Diff for /imach/src/imach.c between versions 1.28 and 1.79

version 1.28, 2002/03/01 17:56:23 version 1.79, 2003/06/05 15:17:23
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probabibility to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month or quarter trimester,    states. This elementary transition (by month, quarter,
   semester or year) is model as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the prevalence limits.    of the life expectancies. It also computes the stable prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   **********************************************************************/  
      Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #include <math.h>    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #include <stdio.h>    
 #include <stdlib.h>    **********************************************************************/
 #include <unistd.h>  /*
     main
 #define MAXLINE 256    read parameterfile
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"    read datafile
 #define FILENAMELENGTH 80    concatwav
 /*#define DEBUG*/    if (mle >= 1)
 #define windows      mlikeli
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    print results files
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    if mle==1 
        computes hessian
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */        begin-prev-date,...
     open gnuplot file
 #define NINTERVMAX 8    open html file
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    stable prevalence
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */     for age prevalim()
 #define NCOVMAX 8 /* Maximum number of covariates */    h Pij x
 #define MAXN 20000    variance of p varprob
 #define YEARM 12. /* Number of months per year */    forecasting if prevfcast==1 prevforecast call prevalence()
 #define AGESUP 130    health expectancies
 #define AGEBASE 40    Variance-covariance of DFLE
     prevalence()
      movingaverage()
 int erreur; /* Error number */    varevsij() 
 int nvar;    if popbased==1 varevsij(,popbased)
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    total life expectancies
 int npar=NPARMAX;    Variance of stable prevalence
 int nlstate=2; /* Number of live states */   end
 int ndeath=1; /* Number of dead states */  */
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;  
   
 int *wav; /* Number of waves for this individuual 0 is possible */   
 int maxwav; /* Maxim number of waves */  #include <math.h>
 int jmin, jmax; /* min, max spacing between 2 waves */  #include <stdio.h>
 int mle, weightopt;  #include <stdlib.h>
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #include <unistd.h>
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */  #define MAXLINE 256
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #define GNUPLOTPROGRAM "gnuplot"
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #define FILENAMELENGTH 80
 FILE *ficgp,*ficresprob,*ficpop;  /*#define DEBUG*/
 FILE *ficreseij;  #define windows
   char filerese[FILENAMELENGTH];  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
  FILE  *ficresvij;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   char fileresvpl[FILENAMELENGTH];  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 #define NR_END 1  #define NINTERVMAX 8
 #define FREE_ARG char*  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define FTOL 1.0e-10  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 #define NRANSI  #define MAXN 20000
 #define ITMAX 200  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 #define TOL 2.0e-4  #define AGEBASE 40
   #ifdef windows
 #define CGOLD 0.3819660  #define DIRSEPARATOR '\\'
 #define ZEPS 1.0e-10  #define ODIRSEPARATOR '/'
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #else
   #define DIRSEPARATOR '/'
 #define GOLD 1.618034  #define ODIRSEPARATOR '\\'
 #define GLIMIT 100.0  #endif
 #define TINY 1.0e-20  
   /* $Id$ */
 static double maxarg1,maxarg2;  /* $Log$
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))   * Revision 1.79  2003/06/05 15:17:23  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))   * *** empty log message ***
     * */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  char version[80]="Imach version 0.95a1, June 2003, INED-EUROREVES ";
 #define rint(a) floor(a+0.5)  int erreur; /* Error number */
   int nvar;
 static double sqrarg;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  int npar=NPARMAX;
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 int imx;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int stepm;  int popbased=0;
 /* Stepm, step in month: minimum step interpolation*/  
   int *wav; /* Number of waves for this individuual 0 is possible */
 int m,nb;  int maxwav; /* Maxim number of waves */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  int jmin, jmax; /* min, max spacing between 2 waves */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  int mle, weightopt;
 double **pmmij, ***probs, ***mobaverage;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 double dateintmean=0;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 double *weight;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 int **s; /* Status */  double jmean; /* Mean space between 2 waves */
 double *agedc, **covar, idx;  double **oldm, **newm, **savm; /* Working pointers to matrices */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  FILE *ficlog, *ficrespow;
 double ftolhess; /* Tolerance for computing hessian */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /**************** split *************************/  FILE *fichtm; /* Html File */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
    char *s;                             /* pointer */  FILE  *ficresvij;
    int  l1, l2;                         /* length counters */  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
    l1 = strlen( path );                 /* length of path */  char fileresvpl[FILENAMELENGTH];
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  char title[MAXLINE];
 #ifdef windows  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    s = strrchr( path, '\\' );           /* find last / */  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 #else  
    s = strrchr( path, '/' );            /* find last / */  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 #endif  char filelog[FILENAMELENGTH]; /* Log file */
    if ( s == NULL ) {                   /* no directory, so use current */  char filerest[FILENAMELENGTH];
 #if     defined(__bsd__)                /* get current working directory */  char fileregp[FILENAMELENGTH];
       extern char       *getwd( );  char popfile[FILENAMELENGTH];
   
       if ( getwd( dirc ) == NULL ) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 #else  
       extern char       *getcwd( );  #define NR_END 1
   #define FREE_ARG char*
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define FTOL 1.0e-10
 #endif  
          return( GLOCK_ERROR_GETCWD );  #define NRANSI 
       }  #define ITMAX 200 
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */  #define TOL 2.0e-4 
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */  #define CGOLD 0.3819660 
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define ZEPS 1.0e-10 
       strcpy( name, s );                /* save file name */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  #define GOLD 1.618034 
    }  #define GLIMIT 100.0 
    l1 = strlen( dirc );                 /* length of directory */  #define TINY 1.0e-20 
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  static double maxarg1,maxarg2;
 #else  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 #endif    
    s = strrchr( name, '.' );            /* find last / */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    s++;  #define rint(a) floor(a+0.5)
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);  static double sqrarg;
    l2= strlen( s)+1;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
    strncpy( finame, name, l1-l2);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */  int imx; 
 }  int stepm;
   /* Stepm, step in month: minimum step interpolation*/
   
 /******************************************/  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 void replace(char *s, char*t)  
 {  int m,nb;
   int i;  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   int lg=20;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   i=0;  double **pmmij, ***probs;
   lg=strlen(t);  double dateintmean=0;
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  double *weight;
     if (t[i]== '\\') s[i]='/';  int **s; /* Status */
   }  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 int nbocc(char *s, char occ)  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 {  double ftolhess; /* Tolerance for computing hessian */
   int i,j=0;  
   int lg=20;  /**************** split *************************/
   i=0;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   lg=strlen(s);  {
   for(i=0; i<= lg; i++) {    char  *ss;                            /* pointer */
   if  (s[i] == occ ) j++;    int   l1, l2;                         /* length counters */
   }  
   return j;    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 void cutv(char *u,char *v, char*t, char occ)    if ( ss == NULL ) {                   /* no directory, so use current */
 {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   int i,lg,j,p=0;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   i=0;      /* get current working directory */
   for(j=0; j<=strlen(t)-1; j++) {      /*    extern  char* getcwd ( char *buf , int len);*/
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   }        return( GLOCK_ERROR_GETCWD );
       }
   lg=strlen(t);      strcpy( name, path );               /* we've got it */
   for(j=0; j<p; j++) {    } else {                              /* strip direcotry from path */
     (u[j] = t[j]);      ss++;                               /* after this, the filename */
   }      l2 = strlen( ss );                  /* length of filename */
      u[p]='\0';      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
    for(j=0; j<= lg; j++) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     if (j>=(p+1))(v[j-p-1] = t[j]);      dirc[l1-l2] = 0;                    /* add zero */
   }    }
 }    l1 = strlen( dirc );                  /* length of directory */
   #ifdef windows
 /********************** nrerror ********************/    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   #else
 void nrerror(char error_text[])    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 {  #endif
   fprintf(stderr,"ERREUR ...\n");    ss = strrchr( name, '.' );            /* find last / */
   fprintf(stderr,"%s\n",error_text);    ss++;
   exit(1);    strcpy(ext,ss);                       /* save extension */
 }    l1= strlen( name);
 /*********************** vector *******************/    l2= strlen(ss)+1;
 double *vector(int nl, int nh)    strncpy( finame, name, l1-l2);
 {    finame[l1-l2]= 0;
   double *v;    return( 0 );                          /* we're done */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  }
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  
 }  /******************************************/
   
 /************************ free vector ******************/  void replace(char *s, char*t)
 void free_vector(double*v, int nl, int nh)  {
 {    int i;
   free((FREE_ARG)(v+nl-NR_END));    int lg=20;
 }    i=0;
     lg=strlen(t);
 /************************ivector *******************************/    for(i=0; i<= lg; i++) {
 int *ivector(long nl,long nh)      (s[i] = t[i]);
 {      if (t[i]== '\\') s[i]='/';
   int *v;    }
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  }
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
 /******************free ivector **************************/    int lg=20;
 void free_ivector(int *v, long nl, long nh)    i=0;
 {    lg=strlen(s);
   free((FREE_ARG)(v+nl-NR_END));    for(i=0; i<= lg; i++) {
 }    if  (s[i] == occ ) j++;
     }
 /******************* imatrix *******************************/    return j;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  }
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  void cutv(char *u,char *v, char*t, char occ)
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  {
   int **m;    /* cuts string t into u and v where u is ended by char occ excluding it
         and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   /* allocate pointers to rows */       gives u="abcedf" and v="ghi2j" */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    int i,lg,j,p=0;
   if (!m) nrerror("allocation failure 1 in matrix()");    i=0;
   m += NR_END;    for(j=0; j<=strlen(t)-1; j++) {
   m -= nrl;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
      }
    
   /* allocate rows and set pointers to them */    lg=strlen(t);
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    for(j=0; j<p; j++) {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      (u[j] = t[j]);
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;       u[p]='\0';
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;     for(j=0; j<= lg; j++) {
        if (j>=(p+1))(v[j-p-1] = t[j]);
   /* return pointer to array of pointers to rows */    }
   return m;  }
 }  
   /********************** nrerror ********************/
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  void nrerror(char error_text[])
       int **m;  {
       long nch,ncl,nrh,nrl;    fprintf(stderr,"ERREUR ...\n");
      /* free an int matrix allocated by imatrix() */    fprintf(stderr,"%s\n",error_text);
 {    exit(EXIT_FAILURE);
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  }
   free((FREE_ARG) (m+nrl-NR_END));  /*********************** vector *******************/
 }  double *vector(int nl, int nh)
   {
 /******************* matrix *******************************/    double *v;
 double **matrix(long nrl, long nrh, long ncl, long nch)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 {    if (!v) nrerror("allocation failure in vector");
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    return v-nl+NR_END;
   double **m;  }
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /************************ free vector ******************/
   if (!m) nrerror("allocation failure 1 in matrix()");  void free_vector(double*v, int nl, int nh)
   m += NR_END;  {
   m -= nrl;    free((FREE_ARG)(v+nl-NR_END));
   }
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /************************ivector *******************************/
   m[nrl] += NR_END;  char *cvector(long nl,long nh)
   m[nrl] -= ncl;  {
     char *v;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
   return m;    if (!v) nrerror("allocation failure in cvector");
 }    return v-nl+NR_END;
   }
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  /******************free ivector **************************/
 {  void free_cvector(char *v, long nl, long nh)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  {
   free((FREE_ARG)(m+nrl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /******************* ma3x *******************************/  /************************ivector *******************************/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int *ivector(long nl,long nh)
 {  {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    int *v;
   double ***m;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    return v-nl+NR_END;
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    free((FREE_ARG)(v+nl-NR_END));
   m[nrl] += NR_END;  }
   m[nrl] -= ncl;  
   /******************* imatrix *******************************/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  { 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   m[nrl][ncl] += NR_END;    int **m; 
   m[nrl][ncl] -= nll;    
   for (j=ncl+1; j<=nch; j++)    /* allocate pointers to rows */ 
     m[nrl][j]=m[nrl][j-1]+nlay;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
      if (!m) nrerror("allocation failure 1 in matrix()"); 
   for (i=nrl+1; i<=nrh; i++) {    m += NR_END; 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    m -= nrl; 
     for (j=ncl+1; j<=nch; j++)    
       m[i][j]=m[i][j-1]+nlay;    
   }    /* allocate rows and set pointers to them */ 
   return m;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
 /*************************free ma3x ************************/    m[nrl] -= ncl; 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    
 {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    /* return pointer to array of pointers to rows */ 
   free((FREE_ARG)(m+nrl-NR_END));    return m; 
 }  } 
   
 /***************** f1dim *************************/  /****************** free_imatrix *************************/
 extern int ncom;  void free_imatrix(m,nrl,nrh,ncl,nch)
 extern double *pcom,*xicom;        int **m;
 extern double (*nrfunc)(double []);        long nch,ncl,nrh,nrl; 
         /* free an int matrix allocated by imatrix() */ 
 double f1dim(double x)  { 
 {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   int j;    free((FREE_ARG) (m+nrl-NR_END)); 
   double f;  } 
   double *xt;  
    /******************* matrix *******************************/
   xt=vector(1,ncom);  double **matrix(long nrl, long nrh, long ncl, long nch)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  {
   f=(*nrfunc)(xt);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   free_vector(xt,1,ncom);    double **m;
   return f;  
 }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /*****************brent *************************/    m += NR_END;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    m -= nrl;
 {  
   int iter;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double a,b,d,etemp;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double fu,fv,fw,fx;    m[nrl] += NR_END;
   double ftemp;    m[nrl] -= ncl;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      return m;
   a=(ax < cx ? ax : cx);    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
   b=(ax > cx ? ax : cx);     */
   x=w=v=bx;  }
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  /*************************free matrix ************************/
     xm=0.5*(a+b);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  {
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     printf(".");fflush(stdout);    free((FREE_ARG)(m+nrl-NR_END));
 #ifdef DEBUG  }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /******************* ma3x *******************************/
 #endif  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  {
       *xmin=x;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       return fx;    double ***m;
     }  
     ftemp=fu;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (fabs(e) > tol1) {    if (!m) nrerror("allocation failure 1 in matrix()");
       r=(x-w)*(fx-fv);    m += NR_END;
       q=(x-v)*(fx-fw);    m -= nrl;
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       if (q > 0.0) p = -p;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       q=fabs(q);    m[nrl] += NR_END;
       etemp=e;    m[nrl] -= ncl;
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         d=p/q;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         u=x+d;    m[nrl][ncl] += NR_END;
         if (u-a < tol2 || b-u < tol2)    m[nrl][ncl] -= nll;
           d=SIGN(tol1,xm-x);    for (j=ncl+1; j<=nch; j++) 
       }      m[nrl][j]=m[nrl][j-1]+nlay;
     } else {    
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    for (i=nrl+1; i<=nrh; i++) {
     }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      for (j=ncl+1; j<=nch; j++) 
     fu=(*f)(u);        m[i][j]=m[i][j-1]+nlay;
     if (fu <= fx) {    }
       if (u >= x) a=x; else b=x;    return m; 
       SHFT(v,w,x,u)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         SHFT(fv,fw,fx,fu)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         } else {    */
           if (u < x) a=u; else b=u;  }
           if (fu <= fw || w == x) {  
             v=w;  /*************************free ma3x ************************/
             w=u;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
             fv=fw;  {
             fw=fu;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
           } else if (fu <= fv || v == x || v == w) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
             v=u;    free((FREE_ARG)(m+nrl-NR_END));
             fv=fu;  }
           }  
         }  /***************** f1dim *************************/
   }  extern int ncom; 
   nrerror("Too many iterations in brent");  extern double *pcom,*xicom;
   *xmin=x;  extern double (*nrfunc)(double []); 
   return fx;   
 }  double f1dim(double x) 
   { 
 /****************** mnbrak ***********************/    int j; 
     double f;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    double *xt; 
             double (*func)(double))   
 {    xt=vector(1,ncom); 
   double ulim,u,r,q, dum;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double fu;    f=(*nrfunc)(xt); 
      free_vector(xt,1,ncom); 
   *fa=(*func)(*ax);    return f; 
   *fb=(*func)(*bx);  } 
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  /*****************brent *************************/
       SHFT(dum,*fb,*fa,dum)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       }  { 
   *cx=(*bx)+GOLD*(*bx-*ax);    int iter; 
   *fc=(*func)(*cx);    double a,b,d,etemp;
   while (*fb > *fc) {    double fu,fv,fw,fx;
     r=(*bx-*ax)*(*fb-*fc);    double ftemp;
     q=(*bx-*cx)*(*fb-*fa);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    double e=0.0; 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));   
     ulim=(*bx)+GLIMIT*(*cx-*bx);    a=(ax < cx ? ax : cx); 
     if ((*bx-u)*(u-*cx) > 0.0) {    b=(ax > cx ? ax : cx); 
       fu=(*func)(u);    x=w=v=bx; 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    fw=fv=fx=(*f)(x); 
       fu=(*func)(u);    for (iter=1;iter<=ITMAX;iter++) { 
       if (fu < *fc) {      xm=0.5*(a+b); 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
           SHFT(*fb,*fc,fu,(*func)(u))      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
           }      printf(".");fflush(stdout);
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      fprintf(ficlog,".");fflush(ficlog);
       u=ulim;  #ifdef DEBUG
       fu=(*func)(u);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     } else {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       u=(*cx)+GOLD*(*cx-*bx);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       fu=(*func)(u);  #endif
     }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     SHFT(*ax,*bx,*cx,u)        *xmin=x; 
       SHFT(*fa,*fb,*fc,fu)        return fx; 
       }      } 
 }      ftemp=fu;
       if (fabs(e) > tol1) { 
 /*************** linmin ************************/        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
 int ncom;        p=(x-v)*q-(x-w)*r; 
 double *pcom,*xicom;        q=2.0*(q-r); 
 double (*nrfunc)(double []);        if (q > 0.0) p = -p; 
          q=fabs(q); 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))        etemp=e; 
 {        e=d; 
   double brent(double ax, double bx, double cx,        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
                double (*f)(double), double tol, double *xmin);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double f1dim(double x);        else { 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,          d=p/q; 
               double *fc, double (*func)(double));          u=x+d; 
   int j;          if (u-a < tol2 || b-u < tol2) 
   double xx,xmin,bx,ax;            d=SIGN(tol1,xm-x); 
   double fx,fb,fa;        } 
        } else { 
   ncom=n;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   pcom=vector(1,n);      } 
   xicom=vector(1,n);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   nrfunc=func;      fu=(*f)(u); 
   for (j=1;j<=n;j++) {      if (fu <= fx) { 
     pcom[j]=p[j];        if (u >= x) a=x; else b=x; 
     xicom[j]=xi[j];        SHFT(v,w,x,u) 
   }          SHFT(fv,fw,fx,fu) 
   ax=0.0;          } else { 
   xx=1.0;            if (u < x) a=u; else b=u; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);            if (fu <= fw || w == x) { 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);              v=w; 
 #ifdef DEBUG              w=u; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);              fv=fw; 
 #endif              fw=fu; 
   for (j=1;j<=n;j++) {            } else if (fu <= fv || v == x || v == w) { 
     xi[j] *= xmin;              v=u; 
     p[j] += xi[j];              fv=fu; 
   }            } 
   free_vector(xicom,1,n);          } 
   free_vector(pcom,1,n);    } 
 }    nrerror("Too many iterations in brent"); 
     *xmin=x; 
 /*************** powell ************************/    return fx; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  } 
             double (*func)(double []))  
 {  /****************** mnbrak ***********************/
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   int i,ibig,j;              double (*func)(double)) 
   double del,t,*pt,*ptt,*xit;  { 
   double fp,fptt;    double ulim,u,r,q, dum;
   double *xits;    double fu; 
   pt=vector(1,n);   
   ptt=vector(1,n);    *fa=(*func)(*ax); 
   xit=vector(1,n);    *fb=(*func)(*bx); 
   xits=vector(1,n);    if (*fb > *fa) { 
   *fret=(*func)(p);      SHFT(dum,*ax,*bx,dum) 
   for (j=1;j<=n;j++) pt[j]=p[j];        SHFT(dum,*fb,*fa,dum) 
   for (*iter=1;;++(*iter)) {        } 
     fp=(*fret);    *cx=(*bx)+GOLD*(*bx-*ax); 
     ibig=0;    *fc=(*func)(*cx); 
     del=0.0;    while (*fb > *fc) { 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      r=(*bx-*ax)*(*fb-*fc); 
     for (i=1;i<=n;i++)      q=(*bx-*cx)*(*fb-*fa); 
       printf(" %d %.12f",i, p[i]);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     printf("\n");        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     for (i=1;i<=n;i++) {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      if ((*bx-u)*(u-*cx) > 0.0) { 
       fptt=(*fret);        fu=(*func)(u); 
 #ifdef DEBUG      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       printf("fret=%lf \n",*fret);        fu=(*func)(u); 
 #endif        if (fu < *fc) { 
       printf("%d",i);fflush(stdout);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       linmin(p,xit,n,fret,func);            SHFT(*fb,*fc,fu,(*func)(u)) 
       if (fabs(fptt-(*fret)) > del) {            } 
         del=fabs(fptt-(*fret));      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         ibig=i;        u=ulim; 
       }        fu=(*func)(u); 
 #ifdef DEBUG      } else { 
       printf("%d %.12e",i,(*fret));        u=(*cx)+GOLD*(*cx-*bx); 
       for (j=1;j<=n;j++) {        fu=(*func)(u); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      } 
         printf(" x(%d)=%.12e",j,xit[j]);      SHFT(*ax,*bx,*cx,u) 
       }        SHFT(*fa,*fb,*fc,fu) 
       for(j=1;j<=n;j++)        } 
         printf(" p=%.12e",p[j]);  } 
       printf("\n");  
 #endif  /*************** linmin ************************/
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  int ncom; 
 #ifdef DEBUG  double *pcom,*xicom;
       int k[2],l;  double (*nrfunc)(double []); 
       k[0]=1;   
       k[1]=-1;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       printf("Max: %.12e",(*func)(p));  { 
       for (j=1;j<=n;j++)    double brent(double ax, double bx, double cx, 
         printf(" %.12e",p[j]);                 double (*f)(double), double tol, double *xmin); 
       printf("\n");    double f1dim(double x); 
       for(l=0;l<=1;l++) {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         for (j=1;j<=n;j++) {                double *fc, double (*func)(double)); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    int j; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    double xx,xmin,bx,ax; 
         }    double fx,fb,fa;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));   
       }    ncom=n; 
 #endif    pcom=vector(1,n); 
     xicom=vector(1,n); 
     nrfunc=func; 
       free_vector(xit,1,n);    for (j=1;j<=n;j++) { 
       free_vector(xits,1,n);      pcom[j]=p[j]; 
       free_vector(ptt,1,n);      xicom[j]=xi[j]; 
       free_vector(pt,1,n);    } 
       return;    ax=0.0; 
     }    xx=1.0; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     for (j=1;j<=n;j++) {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       ptt[j]=2.0*p[j]-pt[j];  #ifdef DEBUG
       xit[j]=p[j]-pt[j];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       pt[j]=p[j];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }  #endif
     fptt=(*func)(ptt);    for (j=1;j<=n;j++) { 
     if (fptt < fp) {      xi[j] *= xmin; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      p[j] += xi[j]; 
       if (t < 0.0) {    } 
         linmin(p,xit,n,fret,func);    free_vector(xicom,1,n); 
         for (j=1;j<=n;j++) {    free_vector(pcom,1,n); 
           xi[j][ibig]=xi[j][n];  } 
           xi[j][n]=xit[j];  
         }  /*************** powell ************************/
 #ifdef DEBUG  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);              double (*func)(double [])) 
         for(j=1;j<=n;j++)  { 
           printf(" %.12e",xit[j]);    void linmin(double p[], double xi[], int n, double *fret, 
         printf("\n");                double (*func)(double [])); 
 #endif    int i,ibig,j; 
       }    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
   }    double *xits;
 }    pt=vector(1,n); 
     ptt=vector(1,n); 
 /**** Prevalence limit ****************/    xit=vector(1,n); 
     xits=vector(1,n); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    *fret=(*func)(p); 
 {    for (j=1;j<=n;j++) pt[j]=p[j]; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    for (*iter=1;;++(*iter)) { 
      matrix by transitions matrix until convergence is reached */      fp=(*fret); 
       ibig=0; 
   int i, ii,j,k;      del=0.0; 
   double min, max, maxmin, maxmax,sumnew=0.;      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   double **matprod2();      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   double **out, cov[NCOVMAX], **pmij();      fprintf(ficrespow,"%d %.12f",*iter,*fret);
   double **newm;      for (i=1;i<=n;i++) {
   double agefin, delaymax=50 ; /* Max number of years to converge */        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
   for (ii=1;ii<=nlstate+ndeath;ii++)        fprintf(ficrespow," %.12lf", p[i]);
     for (j=1;j<=nlstate+ndeath;j++){      }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      printf("\n");
     }      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");
    cov[1]=1.;      for (i=1;i<=n;i++) { 
          for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        fptt=(*fret); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #ifdef DEBUG
     newm=savm;        printf("fret=%lf \n",*fret);
     /* Covariates have to be included here again */        fprintf(ficlog,"fret=%lf \n",*fret);
      cov[2]=agefin;  #endif
          printf("%d",i);fflush(stdout);
       for (k=1; k<=cptcovn;k++) {        fprintf(ficlog,"%d",i);fflush(ficlog);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        linmin(p,xit,n,fret,func); 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/        if (fabs(fptt-(*fret)) > del) { 
       }          del=fabs(fptt-(*fret)); 
       for (k=1; k<=cptcovage;k++)          ibig=i; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        } 
       for (k=1; k<=cptcovprod;k++)  #ifdef DEBUG
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        for (j=1;j<=n;j++) {
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
     savm=oldm;        for(j=1;j<=n;j++) {
     oldm=newm;          printf(" p=%.12e",p[j]);
     maxmax=0.;          fprintf(ficlog," p=%.12e",p[j]);
     for(j=1;j<=nlstate;j++){        }
       min=1.;        printf("\n");
       max=0.;        fprintf(ficlog,"\n");
       for(i=1; i<=nlstate; i++) {  #endif
         sumnew=0;      } 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         prlim[i][j]= newm[i][j]/(1-sumnew);  #ifdef DEBUG
         max=FMAX(max,prlim[i][j]);        int k[2],l;
         min=FMIN(min,prlim[i][j]);        k[0]=1;
       }        k[1]=-1;
       maxmin=max-min;        printf("Max: %.12e",(*func)(p));
       maxmax=FMAX(maxmax,maxmin);        fprintf(ficlog,"Max: %.12e",(*func)(p));
     }        for (j=1;j<=n;j++) {
     if(maxmax < ftolpl){          printf(" %.12e",p[j]);
       return prlim;          fprintf(ficlog," %.12e",p[j]);
     }        }
   }        printf("\n");
 }        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
 /*************** transition probabilities ***************/          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double s1, s2;          }
   /*double t34;*/          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int i,j,j1, nc, ii, jj;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
     for(i=1; i<= nlstate; i++){  #endif
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/        free_vector(xit,1,n); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        free_vector(xits,1,n); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        free_vector(ptt,1,n); 
       }        free_vector(pt,1,n); 
       ps[i][j]=s2;        return; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      } 
     }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for(j=i+1; j<=nlstate+ndeath;j++){      for (j=1;j<=n;j++) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        ptt[j]=2.0*p[j]-pt[j]; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        xit[j]=p[j]-pt[j]; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        pt[j]=p[j]; 
       }      } 
       ps[i][j]=s2;      fptt=(*func)(ptt); 
     }      if (fptt < fp) { 
   }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     /*ps[3][2]=1;*/        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
   for(i=1; i<= nlstate; i++){          for (j=1;j<=n;j++) { 
      s1=0;            xi[j][ibig]=xi[j][n]; 
     for(j=1; j<i; j++)            xi[j][n]=xit[j]; 
       s1+=exp(ps[i][j]);          }
     for(j=i+1; j<=nlstate+ndeath; j++)  #ifdef DEBUG
       s1+=exp(ps[i][j]);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     ps[i][i]=1./(s1+1.);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(j=1; j<i; j++)          for(j=1;j<=n;j++){
       ps[i][j]= exp(ps[i][j])*ps[i][i];            printf(" %.12e",xit[j]);
     for(j=i+1; j<=nlstate+ndeath; j++)            fprintf(ficlog," %.12e",xit[j]);
       ps[i][j]= exp(ps[i][j])*ps[i][i];          }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          printf("\n");
   } /* end i */          fprintf(ficlog,"\n");
   #endif
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        }
     for(jj=1; jj<= nlstate+ndeath; jj++){      } 
       ps[ii][jj]=0;    } 
       ps[ii][ii]=1;  } 
     }  
   }  /**** Prevalence limit (stable prevalence)  ****************/
   
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
      printf("%lf ",ps[ii][jj]);       matrix by transitions matrix until convergence is reached */
    }  
     printf("\n ");    int i, ii,j,k;
     }    double min, max, maxmin, maxmax,sumnew=0.;
     printf("\n ");printf("%lf ",cov[2]);*/    double **matprod2();
 /*    double **out, cov[NCOVMAX], **pmij();
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    double **newm;
   goto end;*/    double agefin, delaymax=50 ; /* Max number of years to converge */
     return ps;  
 }    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
 /**************** Product of 2 matrices ******************/        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {     cov[1]=1.;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times   
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /* in, b, out are matrice of pointers which should have been initialized    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
      before: only the contents of out is modified. The function returns      newm=savm;
      a pointer to pointers identical to out */      /* Covariates have to be included here again */
   long i, j, k;       cov[2]=agefin;
   for(i=nrl; i<= nrh; i++)    
     for(k=ncolol; k<=ncoloh; k++)        for (k=1; k<=cptcovn;k++) {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         out[i][k] +=in[i][j]*b[j][k];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
   return out;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 /************* Higher Matrix Product ***************/        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until      savm=oldm;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      oldm=newm;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      maxmax=0.;
      (typically every 2 years instead of every month which is too big).      for(j=1;j<=nlstate;j++){
      Model is determined by parameters x and covariates have to be        min=1.;
      included manually here.        max=0.;
         for(i=1; i<=nlstate; i++) {
      */          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   int i, j, d, h, k;          prlim[i][j]= newm[i][j]/(1-sumnew);
   double **out, cov[NCOVMAX];          max=FMAX(max,prlim[i][j]);
   double **newm;          min=FMIN(min,prlim[i][j]);
         }
   /* Hstepm could be zero and should return the unit matrix */        maxmin=max-min;
   for (i=1;i<=nlstate+ndeath;i++)        maxmax=FMAX(maxmax,maxmin);
     for (j=1;j<=nlstate+ndeath;j++){      }
       oldm[i][j]=(i==j ? 1.0 : 0.0);      if(maxmax < ftolpl){
       po[i][j][0]=(i==j ? 1.0 : 0.0);        return prlim;
     }      }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    }
   for(h=1; h <=nhstepm; h++){  }
     for(d=1; d <=hstepm; d++){  
       newm=savm;  /*************** transition probabilities ***************/ 
       /* Covariates have to be included here again */  
       cov[1]=1.;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  {
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double s1, s2;
       for (k=1; k<=cptcovage;k++)    /*double t34;*/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    int i,j,j1, nc, ii, jj;
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      for(i=1; i<= nlstate; i++){
       for(j=1; j<i;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          /*s2 += param[i][j][nc]*cov[nc];*/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        }
       savm=oldm;        ps[i][j]=s2;
       oldm=newm;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
     }      }
     for(i=1; i<=nlstate+ndeath; i++)      for(j=i+1; j<=nlstate+ndeath;j++){
       for(j=1;j<=nlstate+ndeath;j++) {        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         po[i][j][h]=newm[i][j];          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
          */        }
       }        ps[i][j]=s2;
   } /* end h */      }
   return po;    }
 }      /*ps[3][2]=1;*/
   
     for(i=1; i<= nlstate; i++){
 /*************** log-likelihood *************/       s1=0;
 double func( double *x)      for(j=1; j<i; j++)
 {        s1+=exp(ps[i][j]);
   int i, ii, j, k, mi, d, kk;      for(j=i+1; j<=nlstate+ndeath; j++)
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        s1+=exp(ps[i][j]);
   double **out;      ps[i][i]=1./(s1+1.);
   double sw; /* Sum of weights */      for(j=1; j<i; j++)
   double lli; /* Individual log likelihood */        ps[i][j]= exp(ps[i][j])*ps[i][i];
   long ipmx;      for(j=i+1; j<=nlstate+ndeath; j++)
   /*extern weight */        ps[i][j]= exp(ps[i][j])*ps[i][i];
   /* We are differentiating ll according to initial status */      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    } /* end i */
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   */      for(jj=1; jj<= nlstate+ndeath; jj++){
   cov[1]=1.;        ps[ii][jj]=0;
         ps[ii][ii]=1;
   for(k=1; k<=nlstate; k++) ll[k]=0.;      }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for(jj=1; jj<= nlstate+ndeath; jj++){
       for(d=0; d<dh[mi][i]; d++){       printf("%lf ",ps[ii][jj]);
         newm=savm;     }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      printf("\n ");
         for (kk=1; kk<=cptcovage;kk++) {      }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      printf("\n ");printf("%lf ",cov[2]);*/
         }  /*
            for(i=1; i<= npar; i++) printf("%f ",x[i]);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    goto end;*/
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      return ps;
         savm=oldm;  }
         oldm=newm;  
          /**************** Product of 2 matrices ******************/
          
       } /* end mult */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
        {
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       ipmx +=1;    /* in, b, out are matrice of pointers which should have been initialized 
       sw += weight[i];       before: only the contents of out is modified. The function returns
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       a pointer to pointers identical to out */
     } /* end of wave */    long i, j, k;
   } /* end of individual */    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          out[i][k] +=in[i][j]*b[j][k];
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;    return out;
 }  }
   
   
 /*********** Maximum Likelihood Estimation ***************/  /************* Higher Matrix Product ***************/
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 {  {
   int i,j, iter;    /* Computes the transition matrix starting at age 'age' over 
   double **xi,*delti;       'nhstepm*hstepm*stepm' months (i.e. until
   double fret;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   xi=matrix(1,npar,1,npar);       nhstepm*hstepm matrices. 
   for (i=1;i<=npar;i++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for (j=1;j<=npar;j++)       (typically every 2 years instead of every month which is too big 
       xi[i][j]=(i==j ? 1.0 : 0.0);       for the memory).
   printf("Powell\n");       Model is determined by parameters x and covariates have to be 
   powell(p,xi,npar,ftol,&iter,&fret,func);       included manually here. 
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));       */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
     int i, j, d, h, k;
 }    double **out, cov[NCOVMAX];
     double **newm;
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    /* Hstepm could be zero and should return the unit matrix */
 {    for (i=1;i<=nlstate+ndeath;i++)
   double  **a,**y,*x,pd;      for (j=1;j<=nlstate+ndeath;j++){
   double **hess;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   int i, j,jk;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   int *indx;      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double hessii(double p[], double delta, int theta, double delti[]);    for(h=1; h <=nhstepm; h++){
   double hessij(double p[], double delti[], int i, int j);      for(d=1; d <=hstepm; d++){
   void lubksb(double **a, int npar, int *indx, double b[]) ;        newm=savm;
   void ludcmp(double **a, int npar, int *indx, double *d) ;        /* Covariates have to be included here again */
         cov[1]=1.;
   hess=matrix(1,npar,1,npar);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   printf("\nCalculation of the hessian matrix. Wait...\n");        for (k=1; k<=cptcovage;k++)
   for (i=1;i<=npar;i++){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     printf("%d",i);fflush(stdout);        for (k=1; k<=cptcovprod;k++)
     hess[i][i]=hessii(p,ftolhess,i,delti);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/  
   }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   for (i=1;i<=npar;i++) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for (j=1;j<=npar;j++)  {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       if (j>i) {        savm=oldm;
         printf(".%d%d",i,j);fflush(stdout);        oldm=newm;
         hess[i][j]=hessij(p,delti,i,j);      }
         hess[j][i]=hess[i][j];          for(i=1; i<=nlstate+ndeath; i++)
         /*printf(" %lf ",hess[i][j]);*/        for(j=1;j<=nlstate+ndeath;j++) {
       }          po[i][j][h]=newm[i][j];
     }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   }           */
   printf("\n");        }
     } /* end h */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    return po;
    }
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  /*************** log-likelihood *************/
   indx=ivector(1,npar);  double func( double *x)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    int i, ii, j, k, mi, d, kk;
   ludcmp(a,npar,indx,&pd);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
   for (j=1;j<=npar;j++) {    double sw; /* Sum of weights */
     for (i=1;i<=npar;i++) x[i]=0;    double lli; /* Individual log likelihood */
     x[j]=1;    int s1, s2;
     lubksb(a,npar,indx,x);    double bbh, survp;
     for (i=1;i<=npar;i++){    long ipmx;
       matcov[i][j]=x[i];    /*extern weight */
     }    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   printf("\n#Hessian matrix#\n");      printf(" %d\n",s[4][i]);
   for (i=1;i<=npar;i++) {    */
     for (j=1;j<=npar;j++) {    cov[1]=1.;
       printf("%.3e ",hess[i][j]);  
     }    for(k=1; k<=nlstate; k++) ll[k]=0.;
     printf("\n");  
   }    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* Recompute Inverse */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (i=1;i<=npar;i++)        for(mi=1; mi<= wav[i]-1; mi++){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          for (ii=1;ii<=nlstate+ndeath;ii++)
   ludcmp(a,npar,indx,&pd);            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*  printf("\n#Hessian matrix recomputed#\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   for (j=1;j<=npar;j++) {          for(d=0; d<dh[mi][i]; d++){
     for (i=1;i<=npar;i++) x[i]=0;            newm=savm;
     x[j]=1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     lubksb(a,npar,indx,x);            for (kk=1; kk<=cptcovage;kk++) {
     for (i=1;i<=npar;i++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       y[i][j]=x[i];            }
       printf("%.3e ",y[i][j]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("\n");            savm=oldm;
   }            oldm=newm;
   */          } /* end mult */
         
   free_matrix(a,1,npar,1,npar);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   free_matrix(y,1,npar,1,npar);          /* But now since version 0.9 we anticipate for bias and large stepm.
   free_vector(x,1,npar);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   free_ivector(indx,1,npar);           * (in months) between two waves is not a multiple of stepm, we rounded to 
   free_matrix(hess,1,npar,1,npar);           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 }           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 /*************** hessian matrix ****************/           * -stepm/2 to stepm/2 .
 double hessii( double x[], double delta, int theta, double delti[])           * For stepm=1 the results are the same as for previous versions of Imach.
 {           * For stepm > 1 the results are less biased than in previous versions. 
   int i;           */
   int l=1, lmax=20;          s1=s[mw[mi][i]][i];
   double k1,k2;          s2=s[mw[mi+1][i]][i];
   double p2[NPARMAX+1];          bbh=(double)bh[mi][i]/(double)stepm; 
   double res;          /* bias is positive if real duration
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;           * is higher than the multiple of stepm and negative otherwise.
   double fx;           */
   int k=0,kmax=10;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   double l1;          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known then the contribution
   fx=func(x);               to the likelihood is the probability to die between last step unit time and current 
   for (i=1;i<=npar;i++) p2[i]=x[i];               step unit time, which is also the differences between probability to die before dh 
   for(l=0 ; l <=lmax; l++){               and probability to die before dh-stepm . 
     l1=pow(10,l);               In version up to 0.92 likelihood was computed
     delts=delt;          as if date of death was unknown. Death was treated as any other
     for(k=1 ; k <kmax; k=k+1){          health state: the date of the interview describes the actual state
       delt = delta*(l1*k);          and not the date of a change in health state. The former idea was
       p2[theta]=x[theta] +delt;          to consider that at each interview the state was recorded
       k1=func(p2)-fx;          (healthy, disable or death) and IMaCh was corrected; but when we
       p2[theta]=x[theta]-delt;          introduced the exact date of death then we should have modified
       k2=func(p2)-fx;          the contribution of an exact death to the likelihood. This new
       /*res= (k1-2.0*fx+k2)/delt/delt; */          contribution is smaller and very dependent of the step unit
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          stepm. It is no more the probability to die between last interview
                and month of death but the probability to survive from last
 #ifdef DEBUG          interview up to one month before death multiplied by the
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          probability to die within a month. Thanks to Chris
 #endif          Jackson for correcting this bug.  Former versions increased
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          mortality artificially. The bad side is that we add another loop
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          which slows down the processing. The difference can be up to 10%
         k=kmax;          lower mortality.
       }            */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            lli=log(out[s1][s2] - savm[s1][s2]);
         k=kmax; l=lmax*10.;          }else{
       }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         delts=delt;          } 
       }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }          /*if(lli ==000.0)*/
   }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   delti[theta]=delts;          ipmx +=1;
   return res;          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }        } /* end of wave */
       } /* end of individual */
 double hessij( double x[], double delti[], int thetai,int thetaj)    }  else if(mle==2){
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int i;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int l=1, l1, lmax=20;        for(mi=1; mi<= wav[i]-1; mi++){
   double k1,k2,k3,k4,res,fx;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double p2[NPARMAX+1];            for (j=1;j<=nlstate+ndeath;j++){
   int k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fx=func(x);            }
   for (k=1; k<=2; k++) {          for(d=0; d<=dh[mi][i]; d++){
     for (i=1;i<=npar;i++) p2[i]=x[i];            newm=savm;
     p2[thetai]=x[thetai]+delti[thetai]/k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            for (kk=1; kk<=cptcovage;kk++) {
     k1=func(p2)-fx;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
     p2[thetai]=x[thetai]+delti[thetai]/k;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     k2=func(p2)-fx;            savm=oldm;
              oldm=newm;
     p2[thetai]=x[thetai]-delti[thetai]/k;          } /* end mult */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        
     k3=func(p2)-fx;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            /* But now since version 0.9 we anticipate for bias and large stepm.
     p2[thetai]=x[thetai]-delti[thetai]/k;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     k4=func(p2)-fx;           * the nearest (and in case of equal distance, to the lowest) interval but now
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 #ifdef DEBUG           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           * probability in order to take into account the bias as a fraction of the way
 #endif           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   }           * -stepm/2 to stepm/2 .
   return res;           * For stepm=1 the results are the same as for previous versions of Imach.
 }           * For stepm > 1 the results are less biased than in previous versions. 
            */
 /************** Inverse of matrix **************/          s1=s[mw[mi][i]][i];
 void ludcmp(double **a, int n, int *indx, double *d)          s2=s[mw[mi+1][i]][i];
 {          bbh=(double)bh[mi][i]/(double)stepm; 
   int i,imax,j,k;          /* bias is positive if real duration
   double big,dum,sum,temp;           * is higher than the multiple of stepm and negative otherwise.
   double *vv;           */
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   vv=vector(1,n);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   *d=1.0;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
   for (i=1;i<=n;i++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     big=0.0;          /*if(lli ==000.0)*/
     for (j=1;j<=n;j++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       if ((temp=fabs(a[i][j])) > big) big=temp;          ipmx +=1;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          sw += weight[i];
     vv[i]=1.0/big;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
   for (j=1;j<=n;j++) {      } /* end of individual */
     for (i=1;i<j;i++) {    }  else if(mle==3){  /* exponential inter-extrapolation */
       sum=a[i][j];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       a[i][j]=sum;        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
     big=0.0;            for (j=1;j<=nlstate+ndeath;j++){
     for (i=j;i<=n;i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       sum=a[i][j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=1;k<j;k++)            }
         sum -= a[i][k]*a[k][j];          for(d=0; d<dh[mi][i]; d++){
       a[i][j]=sum;            newm=savm;
       if ( (dum=vv[i]*fabs(sum)) >= big) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         big=dum;            for (kk=1; kk<=cptcovage;kk++) {
         imax=i;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if (j != imax) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (k=1;k<=n;k++) {            savm=oldm;
         dum=a[imax][k];            oldm=newm;
         a[imax][k]=a[j][k];          } /* end mult */
         a[j][k]=dum;        
       }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       *d = -(*d);          /* But now since version 0.9 we anticipate for bias and large stepm.
       vv[imax]=vv[j];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     }           * (in months) between two waves is not a multiple of stepm, we rounded to 
     indx[j]=imax;           * the nearest (and in case of equal distance, to the lowest) interval but now
     if (a[j][j] == 0.0) a[j][j]=TINY;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     if (j != n) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       dum=1.0/(a[j][j]);           * probability in order to take into account the bias as a fraction of the way
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     }           * -stepm/2 to stepm/2 .
   }           * For stepm=1 the results are the same as for previous versions of Imach.
   free_vector(vv,1,n);  /* Doesn't work */           * For stepm > 1 the results are less biased than in previous versions. 
 ;           */
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 void lubksb(double **a, int n, int *indx, double b[])          bbh=(double)bh[mi][i]/(double)stepm; 
 {          /* bias is positive if real duration
   int i,ii=0,ip,j;           * is higher than the multiple of stepm and negative otherwise.
   double sum;           */
            /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   for (i=1;i<=n;i++) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     ip=indx[i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     sum=b[ip];          /*if(lli ==000.0)*/
     b[ip]=b[i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     if (ii)          ipmx +=1;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          sw += weight[i];
     else if (sum) ii=i;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     b[i]=sum;        } /* end of wave */
   }      } /* end of individual */
   for (i=n;i>=1;i--) {    }else{  /* ml=4 no inter-extrapolation */
     sum=b[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     b[i]=sum/a[i][i];        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Frequencies ********************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)            }
 {  /* Some frequencies */          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double ***freq; /* Frequencies */            for (kk=1; kk<=cptcovage;kk++) {
   double *pp;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double pos, k2, dateintsum=0,k2cpt=0;            }
   FILE *ficresp;          
   char fileresp[FILENAMELENGTH];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   pp=vector(1,nlstate);            savm=oldm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            oldm=newm;
   strcpy(fileresp,"p");          } /* end mult */
   strcat(fileresp,fileres);        
   if((ficresp=fopen(fileresp,"w"))==NULL) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     printf("Problem with prevalence resultfile: %s\n", fileresp);          ipmx +=1;
     exit(0);          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        } /* end of wave */
   j1=0;      } /* end of individual */
     } /* End of if */
   j=cptcoveff;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for(k1=1; k1<=j;k1++){    return -l;
    for(i1=1; i1<=ncodemax[k1];i1++){  }
        j1++;  
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
          scanf("%d", i);*/  /*********** Maximum Likelihood Estimation ***************/
         for (i=-1; i<=nlstate+ndeath; i++)    
          for (jk=-1; jk<=nlstate+ndeath; jk++)    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
            for(m=agemin; m <= agemax+3; m++)  {
              freq[i][jk][m]=0;    int i,j, iter;
     double **xi;
         dateintsum=0;    double fret;
         k2cpt=0;    char filerespow[FILENAMELENGTH];
        for (i=1; i<=imx; i++) {    xi=matrix(1,npar,1,npar);
          bool=1;    for (i=1;i<=npar;i++)
          if  (cptcovn>0) {      for (j=1;j<=npar;j++)
            for (z1=1; z1<=cptcoveff; z1++)        xi[i][j]=(i==j ? 1.0 : 0.0);
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    printf("Powell\n");  fprintf(ficlog,"Powell\n");
                bool=0;    strcpy(filerespow,"pow"); 
          }    strcat(filerespow,fileres);
          if (bool==1) {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
            for(m=firstpass; m<=lastpass; m++){      printf("Problem with resultfile: %s\n", filerespow);
              k2=anint[m][i]+(mint[m][i]/12.);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
              if ((k2>=dateprev1) && (k2<=dateprev2)) {    }
                if(agev[m][i]==0) agev[m][i]=agemax+1;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
                if(agev[m][i]==1) agev[m][i]=agemax+2;    for (i=1;i<=nlstate;i++)
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for(j=1;j<=nlstate+ndeath;j++)
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    fprintf(ficrespow,"\n");
                  dateintsum=dateintsum+k2;    powell(p,xi,npar,ftol,&iter,&fret,func);
                  k2cpt++;  
                }    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
              }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
            }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
          }  
        }  }
          
        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         if  (cptcovn>0) {  {
          fprintf(ficresp, "\n#********** Variable ");    double  **a,**y,*x,pd;
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double **hess;
        fprintf(ficresp, "**********\n#");    int i, j,jk;
         }    int *indx;
        for(i=1; i<=nlstate;i++)  
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    double hessii(double p[], double delta, int theta, double delti[]);
        fprintf(ficresp, "\n");    double hessij(double p[], double delti[], int i, int j);
            void lubksb(double **a, int npar, int *indx, double b[]) ;
   for(i=(int)agemin; i <= (int)agemax+3; i++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
     if(i==(int)agemax+3)  
       printf("Total");    hess=matrix(1,npar,1,npar);
     else  
       printf("Age %d", i);    printf("\nCalculation of the hessian matrix. Wait...\n");
     for(jk=1; jk <=nlstate ; jk++){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    for (i=1;i<=npar;i++){
         pp[jk] += freq[jk][m][i];      printf("%d",i);fflush(stdout);
     }      fprintf(ficlog,"%d",i);fflush(ficlog);
     for(jk=1; jk <=nlstate ; jk++){      hess[i][i]=hessii(p,ftolhess,i,delti);
       for(m=-1, pos=0; m <=0 ; m++)      /*printf(" %f ",p[i]);*/
         pos += freq[jk][m][i];      /*printf(" %lf ",hess[i][i]);*/
       if(pp[jk]>=1.e-10)    }
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    
       else    for (i=1;i<=npar;i++) {
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      for (j=1;j<=npar;j++)  {
     }        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
      for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          hess[i][j]=hessij(p,delti,i,j);
         pp[jk] += freq[jk][m][i];          hess[j][i]=hess[i][j];    
      }          /*printf(" %lf ",hess[i][j]);*/
         }
     for(jk=1,pos=0; jk <=nlstate ; jk++)      }
       pos += pp[jk];    }
     for(jk=1; jk <=nlstate ; jk++){    printf("\n");
       if(pos>=1.e-5)    fprintf(ficlog,"\n");
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
       else    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       if( i <= (int) agemax){    
         if(pos>=1.e-5){    a=matrix(1,npar,1,npar);
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    y=matrix(1,npar,1,npar);
           probs[i][jk][j1]= pp[jk]/pos;    x=vector(1,npar);
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    indx=ivector(1,npar);
         }    for (i=1;i<=npar;i++)
       else      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    ludcmp(a,npar,indx,&pd);
       }  
     }    for (j=1;j<=npar;j++) {
     for(jk=-1; jk <=nlstate+ndeath; jk++)      for (i=1;i<=npar;i++) x[i]=0;
       for(m=-1; m <=nlstate+ndeath; m++)      x[j]=1;
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      lubksb(a,npar,indx,x);
     if(i <= (int) agemax)      for (i=1;i<=npar;i++){ 
       fprintf(ficresp,"\n");        matcov[i][j]=x[i];
     printf("\n");      }
     }    }
     }  
  }    printf("\n#Hessian matrix#\n");
   dateintmean=dateintsum/k2cpt;    fprintf(ficlog,"\n#Hessian matrix#\n");
      for (i=1;i<=npar;i++) { 
   fclose(ficresp);      for (j=1;j<=npar;j++) { 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        printf("%.3e ",hess[i][j]);
   free_vector(pp,1,nlstate);        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
   /* End of Freq */      printf("\n");
 }      fprintf(ficlog,"\n");
     }
 /************ Prevalence ********************/  
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    /* Recompute Inverse */
 {  /* Some frequencies */    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    ludcmp(a,npar,indx,&pd);
   double ***freq; /* Frequencies */  
   double *pp;    /*  printf("\n#Hessian matrix recomputed#\n");
   double pos, k2;  
     for (j=1;j<=npar;j++) {
   pp=vector(1,nlstate);      for (i=1;i<=npar;i++) x[i]=0;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      x[j]=1;
        lubksb(a,npar,indx,x);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      for (i=1;i<=npar;i++){ 
   j1=0;        y[i][j]=x[i];
          printf("%.3e ",y[i][j]);
   j=cptcoveff;        fprintf(ficlog,"%.3e ",y[i][j]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      }
        printf("\n");
  for(k1=1; k1<=j;k1++){      fprintf(ficlog,"\n");
     for(i1=1; i1<=ncodemax[k1];i1++){    }
       j1++;    */
    
       for (i=-1; i<=nlstate+ndeath; i++)      free_matrix(a,1,npar,1,npar);
         for (jk=-1; jk<=nlstate+ndeath; jk++)      free_matrix(y,1,npar,1,npar);
           for(m=agemin; m <= agemax+3; m++)    free_vector(x,1,npar);
             freq[i][jk][m]=0;    free_ivector(indx,1,npar);
          free_matrix(hess,1,npar,1,npar);
       for (i=1; i<=imx; i++) {  
         bool=1;  
         if  (cptcovn>0) {  }
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /*************** hessian matrix ****************/
               bool=0;  double hessii( double x[], double delta, int theta, double delti[])
         }  {
         if (bool==1) {    int i;
           for(m=firstpass; m<=lastpass; m++){    int l=1, lmax=20;
             k2=anint[m][i]+(mint[m][i]/12.);    double k1,k2;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    double p2[NPARMAX+1];
               if(agev[m][i]==0) agev[m][i]=agemax+1;    double res;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    double fx;
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */    int k=0,kmax=10;
             }    double l1;
           }  
         }    fx=func(x);
       }    for (i=1;i<=npar;i++) p2[i]=x[i];
         for(i=(int)agemin; i <= (int)agemax+3; i++){    for(l=0 ; l <=lmax; l++){
           for(jk=1; jk <=nlstate ; jk++){      l1=pow(10,l);
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      delts=delt;
               pp[jk] += freq[jk][m][i];      for(k=1 ; k <kmax; k=k+1){
           }        delt = delta*(l1*k);
           for(jk=1; jk <=nlstate ; jk++){        p2[theta]=x[theta] +delt;
             for(m=-1, pos=0; m <=0 ; m++)        k1=func(p2)-fx;
             pos += freq[jk][m][i];        p2[theta]=x[theta]-delt;
         }        k2=func(p2)-fx;
                /*res= (k1-2.0*fx+k2)/delt/delt; */
          for(jk=1; jk <=nlstate ; jk++){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        
              pp[jk] += freq[jk][m][i];  #ifdef DEBUG
          }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                  fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
          for(jk=1; jk <=nlstate ; jk++){                  if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
            if( i <= (int) agemax){          k=kmax;
              if(pos>=1.e-5){        }
                probs[i][jk][j1]= pp[jk]/pos;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
              }          k=kmax; l=lmax*10.;
            }        }
          }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
                    delts=delt;
         }        }
     }      }
   }    }
      delti[theta]=delts;
      return res; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    
   free_vector(pp,1,nlstate);  }
    
 }  /* End of Freq */  double hessij( double x[], double delti[], int thetai,int thetaj)
   {
 /************* Waves Concatenation ***************/    int i;
     int l=1, l1, lmax=20;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    double k1,k2,k3,k4,res,fx;
 {    double p2[NPARMAX+1];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    int k;
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    fx=func(x);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    for (k=1; k<=2; k++) {
      and mw[mi+1][i]. dh depends on stepm.      for (i=1;i<=npar;i++) p2[i]=x[i];
      */      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int i, mi, m;      k1=func(p2)-fx;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    
      double sum=0., jmean=0.;*/      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   int j, k=0,jk, ju, jl;      k2=func(p2)-fx;
   double sum=0.;    
   jmin=1e+5;      p2[thetai]=x[thetai]-delti[thetai]/k;
   jmax=-1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   jmean=0.;      k3=func(p2)-fx;
   for(i=1; i<=imx; i++){    
     mi=0;      p2[thetai]=x[thetai]-delti[thetai]/k;
     m=firstpass;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     while(s[m][i] <= nlstate){      k4=func(p2)-fx;
       if(s[m][i]>=1)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         mw[++mi][i]=m;  #ifdef DEBUG
       if(m >=lastpass)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         break;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       else  #endif
         m++;    }
     }/* end while */    return res;
     if (s[m][i] > nlstate){  }
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */  /************** Inverse of matrix **************/
          /* Only death is a correct wave */  void ludcmp(double **a, int n, int *indx, double *d) 
       mw[mi][i]=m;  { 
     }    int i,imax,j,k; 
     double big,dum,sum,temp; 
     wav[i]=mi;    double *vv; 
     if(mi==0)   
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    vv=vector(1,n); 
   }    *d=1.0; 
     for (i=1;i<=n;i++) { 
   for(i=1; i<=imx; i++){      big=0.0; 
     for(mi=1; mi<wav[i];mi++){      for (j=1;j<=n;j++) 
       if (stepm <=0)        if ((temp=fabs(a[i][j])) > big) big=temp; 
         dh[mi][i]=1;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       else{      vv[i]=1.0/big; 
         if (s[mw[mi+1][i]][i] > nlstate) {    } 
           if (agedc[i] < 2*AGESUP) {    for (j=1;j<=n;j++) { 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      for (i=1;i<j;i++) { 
           if(j==0) j=1;  /* Survives at least one month after exam */        sum=a[i][j]; 
           k=k+1;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           if (j >= jmax) jmax=j;        a[i][j]=sum; 
           if (j <= jmin) jmin=j;      } 
           sum=sum+j;      big=0.0; 
           /* if (j<10) printf("j=%d num=%d ",j,i); */      for (i=j;i<=n;i++) { 
           }        sum=a[i][j]; 
         }        for (k=1;k<j;k++) 
         else{          sum -= a[i][k]*a[k][j]; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        a[i][j]=sum; 
           k=k+1;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           if (j >= jmax) jmax=j;          big=dum; 
           else if (j <= jmin)jmin=j;          imax=i; 
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        } 
           sum=sum+j;      } 
         }      if (j != imax) { 
         jk= j/stepm;        for (k=1;k<=n;k++) { 
         jl= j -jk*stepm;          dum=a[imax][k]; 
         ju= j -(jk+1)*stepm;          a[imax][k]=a[j][k]; 
         if(jl <= -ju)          a[j][k]=dum; 
           dh[mi][i]=jk;        } 
         else        *d = -(*d); 
           dh[mi][i]=jk+1;        vv[imax]=vv[j]; 
         if(dh[mi][i]==0)      } 
           dh[mi][i]=1; /* At least one step */      indx[j]=imax; 
       }      if (a[j][j] == 0.0) a[j][j]=TINY; 
     }      if (j != n) { 
   }        dum=1.0/(a[j][j]); 
   jmean=sum/k;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      } 
  }    } 
 /*********** Tricode ****************************/    free_vector(vv,1,n);  /* Doesn't work */
 void tricode(int *Tvar, int **nbcode, int imx)  ;
 {  } 
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;  void lubksb(double **a, int n, int *indx, double b[]) 
   cptcoveff=0;  { 
      int i,ii=0,ip,j; 
   for (k=0; k<19; k++) Ndum[k]=0;    double sum; 
   for (k=1; k<=7; k++) ncodemax[k]=0;   
     for (i=1;i<=n;i++) { 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      ip=indx[i]; 
     for (i=1; i<=imx; i++) {      sum=b[ip]; 
       ij=(int)(covar[Tvar[j]][i]);      b[ip]=b[i]; 
       Ndum[ij]++;      if (ii) 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       if (ij > cptcode) cptcode=ij;      else if (sum) ii=i; 
     }      b[i]=sum; 
     } 
     for (i=0; i<=cptcode; i++) {    for (i=n;i>=1;i--) { 
       if(Ndum[i]!=0) ncodemax[j]++;      sum=b[i]; 
     }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     ij=1;      b[i]=sum/a[i][i]; 
     } 
   } 
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=19; k++) {  /************ Frequencies ********************/
         if (Ndum[k] != 0) {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
           nbcode[Tvar[j]][ij]=k;  {  /* Some frequencies */
           ij++;    
         }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         if (ij > ncodemax[j]) break;    int first;
       }      double ***freq; /* Frequencies */
     }    double *pp, **prop;
   }      double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
  for (k=0; k<19; k++) Ndum[k]=0;    char fileresp[FILENAMELENGTH];
     
  for (i=1; i<=ncovmodel-2; i++) {    pp=vector(1,nlstate);
       ij=Tvar[i];    prop=matrix(1,nlstate,iagemin,iagemax+3);
       Ndum[ij]++;    strcpy(fileresp,"p");
     }    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
  ij=1;      printf("Problem with prevalence resultfile: %s\n", fileresp);
  for (i=1; i<=10; i++) {      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
    if((Ndum[i]!=0) && (i<=ncov)){      exit(0);
      Tvaraff[ij]=i;    }
      ij++;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
    }    j1=0;
  }    
      j=cptcoveff;
     cptcoveff=ij-1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 }  
     first=1;
 /*********** Health Expectancies ****************/  
     for(k1=1; k1<=j;k1++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)      for(i1=1; i1<=ncodemax[k1];i1++){
 {        j1++;
   /* Health expectancies */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   int i, j, nhstepm, hstepm, h;          scanf("%d", i);*/
   double age, agelim,hf;        for (i=-1; i<=nlstate+ndeath; i++)  
   double ***p3mat;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
              for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficreseij,"# Health expectancies\n");              freq[i][jk][m]=0;
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)      for (i=1; i<=nlstate; i++)  
     for(j=1; j<=nlstate;j++)        for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficreseij," %1d-%1d",i,j);          prop[i][m]=0;
   fprintf(ficreseij,"\n");        
         dateintsum=0;
   hstepm=1*YEARM; /*  Every j years of age (in month) */        k2cpt=0;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        for (i=1; i<=imx; i++) {
           bool=1;
   agelim=AGESUP;          if  (cptcovn>0) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for (z1=1; z1<=cptcoveff; z1++) 
     /* nhstepm age range expressed in number of stepm */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);                bool=0;
     /* Typically if 20 years = 20*12/6=40 stepm */          }
     if (stepm >= YEARM) hstepm=1;          if (bool==1){
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */            for(m=firstpass; m<=lastpass; m++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              k2=anint[m][i]+(mint[m][i]/12.);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored              if ((k2>=dateprev1) && (k2<=dateprev2)) {
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
     for(i=1; i<=nlstate;i++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       for(j=1; j<=nlstate;j++)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){                }
           eij[i][j][(int)age] +=p3mat[i][j][h];                
         }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                      dateintsum=dateintsum+k2;
     hf=1;                  k2cpt++;
     if (stepm >= YEARM) hf=stepm/YEARM;                }
     fprintf(ficreseij,"%.0f",age );              }
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++){          }
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);        }
       }         
     fprintf(ficreseij,"\n");        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }        if  (cptcovn>0) {
 }          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /************ Variance ******************/          fprintf(ficresp, "**********\n#");
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        }
 {        for(i=1; i<=nlstate;i++) 
   /* Variance of health expectancies */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        fprintf(ficresp, "\n");
   double **newm;        
   double **dnewm,**doldm;        for(i=iagemin; i <= iagemax+3; i++){
   int i, j, nhstepm, hstepm, h;          if(i==iagemax+3){
   int k, cptcode;            fprintf(ficlog,"Total");
   double *xp;          }else{
   double **gp, **gm;            if(first==1){
   double ***gradg, ***trgradg;              first=0;
   double ***p3mat;              printf("See log file for details...\n");
   double age,agelim;            }
   int theta;            fprintf(ficlog,"Age %d", i);
           }
    fprintf(ficresvij,"# Covariances of life expectancies\n");          for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficresvij,"# Age");            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   for(i=1; i<=nlstate;i++)              pp[jk] += freq[jk][m][i]; 
     for(j=1; j<=nlstate;j++)          }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficresvij,"\n");            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
   xp=vector(1,npar);            if(pp[jk]>=1.e-10){
   dnewm=matrix(1,nlstate,1,npar);              if(first==1){
   doldm=matrix(1,nlstate,1,nlstate);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                }
   hstepm=1*YEARM; /* Every year of age */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            }else{
   agelim = AGESUP;              if(first==1)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     if (stepm >= YEARM) hstepm=1;            }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
     gp=matrix(0,nhstepm,1,nlstate);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     gm=matrix(0,nhstepm,1,nlstate);              pp[jk] += freq[jk][m][i];
           }       
     for(theta=1; theta <=npar; theta++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       for(i=1; i<=npar; i++){ /* Computes gradient */            pos += pp[jk];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            posprop += prop[jk][i];
       }          }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(jk=1; jk <=nlstate ; jk++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            if(pos>=1.e-5){
               if(first==1)
       if (popbased==1) {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         for(i=1; i<=nlstate;i++)              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           prlim[i][i]=probs[(int)age][i][ij];            }else{
       }              if(first==1)
                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for(j=1; j<= nlstate; j++){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         for(h=0; h<=nhstepm; h++){            }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            if( i <= iagemax){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];              if(pos>=1.e-5){
         }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       }                probs[i][jk][j1]= pp[jk]/pos;
                    /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       for(i=1; i<=npar; i++) /* Computes gradient */              }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              else
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                  fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
            }
       if (popbased==1) {          
         for(i=1; i<=nlstate;i++)          for(jk=-1; jk <=nlstate+ndeath; jk++)
           prlim[i][i]=probs[(int)age][i][ij];            for(m=-1; m <=nlstate+ndeath; m++)
       }              if(freq[jk][m][i] !=0 ) {
               if(first==1)
       for(j=1; j<= nlstate; j++){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         for(h=0; h<=nhstepm; h++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          if(i <= iagemax)
         }            fprintf(ficresp,"\n");
       }          if(first==1)
             printf("Others in log...\n");
       for(j=1; j<= nlstate; j++)          fprintf(ficlog,"\n");
         for(h=0; h<=nhstepm; h++){        }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      }
         }    }
     } /* End theta */    dateintmean=dateintsum/k2cpt; 
    
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    fclose(ficresp);
     free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     for(h=0; h<=nhstepm; h++)    free_vector(pp,1,nlstate);
       for(j=1; j<=nlstate;j++)    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         for(theta=1; theta <=npar; theta++)    /* End of Freq */
           trgradg[h][j][theta]=gradg[h][theta][j];  }
   
     for(i=1;i<=nlstate;i++)  /************ Prevalence ********************/
       for(j=1;j<=nlstate;j++)  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         vareij[i][j][(int)age] =0.;  {  
     for(h=0;h<=nhstepm;h++){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       for(k=0;k<=nhstepm;k++){       in each health status at the date of interview (if between dateprev1 and dateprev2).
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);       We still use firstpass and lastpass as another selection.
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    */
         for(i=1;i<=nlstate;i++)   
           for(j=1;j<=nlstate;j++)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
             vareij[i][j][(int)age] += doldm[i][j];    double ***freq; /* Frequencies */
       }    double *pp, **prop;
     }    double pos,posprop; 
     h=1;    double  y2; /* in fractional years */
     if (stepm >= YEARM) h=stepm/YEARM;    int iagemin, iagemax;
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    iagemin= (int) agemin;
       for(j=1; j<=nlstate;j++){    iagemax= (int) agemax;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    /*pp=vector(1,nlstate);*/
       }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     fprintf(ficresvij,"\n");    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     free_matrix(gp,0,nhstepm,1,nlstate);    j1=0;
     free_matrix(gm,0,nhstepm,1,nlstate);    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    j=cptcoveff;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
   } /* End age */    for(k1=1; k1<=j;k1++){
        for(i1=1; i1<=ncodemax[k1];i1++){
   free_vector(xp,1,npar);        j1++;
   free_matrix(doldm,1,nlstate,1,npar);        
   free_matrix(dnewm,1,nlstate,1,nlstate);        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
 }            prop[i][m]=0.0;
        
 /************ Variance of prevlim ******************/        for (i=1; i<=imx; i++) { /* Each individual */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          bool=1;
 {          if  (cptcovn>0) {
   /* Variance of prevalence limit */            for (z1=1; z1<=cptcoveff; z1++) 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   double **newm;                bool=0;
   double **dnewm,**doldm;          } 
   int i, j, nhstepm, hstepm;          if (bool==1) { 
   int k, cptcode;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   double *xp;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   double *gp, *gm;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   double **gradg, **trgradg;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   double age,agelim;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   int theta;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                    if (s[m][i]>0 && s[m][i]<=nlstate) { 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   fprintf(ficresvpl,"# Age");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   for(i=1; i<=nlstate;i++)                  prop[s[m][i]][iagemax+3] += weight[i]; 
       fprintf(ficresvpl," %1d-%1d",i,i);                } 
   fprintf(ficresvpl,"\n");              }
             } /* end selection of waves */
   xp=vector(1,npar);          }
   dnewm=matrix(1,nlstate,1,npar);        }
   doldm=matrix(1,nlstate,1,nlstate);        for(i=iagemin; i <= iagemax+3; i++){  
            
   hstepm=1*YEARM; /* Every year of age */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            posprop += prop[jk][i]; 
   agelim = AGESUP;          } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for(jk=1; jk <=nlstate ; jk++){     
     if (stepm >= YEARM) hstepm=1;            if( i <=  iagemax){ 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              if(posprop>=1.e-5){ 
     gradg=matrix(1,npar,1,nlstate);                probs[i][jk][j1]= prop[jk][i]/posprop;
     gp=vector(1,nlstate);              } 
     gm=vector(1,nlstate);            } 
           }/* end jk */ 
     for(theta=1; theta <=npar; theta++){        }/* end i */ 
       for(i=1; i<=npar; i++){ /* Computes gradient */      } /* end i1 */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    } /* end k1 */
       }    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       for(i=1;i<=nlstate;i++)    /*free_vector(pp,1,nlstate);*/
         gp[i] = prlim[i][i];    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      }  /* End of prevalence */
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  /************* Waves Concatenation ***************/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         gm[i] = prlim[i][i];  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       for(i=1;i<=nlstate;i++)       Death is a valid wave (if date is known).
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     } /* End theta */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     trgradg =matrix(1,nlstate,1,npar);       */
   
     for(j=1; j<=nlstate;j++)    int i, mi, m;
       for(theta=1; theta <=npar; theta++)    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         trgradg[j][theta]=gradg[theta][j];       double sum=0., jmean=0.;*/
     int first;
     for(i=1;i<=nlstate;i++)    int j, k=0,jk, ju, jl;
       varpl[i][(int)age] =0.;    double sum=0.;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    first=0;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    jmin=1e+5;
     for(i=1;i<=nlstate;i++)    jmax=-1;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    jmean=0.;
     for(i=1; i<=imx; i++){
     fprintf(ficresvpl,"%.0f ",age );      mi=0;
     for(i=1; i<=nlstate;i++)      m=firstpass;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      while(s[m][i] <= nlstate){
     fprintf(ficresvpl,"\n");        if(s[m][i]>=1)
     free_vector(gp,1,nlstate);          mw[++mi][i]=m;
     free_vector(gm,1,nlstate);        if(m >=lastpass)
     free_matrix(gradg,1,npar,1,nlstate);          break;
     free_matrix(trgradg,1,nlstate,1,npar);        else
   } /* End age */          m++;
       }/* end while */
   free_vector(xp,1,npar);      if (s[m][i] > nlstate){
   free_matrix(doldm,1,nlstate,1,npar);        mi++;     /* Death is another wave */
   free_matrix(dnewm,1,nlstate,1,nlstate);        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
 }        mw[mi][i]=m;
       }
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)      wav[i]=mi;
 {      if(mi==0){
   int i, j;        if(first==0){
   int k=0, cptcode;          printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
   double **dnewm,**doldm;          first=1;
   double *xp;        }
   double *gp, *gm;        if(first==1){
   double **gradg, **trgradg;          fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
   double age,agelim, cov[NCOVMAX];        }
   int theta;      } /* end mi==0 */
   char fileresprob[FILENAMELENGTH];    } /* End individuals */
   
   strcpy(fileresprob,"prob");    for(i=1; i<=imx; i++){
   strcat(fileresprob,fileres);      for(mi=1; mi<wav[i];mi++){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        if (stepm <=0)
     printf("Problem with resultfile: %s\n", fileresprob);          dh[mi][i]=1;
   }        else{
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
              if (agedc[i] < 2*AGESUP) {
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   xp=vector(1,npar);            if(j==0) j=1;  /* Survives at least one month after exam */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            k=k+1;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));            if (j >= jmax) jmax=j;
              if (j <= jmin) jmin=j;
   cov[1]=1;            sum=sum+j;
   for (age=bage; age<=fage; age ++){            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     cov[2]=age;            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     gradg=matrix(1,npar,1,9);            if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     trgradg=matrix(1,9,1,npar);            }
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          }
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          else{
                j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     for(theta=1; theta <=npar; theta++){            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       for(i=1; i<=npar; i++)            k=k+1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            if (j >= jmax) jmax=j;
                  else if (j <= jmin)jmin=j;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       k=0;            if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(i=1; i<= (nlstate+ndeath); i++){            sum=sum+j;
         for(j=1; j<=(nlstate+ndeath);j++){          }
            k=k+1;          jk= j/stepm;
           gp[k]=pmmij[i][j];          jl= j -jk*stepm;
         }          ju= j -(jk+1)*stepm;
       }          if(mle <=1){ 
             if(jl==0){
       for(i=1; i<=npar; i++)              dh[mi][i]=jk;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              bh[mi][i]=0;
                }else{ /* We want a negative bias in order to only have interpolation ie
                     * at the price of an extra matrix product in likelihood */
       pmij(pmmij,cov,ncovmodel,xp,nlstate);              dh[mi][i]=jk+1;
       k=0;              bh[mi][i]=ju;
       for(i=1; i<=(nlstate+ndeath); i++){            }
         for(j=1; j<=(nlstate+ndeath);j++){          }else{
           k=k+1;            if(jl <= -ju){
           gm[k]=pmmij[i][j];              dh[mi][i]=jk;
         }              bh[mi][i]=jl;       /* bias is positive if real duration
       }                                   * is higher than the multiple of stepm and negative otherwise.
                                         */
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)            }
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              else{
     }              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)            }
       for(theta=1; theta <=npar; theta++)            if(dh[mi][i]==0){
       trgradg[j][theta]=gradg[theta][j];              dh[mi][i]=1; /* At least one step */
                bh[mi][i]=ju; /* At least one step */
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            }
           }
      pmij(pmmij,cov,ncovmodel,x,nlstate);        } /* end if mle */
       } /* end wave */
      k=0;    }
      for(i=1; i<=(nlstate+ndeath); i++){    jmean=sum/k;
        for(j=1; j<=(nlstate+ndeath);j++){    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
          k=k+1;    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
          gm[k]=pmmij[i][j];   }
         }  
      }  /*********** Tricode ****************************/
        void tricode(int *Tvar, int **nbcode, int imx)
      /*printf("\n%d ",(int)age);  {
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    
            int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    cptcoveff=0; 
      }*/   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
   fprintf(ficresprob,"\n%d ",(int)age);    for (k=1; k<=7; k++) ncodemax[k]=0;
   
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);                                 modality*/ 
   }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         Ndum[ij]++; /*store the modality */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                                         Tvar[j]. If V=sex and male is 0 and 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                                         female is 1, then  cptcode=1.*/
 }      }
  free_vector(xp,1,npar);  
 fclose(ficresprob);      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 }      }
   
 /******************* Printing html file ***********/      ij=1; 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, int lastpass, int stepm, int weightopt, char model[],int imx,int jmin, int jmax, double jmeanint,char optionfile[],char optionfilehtm[] ){      for (i=1; i<=ncodemax[j]; i++) {
   int jj1, k1, i1, cpt;        for (k=0; k<= maxncov; k++) {
   FILE *fichtm;          if (Ndum[k] != 0) {
   /*char optionfilehtm[FILENAMELENGTH];*/            nbcode[Tvar[j]][ij]=k; 
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   strcpy(optionfilehtm,optionfile);            
   strcat(optionfilehtm,".htm");            ij++;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          }
     printf("Problem with %s \n",optionfilehtm), exit(0);          if (ij > ncodemax[j]) break; 
   }        }  
       } 
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">    }  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
 Total number of observations=%d <br>  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>   for (i=1; i<=ncovmodel-2; i++) { 
 <hr  size=\"2\" color=\"#EC5E5E\">     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 <li>Outputs files<br><br>\n     ij=Tvar[i];
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n     Ndum[ij]++;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>   }
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>  
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>   ij=1;
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>   for (i=1; i<= maxncov; i++) {
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>     if((Ndum[i]!=0) && (i<=ncovcol)){
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>       Tvaraff[ij]=i; /*For printing */
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>       ij++;
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>     }
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>   }
         - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>   
         <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);   cptcoveff=ij-1; /*Number of simple covariates*/
    }
 fprintf(fichtm," <li>Graphs</li><p>");  
   /*********** Health Expectancies ****************/
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   
  jj1=0;  {
  for(k1=1; k1<=m;k1++){    /* Health expectancies */
    for(i1=1; i1<=ncodemax[k1];i1++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
        jj1++;    double age, agelim, hf;
        if (cptcovn > 0) {    double ***p3mat,***varhe;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    double **dnewm,**doldm;
          for (cpt=1; cpt<=cptcoveff;cpt++)    double *xp;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    double **gp, **gm;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    double ***gradg, ***trgradg;
        }    int theta;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>  
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
        for(cpt=1; cpt<nlstate;cpt++){    xp=vector(1,npar);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    dnewm=matrix(1,nlstate*nlstate,1,npar);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
        }    
     for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(ficreseij,"# Health expectancies\n");
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    fprintf(ficreseij,"# Age");
 interval) in state (%d): v%s%d%d.gif <br>    for(i=1; i<=nlstate;i++)
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(j=1; j<=nlstate;j++)
      }        fprintf(ficreseij," %1d-%1d (SE)",i,j);
      for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(ficreseij,"\n");
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    if(estepm < stepm){
      }      printf ("Problem %d lower than %d\n",estepm, stepm);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    }
 health expectancies in states (1) and (2): e%s%d.gif<br>    else  hstepm=estepm;   
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    /* We compute the life expectancy from trapezoids spaced every estepm months
 fprintf(fichtm,"\n</body>");     * This is mainly to measure the difference between two models: for example
    }     * if stepm=24 months pijx are given only every 2 years and by summing them
    }     * we are calculating an estimate of the Life Expectancy assuming a linear 
 fclose(fichtm);     * progression in between and thus overestimating or underestimating according
 }     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
 /******************* Gnuplot file **************/     * to compare the new estimate of Life expectancy with the same linear 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double agemin, double agemaxpar, double fage , char pathc[], double p[]){     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
     /* For example we decided to compute the life expectancy with the smallest unit */
   strcpy(optionfilegnuplot,optionfilefiname);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   strcat(optionfilegnuplot,".plt");       nhstepm is the number of hstepm from age to agelim 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {       nstepm is the number of stepm from age to agelin. 
     printf("Problem with file %s",optionfilegnuplot);       Look at hpijx to understand the reason of that which relies in memory size
   }       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 #ifdef windows       survival function given by stepm (the optimization length). Unfortunately it
     fprintf(ficgp,"cd \"%s\" \n",pathc);       means that if the survival funtion is printed only each two years of age and if
 #endif       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 m=pow(2,cptcoveff);       results. So we changed our mind and took the option of the best precision.
      */
  /* 1eme*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {    agelim=AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 #ifdef windows      /* nhstepm age range expressed in number of stepm */
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 #endif      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 #ifdef unix      /* if (stepm >= YEARM) hstepm=1;*/
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 #endif      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 for (i=1; i<= nlstate ; i ++) {      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     for (i=1; i<= nlstate ; i ++) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {      /* Computing Variances of health expectancies */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");       for(theta=1; theta <=npar; theta++){
 }          for(i=1; i<=npar; i++){ 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 #ifdef unix        }
 fprintf(ficgp,"\nset ter gif small size 400,300");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 #endif    
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        cptj=0;
    }        for(j=1; j<= nlstate; j++){
   }          for(i=1; i<=nlstate; i++){
   /*2 eme*/            cptj=cptj+1;
             for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   for (k1=1; k1<= m ; k1 ++) {              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);            }
              }
     for (i=1; i<= nlstate+1 ; i ++) {        }
       k=2*i;       
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);       
       for (j=1; j<= nlstate+1 ; j ++) {        for(i=1; i<=npar; i++) 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   else fprintf(ficgp," \%%*lf (\%%*lf)");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 }          
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        cptj=0;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        for(j=1; j<= nlstate; j++){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          for(i=1;i<=nlstate;i++){
       for (j=1; j<= nlstate+1 ; j ++) {            cptj=cptj+1;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }                gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       fprintf(ficgp,"\" t\"\" w l 0,");            }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {        }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(j=1; j<= nlstate*nlstate; j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(h=0; h<=nhstepm-1; h++){
 }              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          }
       else fprintf(ficgp,"\" t\"\" w l 0,");       } 
     }     
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  /* End theta */
   }  
         trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   /*3eme*/  
        for(h=0; h<=nhstepm-1; h++)
   for (k1=1; k1<= m ; k1 ++) {        for(j=1; j<=nlstate*nlstate;j++)
     for (cpt=1; cpt<= nlstate ; cpt ++) {          for(theta=1; theta <=npar; theta++)
       k=2+nlstate*(cpt-1);            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);       
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);       for(i=1;i<=nlstate*nlstate;i++)
       }        for(j=1;j<=nlstate*nlstate;j++)
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          varhe[i][j][(int)age] =0.;
     }  
     }       printf("%d|",(int)age);fflush(stdout);
         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   /* CV preval stat */       for(h=0;h<=nhstepm-1;h++){
     for (k1=1; k1<= m ; k1 ++) {        for(k=0;k<=nhstepm-1;k++){
     for (cpt=1; cpt<nlstate ; cpt ++) {          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       k=3;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemaxpar,fileres,k1,k+cpt+1,k+1);          for(i=1;i<=nlstate*nlstate;i++)
             for(j=1;j<=nlstate*nlstate;j++)
       for (i=1; i< nlstate ; i ++)              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         fprintf(ficgp,"+$%d",k+i+1);        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      }
            /* Computing expectancies */
       l=3+(nlstate+ndeath)*cpt;      for(i=1; i<=nlstate;i++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        for(j=1; j<=nlstate;j++)
       for (i=1; i< nlstate ; i ++) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         l=3+(nlstate+ndeath)*cpt;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         fprintf(ficgp,"+$%d",l+i+1);            
       }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          }
     }  
   }        fprintf(ficreseij,"%3.0f",age );
        cptj=0;
   /* proba elementaires */      for(i=1; i<=nlstate;i++)
    for(i=1,jk=1; i <=nlstate; i++){        for(j=1; j<=nlstate;j++){
     for(k=1; k <=(nlstate+ndeath); k++){          cptj++;
       if (k != i) {          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         for(j=1; j <=ncovmodel; j++){        }
              fprintf(ficreseij,"\n");
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);     
           jk++;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           fprintf(ficgp,"\n");      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    }
     printf("\n");
     for(jk=1; jk <=m; jk++) {    fprintf(ficlog,"\n");
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemaxpar);  
    i=1;    free_vector(xp,1,npar);
    for(k2=1; k2<=nlstate; k2++) {    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      k3=i;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      for(k=1; k<=(nlstate+ndeath); k++) {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
        if (k != k2){  }
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
 ij=1;  /************ Variance ******************/
         for(j=3; j <=ncovmodel; j++) {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  {
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /* Variance of health expectancies */
             ij++;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           }    /* double **newm;*/
           else    double **dnewm,**doldm;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double **dnewmp,**doldmp;
         }    int i, j, nhstepm, hstepm, h, nstepm ;
           fprintf(ficgp,")/(1");    int k, cptcode;
            double *xp;
         for(k1=1; k1 <=nlstate; k1++){      double **gp, **gm;  /* for var eij */
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    double ***gradg, ***trgradg; /*for var eij */
 ij=1;    double **gradgp, **trgradgp; /* for var p point j */
           for(j=3; j <=ncovmodel; j++){    double *gpp, *gmp; /* for var p point j */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double ***p3mat;
             ij++;    double age,agelim, hf;
           }    double ***mobaverage;
           else    int theta;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    char digit[4];
           }    char digitp[25];
           fprintf(ficgp,")");  
         }    char fileresprobmorprev[FILENAMELENGTH];
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    if(popbased==1){
         i=i+ncovmodel;      if(mobilav!=0)
        }        strcpy(digitp,"-populbased-mobilav-");
      }      else strcpy(digitp,"-populbased-nomobil-");
    }    }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    else 
    }      strcpy(digitp,"-stablbased-");
      
   fclose(ficgp);    if (mobilav!=0) {
 }  /* end gnuplot */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 /*************** Moving average **************/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 void movingaverage(double agedeb, double fage,double agemin, double ***mobaverage){      }
     }
   int i, cpt, cptcod;  
     for (agedeb=agemin; agedeb<=fage; agedeb++)    strcpy(fileresprobmorprev,"prmorprev"); 
       for (i=1; i<=nlstate;i++)    sprintf(digit,"%-d",ij);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           mobaverage[(int)agedeb][i][cptcod]=0.;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
        strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     for (agedeb=agemin+4; agedeb<=fage; agedeb++){    strcat(fileresprobmorprev,fileres);
       for (i=1; i<=nlstate;i++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           for (cpt=0;cpt<=4;cpt++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    }
           }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," p.%-d SE",j);
 }      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
 /************** Forecasting ******************/    fprintf(ficresprobmorprev,"\n");
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
        printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   int *popage;      exit(0);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    }
   double *popeffectif,*popcount;    else{
   double ***p3mat;      fprintf(ficgp,"\n# Routine varevsij");
   char fileresf[FILENAMELENGTH];    }
     if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
  agelim=AGESUP;      printf("Problem with html file: %s\n", optionfilehtm);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       exit(0);
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    }
      else{
        fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   strcpy(fileresf,"f");      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   strcat(fileresf,fileres);    }
   if((ficresf=fopen(fileresf,"w"))==NULL) {    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     printf("Problem with forecast resultfile: %s\n", fileresf);  
   }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   if (mobilav==1) {    fprintf(ficresvij,"\n");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, agemin, mobaverage);    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   if (stepm<=12) stepsize=1;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
   agelim=AGESUP;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
   hstepm=1;    gmp=vector(nlstate+1,nlstate+ndeath);
   hstepm=hstepm/stepm;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   yp1=modf(dateintmean,&yp);    
   anprojmean=yp;    if(estepm < stepm){
   yp2=modf((yp1*12),&yp);      printf ("Problem %d lower than %d\n",estepm, stepm);
   mprojmean=yp;    }
   yp1=modf((yp2*30.5),&yp);    else  hstepm=estepm;   
   jprojmean=yp;    /* For example we decided to compute the life expectancy with the smallest unit */
   if(jprojmean==0) jprojmean=1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if(mprojmean==0) jprojmean=1;       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like k years */
   for(cptcov=1;cptcov<=i2;cptcov++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       survival function given by stepm (the optimization length). Unfortunately it
       k=k+1;       means that if the survival funtion is printed every two years of age and if
       fprintf(ficresf,"\n#******");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       for(j=1;j<=cptcoveff;j++) {       results. So we changed our mind and took the option of the best precision.
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficresf,"******\n");    agelim = AGESUP;
       fprintf(ficresf,"# StartingAge FinalAge");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
            nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         fprintf(ficresf,"\n");      gp=matrix(0,nhstepm,1,nlstate);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        gm=matrix(0,nhstepm,1,nlstate);
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(theta=1; theta <=npar; theta++){
           nhstepm = nhstepm/hstepm;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                    xp[i] = x[i] + (i==theta ?delti[theta]:0);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          
           for (h=0; h<=nhstepm; h++){        if (popbased==1) {
             if (h==(int) (calagedate+YEARM*cpt)) {          if(mobilav ==0){
               fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);            for(i=1; i<=nlstate;i++)
             }              prlim[i][i]=probs[(int)age][i][ij];
             for(j=1; j<=nlstate+ndeath;j++) {          }else{ /* mobilav */ 
               kk1=0.;kk2=0;            for(i=1; i<=nlstate;i++)
               for(i=1; i<=nlstate;i++) {                            prlim[i][i]=mobaverage[(int)age][i][ij];
                 if (mobilav==1)          }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        }
                 else {    
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for(j=1; j<= nlstate; j++){
                 }          for(h=0; h<=nhstepm; h++){
                            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
               if (h==(int)(calagedate+12*cpt)){          }
                 fprintf(ficresf," %.3f", kk1);        }
                                /* This for computing probability of death (h=1 means
               }           computed over hstepm matrices product = hstepm*stepm months) 
             }           as a weighted average of prlim.
           }        */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     }        }    
   }        /* end probability of death */
          
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   fclose(ficresf);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 /************** Forecasting ******************/   
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        if (popbased==1) {
            if(mobilav ==0){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            for(i=1; i<=nlstate;i++)
   int *popage;              prlim[i][i]=probs[(int)age][i][ij];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          }else{ /* mobilav */ 
   double *popeffectif,*popcount;            for(i=1; i<=nlstate;i++)
   double ***p3mat,***tabpop,***tabpopprev;              prlim[i][i]=mobaverage[(int)age][i][ij];
   char filerespop[FILENAMELENGTH];          }
         }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<= nlstate; j++){
   agelim=AGESUP;          for(h=0; h<=nhstepm; h++){
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          }
          }
          /* This for computing probability of death (h=1 means
   strcpy(filerespop,"pop");           computed over hstepm matrices product = hstepm*stepm months) 
   strcat(filerespop,fileres);           as a weighted average of prlim.
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        */
     printf("Problem with forecast resultfile: %s\n", filerespop);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   printf("Computing forecasting: result on file '%s' \n", filerespop);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        /* end probability of death */
   
   if (mobilav==1) {        for(j=1; j<= nlstate; j++) /* vareij */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(h=0; h<=nhstepm; h++){
     movingaverage(agedeb, fage, agemin, mobaverage);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   }          }
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   if (stepm<=12) stepsize=1;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          }
   agelim=AGESUP;  
        } /* End theta */
   hstepm=1;  
   hstepm=hstepm/stepm;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
    
   if (popforecast==1) {      for(h=0; h<=nhstepm; h++) /* veij */
     if((ficpop=fopen(popfile,"r"))==NULL) {        for(j=1; j<=nlstate;j++)
       printf("Problem with population file : %s\n",popfile);exit(0);          for(theta=1; theta <=npar; theta++)
     }            trgradg[h][j][theta]=gradg[h][theta][j];
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     popcount=vector(0,AGESUP);        for(theta=1; theta <=npar; theta++)
              trgradgp[j][theta]=gradgp[theta][j];
     i=1;      
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  
          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     imx=i;      for(i=1;i<=nlstate;i++)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        for(j=1;j<=nlstate;j++)
   }          vareij[i][j][(int)age] =0.;
   
   for(cptcov=1;cptcov<=i2;cptcov++){      for(h=0;h<=nhstepm;h++){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(k=0;k<=nhstepm;k++){
       k=k+1;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       fprintf(ficrespop,"\n#******");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       for(j=1;j<=cptcoveff;j++) {          for(i=1;i<=nlstate;i++)
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(j=1;j<=nlstate;j++)
       }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       fprintf(ficrespop,"******\n");        }
       fprintf(ficrespop,"# Age");      }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    
       if (popforecast==1)  fprintf(ficrespop," [Population]");      /* pptj */
            matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       for (cpt=0; cpt<=0;cpt++) {      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        for(j=nlstate+1;j<=nlstate+ndeath;j++)
                for(i=nlstate+1;i<=nlstate+ndeath;i++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){          varppt[j][i]=doldmp[j][i];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      /* end ppptj */
           nhstepm = nhstepm/hstepm;      /*  x centered again */
                hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           oldm=oldms;savm=savms;   
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        if (popbased==1) {
                if(mobilav ==0){
           for (h=0; h<=nhstepm; h++){          for(i=1; i<=nlstate;i++)
             if (h==(int) (calagedate+YEARM*cpt)) {            prlim[i][i]=probs[(int)age][i][ij];
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        }else{ /* mobilav */ 
             }          for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {            prlim[i][i]=mobaverage[(int)age][i][ij];
               kk1=0.;kk2=0;        }
               for(i=1; i<=nlstate;i++) {                    }
                 if (mobilav==1)               
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      /* This for computing probability of death (h=1 means
                 else {         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];         as a weighted average of prlim.
                 }      */
               }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
               if (h==(int)(calagedate+12*cpt)){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
                   /*fprintf(ficrespop," %.3f", kk1);      }    
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      /* end probability of death */
               }  
             }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
             for(i=1; i<=nlstate;i++){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
               kk1=0.;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                 for(j=1; j<=nlstate;j++){        for(i=1; i<=nlstate;i++){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                 }        }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      } 
             }      fprintf(ficresprobmorprev,"\n");
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      fprintf(ficresvij,"%.0f ",age );
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      for(i=1; i<=nlstate;i++)
           }        for(j=1; j<=nlstate;j++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }        }
       }      fprintf(ficresvij,"\n");
        free_matrix(gp,0,nhstepm,1,nlstate);
   /******/      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){    } /* End age */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    free_vector(gpp,nlstate+1,nlstate+ndeath);
           nhstepm = nhstepm/hstepm;    free_vector(gmp,nlstate+1,nlstate+ndeath);
              free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           oldm=oldms;savm=savms;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           for (h=0; h<=nhstepm; h++){    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
             if (h==(int) (calagedate+YEARM*cpt)) {  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
             }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
               kk1=0.;kk2=0;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
               for(i=1; i<=nlstate;i++) {                  fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
               }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
             }  */
           }    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    free_vector(xp,1,npar);
       }    free_matrix(doldm,1,nlstate,1,nlstate);
    }    free_matrix(dnewm,1,nlstate,1,npar);
   }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if (popforecast==1) {    fclose(ficresprobmorprev);
     free_ivector(popage,0,AGESUP);    fclose(ficgp);
     free_vector(popeffectif,0,AGESUP);    fclose(fichtm);
     free_vector(popcount,0,AGESUP);  }  
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /************ Variance of prevlim ******************/
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   fclose(ficrespop);  {
 }    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 /***********************************************/    double **newm;
 /**************** Main Program *****************/    double **dnewm,**doldm;
 /***********************************************/    int i, j, nhstepm, hstepm;
     int k, cptcode;
 int main(int argc, char *argv[])    double *xp;
 {    double *gp, *gm;
     double **gradg, **trgradg;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    double age,agelim;
   double agedeb, agefin,hf;    int theta;
   double agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;     
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   double fret;    fprintf(ficresvpl,"# Age");
   double **xi,tmp,delta;    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
   double dum; /* Dummy variable */    fprintf(ficresvpl,"\n");
   double ***p3mat;  
   int *indx;    xp=vector(1,npar);
   char line[MAXLINE], linepar[MAXLINE];    dnewm=matrix(1,nlstate,1,npar);
   char title[MAXLINE];    doldm=matrix(1,nlstate,1,nlstate);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    hstepm=1*YEARM; /* Every year of age */
      hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   char filerest[FILENAMELENGTH];      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   char fileregp[FILENAMELENGTH];      if (stepm >= YEARM) hstepm=1;
   char popfile[FILENAMELENGTH];      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      gradg=matrix(1,npar,1,nlstate);
   int firstobs=1, lastobs=10;      gp=vector(1,nlstate);
   int sdeb, sfin; /* Status at beginning and end */      gm=vector(1,nlstate);
   int c,  h , cpt,l;  
   int ju,jl, mi;      for(theta=1; theta <=npar; theta++){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        for(i=1; i<=npar; i++){ /* Computes gradient */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int mobilav=0,popforecast=0;        }
   int hstepm, nhstepm;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
   double bage, fage, age, agelim, agebase;      
   double ftolpl=FTOL;        for(i=1; i<=npar; i++) /* Computes gradient */
   double **prlim;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double *severity;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double ***param; /* Matrix of parameters */        for(i=1;i<=nlstate;i++)
   double  *p;          gm[i] = prlim[i][i];
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */        for(i=1;i<=nlstate;i++)
   double *delti; /* Scale */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   double ***eij, ***vareij;      } /* End theta */
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;      trgradg =matrix(1,nlstate,1,npar);
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      for(j=1; j<=nlstate;j++)
          for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   char version[80]="Imach version 0.7, February 2002, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   char z[1]="c", occ;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 #include <sys/time.h>      for(i=1;i<=nlstate;i++)
 #include <time.h>        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
        fprintf(ficresvpl,"%.0f ",age );
   /* long total_usecs;      for(i=1; i<=nlstate;i++)
   struct timeval start_time, end_time;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        fprintf(ficresvpl,"\n");
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
   printf("\n%s",version);      free_matrix(trgradg,1,nlstate,1,npar);
   if(argc <=1){    } /* End age */
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);    free_vector(xp,1,npar);
   }    free_matrix(doldm,1,nlstate,1,npar);
   else{    free_matrix(dnewm,1,nlstate,1,nlstate);
     strcpy(pathtot,argv[1]);  
   }  }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);  /************ Variance of one-step probabilities  ******************/
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   /* cutv(path,optionfile,pathtot,'\\');*/  {
     int i, j=0,  i1, k1, l1, t, tj;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    int k2, l2, j1,  z1;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    int k=0,l, cptcode;
   chdir(path);    int first=1, first1;
   replace(pathc,path);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
 /*-------- arguments in the command line --------*/    double *xp;
     double *gp, *gm;
   strcpy(fileres,"r");    double **gradg, **trgradg;
   strcat(fileres, optionfilefiname);    double **mu;
   strcat(fileres,".txt");    /* Other files have txt extension */    double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   /*---------arguments file --------*/    int theta;
     char fileresprob[FILENAMELENGTH];
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    char fileresprobcov[FILENAMELENGTH];
     printf("Problem with optionfile %s\n",optionfile);    char fileresprobcor[FILENAMELENGTH];
     goto end;  
   }    double ***varpij;
   
   strcpy(filereso,"o");    strcpy(fileresprob,"prob"); 
   strcat(filereso,fileres);    strcat(fileresprob,fileres);
   if((ficparo=fopen(filereso,"w"))==NULL) {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      printf("Problem with resultfile: %s\n", fileresprob);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
   /* Reads comments: lines beginning with '#' */    strcpy(fileresprobcov,"probcov"); 
   while((c=getc(ficpar))=='#' && c!= EOF){    strcat(fileresprobcov,fileres);
     ungetc(c,ficpar);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     fgets(line, MAXLINE, ficpar);      printf("Problem with resultfile: %s\n", fileresprobcov);
     puts(line);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     fputs(line,ficparo);    }
   }    strcpy(fileresprobcor,"probcor"); 
   ungetc(c,ficpar);    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      printf("Problem with resultfile: %s\n", fileresprobcor);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    }
 while((c=getc(ficpar))=='#' && c!= EOF){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     ungetc(c,ficpar);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fgets(line, MAXLINE, ficpar);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     puts(line);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fputs(line,ficparo);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   ungetc(c,ficpar);    
      fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
        fprintf(ficresprob,"# Age");
   covar=matrix(0,NCOVMAX,1,n);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   cptcovn=0;    fprintf(ficresprobcov,"# Age");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
      for(i=1; i<=nlstate;i++)
   /* Read guess parameters */      for(j=1; j<=(nlstate+ndeath);j++){
   /* Reads comments: lines beginning with '#' */        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     ungetc(c,ficpar);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     fgets(line, MAXLINE, ficpar);      }  
     puts(line);   /* fprintf(ficresprob,"\n");
     fputs(line,ficparo);    fprintf(ficresprobcov,"\n");
   }    fprintf(ficresprobcor,"\n");
   ungetc(c,ficpar);   */
     xp=vector(1,npar);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     for(i=1; i <=nlstate; i++)    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     for(j=1; j <=nlstate+ndeath-1; j++){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       fprintf(ficparo,"%1d%1d",i1,j1);    first=1;
       printf("%1d%1d",i,j);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       for(k=1; k<=ncovmodel;k++){      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
         fscanf(ficpar," %lf",&param[i][j][k]);      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
         printf(" %lf",param[i][j][k]);      exit(0);
         fprintf(ficparo," %lf",param[i][j][k]);    }
       }    else{
       fscanf(ficpar,"\n");      fprintf(ficgp,"\n# Routine varprob");
       printf("\n");    }
       fprintf(ficparo,"\n");    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
     }      printf("Problem with html file: %s\n", optionfilehtm);
        fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      exit(0);
     }
   p=param[1][1];    else{
        fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   /* Reads comments: lines beginning with '#' */      fprintf(fichtm,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
     fgets(line, MAXLINE, ficpar);      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     puts(line);      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
     fputs(line,ficparo);  
   }    }
   ungetc(c,ficpar);  
     cov[1]=1;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    tj=cptcoveff;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   for(i=1; i <=nlstate; i++){    j1=0;
     for(j=1; j <=nlstate+ndeath-1; j++){    for(t=1; t<=tj;t++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(i1=1; i1<=ncodemax[t];i1++){ 
       printf("%1d%1d",i,j);        j1++;
       fprintf(ficparo,"%1d%1d",i1,j1);        if  (cptcovn>0) {
       for(k=1; k<=ncovmodel;k++){          fprintf(ficresprob, "\n#********** Variable "); 
         fscanf(ficpar,"%le",&delti3[i][j][k]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         printf(" %le",delti3[i][j][k]);          fprintf(ficresprob, "**********\n#\n");
         fprintf(ficparo," %le",delti3[i][j][k]);          fprintf(ficresprobcov, "\n#********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fscanf(ficpar,"\n");          fprintf(ficresprobcov, "**********\n#\n");
       printf("\n");          
       fprintf(ficparo,"\n");          fprintf(ficgp, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficgp, "**********\n#\n");
   delti=delti3[1][1];          
            
   /* Reads comments: lines beginning with '#' */          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   while((c=getc(ficpar))=='#' && c!= EOF){          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ungetc(c,ficpar);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     fgets(line, MAXLINE, ficpar);          
     puts(line);          fprintf(ficresprobcor, "\n#********** Variable ");    
     fputs(line,ficparo);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprobcor, "**********\n#");    
   ungetc(c,ficpar);        }
          
   matcov=matrix(1,npar,1,npar);        for (age=bage; age<=fage; age ++){ 
   for(i=1; i <=npar; i++){          cov[2]=age;
     fscanf(ficpar,"%s",&str);          for (k=1; k<=cptcovn;k++) {
     printf("%s",str);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     fprintf(ficparo,"%s",str);          }
     for(j=1; j <=i; j++){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       fscanf(ficpar," %le",&matcov[i][j]);          for (k=1; k<=cptcovprod;k++)
       printf(" %.5le",matcov[i][j]);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       fprintf(ficparo," %.5le",matcov[i][j]);          
     }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     fscanf(ficpar,"\n");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     printf("\n");          gp=vector(1,(nlstate)*(nlstate+ndeath));
     fprintf(ficparo,"\n");          gm=vector(1,(nlstate)*(nlstate+ndeath));
   }      
   for(i=1; i <=npar; i++)          for(theta=1; theta <=npar; theta++){
     for(j=i+1;j<=npar;j++)            for(i=1; i<=npar; i++)
       matcov[i][j]=matcov[j][i];              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                
   printf("\n");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
     /*-------- data file ----------*/            for(i=1; i<= (nlstate); i++){
     if((ficres =fopen(fileres,"w"))==NULL) {              for(j=1; j<=(nlstate+ndeath);j++){
       printf("Problem with resultfile: %s\n", fileres);goto end;                k=k+1;
     }                gp[k]=pmmij[i][j];
     fprintf(ficres,"#%s\n",version);              }
                }
     if((fic=fopen(datafile,"r"))==NULL)    {            
       printf("Problem with datafile: %s\n", datafile);goto end;            for(i=1; i<=npar; i++)
     }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
     n= lastobs;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     severity = vector(1,maxwav);            k=0;
     outcome=imatrix(1,maxwav+1,1,n);            for(i=1; i<=(nlstate); i++){
     num=ivector(1,n);              for(j=1; j<=(nlstate+ndeath);j++){
     moisnais=vector(1,n);                k=k+1;
     annais=vector(1,n);                gm[k]=pmmij[i][j];
     moisdc=vector(1,n);              }
     andc=vector(1,n);            }
     agedc=vector(1,n);       
     cod=ivector(1,n);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     weight=vector(1,n);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          }
     mint=matrix(1,maxwav,1,n);  
     anint=matrix(1,maxwav,1,n);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     s=imatrix(1,maxwav+1,1,n);            for(theta=1; theta <=npar; theta++)
     adl=imatrix(1,maxwav+1,1,n);                  trgradg[j][theta]=gradg[theta][j];
     tab=ivector(1,NCOVMAX);          
     ncodemax=ivector(1,8);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     i=1;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     while (fgets(line, MAXLINE, fic) != NULL)    {          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       if ((i >= firstobs) && (i <=lastobs)) {          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                  free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          pmij(pmmij,cov,ncovmodel,x,nlstate);
           strcpy(line,stra);          
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          k=0;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1; i<=(nlstate); i++){
         }            for(j=1; j<=(nlstate+ndeath);j++){
                      k=k+1;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              mu[k][(int) age]=pmmij[i][j];
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            }
           }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncov;j>=1;j--){          /*printf("\n%d ",(int)age);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         num[i]=atol(stra);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                    }*/
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
         i=i+1;          fprintf(ficresprobcor,"\n%d ",(int)age);
       }  
     }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     /* printf("ii=%d", ij);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
        scanf("%d",i);*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   imx=i-1; /* Number of individuals */            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   /* for (i=1; i<=imx; i++){          }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          i=0;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          for (k=1; k<=(nlstate);k++){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            for (l=1; l<=(nlstate+ndeath);l++){ 
     }              i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     for (i=1; i<=imx; i++)              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/              for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   /* Calculation of the number of parameter from char model*/                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   Tvar=ivector(1,15);              }
   Tprod=ivector(1,15);            }
   Tvaraff=ivector(1,15);          }/* end of loop for state */
   Tvard=imatrix(1,15,1,2);        } /* end of loop for age */
   Tage=ivector(1,15);        
            /* Confidence intervalle of pij  */
   if (strlen(model) >1){        /*
     j=0, j1=0, k1=1, k2=1;          fprintf(ficgp,"\nset noparametric;unset label");
     j=nbocc(model,'+');          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     j1=nbocc(model,'*');          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     cptcovn=j+1;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     cptcovprod=j1;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
              fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
              fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     strcpy(modelsav,model);        */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       goto end;        first1=1;
     }        for (k2=1; k2<=(nlstate);k2++){
              for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     for(i=(j+1); i>=1;i--){            if(l2==k2) continue;
       cutv(stra,strb,modelsav,'+');            j=(k2-1)*(nlstate+ndeath)+l2;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            for (k1=1; k1<=(nlstate);k1++){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       /*scanf("%d",i);*/                if(l1==k1) continue;
       if (strchr(strb,'*')) {                i=(k1-1)*(nlstate+ndeath)+l1;
         cutv(strd,strc,strb,'*');                if(i<=j) continue;
         if (strcmp(strc,"age")==0) {                for (age=bage; age<=fage; age ++){ 
           cptcovprod--;                  if ((int)age %5==0){
           cutv(strb,stre,strd,'V');                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           Tvar[i]=atoi(stre);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           cptcovage++;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
             Tage[cptcovage]=i;                    mu1=mu[i][(int) age]/stepm*YEARM ;
             /*printf("stre=%s ", stre);*/                    mu2=mu[j][(int) age]/stepm*YEARM;
         }                    c12=cv12/sqrt(v1*v2);
         else if (strcmp(strd,"age")==0) {                    /* Computing eigen value of matrix of covariance */
           cptcovprod--;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           cutv(strb,stre,strc,'V');                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           Tvar[i]=atoi(stre);                    /* Eigen vectors */
           cptcovage++;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           Tage[cptcovage]=i;                    /*v21=sqrt(1.-v11*v11); *//* error */
         }                    v21=(lc1-v1)/cv12*v11;
         else {                    v12=-v21;
           cutv(strb,stre,strc,'V');                    v22=v11;
           Tvar[i]=ncov+k1;                    tnalp=v21/v11;
           cutv(strb,strc,strd,'V');                    if(first1==1){
           Tprod[k1]=i;                      first1=0;
           Tvard[k1][1]=atoi(strc);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           Tvard[k1][2]=atoi(stre);                    }
           Tvar[cptcovn+k2]=Tvard[k1][1];                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                    /*printf(fignu*/
           for (k=1; k<=lastobs;k++)                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           k1++;                    if(first==1){
           k2=k2+2;                      first=0;
         }                      fprintf(ficgp,"\nset parametric;unset label");
       }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       else {                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
        /*  scanf("%d",i);*/                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
       cutv(strd,strc,strb,'V');                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       Tvar[i]=atoi(strc);                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       strcpy(modelsav,stra);                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         scanf("%d",i);*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 }                    }else{
                        first=0;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
   printf("cptcovprod=%d ", cptcovprod);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   scanf("%d ",i);*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     fclose(fic);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     /*  if(mle==1){*/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     if (weightopt != 1) { /* Maximisation without weights*/                    }/* if first */
       for(i=1;i<=n;i++) weight[i]=1.0;                  } /* age mod 5 */
     }                } /* end loop age */
     /*-calculation of age at interview from date of interview and age at death -*/                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
     agev=matrix(1,maxwav,1,imx);                first=1;
               } /*l12 */
    for (i=1; i<=imx; i++)            } /* k12 */
      for(m=2; (m<= maxwav); m++)          } /*l1 */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        }/* k1 */
          anint[m][i]=9999;      } /* loop covariates */
          s[m][i]=-1;    }
        }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
        free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     for (i=1; i<=imx; i++)  {    free_vector(xp,1,npar);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fclose(ficresprob);
       for(m=1; (m<= maxwav); m++){    fclose(ficresprobcov);
         if(s[m][i] >0){    fclose(ficresprobcor);
           if (s[m][i] == nlstate+1) {    fclose(ficgp);
             if(agedc[i]>0)    fclose(fichtm);
               if(moisdc[i]!=99 && andc[i]!=9999)  }
               agev[m][i]=agedc[i];  
             else {  
               if (andc[i]!=9999){  /******************* Printing html file ***********/
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
               agev[m][i]=-1;                    int lastpass, int stepm, int weightopt, char model[],\
               }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
             }                    int popforecast, int estepm ,\
           }                    double jprev1, double mprev1,double anprev1, \
           else if(s[m][i] !=9){ /* Should no more exist */                    double jprev2, double mprev2,double anprev2){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    int jj1, k1, i1, cpt;
             if(mint[m][i]==99 || anint[m][i]==9999)    /*char optionfilehtm[FILENAMELENGTH];*/
               agev[m][i]=1;    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
             else if(agev[m][i] <agemin){      printf("Problem with %s \n",optionfilehtm), exit(0);
               agemin=agev[m][i];      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    }
             }  
             else if(agev[m][i] >agemax){     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
               agemax=agev[m][i];   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
             }   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
             /*agev[m][i]=anint[m][i]-annais[i];*/   - Life expectancies by age and initial health status (estepm=%2d months): 
             /*   agev[m][i] = age[i]+2*m;*/     <a href=\"e%s\">e%s</a> <br>\n</li>", \
           }    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
           else { /* =9 */  
             agev[m][i]=1;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
             s[m][i]=-1;  
           }   m=cptcoveff;
         }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         else /*= 0 Unknown */  
           agev[m][i]=1;   jj1=0;
       }   for(k1=1; k1<=m;k1++){
         for(i1=1; i1<=ncodemax[k1];i1++){
     }       jj1++;
     for (i=1; i<=imx; i++)  {       if (cptcovn > 0) {
       for(m=1; (m<= maxwav); m++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         if (s[m][i] > (nlstate+ndeath)) {         for (cpt=1; cpt<=cptcoveff;cpt++) 
           printf("Error: Wrong value in nlstate or ndeath\n");             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           goto end;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }       }
       }       /* Pij */
     }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
   <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
     free_vector(severity,1,maxwav);  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
     free_imatrix(outcome,1,maxwav+1,1,n);         /* Stable prevalence in each health state */
     free_vector(moisnais,1,n);         for(cpt=1; cpt<nlstate;cpt++){
     free_vector(annais,1,n);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
     /* free_matrix(mint,1,maxwav,1,n);  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
        free_matrix(anint,1,maxwav,1,n);*/         }
     free_vector(moisdc,1,n);       for(cpt=1; cpt<=nlstate;cpt++) {
     free_vector(andc,1,n);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
   <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
           }
     wav=ivector(1,imx);       fprintf(fichtm,"\n<br>- Total life expectancy by age and
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  health expectancies in states (1) and (2): e%s%d.png<br>
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
         } /* end i1 */
     /* Concatenates waves */   }/* End k1 */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);   fprintf(fichtm,"</ul>");
   
   
       Tcode=ivector(1,100);   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
       ncodemax[1]=1;   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
         - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
    codtab=imatrix(1,100,1,10);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
    h=0;   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
    m=pow(2,cptcoveff);   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
    
    for(k=1;k<=cptcoveff; k++){  /*  if(popforecast==1) fprintf(fichtm,"\n */
      for(i=1; i <=(m/pow(2,k));i++){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
        for(j=1; j <= ncodemax[k]; j++){  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /*      <br>",fileres,fileres,fileres,fileres); */
            h++;  /*  else  */
            if (h>m) h=1;codtab[h][k]=j;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
          }  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
        }  
      }   m=cptcoveff;
    }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    /*for(i=1; i <=m ;i++){   for(k1=1; k1<=m;k1++){
      for(k=1; k <=cptcovn; k++){     for(i1=1; i1<=ncodemax[k1];i1++){
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);       jj1++;
      }       if (cptcovn > 0) {
      printf("\n");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
    }         for (cpt=1; cpt<=cptcoveff;cpt++) 
    scanf("%d",i);*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    /* Calculates basic frequencies. Computes observed prevalence at single age       }
        and prints on file fileres'p'. */       for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident
      interval) in state (%d): v%s%d%d.png <br>
      <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     } /* end i1 */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   }/* End k1 */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   fprintf(fichtm,"</ul>");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  fclose(fichtm);
        }
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  /******************* Gnuplot file **************/
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     if(mle==1){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    int ng;
     }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
          printf("Problem with file %s",optionfilegnuplot);
     /*--------- results files --------------*/      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    }
    
     /*#ifdef windows */
    jk=1;      fprintf(ficgp,"cd \"%s\" \n",pathc);
    fprintf(ficres,"# Parameters\n");      /*#endif */
    printf("# Parameters\n");  m=pow(2,cptcoveff);
    for(i=1,jk=1; i <=nlstate; i++){    
      for(k=1; k <=(nlstate+ndeath); k++){   /* 1eme*/
        if (k != i)    for (cpt=1; cpt<= nlstate ; cpt ++) {
          {     for (k1=1; k1<= m ; k1 ++) {
            printf("%d%d ",i,k);       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
            fprintf(ficres,"%1d%1d ",i,k);       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);       for (i=1; i<= nlstate ; i ++) {
              fprintf(ficres,"%f ",p[jk]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
              jk++;         else fprintf(ficgp," \%%*lf (\%%*lf)");
            }       }
            printf("\n");       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
            fprintf(ficres,"\n");       for (i=1; i<= nlstate ; i ++) {
          }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
      }         else fprintf(ficgp," \%%*lf (\%%*lf)");
    }       } 
  if(mle==1){       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
     /* Computing hessian and covariance matrix */       for (i=1; i<= nlstate ; i ++) {
     ftolhess=ftol; /* Usually correct */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     hesscov(matcov, p, npar, delti, ftolhess, func);         else fprintf(ficgp," \%%*lf (\%%*lf)");
  }       }  
     fprintf(ficres,"# Scales\n");       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
     printf("# Scales\n");     }
      for(i=1,jk=1; i <=nlstate; i++){    }
       for(j=1; j <=nlstate+ndeath; j++){    /*2 eme*/
         if (j!=i) {    
           fprintf(ficres,"%1d%1d",i,j);    for (k1=1; k1<= m ; k1 ++) { 
           printf("%1d%1d",i,j);      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
           for(k=1; k<=ncovmodel;k++){      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
             printf(" %.5e",delti[jk]);      
             fprintf(ficres," %.5e",delti[jk]);      for (i=1; i<= nlstate+1 ; i ++) {
             jk++;        k=2*i;
           }        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
           printf("\n");        for (j=1; j<= nlstate+1 ; j ++) {
           fprintf(ficres,"\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         }          else fprintf(ficgp," \%%*lf (\%%*lf)");
       }        }   
      }        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
            else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     k=1;        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
     fprintf(ficres,"# Covariance\n");        for (j=1; j<= nlstate+1 ; j ++) {
     printf("# Covariance\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     for(i=1;i<=npar;i++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
       /*  if (k>nlstate) k=1;        }   
       i1=(i-1)/(ncovmodel*nlstate)+1;        fprintf(ficgp,"\" t\"\" w l 0,");
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
       printf("%s%d%d",alph[k],i1,tab[i]);*/        for (j=1; j<= nlstate+1 ; j ++) {
       fprintf(ficres,"%3d",i);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       printf("%3d",i);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       for(j=1; j<=i;j++){        }   
         fprintf(ficres," %.5e",matcov[i][j]);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         printf(" %.5e",matcov[i][j]);        else fprintf(ficgp,"\" t\"\" w l 0,");
       }      }
       fprintf(ficres,"\n");    }
       printf("\n");    
       k++;    /*3eme*/
     }    
        for (k1=1; k1<= m ; k1 ++) { 
     while((c=getc(ficpar))=='#' && c!= EOF){      for (cpt=1; cpt<= nlstate ; cpt ++) {
       ungetc(c,ficpar);        k=2+nlstate*(2*cpt-2);
       fgets(line, MAXLINE, ficpar);        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
       puts(line);        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
       fputs(line,ficparo);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     ungetc(c,ficpar);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
            fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemaxpar, &bage, &fage);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
              fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     if (fage <= 2) {          
       bage = agemin;        */
       fage = agemaxpar;        for (i=1; i< nlstate ; i ++) {
     }          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
              
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        } 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);      }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);    }
      
     while((c=getc(ficpar))=='#' && c!= EOF){    /* CV preval stable (period) */
     ungetc(c,ficpar);    for (k1=1; k1<= m ; k1 ++) { 
     fgets(line, MAXLINE, ficpar);      for (cpt=1; cpt<=nlstate ; cpt ++) {
     puts(line);        k=3;
     fputs(line,ficparo);        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
   }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
   ungetc(c,ficpar);        
          for (i=1; i<= nlstate ; i ++)
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          fprintf(ficgp,"+$%d",k+i+1);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        
              l=3+(nlstate+ndeath)*cpt;
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
     ungetc(c,ficpar);        for (i=1; i< nlstate ; i ++) {
     fgets(line, MAXLINE, ficpar);          l=3+(nlstate+ndeath)*cpt;
     puts(line);          fprintf(ficgp,"+$%d",l+i+1);
     fputs(line,ficparo);        }
   }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   ungetc(c,ficpar);      } 
      }  
     
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    /* proba elementaires */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
   fscanf(ficpar,"pop_based=%d\n",&popbased);        if (k != i) {
   fprintf(ficparo,"pop_based=%d\n",popbased);            for(j=1; j <=ncovmodel; j++){
   fprintf(ficres,"pop_based=%d\n",popbased);              fprintf(ficgp,"p%d=%f ",jk,p[jk]);
              jk++; 
   while((c=getc(ficpar))=='#' && c!= EOF){            fprintf(ficgp,"\n");
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      }
     fputs(line,ficparo);     }
   }  
   ungetc(c,ficpar);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);         if (ng==2)
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
 while((c=getc(ficpar))=='#' && c!= EOF){         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     ungetc(c,ficpar);         i=1;
     fgets(line, MAXLINE, ficpar);         for(k2=1; k2<=nlstate; k2++) {
     puts(line);           k3=i;
     fputs(line,ficparo);           for(k=1; k<=(nlstate+ndeath); k++) {
   }             if (k != k2){
   ungetc(c,ficpar);               if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);               else
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);               ij=1;
                for(j=3; j <=ncovmodel; j++) {
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 /*------------ gnuplot -------------*/                   ij++;
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, agemin,agemaxpar,fage, pathc,p);                 }
                   else
 /*------------ free_vector  -------------*/                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  chdir(path);               }
                 fprintf(ficgp,")/(1");
  free_ivector(wav,1,imx);               
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);               for(k1=1; k1 <=nlstate; k1++){   
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                   fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
  free_ivector(num,1,n);                 ij=1;
  free_vector(agedc,1,n);                 for(j=3; j <=ncovmodel; j++){
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
  fclose(ficparo);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
  fclose(ficres);                     ij++;
                    }
 /*--------- index.htm --------*/                   else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm);                 }
                  fprintf(ficgp,")");
                 }
   /*--------------- Prevalence limit --------------*/               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                 if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   strcpy(filerespl,"pl");               i=i+ncovmodel;
   strcat(filerespl,fileres);             }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {           } /* end k */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;         } /* end k2 */
   }       } /* end jk */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);     } /* end ng */
   fprintf(ficrespl,"#Prevalence limit\n");     fclose(ficgp); 
   fprintf(ficrespl,"#Age ");  }  /* end gnuplot */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");  
    /*************** Moving average **************/
   prlim=matrix(1,nlstate,1,nlstate);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int i, cpt, cptcod;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int modcovmax =1;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int mobilavrange, mob;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double age;
   k=0;  
   agebase=agemin;    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   agelim=agemaxpar;                             a covariate has 2 modalities */
   ftolpl=1.e-10;    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
   for(cptcov=1;cptcov<=i1;cptcov++){      else mobilavrange=mobilav;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for (age=bage; age<=fage; age++)
         k=k+1;        for (i=1; i<=nlstate;i++)
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          for (cptcod=1;cptcod<=modcovmax;cptcod++)
         fprintf(ficrespl,"\n#******");            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
         for(j=1;j<=cptcoveff;j++)      /* We keep the original values on the extreme ages bage, fage and for 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
         fprintf(ficrespl,"******\n");         we use a 5 terms etc. until the borders are no more concerned. 
              */ 
         for (age=agebase; age<=agelim; age++){      for (mob=3;mob <=mobilavrange;mob=mob+2){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           fprintf(ficrespl,"%.0f",age );          for (i=1; i<=nlstate;i++){
           for(i=1; i<=nlstate;i++)            for (cptcod=1;cptcod<=modcovmax;cptcod++){
           fprintf(ficrespl," %.5f", prlim[i][i]);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           fprintf(ficrespl,"\n");                for (cpt=1;cpt<=(mob-1)/2;cpt++){
         }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
       }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     }                }
   fclose(ficrespl);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
   /*------------- h Pij x at various ages ------------*/          }
          }/* end age */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      }/* end mob */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    }else return -1;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    return 0;
   }  }/* End movingaverage */
   printf("Computing pij: result on file '%s' \n", filerespij);  
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /************** Forecasting ******************/
   /*if (stepm<=24) stepsize=2;*/  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
   agelim=AGESUP;       agemin, agemax range of age
   hstepm=stepsize*YEARM; /* Every year of age */       dateprev1 dateprev2 range of dates during which prevalence is computed
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       anproj2 year of en of projection (same day and month as proj1).
      */
   k=0;    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   for(cptcov=1;cptcov<=i1;cptcov++){    int *popage;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double agec; /* generic age */
       k=k+1;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
         fprintf(ficrespij,"\n#****** ");    double *popeffectif,*popcount;
         for(j=1;j<=cptcoveff;j++)    double ***p3mat;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ***mobaverage;
         fprintf(ficrespij,"******\n");    char fileresf[FILENAMELENGTH];
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    agelim=AGESUP;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcpy(fileresf,"f"); 
           oldm=oldms;savm=savms;    strcat(fileresf,fileres);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if((ficresf=fopen(fileresf,"w"))==NULL) {
           fprintf(ficrespij,"# Age");      printf("Problem with forecast resultfile: %s\n", fileresf);
           for(i=1; i<=nlstate;i++)      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
             for(j=1; j<=nlstate+ndeath;j++)    }
               fprintf(ficrespij," %1d-%1d",i,j);    printf("Computing forecasting: result on file '%s' \n", fileresf);
           fprintf(ficrespij,"\n");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
           for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    if (cptcoveff==0) ncodemax[cptcoveff]=1;
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)    if (mobilav!=0) {
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             fprintf(ficrespij,"\n");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           fprintf(ficrespij,"\n");      }
         }    }
     }  
   }    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   fclose(ficrespij);    }
     else  hstepm=estepm;   
   
   /*---------- Forecasting ------------------*/    hstepm=hstepm/stepm; 
   if(stepm == 1) {    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                                 fractional in yp1 */
 if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    anprojmean=yp;
     free_matrix(mint,1,maxwav,1,n);    yp2=modf((yp1*12),&yp);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    mprojmean=yp;
     free_vector(weight,1,n);}    yp1=modf((yp2*30.5),&yp);
   else{    jprojmean=yp;
     erreur=108;    if(jprojmean==0) jprojmean=1;
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);    if(mprojmean==0) jprojmean=1;
   }  
      i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   /*---------- Health expectancies and variances ------------*/    
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   strcpy(filerest,"t");    
   strcat(filerest,fileres);    fprintf(ficresf,"#****** Routine prevforecast **\n");
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  /*            if (h==(int)(YEARM*yearp)){ */
   }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
   strcpy(filerese,"e");        for(j=1;j<=cptcoveff;j++) {
   strcat(filerese,fileres);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   if((ficreseij=fopen(filerese,"w"))==NULL) {        }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        fprintf(ficresf,"******\n");
   }        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
  strcpy(fileresv,"v");            fprintf(ficresf," p%d%d",i,j);
   strcat(fileresv,fileres);          fprintf(ficresf," p.%d",j);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   }          fprintf(ficresf,"\n");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
   k=0;          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   for(cptcov=1;cptcov<=i1;cptcov++){            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            nhstepm = nhstepm/hstepm; 
       k=k+1;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficrest,"\n#****** ");            oldm=oldms;savm=savms;
       for(j=1;j<=cptcoveff;j++)            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
       fprintf(ficrest,"******\n");            for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
       fprintf(ficreseij,"\n#****** ");                fprintf(ficresf,"\n");
       for(j=1;j<=cptcoveff;j++)                for(j=1;j<=cptcoveff;j++) 
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       fprintf(ficreseij,"******\n");                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
       fprintf(ficresvij,"\n#****** ");              for(j=1; j<=nlstate+ndeath;j++) {
       for(j=1;j<=cptcoveff;j++)                ppij=0.;
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);                for(i=1; i<=nlstate;i++) {
       fprintf(ficresvij,"******\n");                  if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                  else {
       oldm=oldms;savm=savms;                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);                    }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                  if (h*hstepm/YEARM*stepm== yearp) {
       oldm=oldms;savm=savms;                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                  }
                    } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                    fprintf(ficresf," %.3f", ppij);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);              }/* end j */
       fprintf(ficrest,"\n");            } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       hf=1;          } /* end agec */
       if (stepm >= YEARM) hf=stepm/YEARM;        } /* end yearp */
       epj=vector(1,nlstate+1);      } /* end cptcod */
       for(age=bage; age <=fage ;age++){    } /* end  cptcov */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);         
         if (popbased==1) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];    fclose(ficresf);
         }  }
          
         fprintf(ficrest," %.0f",age);  /************** Forecasting *****not tested NB*************/
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
           }    int *popage;
           epj[nlstate+1] +=epj[j];    double calagedatem, agelim, kk1, kk2;
         }    double *popeffectif,*popcount;
         for(i=1, vepp=0.;i <=nlstate;i++)    double ***p3mat,***tabpop,***tabpopprev;
           for(j=1;j <=nlstate;j++)    double ***mobaverage;
             vepp += vareij[i][j][(int)age];    char filerespop[FILENAMELENGTH];
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  
         for(j=1;j <=nlstate;j++){    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         }    agelim=AGESUP;
         fprintf(ficrest,"\n");    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
       }    
     }    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   }    
     
   fclose(ficreseij);    strcpy(filerespop,"pop"); 
   fclose(ficresvij);    strcat(filerespop,fileres);
   fclose(ficrest);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   fclose(ficpar);      printf("Problem with forecast resultfile: %s\n", filerespop);
   free_vector(epj,1,nlstate+1);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
      }
   /*------- Variance limit prevalence------*/      printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    if (mobilav!=0) {
     exit(0);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   k=0;      }
   for(cptcov=1;cptcov<=i1;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    stepsize=(int) (stepm+YEARM-1)/YEARM;
       fprintf(ficresvpl,"\n#****** ");    if (stepm<=12) stepsize=1;
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    agelim=AGESUP;
       fprintf(ficresvpl,"******\n");    
          hstepm=1;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    hstepm=hstepm/stepm; 
       oldm=oldms;savm=savms;    
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    if (popforecast==1) {
     }      if((ficpop=fopen(popfile,"r"))==NULL) {
  }        printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   fclose(ficresvpl);      } 
       popage=ivector(0,AGESUP);
   /*---------- End : free ----------------*/      popeffectif=vector(0,AGESUP);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      popcount=vector(0,AGESUP);
        
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      i=1;   
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       
        imx=i;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   free_matrix(matcov,1,npar,1,npar);        k=k+1;
   free_vector(delti,1,npar);        fprintf(ficrespop,"\n#******");
   free_matrix(agev,1,maxwav,1,imx);        for(j=1;j<=cptcoveff;j++) {
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
   if(erreur >0)        fprintf(ficrespop,"******\n");
     printf("End of Imach with error %d\n",erreur);        fprintf(ficrespop,"# Age");
   else   printf("End of Imach\n");        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        if (popforecast==1)  fprintf(ficrespop," [Population]");
          
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        for (cpt=0; cpt<=0;cpt++) { 
   /*printf("Total time was %d uSec.\n", total_usecs);*/          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   /*------ End -----------*/          
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
  end:            nhstepm = nhstepm/hstepm; 
 #ifdef windows            
   /* chdir(pathcd);*/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #endif            oldm=oldms;savm=savms;
  /*system("wgnuplot graph.plt");*/            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
  /*system("../gp37mgw/wgnuplot graph.plt");*/          
  /*system("cd ../gp37mgw");*/            for (h=0; h<=nhstepm; h++){
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/              if (h==(int) (calagedatem+YEARM*cpt)) {
  strcpy(plotcmd,GNUPLOTPROGRAM);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
  strcat(plotcmd," ");              } 
  strcat(plotcmd,optionfilegnuplot);              for(j=1; j<=nlstate+ndeath;j++) {
  system(plotcmd);                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
 #ifdef windows                  if (mobilav==1) 
   while (z[0] != 'q') {                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     chdir(path);                  else {
     printf("\nType e to edit output files, c to start again, and q for exiting: ");                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     scanf("%s",z);                  }
     if (z[0] == 'c') system("./imach");                }
     else if (z[0] == 'e') {                if (h==(int)(calagedatem+12*cpt)){
       chdir(path);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
       system(optionfilehtm);                    /*fprintf(ficrespop," %.3f", kk1);
     }                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
     else if (z[0] == 'q') exit(0);                }
   }              }
 #endif              for(i=1; i<=nlstate;i++){
 }                kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   #include <sys/time.h>
   #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
     /* long total_usecs;
        struct timeval start_time, end_time;
     
        gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     getcwd(pathcd, size);
   
     printf("\n%s",version);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s",version);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1;
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.28  
changed lines
  Added in v.1.79


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>