 #endif           computed over hstepm matrices product = hstepm*stepm months) 
 m=pow(2,cptcoveff);           as a weighted average of prlim.
          */
  /* 1eme*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {          for(i=1,gmp[j]=0.; i<= nlstate; i++)
    for (k1=1; k1<= m ; k1 ++) {           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
 #ifdef windows        /* end probability of death */
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);  
 #endif        for(j=1; j<= nlstate; j++) /* vareij */
 #ifdef unix          for(h=0; h<=nhstepm; h++){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 #endif          }
   
 for (i=1; i<= nlstate ; i ++) {        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      } /* End theta */
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      for(h=0; h<=nhstepm; h++) /* veij */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<=nlstate;j++)
      for (i=1; i<= nlstate ; i ++) {          for(theta=1; theta <=npar; theta++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            trgradg[h][j][theta]=gradg[h][theta][j];
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        for(theta=1; theta <=npar; theta++)
 #ifdef unix          trgradgp[j][theta]=gradgp[theta][j];
 fprintf(ficgp,"\nset ter gif small size 400,300");    
 #endif  
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    }      for(i=1;i<=nlstate;i++)
   }        for(j=1;j<=nlstate;j++)
   /*2 eme*/          vareij[i][j][(int)age] =0.;
   
   for (k1=1; k1<= m ; k1 ++) {      for(h=0;h<=nhstepm;h++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);        for(k=0;k<=nhstepm;k++){
              matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     for (i=1; i<= nlstate+1 ; i ++) {          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       k=2*i;          for(i=1;i<=nlstate;i++)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            for(j=1;j<=nlstate;j++)
       for (j=1; j<= nlstate+1 ; j ++) {              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }      
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      /* pptj */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for (j=1; j<= nlstate+1 ; j ++) {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         else fprintf(ficgp," \%%*lf (\%%*lf)");          varppt[j][i]=doldmp[j][i];
 }        /* end ppptj */
       fprintf(ficgp,"\" t\"\" w l 0,");      /*  x centered again */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       for (j=1; j<= nlstate+1 ; j ++) {      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");      if (popbased==1) {
 }          if(mobilav ==0){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          for(i=1; i<=nlstate;i++)
       else fprintf(ficgp,"\" t\"\" w l 0,");            prlim[i][i]=probs[(int)age][i][ij];
     }        }else{ /* mobilav */ 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          for(i=1; i<=nlstate;i++)
   }            prlim[i][i]=mobaverage[(int)age][i][ij];
          }
   /*3eme*/      }
                
   for (k1=1; k1<= m ; k1 ++) {      /* This for computing probability of death (h=1 means
     for (cpt=1; cpt<= nlstate ; cpt ++) {         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       k=2+nlstate*(cpt-1);         as a weighted average of prlim.
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);      */
       for (i=1; i< nlstate ; i ++) {      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      }    
     }      /* end probability of death */
   }  
        fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   /* CV preval stat */      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   for (k1=1; k1<= m ; k1 ++) {        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     for (cpt=1; cpt<nlstate ; cpt ++) {        for(i=1; i<=nlstate;i++){
       k=3;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);        }
       for (i=1; i< nlstate ; i ++)      } 
         fprintf(ficgp,"+$%d",k+i+1);      fprintf(ficresprobmorprev,"\n");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  
            fprintf(ficresvij,"%.0f ",age );
       l=3+(nlstate+ndeath)*cpt;      for(i=1; i<=nlstate;i++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        for(j=1; j<=nlstate;j++){
       for (i=1; i< nlstate ; i ++) {          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         l=3+(nlstate+ndeath)*cpt;        }
         fprintf(ficgp,"+$%d",l+i+1);      fprintf(ficresvij,"\n");
       }      free_matrix(gp,0,nhstepm,1,nlstate);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        free_matrix(gm,0,nhstepm,1,nlstate);
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   }        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
   /* proba elementaires */    free_vector(gpp,nlstate+1,nlstate+ndeath);
    for(i=1,jk=1; i <=nlstate; i++){    free_vector(gmp,nlstate+1,nlstate+ndeath);
     for(k=1; k <=(nlstate+ndeath); k++){    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       if (k != i) {    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         for(j=1; j <=ncovmodel; j++){    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           /*fprintf(ficgp,"%s",alph[1]);*/    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           jk++;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           fprintf(ficgp,"\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   for(jk=1; jk <=m; jk++) {    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);  */
    i=1;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
    for(k2=1; k2<=nlstate; k2++) {    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      k3=i;  
      for(k=1; k<=(nlstate+ndeath); k++) {    free_vector(xp,1,npar);
        if (k != k2){    free_matrix(doldm,1,nlstate,1,nlstate);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    free_matrix(dnewm,1,nlstate,1,npar);
 ij=1;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for(j=3; j <=ncovmodel; j++) {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             ij++;    fclose(ficresprobmorprev);
           }    fflush(ficgp);
           else    fflush(fichtm); 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  }  /* end varevsij */
         }  
           fprintf(ficgp,")/(1");  /************ Variance of prevlim ******************/
          void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
         for(k1=1; k1 <=nlstate; k1++){    {
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    /* Variance of prevalence limit */
 ij=1;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           for(j=3; j <=ncovmodel; j++){    double **newm;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double **dnewm,**doldm;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    int i, j, nhstepm, hstepm;
             ij++;    int k, cptcode;
           }    double *xp;
           else    double *gp, *gm;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double **gradg, **trgradg;
           }    double age,agelim;
           fprintf(ficgp,")");    int theta;
         }     
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    fprintf(ficresvpl,"# Age");
         i=i+ncovmodel;    for(i=1; i<=nlstate;i++)
        }        fprintf(ficresvpl," %1d-%1d",i,i);
      }    fprintf(ficresvpl,"\n");
    }  
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate,1,npar);
        doldm=matrix(1,nlstate,1,nlstate);
   fclose(ficgp);    
   /* end gnuplot */    hstepm=1*YEARM; /* Every year of age */
        hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 chdir(path);    agelim = AGESUP;
        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     free_ivector(wav,1,imx);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      if (stepm >= YEARM) hstepm=1;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     free_ivector(num,1,n);      gradg=matrix(1,npar,1,nlstate);
     free_vector(agedc,1,n);      gp=vector(1,nlstate);
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      gm=vector(1,nlstate);
     fclose(ficparo);  
     fclose(ficres);      for(theta=1; theta <=npar; theta++){
     /*  }*/        for(i=1; i<=npar; i++){ /* Computes gradient */
              xp[i] = x[i] + (i==theta ?delti[theta]:0);
    /*________fin mle=1_________*/        }
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
            gp[i] = prlim[i][i];
     /* No more information from the sample is required now */      
   /* Reads comments: lines beginning with '#' */        for(i=1; i<=npar; i++) /* Computes gradient */
   while((c=getc(ficpar))=='#' && c!= EOF){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     ungetc(c,ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fgets(line, MAXLINE, ficpar);        for(i=1;i<=nlstate;i++)
     puts(line);          gm[i] = prlim[i][i];
     fputs(line,ficparo);  
   }        for(i=1;i<=nlstate;i++)
   ungetc(c,ficpar);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
        } /* End theta */
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);      trgradg =matrix(1,nlstate,1,npar);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
 /*--------- index.htm --------*/      for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
   strcpy(optionfilehtm,optionfile);          trgradg[j][theta]=gradg[theta][j];
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      for(i=1;i<=nlstate;i++)
     printf("Problem with %s \n",optionfilehtm);goto end;        varpl[i][(int)age] =0.;
   }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">      for(i=1;i<=nlstate;i++)
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 Total number of observations=%d <br>  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>      fprintf(ficresvpl,"%.0f ",age );
 <hr  size=\"2\" color=\"#EC5E5E\">      for(i=1; i<=nlstate;i++)
 <li>Outputs files<br><br>\n        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      fprintf(ficresvpl,"\n");
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>      free_vector(gp,1,nlstate);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>      free_vector(gm,1,nlstate);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      free_matrix(gradg,1,npar,1,nlstate);
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>      free_matrix(trgradg,1,nlstate,1,npar);
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    } /* End age */
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>  
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    free_vector(xp,1,npar);
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>    free_matrix(doldm,1,nlstate,1,npar);
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>    free_matrix(dnewm,1,nlstate,1,nlstate);
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  
   }
  fprintf(fichtm," <li>Graphs</li><p>");  
   /************ Variance of one-step probabilities  ******************/
  m=cptcoveff;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  {
     int i, j=0,  i1, k1, l1, t, tj;
  j1=0;    int k2, l2, j1,  z1;
  for(k1=1; k1<=m;k1++){    int k=0,l, cptcode;
    for(i1=1; i1<=ncodemax[k1];i1++){    int first=1, first1;
        j1++;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
        if (cptcovn > 0) {    double **dnewm,**doldm;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    double *xp;
          for (cpt=1; cpt<=cptcoveff;cpt++)    double *gp, *gm;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);    double **gradg, **trgradg;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    double **mu;
        }    double age,agelim, cov[NCOVMAX];
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        int theta;
        for(cpt=1; cpt<nlstate;cpt++){    char fileresprob[FILENAMELENGTH];
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    char fileresprobcov[FILENAMELENGTH];
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    char fileresprobcor[FILENAMELENGTH];
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {    double ***varpij;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.gif <br>    strcpy(fileresprob,"prob"); 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      strcat(fileresprob,fileres);
      }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
      for(cpt=1; cpt<=nlstate;cpt++) {      printf("Problem with resultfile: %s\n", fileresprob);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    }
      }    strcpy(fileresprobcov,"probcov"); 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    strcat(fileresprobcov,fileres);
 health expectancies in states (1) and (2): e%s%d.gif<br>    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      printf("Problem with resultfile: %s\n", fileresprobcov);
 fprintf(fichtm,"\n</body>");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
    }    }
  }    strcpy(fileresprobcor,"probcor"); 
 fclose(fichtm);    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   /*--------------- Prevalence limit --------------*/      printf("Problem with resultfile: %s\n", fileresprobcor);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   strcpy(filerespl,"pl");    }
   strcat(filerespl,fileres);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   fprintf(ficrespl,"#Prevalence limit\n");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   fprintf(ficrespl,"#Age ");    
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   fprintf(ficrespl,"\n");    fprintf(ficresprob,"# Age");
      fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   prlim=matrix(1,nlstate,1,nlstate);    fprintf(ficresprobcov,"# Age");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprobcov,"# Age");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    for(i=1; i<=nlstate;i++)
   k=0;      for(j=1; j<=(nlstate+ndeath);j++){
   agebase=agemin;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   agelim=agemax;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   ftolpl=1.e-10;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   i1=cptcoveff;      }  
   if (cptcovn < 1){i1=1;}   /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresprobcor,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   */
         k=k+1;   xp=vector(1,npar);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         fprintf(ficrespl,"\n#******");    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         for(j=1;j<=cptcoveff;j++)    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         fprintf(ficrespl,"******\n");    first=1;
            fprintf(ficgp,"\n# Routine varprob");
         for (age=agebase; age<=agelim; age++){    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(fichtm,"\n");
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)    fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
           fprintf(ficrespl," %.5f", prlim[i][i]);    fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           fprintf(ficrespl,"\n");    fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
         }  
       }    cov[1]=1;
     }    tj=cptcoveff;
   fclose(ficrespl);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
   /*------------- h Pij x at various ages ------------*/    for(t=1; t<=tj;t++){
        for(i1=1; i1<=ncodemax[t];i1++){ 
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        j1++;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        if  (cptcovn>0) {
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          fprintf(ficresprob, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   printf("Computing pij: result on file '%s' \n", filerespij);          fprintf(ficresprob, "**********\n#\n");
            fprintf(ficresprobcov, "\n#********** Variable "); 
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /*if (stepm<=24) stepsize=2;*/          fprintf(ficresprobcov, "**********\n#\n");
           
   agelim=AGESUP;          fprintf(ficgp, "\n#********** Variable "); 
   hstepm=stepsize*YEARM; /* Every year of age */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          fprintf(ficgp, "**********\n#\n");
            
   k=0;          
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       k=k+1;          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         fprintf(ficrespij,"\n#****** ");          
         for(j=1;j<=cptcoveff;j++)          fprintf(ficresprobcor, "\n#********** Variable ");    
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficrespij,"******\n");          fprintf(ficresprobcor, "**********\n#");    
                }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for (age=bage; age<=fage; age ++){ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          cov[2]=age;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (k=1; k<=cptcovn;k++) {
           oldm=oldms;savm=savms;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
           fprintf(ficrespij,"# Age");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for(i=1; i<=nlstate;i++)          for (k=1; k<=cptcovprod;k++)
             for(j=1; j<=nlstate+ndeath;j++)            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
               fprintf(ficrespij," %1d-%1d",i,j);          
           fprintf(ficrespij,"\n");          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           for (h=0; h<=nhstepm; h++){          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          gp=vector(1,(nlstate)*(nlstate+ndeath));
             for(i=1; i<=nlstate;i++)          gm=vector(1,(nlstate)*(nlstate+ndeath));
               for(j=1; j<=nlstate+ndeath;j++)      
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          for(theta=1; theta <=npar; theta++){
             fprintf(ficrespij,"\n");            for(i=1; i<=npar; i++)
           }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            
           fprintf(ficrespij,"\n");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         }            
     }            k=0;
   }            for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/                k=k+1;
                 gp[k]=pmmij[i][j];
   fclose(ficrespij);              }
             }
   if(stepm == 1) {            
   /*---------- Forecasting ------------------*/            for(i=1; i<=npar; i++)
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
   /*printf("calage= %f", calagedate);*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
              k=0;
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   strcpy(fileresf,"f");                gm[k]=pmmij[i][j];
   strcat(fileresf,fileres);              }
   if((ficresf=fopen(fileresf,"w"))==NULL) {            }
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;       
   }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   printf("Computing forecasting: result on file '%s' \n", fileresf);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   free_matrix(mint,1,maxwav,1,n);  
   free_matrix(anint,1,maxwav,1,n);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   free_matrix(agev,1,maxwav,1,imx);            for(theta=1; theta <=npar; theta++)
   /* Mobile average */              trgradg[j][theta]=gradg[theta][j];
           
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   if (mobilav==1) {          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       for (i=1; i<=nlstate;i++)          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;          pmij(pmmij,cov,ncovmodel,x,nlstate);
              
     for (agedeb=bage+4; agedeb<=fage; agedeb++){          k=0;
       for (i=1; i<=nlstate;i++){          for(i=1; i<=(nlstate); i++){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            for(j=1; j<=(nlstate+ndeath);j++){
           for (cpt=0;cpt<=4;cpt++){              k=k+1;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];              mu[k][(int) age]=pmmij[i][j];
           }            }
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          }
         }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     }                varpij[i][j][(int)age] = doldm[i][j];
   }  
           /*printf("\n%d ",(int)age);
   stepsize=(int) (stepm+YEARM-1)/YEARM;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   if (stepm<=12) stepsize=1;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   agelim=AGESUP;            }*/
   /*hstepm=stepsize*YEARM; *//* Every year of age */  
   hstepm=1;          fprintf(ficresprob,"\n%d ",(int)age);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */          fprintf(ficresprobcov,"\n%d ",(int)age);
   yp1=modf(dateintmean,&yp);          fprintf(ficresprobcor,"\n%d ",(int)age);
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   mprojmean=yp;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   yp1=modf((yp2*30.5),&yp);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   jprojmean=yp;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   if(jprojmean==0) jprojmean=1;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   if(mprojmean==0) jprojmean=1;          }
           i=0;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
   if (popforecast==1) {              i=i++;
     if((ficpop=fopen(popfile,"r"))==NULL)    {              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       printf("Problem with population file : %s\n",popfile);goto end;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     }              for (j=1; j<=i;j++){
     popage=ivector(0,AGESUP);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     popeffectif=vector(0,AGESUP);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     popcount=vector(0,AGESUP);              }
             }
     i=1;            }/* end of loop for state */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)        } /* end of loop for age */
       {  
         i=i+1;        /* Confidence intervalle of pij  */
       }        /*
     imx=i;          fprintf(ficgp,"\nset noparametric;unset label");
              fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       k=k+1;        */
       fprintf(ficresf,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        first1=1;
       }        for (k2=1; k2<=(nlstate);k2++){
       fprintf(ficresf,"******\n");          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       fprintf(ficresf,"# StartingAge FinalAge");            if(l2==k2) continue;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);            j=(k2-1)*(nlstate+ndeath)+l2;
       if (popforecast==1)  fprintf(ficresf," [Population]");            for (k1=1; k1<=(nlstate);k1++){
                  for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       for (cpt=0; cpt<4;cpt++) {                if(l1==k1) continue;
         fprintf(ficresf,"\n");                i=(k1-1)*(nlstate+ndeath)+l1;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                  if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */                  if ((int)age %5==0){
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
         nhstepm = nhstepm/hstepm;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    mu2=mu[j][(int) age]/stepm*YEARM;
         oldm=oldms;savm=savms;                    c12=cv12/sqrt(v1*v2);
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      /* Computing eigen value of matrix of covariance */
                            lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         for (h=0; h<=nhstepm; h++){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           if (h==(int) (calagedate+YEARM*cpt)) {                    /* Eigen vectors */
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           }                    /*v21=sqrt(1.-v11*v11); *//* error */
           for(j=1; j<=nlstate+ndeath;j++) {                    v21=(lc1-v1)/cv12*v11;
             kk1=0.;kk2=0;                    v12=-v21;
             for(i=1; i<=nlstate;i++) {                            v22=v11;
               if (mobilav==1)                    tnalp=v21/v11;
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                    if(first1==1){
               else {                      first1=0;
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/                    }
               }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
             }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                              if(first==1){
             if (h==(int)(calagedate+12*cpt)){                      first=0;
               fprintf(ficresf," %.3f", kk1);                      fprintf(ficgp,"\nset parametric;unset label");
                                    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             }                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
           }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
         }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
         /*      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                      fprintf(fichtm,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /*  if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   if (popforecast==1) {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     free_ivector(popage,0,AGESUP);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     free_vector(popeffectif,0,AGESUP);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     free_vector(popcount,0,AGESUP);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   }                    }else{
   free_imatrix(s,1,maxwav+1,1,n);                      first=0;
   free_vector(weight,1,n);*/                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
   fclose(ficresf);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }/* End forecasting */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   else{                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     erreur=108;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   }                    }/* if first */
                   } /* age mod 5 */
   /*---------- Health expectancies and variances ------------*/                } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   strcpy(filerest,"t");                first=1;
   strcat(filerest,fileres);              } /*l12 */
   if((ficrest=fopen(filerest,"w"))==NULL) {            } /* k12 */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          } /*l1 */
   }        }/* k1 */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   strcpy(filerese,"e");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   strcat(filerese,fileres);    free_vector(xp,1,npar);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    fclose(ficresprob);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fclose(ficresprobcov);
   }    fclose(ficresprobcor);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    /*  fclose(ficgp);*/
   }
  strcpy(fileresv,"v");  
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  /******************* Printing html file ***********/
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   }                    int lastpass, int stepm, int weightopt, char model[],\
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
   k=0;                    double jprev1, double mprev1,double anprev1, \
   for(cptcov=1;cptcov<=i1;cptcov++){                    double jprev2, double mprev2,double anprev2){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int jj1, k1, i1, cpt;
       k=k+1;    /*char optionfilehtm[FILENAMELENGTH];*/
       fprintf(ficrest,"\n#****** ");  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
       for(j=1;j<=cptcoveff;j++)  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
       fprintf(ficrest,"******\n");  /*   } */
   
       fprintf(ficreseij,"\n#****** ");     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
       for(j=1;j<=cptcoveff;j++)   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
       fprintf(ficreseij,"******\n");   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
       fprintf(ficresvij,"\n#****** ");     <a href=\"%s\">%s</a> <br>\n</li>", \
       for(j=1;j<=cptcoveff;j++)             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
       fprintf(ficresvij,"******\n");             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   m=cptcoveff;
       oldm=oldms;savm=savms;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
         jj1=0;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   for(k1=1; k1<=m;k1++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);     for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficrest,"\n");       jj1++;
               if (cptcovn > 0) {
       hf=1;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       if (stepm >= YEARM) hf=stepm/YEARM;         for (cpt=1; cpt<=cptcoveff;cpt++) 
       epj=vector(1,nlstate+1);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       for(age=bage; age <=fage ;age++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       }
         if (popbased==1) {       /* Pij */
           for(i=1; i<=nlstate;i++)       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
             prlim[i][i]=probs[(int)age][i][k];  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
         }       /* Quasi-incidences */
               fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         fprintf(ficrest," %.0f",age);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {         /* Stable prevalence in each health state */
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];         for(cpt=1; cpt<nlstate;cpt++){
           }           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
           epj[nlstate+1] +=epj[j];  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
         }         }
         for(i=1, vepp=0.;i <=nlstate;i++)       for(cpt=1; cpt<=nlstate;cpt++) {
           for(j=1;j <=nlstate;j++)          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
             vepp += vareij[i][j][(int)age];  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));       }
         for(j=1;j <=nlstate;j++){       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));  health expectancies in states (1) and (2): %s%d.png<br>\
         }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
         fprintf(ficrest,"\n");     } /* end i1 */
       }   }/* End k1 */
     }   fprintf(fichtm,"</ul>");
   }  
          
           fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
  fclose(ficreseij);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
  fclose(ficresvij);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
   fclose(ficrest);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
   fclose(ficpar);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
   free_vector(epj,1,nlstate+1);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
   /*  scanf("%d ",i); */           rfileres,rfileres,\
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
   /*------- Variance limit prevalence------*/             subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
 strcpy(fileresvpl,"vpl");           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
   strcat(fileresvpl,fileres);           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
  k=0;  /*  else  */
  for(cptcov=1;cptcov<=i1;cptcov++){  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
      k=k+1;  
      fprintf(ficresvpl,"\n#****** ");   m=cptcoveff;
      for(j=1;j<=cptcoveff;j++)   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
      fprintf(ficresvpl,"******\n");   jj1=0;
         for(k1=1; k1<=m;k1++){
      varpl=matrix(1,nlstate,(int) bage, (int) fage);     for(i1=1; i1<=ncodemax[k1];i1++){
      oldm=oldms;savm=savms;       jj1++;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       if (cptcovn > 0) {
    }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  }         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   fclose(ficresvpl);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   /*---------- End : free ----------------*/       for(cpt=1; cpt<=nlstate;cpt++) {
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
    interval) in state (%d): %s%d%d.png <br>\
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"vr"),cpt,jj1,subdirf2(optionfilefiname,"vr"),cpt,jj1);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       }
       } /* end i1 */
     }/* End k1 */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);   fprintf(fichtm,"</ul>");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);   fflush(fichtm);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
    /******************* Gnuplot file **************/
   free_matrix(matcov,1,npar,1,npar);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   free_vector(delti,1,npar);  
      char dirfileres[132],optfileres[132];
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   if(erreur >0)  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     printf("End of Imach with error %d\n",erreur);  /*     printf("Problem with file %s",optionfilegnuplot); */
   else   printf("End of Imach\n");  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  /*   } */
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    /*#ifdef windows */
   /*printf("Total time was %d uSec.\n", total_usecs);*/    fprintf(ficgp,"cd \"%s\" \n",pathc);
   /*------ End -----------*/      /*#endif */
     m=pow(2,cptcoveff);
   
  end:    strcpy(dirfileres,optionfilefiname);
 #ifdef windows    strcpy(optfileres,"vpl");
   /* chdir(pathcd);*/   /* 1eme*/
 #endif    for (cpt=1; cpt<= nlstate ; cpt ++) {
  /*system("wgnuplot graph.plt");*/     for (k1=1; k1<= m ; k1 ++) {
  /*system("../gp37mgw/wgnuplot graph.plt");*/       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
  /*system("cd ../gp37mgw");*/       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/       fprintf(ficgp,"set xlabel \"Age\" \n\
  strcpy(plotcmd,GNUPLOTPROGRAM);  set ylabel \"Probability\" \n\
  strcat(plotcmd," ");  set ter png small\n\
  strcat(plotcmd,optionfilegnuplot);  set size 0.65,0.65\n\
  system(plotcmd);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
 #ifdef windows       for (i=1; i<= nlstate ; i ++) {
   while (z[0] != 'q') {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     chdir(path);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("\nType e to edit output files, c to start again, and q for exiting: ");       }
     scanf("%s",z);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     if (z[0] == 'c') system("./imach");       for (i=1; i<= nlstate ; i ++) {
     else if (z[0] == 'e') {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       chdir(path);         else fprintf(ficgp," \%%*lf (\%%*lf)");
       system(optionfilehtm);       } 
     }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     else if (z[0] == 'q') exit(0);       for (i=1; i<= nlstate ; i ++) {
   }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 #endif         else fprintf(ficgp," \%%*lf (\%%*lf)");
 }       }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s",strstart, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(ficgp);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
     chdir(path);
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   
   

Removed from v.1.24  
changed lines
  Added in v.1.89


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>